NEUTRINO MASS SPECTRUM WITH $\nu_\mu \rightarrow \nu_s$ OSCILLATIONS OF ATMOSPHERIC NEUTRINOS

Q.Y. Liu
Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy

and

A.Yu. Smirnov
Institute for Nuclear Research, Russian Academy of Sciences,
107370 Moscow, Russian Federation

and

The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.

Abstract

We consider the “standard” spectrum of the active neutrinos (characterized by strong mass hierarchy and small mixing) with additional sterile neutrino, ν_s. The sterile neutrino mixes strongly with the muon neutrino, so that $\nu_\mu \leftrightarrow \nu_s$ oscillations solve the atmospheric neutrino problem. We show that the parametric enhancement of the $\nu_\mu \leftrightarrow \nu_s$ oscillations occurs for the high energy atmospheric neutrinos which cross the core of the Earth. This can be relevant for the anomaly observed by the MACRO experiment. Solar neutrinos are converted both to ν_μ and ν_s. The heaviest neutrino ($\approx \nu_\tau$) may compose the hot dark matter of the Universe. Phenomenology of this scenario is elaborated and crucial experimental signatures are identified. We also discuss properties of the underlying neutrino mass matrix.
1. Introduction

Reconstruction of the neutrino mass spectrum and lepton mixing is one of the fundamental problems of particle physics. This problem may be solved with new generation of the neutrino experiments.

It is believed that the most natural scenario of the neutrino mass and mixing is the one with strong mass hierarchy

\[m_3 = (1 - 5) \text{ eV}, \quad m_2 = (2 - 3) \cdot 10^{-3} \text{ eV}, \quad m_1 \ll m_2 \] \hspace{1cm} (1)

and small lepton mixing (comparable with mixing in the quark sector), so that \(\nu_e \approx \nu_1, \nu_{\mu} \approx \nu_2, \nu_\tau \approx \nu_3 \). In this scenario the heaviest neutrino, \(\nu_3 \), composes the hot dark matter (HDM) of the Universe, while the \(\nu_e \rightarrow \nu_\mu \) resonance conversion solves the solar neutrino \(\text{(\nu\odot)} \) - problem [1]. This scenario (which can be called the “standard scenario”) follows naturally from the see-saw mechanism [2,3] with the neutrino Dirac mass matrix similar to the quark mass matrix: \(m_\nu^D \sim m_{up} \) and the Majorana masses of the right-handed neutrinos at the intermediate mass scale: \(10^{10} - 10^{13} \text{ GeV} \) [4]. Short length \(\nu_e \leftrightarrow \nu_\mu \) and \(\nu_e \leftrightarrow \nu_\mu \) oscillations proceed via mixing of \(\nu_e \) and \(\nu_\mu \) in the heaviest state \(\nu_3 \) [5]. The transition probability for the LSND experiment [6] is small, \(P \lesssim 10^{-3} \); it can be reconciled with data at 3\(\sigma \) level only [7].

In the standard scenario, there is no oscillation solution of the atmospheric neutrino \((\nu_{atm}) \) - problem [8]. Recently, the Super-Kamiokande [9] and Soudan [10] experiments have confirmed the existence of the problem. Moreover, observations of the zenith angle as well as \(L/E \) (distance/energy) dependencies of the muon neutrino deficit strongly indicate an oscillation solution of the problem.

One can accommodate the oscillation solution of the \(\nu_{atm} \) - problem modifying the standard scenario. A straightforward possibility is to diminish \(m_3 \) down to \(\sim (0.03 - 0.3) \text{ eV} \) implied by the \(\nu_{atm} \) - data. For \(m_3 \sim (0.5 - 0.6) \text{ eV} \) one can also try to explain the LSND result [11] ignoring the zenith angle dependence in the atmospheric neutrino deficit. Further modification is needed to get a sufficient amount of the hot dark matter in the Universe. In this connection the degenerate mass spectrum with \(m_1 \approx m_2 \approx m_3 \sim 1 - 2 \text{ eV} \) has been suggested [12]. Simultaneous explanation of the LSND result and the zenith angle dependence in the atmospheric neutrinos requires depart from the three neutrino scheme.

In this paper we will consider a possibility to rescue the “standard scenario”. The idea is to keep the standard structure with strong mass hierarchy (1) and small mixing for active neutrinos and explain the atmospheric neutrino problem by oscillations of \(\nu_\mu \) to new neutrino state \(\nu_s \): \(\nu_\mu \leftrightarrow \nu_s \) [13]. This new neutrino should be a sterile neutrino (singlet of \(SU_2 \times U_1 \)) in order to satisfy the bound on the number of neutrino species from the \(Z^0 \)-decay width. Large \(\nu_s - \nu_\mu \) mixing can be related to a singlet character of \(\nu_s \).

