United Nations Educational Scientific and Cultural Organization
and
International Atomic Energy Agency
THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

COFINITE MODULES

Siamak Yassemi

Department of Mathematics, University of Tehran, P.O. Box 13145-448, Tehran, Iran
and
The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.

Abstract

The R–module M is called a $\mathcal{F}A$ module if there exists finite submodule N such that M/N is Artinian, and is called an $\mathcal{A}F$ module if there exists Artinian submodule A such that M/A is finite. We show that if M and K are $\mathcal{F}A$ (or $\mathcal{A}F$) modules with $\text{Supp}(K) \subseteq \mathbb{V}(\alpha)$ then $\text{Ext}_R^i(K, H_\alpha^j(M))$ is finite for all $i \geq 0$ and $j > 0$, if R is local and α is an ideal of dimension one or principal.

MIRAMARE – TRIESTE
August 1999

\(^1\)Regular Associate of the Abdus Salam ICTP.
Also at Institute for Studies in Theoretical Physics and Mathematics (IPM). E-mail: yassemi@rose.ipm.ac.ir
0. Introduction

Throughout this note the ring R is commutative Noetherian with non-zero identity. It is a well-known result that if R is a complete local ring with maximal ideal m then the R–module M is Artinian if and only if $\text{Supp}(M) \subseteq V(m)$ and $\text{Ext}_R^i(R/m, M)$ is finite (it means finitely generated) for all $i \geq 0$, cf. [Ha; Proposition 1.1]. Grothendieck proposed the following:

Grothendieck's conjecture: For any ideal a and any finite R–module M, the module $\text{Hom}(R/a, H_a^j(M))$ is finite for all $j \geq 0$, where $H_a^j(M)$ is the j^{th} local cohomology module of M with support in a.

In [Ha], Hartshorne refined this conjecture, and posed the following:

Hartshorne's conjecture: For any ideal a and any finite R–module M, the module $\text{Ext}_R^i(R/a, H_a^j(M))$ is finite for all $i \geq 0$ and all $j \geq 0$.

Hartshorne showed that, in general, the answer is NO, even if R is a regular local ring. But he used the derived category and showed that the conjecture is true if R is a complete regular local ring for two cases;

(i) a is a non–zero principal ideal.

(ii) a is a prime ideal with dimension one.

In [HK], Huneke and Koh extended Hartshorne’s second case for a complete Gorenstein domain. The result was further extended by Delfino in [D]. She was able to replace the Gorenstein property of R by some weaker conditions. Recently Delfino and Marley in [DM] and Yoshida in [Yo] have eliminated the complete domain hypothesis entirely and they proved the following:

Theorem 0.1. Let R be a Noetherian local ring, let a be an ideal of R with $\text{dim}(R/a) = 1$ and let M be a finite R–module then $\text{Ext}_R^i(R/a, H_a^j(M))$ is finite for all $i \geq 0$ and $j \geq 0$.

Concerning result (i), the present author extended it for a Gorenstein ring and also for Noetherian local ring when M has finite projective dimension, by using generalized section functors, cf. [Ya]. Recently Kawasaki in [K1] proved the following:

Theorem 0.2. Let R be a Noetherian ring, let a be a principal ideal of R and let M be a finite R–module then $\text{Ext}_R^i(R/a, H_a^j(M))$ is finite for all $i \geq 0$ and $j \geq 0$.

The R–module M is called \mathcal{FA} module if there exists finite submodule N of M with M/N Artinian and is called \mathcal{AF} module if there exists Artinian submodule A of M with M/A finite. In [E; Proposition 1.3], Enochs showed that if R is local then \mathcal{FA} modules contain the Matlis reflexive modules and there is equality if R is complete with respect to the m–adic topology (we have strict inequality if R is not complete). It is also easy to see that \mathcal{FA} and \mathcal{AF} modules contain finite and Artinian modules.

In the first section we bring some characterization of cofinite modules.

In section 2, we show that for a local ring R if M and K are in \mathcal{FA} or \mathcal{AF} with $\text{Supp}(K) \subseteq V(a)$ then $\text{Ext}_R^i(K, H_a^j(M))$ is finite for all $i \geq 0$ and $j > 0$ if a is an ideal with dimension one or principal. This is a generalization of [BSW; Theorem 5].
1. Cofinite modules

In this section we bring some characterizations of cofinite modules.

