ON THE DOLBEAULT COHOMOLOGY
OF COMPACT LIE GROUPS

Stefan Ivanov

Department of Geometry, Faculty of Mathematics and Informatics,
University of Sofia,
5 James Bourchier blvd, 1126 Sofia, Bulgaria
and
The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.

Abstract

An algebraic way to compute p’th Dolbeault cohomology groups on even dimensional compact Lie groups considered with a left invariant complex structure is given. In particular, a description of the p’th Dolbeault cohomology groups of some left invariant complex structures on SU(2n+1) is presented.

MIRAMARE – TRIESTE
December 1999
1 Introduction

We consider even dimensional compact Lie groups with a left-invariant complex structure. R.Bott showed in [?] that all Dolbeault cohomology of a compact Lie group (more general, on a compact homogeneous space) with respect to an invariant complex structure can be expressed in terms of Lie algebra cohomology. In [?] the Dolbeault cohomology ring of compact even dimensional Lie groups of rank 2 as well as of some groups of type B_n, C_n, D_n considered with a left invariant complex structure are described relying on Bott’s formula [?].

In this note we apply the vanishing theorem of [?] to even dimensional compact Lie group considered with left invariant complex structure. This approach gives a purely algebraic way to compute p’th Dolbeault cohomology groups and is completely different from that given by Bott in [?]. We apply this result to the groups of type A_n and determine the p’th Dolbeault cohomology groups of some left invariant complex structures on $SU(2n + 1)$. We show that these groups are generated by the chosen (0,1)-space in the Cartan subalgebra (see Theorem ??) which agrees with the results in [?].

Bott’s work [?] leads to the independence of the Hodge numbers of a left-invariant complex structure on a compact Lie group on the chosen left-invariant complex structure. In view of this fact and Theorem ?? we propose

Theorem 1.1 Hodge numbers of a left-invariant complex structure on $SU(2n+1)$ are given by

$$h^{0,p} = \binom{n}{p}, \quad p = 1, 2, \ldots, n,$$

$$h^{0,p} = 0, \quad p > n.$$

2 Dolbeault cohomology

Let (M, g, J) be a 2n-dimensional $(n > 1)$ Hermitian manifold with complex structure J and compatible metric g. Let Ω be the Kähler form of (M, g, J), defined by $\Omega(X, Y) = g(X, JY)$. Denote by θ the Lee form of (M, g, J), $\theta = \frac{1}{n-1} d^c \Omega o J$. Any Hermitian manifold (M, g, J) carries a unique Hermitian connection with completely skew-symmetric torsion, the Bismut connection (cf. [?] and [?]). The Bismut connection is given by

$$g(\nabla^B_X Y, Z) = g(\nabla^L_X Y, Z) + \frac{1}{2} d^c \Omega(X, Y, Z),$$

where ∇^L is the Levi-Civita connection of g.

Recall that $d^c = i(\bar{\partial} - \partial)$. In particular, $d^c \Omega(X, Y, Z) = -d\Omega(JX, JY, JZ)$. This connection has been used by Bismut in [?] to prove a local index theorem for the Dolbeault operator on Hermitian manifold.

A Hermitian manifold equipped with the Bismut connection is also called Kähler with torsion or KT manifold, see e.g. [?]. KT manifolds arise in a natural way in physics as target spaces.
of (2,0)-supersymmetric sigma models with Wess-Zumino term (torsion) [?, ?] (see also [?] and the references there). If the torsion is closed then the manifold is called strong KT manifold. We use the following result from [?]

Theorem 2.1 [?] Let (M,g,J) be a compact $2n$-dimensional $(n > 1)$ Hermitian manifold with Kähler form Ω. Suppose that Ω is $d\bar{d}$-harmonic, i.e. $d\bar{d}\Omega = 0$ and $(d\bar{d})^*\Omega = 0$. Suppose also that the $(1,1)$-part of the Ricci form of the Bismut connection is non-negative everywhere on M.

a) Then every $\bar{\partial}$-harmonic $(0,p)$-form, $p = 1,2,\ldots,n$, must be parallel with respect to the Bismut connection.

b) If moreover the $(1,1)$-part of the Ricci form of the Bismut connection is strictly positive at some point, then the cohomology groups $H^p(M,\mathcal{O})$ vanish for $p = 1,2,\ldots,n$.