The \(\nu_\mu \leftrightarrow \nu_s \) oscillations as a solution of the atmospheric neutrino problem (see e.g. [13]) have been considered previously in the context of the model with mirror symmetry.
In contrast with [14] we introduce only one singlet state, and the phenomenology of our scenario substantially differs from that in [14].

The paper is organized in the following way. In sect. 2 we describe the scenario. Then we consider predictions for the atmospheric (sect. 3) and solar (sect. 4) neutrinos, for the LSND experiment (sect. 5) and neutrinos from supernovas (sect. 6). Implications to the primordial nucleosynthesis are discussed in sect. 7. We comment on properties of the underlying mass matrix in sect. 8.

2. Scenario

The level and mixing scheme is shown in (fig. 1). The mass states ν_1, ν_2, ν_3 have the hierarchy of the standard scenario (1). The mass of the additional state ν_4 equals $m_4 \sim (0.5 - 7) \cdot 10^{-1}$ eV, so that $\Delta m^2_{24} \sim m_4^2$ is in the range of solution of the ν_{atm}-problem. The singlet neutrino, ν_s, and the muon neutrino, ν_μ, mix strongly in the mass states ν_2 and ν_4. We define the elements of the mixing matrix $U_{\alpha i}$ which relate the flavor $\nu_\alpha \equiv (\nu_e, \nu_\mu, \nu_\tau, \nu_s)$ and the mass $\nu_i \equiv (\nu_1, \nu_2, \nu_3, \nu_4)$ states as:

$$\nu_\alpha = U_{\alpha i} \nu_i, \quad \alpha = e, \mu, \tau, s; \quad i = 1, 2, 3, 4.$$

All mixings except for $\nu_\mu - \nu_s$ are small: $U_{\mu 2} \sim U_{\mu 4} \sim U_{s 2} \sim U_{s 4} = 0.5 - 0.8$, and $U_{\alpha i} \ll 1$ for others.

3. Atmospheric Neutrinos

A solution of the atmospheric neutrino problem is based, mainly, on $\nu_\mu \leftrightarrow \nu_s$ oscillations. The muon neutrino state can be written as:

$$\nu_\mu = \sqrt{1 - U_{\mu 3}^2 - U_{\mu 4}^2} \nu' + U_{\mu 3} \nu_3 + U_{\nu 4} \nu_4,$$

where ν' is the combination of the light states ν_1 and ν_2. According to our scenario the admixtures of the ν_e in the heavy states ν_3 and ν_4 are small: $U_{e 3}, U_{e 4} \ll 1$. In fact, these matrix elements are strongly restricted by the recent CHOOZ result [15]. For small $U_{e 3}$ and $U_{e 4}$ the oscillation effects related to splitting between the states ν_1 and ν_2 are negligibly small. Note that splitting between these states in matter can be large enough, so that the oscillation length is smaller than the diameter of the earth. However, the effective mixing angle is strongly suppressed by matter. (The mixing may not be suppressed if $U_{e 3}$ and $U_{e 4}$ are large. In fact, $U_{e 4}$ can be large, if $m_3 < 3 \cdot 10^{-2}$ eV. This possibility will be described elsewhere [16].) Thus, the task is reduced to oscillations in the U_{ν', ν_3, ν_4} system (see (2)) and the mixing elements $U_{\mu 3}, U_{\mu 4}$ are relevant only. Being in the eV - range, the state ν_s produces just the averaged oscillation effect, so that the ν_μ survival probability can be written as

$$P(\nu_\mu \rightarrow \nu_\mu) = (1 - |U_{\mu 3}|^2)^2 P_2 + |U_{\mu 3}|^4.$$

Here P_2 is the survival probability for two neutrino oscillations in matter with parameters Δm^2_{42} and

$$\sin^2 2\theta_{\text{atm}} = \frac{4|U_{\nu 4}|^2 (1 - |U_{\mu 3}|^2 - |U_{\mu 4}|^2)}{1 - |U_{\mu 3}|^2}.$$
These oscillations are described by the effective Hamiltonian

\[
H = \begin{pmatrix}
0 & \frac{\Delta m^2_{42}}{4E} \sin 2\theta_{atm} & \frac{\Delta m^2_{42}}{4E} \sin 2\theta_{atm} + V \\
\frac{\Delta m^2_{42}}{4E} \sin 2\theta_{atm} & 0 & \frac{\Delta m^2_{42}}{2E} \cos 2\theta_{atm}
\end{pmatrix},
\]

with the matter potential

\[
V = \pm \sqrt{2} G_F \left[\frac{1}{2} N_n + (1 - k)(N_e - \frac{1}{2} N_n) \right],
\]

where \(k = \frac{|U_{at}|^2}{(|U_{at}|^2 + |U_{et}|^2)} \leq 1 \). (The minus sign of \(V \) is for anti-neutrino.) \(N_n(t) \) and \(N_e(t) \) are the neutron and the electron number densities correspondingly. In the pure \(^4\nu\) case one has \(k = 1 \), and \(V = \sqrt{2} G_F N_n/2 \), so that the neutron density contributes only. With decrease of \(k \) the potential increases.