Definition 1.1. Let a be an ideal of R. The R-module M is called an a-cofinite module if the support of M is contained in $V(a)$ and $\text{Ext}_R^i(R/a, M)$ is finite for all $i \geq 0$.

In the next theorem we characterize a-cofinite modules. Some parts of this theorem appear in [HK], [Ya], [D] and [K1], but we have put these parts together with further new equivalent conditions.

Theorem 1.2. Let M be an R-module and let a be an ideal of R. Then the following are equivalent:

(i) M is an a-cofinite module.

(ii) $\text{Ext}_R^i(N, M)$ is finite for all $i \geq 0$ and all finite R-modules N such that the annihilator of N contains a.

(iii) $\text{Ext}_R^i(N, M)$ is finite for all $i \geq 0$ and all finite R-modules N such that the support of N is contained in $V(a)$.

(iv) M is an a^n-cofinite module for all $n \in \mathbb{N}$.

(v) For any ideal b if $a \subseteq \sqrt{b}$ then M is a b-cofinite module.

(vi) For any $p \in \text{Min}(a)$ the R-module M is a p-cofinite.

(vii) For any $m \in \text{Max}(R)$ the R-modules $H_m^0(M)$ and $M/H_m^0(M)$ are a-cofinite.

(viii) There exists $m \in \text{Max}(R)$ such that the R-modules $H_m^0(M)$ and $M/H_m^0(M)$ are a-cofinite.

Proof. (ii)\Rightarrow(i), (iii)\Rightarrow(i), (iv)\Rightarrow(i), (v)\Rightarrow(i) and (vii)\Rightarrow(viii) are clear.

(i)\Rightarrow(ii). We use induction on i. Since $\text{Ann}(N) \supseteq a$ we know that N is finite as an R/a-module. Thus there exists an exact sequence $(R/a)^n \rightarrow N \rightarrow 0$ with $n \in \mathbb{N}$. Therefore $0 \rightarrow \text{Hom}(N, M) \rightarrow \text{Hom}(R/a, M)^n$ is exact and hence $\text{Hom}(N, M)$ is a finite module. Suppose that $\text{Ext}^n(X, M)$ is finite for all finite R-module X with $\text{Ann}(X) \supseteq a$. There is an exact sequence $0 \rightarrow K \rightarrow F \rightarrow N \rightarrow 0$ such that F is a finite free R/a-module. Note that $\text{Ann}(K) \supseteq a$. There is a long exact sequence

$$\cdots \rightarrow \text{Ext}^0_R(K, M) \rightarrow \text{Ext}^1_R(N, M) \rightarrow \text{Ext}^i_R(F, M) \rightarrow \text{Ext}^1_R(K, M) \rightarrow \cdots$$

Since $\text{Ext}^0_R(K, M)$ and $\text{Ext}^1_R(F, M)$ are finite we have that $\text{Ext}^n+1(N, M)$ is finite.

(i)\Rightarrow(iv). We prove it by induction on n. For $n = 0$ we have nothing to prove. Let us assume M is an a^n-cofinite module. We know that a^n/a^{n+1} is a finite R-module and $\text{Ann}(a^n/a^{n+1}) \supseteq a$. Thus by (i), $\text{Ext}_R^i(a^n/a^{n+1}, M)$ is finite for all $i \geq 0$. The exact sequence

$$0 \rightarrow a^n/a^{n+1} \rightarrow R/a^{n+1} \rightarrow R/a^n \rightarrow 0$$
induces the long exact sequence

\[\cdots \to \text{Ext}^i_R(R/a^n, M) \to \text{Ext}^i_R(R/a^{n+1}, M) \to \text{Ext}^i_R(a^n/a^{n+1}, M) \to \cdots \]

Since \(\text{Ext}^i_R(R/a^n, M) \) and \(\text{Ext}^i_R(a^n/a^{n+1}, M) \) are finite for all \(i \geq 0 \) we have that the module \(\text{Ext}^i_R(R/a^{n+1}, M) \) is finite for all \(i \geq 0 \).