We note that $d\bar{d}\Omega = \partial \bar{\partial} \Omega$ and the condition $(d\bar{d})^*\Omega = 0$ is equivalent to $d^*\theta = 0$.

3 Compact Lie groups

Any compact Lie group with bi-invariant metric and compatible left-invariant complex structure has $d\bar{d}\Omega = 0$, $(d\bar{d})^*\Omega = 0$. On a compact even dimensional Lie group there exists a flat strong KT structure [?, ?]. Indeed, on every compact Lie group G there exists at least one left invariant complex structure J [?]. The definition corresponds to a Cartan decomposition of the Lie algebra. The generators of the Cartan subalgebra, including $U(1)$ generators, define an invariant subspace under the action of J. The (complex) generators associated to positive roots are eigenvectors of J with eigenvalue $\sqrt{-1}$, while the generators associated to negative roots are eigenvectors with eigenvalue $-\sqrt{-1}$ [?]. Taking any biinvariant metric g on G and a left-invariant complex structure J the Bismut connection ∇^B of the hermitian structure (J,g) is defined by the requirement that an orthonormal left invariant basis is parallel. (In fact the definition of ∇^B depends only on the biinvariant metric chosen and does not depend on the complex structure). The connection ∇^B is flat and the torsion is just the commutator. The corresponding torsion 3-form T^B is ∇^B-parallel and hence closed because of the Jacobi identity. We know from (??) that $T^B = d\varphi^B$. The last equality implies that the Lee form θ is ∇^B-parallel. Then, (??) shows that the Lee form is coclosed. Thus, the manifold (G,J,g) is a compact Hermitian manifold which satisfies $d\bar{d}\Omega = d^*\theta = \rho^B = b = 0$. Now, Theorem ?? yields

Proposition 3.1 Let (G,J,g) be a compact $2n$-dimensional Lie group with a left-invariant complex structure J and a biinvariant metric g. Then every $\bar{\partial}$-harmonic $(0,p)$-form, $p = 1,\ldots,n$ is parallel with respect to the Bismut connection.

The above proposition allows us to reduce computations of the p'th, $p = 1,2,\ldots,n$ Dolbeault cohomology groups of a compact $2n$ dimensional Lie group G endowed with left-invariant complex structure J to purely algebraic calculations on the Lie algebra.
We recall that the action of the operators $\bar{\partial}$ and $\bar{\partial}^*$ on a $(0,p)$-form ψ are expressed in terms of any hermitian connection ∇ with torsion T by ([?], Lemma 5)

\begin{align}
(\bar{\partial}\psi)((Z_0, \ldots, Z_p)) &= \sum_{j=1}^{p} (-1)^j (\nabla Z_j \psi)(Z_0, \ldots, \hat{Z}_j, \ldots, Z_p) \\
&+ \sum_{j<k} (-1)^{j+k} \psi \left(T^{2,0}(Z_j, Z_k), Z_0, \ldots, \hat{Z}_j, \ldots, \hat{Z}_k, \ldots Z_p \right), \\
(\bar{\partial}^*\psi)((Z_1, \ldots, Z_{p-1})) &= - \sum_{j=1}^{p-1} (\nabla_{e_j}\psi)(e_i, Z_1, \ldots, Z_{p-1}) - \sum_{j=1}^{p-1} (-1)^j < \left(Z_j, T^{2,0} \right), \psi(., Z_1, ..., \hat{Z}_j, ..., Z_{p-1}) >,
\end{align}

for any vector fields Z_i of type $(0,1)$, where $T^{2,0}$ is the $(2,0)$ part of T characterized by the property $T^{2,0}(Y, Z) = JT^{2,0}(Y, Z)$; trT^* is the dual vector field to the 1-form defined by:

$Y \rightarrow \sum(e_i, T(e_i, X)); (Z_j, T^{2,0})$ denotes the complex 2-form defined by $Y, Z \rightarrow (Z_j, T^{2,0}(Y, Z)); \psi(., Z_1, ..., \hat{Z}_j, ..., Z_{p-1})$ denotes the complex 2-form defined by $Y, Z \rightarrow \psi(Y, Z, Z_1, ..., \hat{Z}_j, ..., Z_{p-1})$ (as usual, the symbol \hat{Z}_j denotes the missing argument and $\{e_i\}$ is a J-adapted orthonormal basis).