If \(\Delta m^2_{42} \leq 10^{-2} \text{eV}^2 \), the oscillations are not averaged and \(P_2 \) leads to the zenith angle dependence of the \(\nu_\mu \) - deficit. For large \(U_{at3} \) the total effect is the combination of the averaged \(\nu_\mu \leftrightarrow \nu_\tau \) oscillations and non-averaged \(\nu_\mu \leftrightarrow \nu_s \) oscillations.

The double ratio equals to survival probability:

\[
R \equiv \left(\frac{\mu/e}_{\text{osc}} / (\mu/e)_{\text{MC}} \right) = P(\nu_\mu \leftrightarrow \nu_\mu),
\]

as in the case of \(\nu_\mu \leftrightarrow \nu_\tau \) oscillation. In (4) \((\mu/e)_{\text{osc}} \) and \((\mu/e)_{\text{MC}} \) are the ratios of numbers of the \(\mu \)-like to \(e \)-like events in the presence of oscillations and without oscillations correspondingly.

The difference between the \(\nu_\mu \leftrightarrow \nu_\tau \) and \(\nu_\mu \leftrightarrow \nu_s \) channels can follow from matter effect which influences the latter channel only. For maximal mixing the oscillation length \(l_m \) and the effective mixing \(\theta_m \) which determines the depth of oscillations can be written as

\[
l_m = \frac{2\pi}{V} \sqrt{1 + \xi}^{-1/2}, \quad \sin^2 2\theta_m = \frac{\xi}{1 + \xi}, \quad \xi \equiv \left(\frac{\Delta m^2_{42}}{2E} \right)^2.
\]

For \(\Delta m^2_{42} > 4 \cdot 10^{-3} \text{eV}^2 \) both for the sub-GeV and for multi-GeV (\(E \sim 3 - 5 \text{ GeV} \)) events we get \(\xi > 10 \) and the matter effect is negligibly small (< 10% in probability). Thus, in significant region of parameters (masses and mixing) at low energies the \(\nu_\mu \leftrightarrow \nu_s \) oscillations reproduce results of the \(\nu_\mu \leftrightarrow \nu_\tau \) oscillations, as far as the charged current (CC) interactions are concerned. (The number of the tau-lepton events is small.)

The matter effect can be important, for multi-GeV events, if \(\Delta m^2_{42} < 3 \cdot 10^{-3} \text{eV}^2 \). In particular, the zenith angle dependence of ratios can be modified. Since matter suppresses the \(\nu_\mu \leftrightarrow \nu_s \) oscillations, one expects a weaker oscillation effect for the upward-going events, and therefore, flattening of the zenith angle, \(\Theta \), dependence. In particular, \(R(\cos \Theta = -1) > 1/2 \) in the \(\nu_\mu \leftrightarrow \nu_s \) case, whereas for the \(\nu_\mu \leftrightarrow \nu_\tau \) case one gets \(R(\cos \Theta = -1) = 1/2 \) provided the mixing is maximal.

The matter effect becomes important for through-going and stopping muons [13] produced by high energy neutrinos even for large \(\Delta m^2_{42} \). With increase of energy (decrease of
$\Delta m^2 \xi \to 0$ and the oscillation length increases approaching the asymptotic value determined by the potential only: $l_m \approx 2\pi/V$. At the same time, the effective mixing angle decreases, so that the oscillation effects become weaker.

The zenith angle dependence of the survival probability for fixed energies is shown in fig. 2. According to fig. 2 the dependence has two dips: the wide dip with minimum at $\cos \Theta \approx (-0.5 - 0.4)$ and the narrow one with minimum at $\cos \Theta \approx -0.9$. With increase of energy the depths of dips (peaks in the transition probability) decreases, whereas the shape of dips, and in particular, positions of minima change weakly. This behavior can be understood in the following way. The positions of minima and maxima are determined by the phase of oscillations:

$$\Phi = 2\pi \int \frac{dL}{l_m} \approx \int dL V.$$ \hfill (6)

For $E > 20$ GeV and $\Delta m^2 < 5 \cdot 10^{-3}$ eV2 we have $\xi < 0.2$, so that the length of oscillations and therefore the phase are determined by the potential V and only weakly depend on energy. As a consequence, the phase of oscillations is fixed by the zenith angle. According to the model of the Earth [17], the trajectories touch the core at $\cos \Theta \approx -0.8$. For $\cos \Theta > -0.8$ neutrinos cross the mantle only, and the wide dip at $\cos \Theta > -0.8$ is due to the oscillations in the mantle. At $\cos \Theta \approx -0.4$ the phase Φ equals π which corresponds to the minimum of P. It turns out that at $\cos \Theta \approx -0.8$ the phase is $\Phi = 2\pi$ and the oscillation effect is zero.