(i) \(\Rightarrow \) (v). Since \(a \subseteq \sqrt{b} \) there exists \(n \in \mathbb{N} \cup \{0\} \) such that \(a^n \subseteq b \). By (iv) we know that \(M \) is an \(a^n \)-cofinite module and \(\text{Ann}(R/b) \supseteq a^n \). Therefore by (i), \(\text{Ext}^i_R(R/b, M) \) is finite for all \(i \geq 0 \), and hence \(M \) is a \(b \)-cofinite.

(v) \(\Rightarrow \) (iii). Induction on the length of a prime filtration for \(N \) shows that it suffices to prove it for \(R/p \), where \(p \in \text{Supp}(N) \). Now the assertion follows from the fact \(a \subseteq \sqrt{b} \).

(i) \(\Rightarrow \) (vi). Assume \(p \in \text{Min}(a) \). We have \(\text{Ann}(R/p) = p \supseteq a \) and so by (i) \(\Rightarrow \) (v) we have that \(M \) is a \(p \)-cofinite.

(vi) \(\Rightarrow \) (v). Assume that \(\text{Min}(a) = \{p_1, p_2, \ldots, p_n\} \) and \(b \) is an ideal of \(R \) such that \(a \subseteq \sqrt{b} \). Since \(\cup_{i=1}^n p_i \subseteq \sqrt{b} \) there exists \(1 \leq j \leq n \) such that \(p_j \subseteq \sqrt{b} \). Since \(M \) is a \(p_j \)-cofinite we have that \(M \) is a \(b \)-cofinite module by (i) \(\Rightarrow \) (v).

(i) \(\Rightarrow \) (vii). Since \(M \) is an \(a \)-cofinite module we have that \(H^0_m(M) \) is an \(a \)-cofinite for all \(m \in \text{Max}(R) \), cf. [M; Corollary 1.8]). The short exact sequence of \(R \)-modules \(0 \to H^0_m(M) \to M \to M/H^0_m(M) \to 0 \) induces the long exact sequence

\[\cdots \to \text{Ext}^i_R(R/a, M) \to \text{Ext}^i_R(R/a, M/H^0_m(M)) \to \text{Ext}^{i+1}_R(R/a, H^0_m(M)) \to \cdots \]

Since \(\text{Ext}^i_R(R/a, M) \) and \(\text{Ext}^{i+1}_R(R/a, H^0_m(M)) \) are finite for all \(i \geq 0 \) we have that the module \(\text{Ext}^i_R(R/a, M/H^0_m(M)) \) is finite for all \(i \geq 0 \).

(viii) \(\Rightarrow \) (i). Use the long exact sequence involving Ext induced from the short exact sequence \(0 \to H^0_m(M) \to M \to M/H^0_m(M) \to 0 \).

Corollary 1.3. Let \((R, m) \) be a local ring with maximal ideal \(m \) and let \(a \) be an ideal of \(R \) with dimension one or principal. Let \(A \) be an Artinian \(R \)-module and let \(M \) be a finite \(R \)-module. Then \(\text{Ext}^i_R(A, H^0_m(M)) \) is finite for all \(i \geq 0 \) and \(j \geq 0 \).

Proof. Since \(A \) is an Artinian \(R \)-module we have that \(\text{Supp}(A) = \{m\} \subseteq V(a) \). Now the assertion follows from theorems (0.1) and (1.2) or theorems (0.2) and (1.2).

2. \(\mathcal{FA} \) and \(\mathcal{AF} \) modules

In this section suppose \((R, m) \) is a local ring with maximal ideal \(m \) and \(a \) is an ideal of \(R \) with dimension one or principal.

Definition 2.1. The \(R \)-module \(M \) is called an \(\mathcal{FA} \) module if there exists a finite submodule \(N \) of \(M \) with \(M/N \) Artinian and is called an \(\mathcal{AF} \) module if there exists an Artinian submodule \(A \) of \(M \) with \(M/A \) finite.
Lemma 2.2. If K is an \mathcal{FA} or \mathcal{AF} module such that $\text{Supp}(K) \subseteq V(\mathfrak{a})$ and M is a finite R-module then $\text{Ext}^j_R(K, H^i_\mathfrak{a}(M))$ is finite for all $i \geq 0$ and $j \geq 0$.