Theorem 3.2 Let (G, J, K) be a $2n$-dimensional compact Lie group with a left invariant complex structure J and the biinvariant Killing metric K. Then every $\bar{\partial}$-harmonic $(0,p)$-form ψ, $p = 1, \ldots, n$ is left invariant and satisfies the following algebraic conditions

\begin{align}
&\sum_{j<k} (-1)^{j+k} \psi \left([Z_j, Z_k]^{0,1}, Z_0, \ldots, \hat{Z}_j, \ldots, \hat{Z}_k, \ldots Z_p \right) = 0, \\
&\sum_{j=1}^{p-1} (-1)^j < \left(Z_j, [., .]^{1,0} \right), \psi(., Z_1, ..., \hat{Z}_j, ..., Z_{p-1}) > = 0,
\end{align}

for any unitary basis of left invariant vector fields of type $(0,1)$, where $[,]^{1,0}$ (resp. $[,]^{0,1}$ denotes the $(1,0)$-part (resp. $(0,1)$-part) of the commutator.

Conversely, every left invariant $(0,p)$-form ψ satisfying (??) and (??) belongs to the Kernel of the Dolbeault operator.

Proof. If $\psi \in \text{Ker} \Box$ then Proposition ?? implies that ψ is parallel with respect to the Bismut connection ∇^B. This means that ψ is left invariant by the very definition of ∇^B. Considering (??) and (??) with respect to the Bismut connection we deduce that ψ fulfills (??) and (??).

For the converse, every left invariant $(0,p)$-form is ∇^B-parallel. Substituting (??) into (??) and (??) into (??) we get $\bar{\partial}\psi = \bar{\partial}^*\psi = 0$. **Q.E.D.**

We shall give more precise explanations. Let G be a semi-simple, compact Lie group with compact Lie algebra g and g^c be its complexification. Let h be the Cartan subalgebra of g and Δ be the root system of g^c with respect to the complexification h^c of h. Then (see for example [?], p.165) $g^c = h^c \oplus_{\alpha \in \Delta} g^c_{\alpha}$, where the root subspaces are $g^c_{\alpha} = \{g_{\alpha} \in g^c : [h, g_{\alpha}] = \alpha(h)g_{\alpha}, \quad h \in h^c\}$.
We denote by $\Delta^+(\Delta^-)$ the space of positive (negative) roots of g'. Any root of g' can be written as the sum of simple roots, $\Delta^+ := \{\alpha_i, i = 1, ..., l = \text{rank}(g) = \text{dim}(h)\}$, with positive integers coefficients ([?], p.177). For each linear function α on h^e there exists a unique element $h_\alpha \in h^e$ defined by the Killing metric K in the usual way ([?], p.166). The Killing metric induces an inner product on the root space by $\langle \alpha, \beta \rangle = \alpha(h_\beta) = K(h_\alpha, h_\beta)$. The commutation relations of g' are

\begin{equation}
[h_\alpha, e_\beta] = 2 \frac{\langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle} e_\beta, \quad [e_\alpha, e_\beta] = N_{\alpha, \beta} e_{\alpha+\beta} + \delta_{\alpha, -\beta} h_\alpha,
\end{equation}

where $\{e_\alpha\}$ are the step operators, $\{h_\alpha\}$ are the generators of the Cartan subalgebra and the structure constants $N_{\alpha, \beta}$ are integers ($N_{\alpha, \beta} = 0$ if $\alpha + \beta \notin \Delta$). A left invariant complex structure can be defined with $+\sqrt{-1}$-eigenspace to be the positive root space and the Cartan subalgebra has to be preserved by the structure. Further, we refer to this complex structure as a root-space complex structure.