At $\cos \Theta < -0.8$ neutrinos cross both the mantle and the core. That is, the narrow dip is due to oscillations of neutrinos whose trajectories cross the core. In this dip the oscillation effect is even stronger than in the wide dip, in spite of larger density of the core. This dip (or peak in the transition probability) is the parametric resonance peak [18,19]: the parametric enhancement of the $\nu_\mu \leftrightarrow \nu_\tau$ oscillations occurs for neutrinos which cross the core of the Earth. Indeed, these neutrinos cross three layers with approximately constant densities: the mantle, the core, and again the mantle, divided by sharp change of density on the borders. Let us denote the phases acquired in these layers by Φ_{m1}, Φ_c, Φ_{m2} (obviously, $\Phi_{m1} = \Phi_{m2}$). It turns out that for $\cos \Theta \approx -0.88$ the following equality is realized:

$$\Phi_{m1} \approx \Phi_c \approx \Phi_{m2} \approx \pi.$$ \hfill (7)

That is, for each layer the size of the layer coincides with half of the averaged oscillation length: $\bar{l}_m/2 \approx L_i$. This is nothing but the condition of the parametric resonance [18,19]. The amplitude of oscillations is enhanced. Maximal transition probability which can be achieved in the case of three layers equals:

$$P_{tr} = \sin^2(4\theta_m^{mant} - 2\theta_m^{core}),$$ \hfill (8)

where θ_m^{mant} and θ_m^{core} are the averaged mixing angles in the mantle and in the core correspondingly. Let us stress that for sufficiently large energies the equality (7) does not depend on neutrino masses. The equality is determined basically by the density distribution in the Earth and by the potential which in turn is fixed by the channel of oscillations and the Standard Model interactions. The equality is fulfilled for oscillations into sterile neutrinos.
only. For the $\nu_\mu \leftrightarrow \nu_e$ channel the potential is two times larger and (7) fails. Note that for $\cos \Theta = -1$ the oscillation effect is small.

Qualitatively the zenith angle dependence shown in fig. 2 is similar to that observed in the MACRO experiment [20]. There are two dips with minima at $\cos \Theta = (-0.4 - 0.6)$ and $\cos \Theta = (-1.0 - 0.8)$. In our interpretation the latter dip could be due to the parametric enhancement of the $\nu_\mu \leftrightarrow \nu_s$ oscillations of neutrinos which cross both the mantle and the core of the Earth. Similar features, although not so profound, have been observed in the Baksan experiment [21] which has energies of the detected neutrinos similar to those in the MACRO experiment. In the Super-Kamiokande experiment the effect is expected to be weaker, since the energy threshold of muon detection and corresponding energies of neutrinos are higher. Detailed comparison of the effect with data will be given elsewhere [22].

Another consequence of the $\nu_\mu \leftrightarrow \nu_s$ oscillations is that the region excluded by the IMB analysis of the stopping and through-going muons is shifted by factor ~ 3 to larger values of Δm^2 [13]. This allows one to reconcile the excluded IMB region with the preferable Super-Kamiokande domain.

A crucial check of the $\nu_\mu \leftrightarrow \nu_s$ oscillations can be obtained from studies of events produced by the neutral current (NC-) interactions of the atmospheric neutrinos. The number of the NC-events is suppressed by the $\nu_\mu \leftrightarrow \nu_s$ oscillations and unchanged by the $\nu_\mu \leftrightarrow \nu_\tau$ oscillations. It is difficult to detect the elastic neutral current interactions. In this connection, it was proposed to study π^0's produced, mainly, by the neutral currents [23,24]:

\[\nu N \rightarrow \nu \pi^0 N \]

(in [23] the long base line experiment K2K was discussed). Subsequent decay $\pi^0 \rightarrow \gamma \gamma$ is identified as the two showering event with certain invariant mass. Practically, one can measure the number of π^0-events, N_{π^0}, and find the ratios N_{π^0}/N_τ and N_{π^0}/N_μ, where N_τ and N_μ are the numbers of τ-like and μ-like events induced, mainly, by the charged currents. This eliminates uncertainties related to absolute values of the atmospheric neutrino fluxes. Another proposal [24] is to measure the ratio of N_{π^0} and the number of events with 1 π-production by the charged currents. The latter dominate in the two-prong (ring) events sample, $N_{2\text{ring}}$, and experimentally it is possible to determine the ratio

\[R_{\pi^0/2\text{ring}} \equiv \frac{N_{\pi^0}}{N_{2\text{ring}}} \quad (9) \]