Proof. If K is an \mathcal{FA} module, then there exists a short exact sequence

$$0 \to N \to K \to A \to 0$$

with N finite and A Artinian R-modules. This induces a long exact sequence

$$\cdots \to \text{Ext}^j_R(A, H^i_\mathfrak{a}(M)) \to \text{Ext}^j_R(K, H^i_\mathfrak{a}(M)) \to \text{Ext}^j_R(N, H^i_\mathfrak{a}(M)) \to \cdots$$

By Corollary (1.3) we know that the left-hand side is finite. Since N is a finite module and $\text{Supp}(N) \subseteq V(\mathfrak{a})$ we have that the right-hand side is finite by theorems (0.1) and (1.2) or (0.2) and (1.2). Thus the assertion holds.

If K is an \mathcal{AF} module, there exists a short exact sequence

$$0 \to A \to K \to N \to 0$$

with A Artinian and N finite R-modules. This induces a long exact sequence

$$\cdots \to \text{Ext}^j_R(N, H^i_\mathfrak{a}(M)) \to \text{Ext}^j_R(K, H^i_\mathfrak{a}(M)) \to \text{Ext}^j_R(A, H^i_\mathfrak{a}(M)) \to \cdots$$

By Corollary (1.3) we know that the right-hand side is finite. Since N is finite and $\text{Supp}(N) \subseteq V(\mathfrak{a})$ we have that the left-hand side is finite by theorems (0.1) and (1.2) or theorems (0.2) and (1.2). Thus the assertion holds.

Theorem 2.3. If M is an \mathcal{FA} or \mathcal{AF} module then $H^i_\mathfrak{a}(M)$ is \mathfrak{a}-cofinite for all $j > 0$.

Proof. If M is an \mathcal{FA} module then follows the proof of [BSW; Theorem 2].

If M is an \mathcal{AF} module, then there exists an exact sequence $0 \to A \to M \to N \to 0$ with A Artinian and N finite R-module. Since A is Artinian we have $H^j_A(A) = 0$ for all $j > 0$ and hence we obtain from the induced long exact sequence of local cohomology modules that $H^j_\mathfrak{a}(M) \cong H^j_\mathfrak{a}(N)$ for all $j > 0$. Now the assertion follows from theorem (0.1) or (0.2).

Corollary 2.4. If A is an Artinian R-module and M is an \mathcal{FA} or \mathcal{AF} module then the module $\text{Ext}^i_R(A, H^j_\mathfrak{a}(M))$ is finite for all $i \geq 0$ and $j > 0$.

Proof. Use theorem (2.3) and the proof of corollary (1.3).

Theorem 2.5. The following holds.

(a) If M and K are \mathcal{FA} modules and $\text{Supp}(K) \subseteq V(\mathfrak{a})$ then the module $\text{Ext}^i_R(K, H^j_\mathfrak{a}(M))$ is finite for all $i \geq 0$ and $j > 0$.

(b) If M and K are \mathcal{AF} modules and $\text{Supp}(K) \subseteq V(\mathfrak{a})$ then the module $\text{Ext}^i_R(K, H^j_\mathfrak{a}(M))$ is finite for all $i \geq 0$ and $j > 0$.

5
Proof (a): There exists a short exact sequence $0 \to N \to K \to A \to 0$ with N finite and A Artinian R-modules. This sequence induces a long exact sequence

$$\cdots \to \Ext^i_R(A, H^d_a(M)) \to \Ext^i_R(K, H^d_a(M)) \to \Ext^i_R(N, H^d_a(M)) \to \cdots$$

By corollary (1.3) we have that the left-hand side is finite. Since $\Supp(N) \subseteq V(\mathfrak{a})$ we have that the right-hand side is also finite by theorems (2.3) and (1.2). Now the assertion holds.