We consider the groups of A_n-types i.e. $SU(n+1)$. The Lie algebra $su(n+1)$ is the space of matrices of trace zero. Cartan subalgebra h of $su(n+1)$ is a group of all diagonal matrices and the root spaces $g_{\alpha, i} = \text{const}.e_i$, $1 \leq i, j \leq n, i \neq j$ are consisted of matrices with nonzero entry only in the ij position. The rank of $SU(n + 1)$ is n. The root associated to the root space is defined by $\alpha_{ij} = e_i - e_j$, where e_i is the linear map which is the projection onto the ith coordinate. The corresponding generator of the Cartan subalgebra is denoted by h_{ij}. The usual choice of simple roots are $\alpha_{12}, \alpha_{23}, ..., \alpha_{n+1}$. With this choice the positive roots are α_{ij} with $i < j$. A root-space complex structure on $SU(2n + 1)$ can be defined by the following $(0,1)$-space $\{A_1 = h_{12} + \sqrt{-1} h_{23}, ..., A_n = h_{2n-2n-1} + \sqrt{-1} h_{2n-12n}\}$ in the Cartan subalgebra h. Let $\Lambda^{0,p}$ denote the space of $(0,p)$-forms on the Cartan subalgebra h. We have

Theorem 3.3 Let J be a root-space complex structure on $SU(2n + 1)$. Then the p'th Dolbeault cohomology group $H^p(SU(2n + 1), \mathcal{O})$ is generated by $\Lambda^{0,p}$ for $p = 1, ..., n$ and is zero for $p > n$. The Hodge numbers are given by

\begin{align*}
\hat{h}^{0,p} &= \binom{n}{p}, \quad p = 1, 2, ..., n, \\
\hat{h}^{0,p} &= 0, \quad p > n.
\end{align*}

Proof. Follows from Theorem ?? and commutation relations (??) for $SU(2n + 1)$ by long but straightforward computations. Q.E.D.

Example 1. We obtain from Theorem ?? that the Hodge numbers of $SU(3)$ with respect to a root-space complex structure J are

$\hat{h}^{0,1} = 1$, \quad $\hat{h}^{0,2} = \hat{h}^{0,3} = \hat{h}^{0,4} = 0$.

This is incompatible with Bott’s example ([?], p.205) where it is claimed $\hat{h}^{0,1} = 0$ which seems to be a typographical missprint. However, our result agrees with those in [?]
Example 2. We consider the non-Kähler space $S^3 \times S^3 = SU(2) \times SU(2) \in SU(4)$. The Cartan subalgebra is 2-dimensional. The positive roots are α_{12}, α_{34}. Cartan subalgebra is spanned by h_{12}, h_{34}. The root-space complex structure J is defined by the following $(0,1)$-space \{e_{12}, e_{34}, A = h_{12} - ih_{34}\}. Applying Theorem ?? and using (??) we get

$$h^{0,1} = 1, \quad h^{0,2} = h^{0,3} = 0.$$

The $\bar{\partial}$-harmonic representative of $H^1(S^3 \times S^3, \mathcal{O})$ is the $(0,1)$-form A^\ast dual to A. This agrees with the results in [?].

Example 3. We consider the exceptional 14-dimensional group G_2. Cartan subalgebra of G_2 is two-dimensional. The roots are (see for example [?], p.472):

$$\pm(e_2 - e_3), \pm(e_3 - e_1), \pm(e_1 - e_2); \pm(2e_1 - e_2 - e_3), \pm(2e_3 - e_1 - e_2).$$

The roots $\alpha_1 = e_1 - e_2, \quad \alpha_2 = -2e_1 + e_2 + e_3$ form a basis. The positive roots are: $\beta_1 = \alpha_1 + \alpha_2, \quad \beta_2 = 2\alpha_1 + \alpha_2, \quad \beta_3 = 3\alpha_1 + \alpha_2, \quad \beta_4 = 3\alpha_1 + 2\alpha_2$. Applying Theorem ?? and using (??) we obtain for the first Dolbeault cohomology groups of the root-space complex structure J on G_2 that $h^{0,1}(G_2, J) = 1, \quad h^{0,2}(G_2, J) = 0$ which is compatible with the results in [?].

Acknowledgments.

The author is supported by Contract MM 809/1998 with the Ministry of Science and Education of Bulgaria and by Contract 238/1998 with the University of Sofia "St. Kl. Ohridski".

This article is a version of the author’s lecture given at the ICTP Mathematics seminar. The article was composed while the author visited the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, fall 1999. The author thanks the Abdus Salam ICTP for the support and excellent environment.

References