This allows one to diminish uncertainties related to cross-sections. Also one can study the ratio $N_{\pi^0}/N_{\text{multi-ring}}$. Since $\nu_\mu \leftrightarrow \nu_s$ oscillations suppress equally the CC- and NC-interactions of the muon neutrinos, while the $\nu_\mu \leftrightarrow \nu_\tau$ oscillations suppress the CC-events only, one expects

\[R_{\pi^0/\text{multi-ring}}(\nu_\mu \rightarrow \nu_s) < R_{\pi^0/\text{multi-ring}}(\nu_\mu \rightarrow \nu_\tau) \]

Similar inequality is expected for N_{π^0}/N_τ. For the survival probability $P \approx 0.6$ the difference can be as big as $(30 - 50)\%$ [24]. Thus with about 300 π^0-events which will be detected by the
Super-Kamiokande experiment within 2 - 3 years one will be able to disentangle solutions. An additional check will be done by the long baseline experiment K2K (KEK to Super-Kamiokande) [23]. In particular, one will be able to compare the number of π^0‘s produced in the front (close to neutrino production target) detector and in the Super-Kamiokande detector. However, the number of π^0 expected in the Super-Kamiokande is expected to be small (~ 30).

4. Solar Neutrinos

Due to strong mass hierarchy, a dynamics of conversion of the solar neutrinos is reduced to one Δm^2 task. Indeed, the electron neutrino state can be written as

$$\nu_e = \cos \phi \cdot \nu'_e + \sin \phi \cdot \nu_H , \quad (10)$$

where

$$\sin \phi \equiv \sqrt{U_{e3}^2 + U_{e4}^2} , \quad (11)$$

and ν'_e is the combination of the light states:

$$\nu'_e = \cos \omega \cdot \nu_1 + \sin \omega \cdot \nu_2 \quad (12)$$

with

$$\cos \omega = \frac{U_{e1}}{\sqrt{U_{e1}^2 + U_{e2}^2}} . \quad (13)$$

The ν_H is a combination of the heavy states:

$$\nu_H = \frac{U_{e3} \cdot \nu_3 + U_{e4} \cdot \nu_4}{\sqrt{U_{e3}^2 + U_{e4}^2}} . \quad (14)$$

For evolution of the solar neutrinos produced as ν_e we get the following picture. The states ν_3 and ν_4 decouple from the system, thus leading to the averaged oscillations result. The state ν'_e converts resonantly to its orthogonal state:

$$\nu_x = \cos \omega \cdot \nu_2 - \sin \omega \cdot \nu_1 . \quad (15)$$

Using this picture we find that the survival probability for the solar ν_e can be written as

$$P(\nu_e \rightarrow \nu_e) = \cos^4 \phi \cdot P_{2\text{MSW}} + |U_{e4}|^4 + |U_{e3}|^4 . \quad (16)$$

(Here we also take into account that oscillation effects in $\nu_3 - \nu_4$ system are averaged out.) $P_{2\text{MSW}}$ is the ν'_e survival probability of $\nu'_e \rightarrow \nu_x$ resonance conversion. The amplitude of the probability can be obtained by solving the evolution equation

$$\frac{d}{dt} \nu = H_2 \nu \quad (17)$$

for the two neutrino system $\nu \equiv (\nu'_e, \nu_x)^T$. The effective Hamiltonian
can be found from the whole 4-neutrino Hamiltonian. In (18) $\Delta m^2_{21} \equiv m_2^2 - m_1^2$, and ψ is determined by

$$\sin^2 \psi = \frac{|U_{\mu 4}|^2}{|U_{\mu 4}|^2 + |U_{e 4}|^2}. \quad (19)$$

Note that for small $U_{\mu 3}$ the angle ψ coincides practically with θ_{atm} (3) responsible for oscillations of the atmospheric neutrinos. In (18) the effective density equals

$$N_{\text{eff}} = N_e \cos^2 \phi - \frac{1}{2} N_n (\sin^2 \psi - |U_{e 4}|^2 \cos^2 \psi). \quad (20)$$

If the mixing of ν_e in heavy states is negligibly small, the whole survival probability is reduced to $P_{2\text{MSW}}$ according to (16).