(b): There exists a short exact sequence $0 \to A \to K \to N \to 0$ with A Artinian and N finite R-modules. This sequence induces a long exact sequence

$$\cdots \to \Ext^i_R(N, H^d_a(M)) \to \Ext^i_R(K, H^d_a(M)) \to \Ext^i_R(A, H^d_a(M)) \to \cdots$$

By corollary (1.3) we have that the right-hand side is finite. Since $\Supp(N) \subseteq V(\mathfrak{a})$ we have that the left-hand side is also finite by theorems (2.3) and (1.2). Now the assertion holds.

If N is an R-module then the ith Bass number of N with respect to the prime ideal \mathfrak{p} is defined to be $\mu_i(\mathfrak{p}, N) = \dim_{k(\mathfrak{p})} \Ext^i_{R_{\mathfrak{p}}}(k(\mathfrak{p}), N_{\mathfrak{p}})$, where $k(\mathfrak{p}) = R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}$, cf. [B]. If M is finite then the Bass numbers of $H^i_m(M)$ are finite since $H^i_m(M)$ is Artinian. However, Hartshorne showed that this does not hold in general, even over a complete regular local ring. In the special case that $M = R$, Huneke and Sharp proved that if R is a regular local ring of characteristic p and \mathfrak{a} is an ideal of R, then the Bass numbers of $H^i_\mathfrak{a}(R)$ are finite for all $j \geq 0$. [HS; Theorem 2.1]. In [L], Lyubeznik proved the same result in the case R is a regular local ring containing a field of characteristic 0. There are some other attempts in this direction for example, [DM], [K2] and [BSW]. Now we extend this result for \mathcal{FA} and \mathcal{AF} modules.

Theorem 2.6. If M is an \mathcal{FA} (resp. \mathcal{AF}) module, then the Bass numbers of $H^i_\mathfrak{a}(M)$ are finite for all $j > 0$.

Proof. We know that $\Ext^i_{R_{\mathfrak{p}}}(R/\mathfrak{m}, H^i_\mathfrak{a}(M))$ is finite by theorem (2.4). If \mathfrak{p} is not maximal then $M_{\mathfrak{p}}$ is a \mathcal{FA} (resp. \mathcal{AF}) $R_{\mathfrak{p}}$-module. Now if $\mathfrak{p} \supseteq \mathfrak{a}$ then we have that $(\Ext^i_{R_{\mathfrak{p}}}(R/\mathfrak{p}, H^i_\mathfrak{a}(M)))_{\mathfrak{p}} \cong \Ext^i_{R_{\mathfrak{p}}}(k(\mathfrak{p}), H^i_{\mathfrak{a}R_{\mathfrak{p}}}(M_{\mathfrak{p}}))$ by [BS; 4.3.3], that is finite. If \mathfrak{p} does not contain \mathfrak{a} then $\mu_i(\mathfrak{p}, H^i_\mathfrak{a}(M)) = 0$.

Let M and N be R-modules, and let \mathfrak{a} be an ideal of R. Then the generalized local cohomology module $H^i_\mathfrak{a}(M, N)$ was introduced by Herzog in [He] by defining

$$H^i_\mathfrak{a}(M, N) = \lim_{\to} \Ext^i_R(M/\mathfrak{a}M, N).$$

If $M = R$, then $H^i_\mathfrak{a}(M, N) = H^i_\mathfrak{a}(N)$, the usual local cohomology module. Now it is natural to ask the following question:

Question 2.7. Assume M and N are finite R-modules and \mathfrak{a} is an ideal of R with dimension one or principal. Is the module $H^i_\mathfrak{a}(M, N)$, \mathfrak{a}-cofinite for all $j \geq 0$?
Here we give a positive answer for the principal ideal over Gorenstein ring.

Theorem 2.8. Let R be a Gorenstein ring and let M and N be finite R–modules. Then for any non–zero principal ideal a the R–module $H^j_a(M, N)$ is an a–cofinite module for all $j \geq 0$.

Proof. Use [Ya; 3.4], [Ya; 4.3] and then [Ya; 4.8].

Acknowledgements

This work was done when the author was visiting the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, as a Regular Associate member. The author was supported in part by a grant from IPM. The author would like to thank the University of Tehran for partial support.

References