In our scenario new features of the matter effect appear in comparison with pure active ($\nu_e \rightarrow \nu_\mu$) or pure sterile ($\nu_e \rightarrow \nu_s$) neutrino conversions. In particular, for non-zero admixture of the ν_e - flavor in the state ν_4 ($U_{e 4} \neq 0$) the off-diagonal elements of the Hamiltonian (18) depend on matter density, so that the mixing can be induced, at least partly, by the matter effect. Let us consider the ratio of the vacuum and the matter contributions to mixing:

$$R_{m/v} \equiv \frac{U_{e 4} \sin 2\psi \cdot \sqrt{2} G_F N_{n_{\text{res}}}}{\Delta m^2_{21} \sin 2\omega}. \quad (21)$$

Here the neutron density is taken in the resonance $N_n = N_{n_{\text{res}}}$ which is justified for small ω (narrow resonance). Determining $N_{n_{\text{res}}}$ from the resonance condition ($H_{22} = 0$, where H_{22} is the 22-element of the Hamiltonian (18)), we find:

$$R_{m/v} = \frac{U_{e 4}}{4 \tan 2\omega} \left[r_R \cos^2 \phi - \frac{1}{2} (\sin^2 \psi - |U_{e 4}|^2 \cos^2 \psi) \right]^{-1} \approx \frac{U_{e 4}}{4 \tan 2\omega} \left[r_R - \frac{1}{4} \right]^{-1}, \quad (22)$$

where the last equality holds for small ϕ and $\psi \approx \pi/4$. Here $r_R \equiv N_e/N_n$ is the ratio of the electron and neutron densities in resonance. The ratio increases from 2 in the center of the Sun to about 6 at the surface [25]. Using the upper bound $U_{e 4} < 0.2$ from the CHOOZ experiment [15] and the lower bound, $\tan 2\omega > 0.06$, implied by a small mixing solution of the ν_α-problem we get from (22) $R_{m/v} \leq 0.4$. That is, the matter effect is smaller than the vacuum effect, although the difference is not large. The matter effect can both enhance and suppress the vacuum effect, thus enlarging a range of possible vacuum mixing angles: $\sin^2 2\omega = (0.5 - 3) \sin^2 2\omega_0$; here ω_0 is the angle without off-diagonal matter effect.

If the original boron neutrino flux is smaller than the SSM one, then smaller total mixing is needed and $R_{m/v}$ can be of the order one. In this case the matter effect can give dominant
contribution or even substitute the vacuum mixing in (18).

For $U_{e4} \ll 0.2$ the matter term in the off-diagonal element of H_2 is much smaller than the vacuum term, and $P_{2\text{MSW}}$ reduces to usual 2ν survival probability characterized by ω, Δm^2_{21} and $N^{\text{eff}} \approx \cos^2 \phi N_e - \frac{1}{2} \sin^2 \psi N_n$ (see (20)). Using the reactor bound on the admixture of ν_e in the state ν_3: $\cos^2 \phi > 0.95$, we get $N^{\text{sterile}} < N^{\text{eff}} < N_e$, where $N^{\text{sterile}} = N_e - N_n/2$ is the effective density for pure $\nu_e \rightarrow \nu_e$ conversion. As a consequence, in our case the survival probability at the adiabatic edge of the MSW suppression pit (survival probability as a function of E) is in between the probabilities for the 2ν sterile and 2ν active cases; the non-adiabatic edges (determined by the derivative $d[\ln(N^{\text{eff}})]/dx$) practically coincide for all three cases.

The main feature of solution of the solar neutrino problem in our scenario which can be used for its identification is that solar neutrino flux should contain both ν_μ and ν_τ neutrinos. Moreover, due to large $\nu_\mu - \nu_\tau$ mixing in the ν_3-state implied by the atmospheric neutrino data the transition probabilities $P(\nu_e \rightarrow \nu_\mu)$ and $P(\nu_e \rightarrow \nu_\tau)$ should be comparable. (The $\nu_e \rightarrow \nu_\tau$ probability is small, since ν_τ is weakly mixed with other neutrinos.) We find:

$$P(\nu_e \rightarrow \nu_\mu) \approx \cos^2 \phi \left[\sin^2 \psi \sin^2 \phi P_{2\text{MSW}} + \cos^2 \psi (1 - P_{2\text{MSW}}) + \sin \phi \sin 2\psi \tan 2\omega \left(\frac{1}{2} - P_{2\text{MSW}} \right) + \sin^2 \phi \sin^2 \psi \right],$$

$$P(\nu_e \rightarrow \nu_\tau) \approx \cos \phi^2 \left[\cos^2 \phi \sin^2 \phi P_{2\text{MSW}} + \sin^2 \psi (1 - P_{2\text{MSW}}) - \sin \phi \sin 2\psi \tan 2\omega \left(\frac{1}{2} - P_{2\text{MSW}} \right) + \sin^2 \phi \cos^2 \psi \right].$$

In the limit of small ω and small ϕ we get from (23, 24):

$$P(\nu_e \rightarrow \nu_\mu) \approx \cos^2 \psi (1 - P_{2\text{MSW}})$$

$$P(\nu_e \rightarrow \nu_\tau) \approx \sin^2 \psi (1 - P_{2\text{MSW}}).$$

That is, the relative contributions of these channels are determined by the angle ψ. In particular, for $\sin^2 \psi \approx 0.5$ we have $P(\nu_e \rightarrow \nu_\mu) \approx P(\nu_e \rightarrow \nu_\tau)$. Taking $\sin^2 2\psi \approx 0.70 - 1.0$ as it follows from the atmospheric neutrino data we find

$$\frac{P(\nu_e \rightarrow \nu_\tau)}{P(\nu_e \rightarrow \nu_\mu)} = \tan^2 \psi = \frac{1}{4} - 4.$$

This ratio does not depend on the neutrino energy (fig. 3).

In what follows we will refer to this solution as to the mixed $\nu_e \rightarrow \nu_\mu, \nu_\tau$ solution. As we will see, its properties are intermediate between properties of the pure flavor $\nu_e \rightarrow \nu_\mu$ and pure sterile $\nu_e \rightarrow \nu_\tau$ solutions.

Some general tests of presence of the sterile neutrinos in the solar neutrino flux have been elaborated in [27]. Transition to sterile neutrinos suppresses the number of neutral
current events. Let us consider a modification of the charged-to-neutral current events ratio, \((CC/NC)\), which will be measured in the SNO experiment. Let us introduce the double ratio:

\[
\frac{r_d}{\text{(CC/NC) osc}} = \frac{(CC/NC)_0}{(CC/NC)_0},
\]

where \((CC/NC)_0\) and \((CC/NC)_{osc}\) are the ratios in absence of oscillations and with oscillations. For three possible solutions of the \(\nu_0\)-problem we get:

\[
r_d = \begin{cases}
< P_{ee} > & \nu_e \rightarrow \nu_\mu \\
< P_{ee} > & \nu_e \rightarrow \nu_\mu, \nu_s \\
1 - < P_{es} > & \nu_e \rightarrow \nu_s
\end{cases}
\]

(27)

where < ... > means averaging over energy spectrum of the boron neutrinos. According to (27):

\[
r_d(\nu_e \rightarrow \nu_\mu) < r_d(\nu_e \rightarrow \nu_\mu, \nu_s) < r_d(\nu_e \rightarrow \nu_s).
\]

(28)

For small mixing solution and the SSM boron neutrino flux [25], we find intervals

\[
r_d = \begin{cases}
0.3 - 0.4 & \nu_e \rightarrow \nu_\mu \\
0.5 - 0.8 & \nu_e \rightarrow \nu_\mu, \nu_s \\
1.07 - 1.09 & \nu_e \rightarrow \nu_s
\end{cases}
\]

(29)

which are well separated from each other. (In (29) difference of energy dependences of the \(CC\)- and \(NC\)- current cross-sections is taken into account.) Thus, if the original flux of the boron neutrinos, \(F_B\), is known, it will be easy to disentangle solutions by measuring \(r_d\). However, uncertainties in \(F_B\) make the task to be ambiguous. If, e.g., \(F_B\) is smaller than the one in the SSM [25]: \(F_B \sim 0.7 F_B^{SSM}\), then for the \((\nu_e \rightarrow \nu_\mu)\) solution we get \(r_d \approx 0.4 - 0.6\) which overlaps with the interval expected for \((\nu_e \rightarrow \nu_\mu, \nu_s)\).

Due to the presence of both \(\nu_s\) and \(\nu_\mu\) in the final state, the effect of the \(NC\)-interactions in the \(\nu e - \) scattering (the Super-Kamiokande experiment) is intermediate between the effects in the pure active and pure sterile neutrino cases. Correspondingly, the \(\sin^2 2\omega - \Delta m^2_{21}\) region of solutions is intermediate between regions for pure active and sterile [26] neutrino conversions. This gives \(\sin^2 2\omega = (4.5 - 11) \cdot 10^{-3}\) and \(\Delta m^2_{21} = (3 - 9) \cdot 10^{-6} \text{ eV}^2\) in the SSM framework.

Let us consider the distortion of the energy spectrum of the recoil electrons. In the SNO detector \((\nu_e d \rightarrow epp)\) the distortion is determined by the probability \(P(\nu_e \rightarrow \nu_e) \approx \cos^4 \phi \cdot P_{2MSW}\). The factor \(\cos^4 \phi\) leads to smoothing of energy dependence of the probability, and therefore the distortion of the recoil electron spectrum can be weaker than in the pure \(\nu_e \rightarrow \nu_\mu\) or \(\nu_e \rightarrow \nu_s\) case. However for \(\sin^2 2\phi < 0.2\) this effect is small (\(\cos^4 \phi \sim 0.95\).
The Super-Kamiokande experiment \((\nu_e \rightarrow \nu_e)\) is sensitive to both CC- and NC-interactions. The NC-scattering of \(\nu_\mu\) leads to smoothing of the spectrum distortion. The transition to sterile neutrinos removes this effect. Therefore in the case of mixed conversion, \(\nu_e \rightarrow \nu_\mu, \nu_s\), the spectrum is distorted stronger than in the \(\nu_e \rightarrow \nu_\mu\) case but weaker than due to \(\nu_e \rightarrow \nu_s\) conversion [28] (fig. 4), although the difference is small.

Let us discuss the day-night effect [29]. The \(\nu_e \rightarrow \nu_s, \nu_\mu\) gives weaker asymmetry than \(\nu_e \rightarrow \nu_\mu\), but stronger asymmetry than \(\nu_e \rightarrow \nu_s\). The last two cases were studied in [26] and [30].

An important signature of our scenario is the day-night effect for events induced by the neutral currents, \(N^{NC}\). (This in pure \(\nu_e \rightarrow \nu_s\) conversion case has been studied in [26].) Let us introduce the day-night asymmetry as

\[
A_{D/N}^{NC} = \frac{N^{NC}_{N} - N^{NC}_{D}}{N^{NC}_{N} + N^{NC}_{D}}.
\]

(Similarly, the asymmetry for CC-events, \(A_{D/N}^{CC}\), can be defined.) The asymmetry can be used to distinguish our scenario from pure \(2\nu\)-cases. Indeed, \(A_{D/N}^{NC}\) is zero for the \(\nu_e \rightarrow \nu_\mu\) conversion and non-zero in the presence of sterile neutrinos. The intermediate case (\(\nu_e \rightarrow \nu_\mu, \nu_s\)) can be distinguished from the pure sterile case by comparison of asymmetries in the charged currents, \(A_{D/N}^{CC}\), and in the neutral currents. For the pure sterile case: \(A_{D/N}^{CC} - A_{D/N}^{NC} \approx 0\) [26]. In the \((\nu_e \rightarrow \nu_\mu, \nu_s)\) case we predict \(A_{D/N}^{CC} - A_{D/N}^{NC} > 0\). Studies of these asymmetries will be possible in the SNO experiment.

5. Short range oscillation experiments. LSND.

In our scenario, two neutrino states with large masses, \(\nu_3\) and \(\nu_4\), can be relevant for short range experiments. The probability of \(\nu_\mu \leftrightarrow \nu_e\) (\(\nu_\mu \leftrightarrow \bar{\nu}_e\)) oscillations can be written as

\[
P(\nu_\mu \rightarrow \nu_e) \approx 4|U_{\mu 3}|^2|U_{e 3}|^2 \sin^2 \left(\frac{m_4^2 t}{4E}\right) + 4|U_{\mu 4}|^2|U_{e 4}|^2 \sin^2 \left(\frac{m_3^2 t}{4E}\right) + 4\text{Re}[U_{e 3}^* U_{\mu 3} U_{e 4} U_{\mu 4}] \cdot \left\{ \sin^2 \left[\frac{(m_4^2 - m_3^2)t}{4E} + \frac{\delta}{2} \right] - \sin^2 \left(\frac{m_4^2 t}{4E} + \frac{\delta}{2} \right) - \sin^2 \left(\frac{m_3^2 t}{4E} - \frac{\delta}{2} \right) \right\},
\]

(30)

where \(\delta = \text{arg}(U_{e 3}^* U_{\mu 3} U_{e 4} U_{\mu 4}^*)\). For real mixing matrix we get \(\delta = 0\). The first two terms in (30) correspond to “indirect” oscillations [5] related to levels \(\nu_3\) and \(\nu_4\) correspondingly. The third term is the result of interference of oscillations due to \(\nu_3\) and \(\nu_4\). For \(m_3 \sim O(\text{eV})\) we get the following results depending on value of the mass \(m_4\):

1) The mass \(m_4 \leq 0.3\ \text{eV}\) is too small to contribute to the LSND effect and the problem is reduced to the one level problem with probability described by the first term in (30). For values of \(U_{\mu 3}\) and \(U_{e 3}\) similar to those in quark sector we get negligibly small probability for LSND: \(P \leq 10^{-6}\). If \(U_{\mu 3}\) and \(U_{e 3}\) are at the upper experimental bounds, then \(P \leq 10^{-3}\) which could be reconciled with data at 3\(\sigma\)-level [7].
2) For $m_4 \geq 0.3$ eV both ν_3 and ν_4 can give sizable effect to the short range oscillations. Also interference between two different modes of oscillations becomes important. In certain ranges of parameters the interference is constructive, thus leading to substantial enhancement of the probability. For instance, if $m_3^2 = 2$ eV2 and $m_4^2 = 1$ eV2, the probability $P(\nu_\mu \rightarrow \nu_\tau)$ is enhanced by factor 3, as compared to the one level case. Now the probability $P \sim 3 \cdot 10^{-3}$ turns out to be in a good agreement with LSND result. In this case one also predicts $\nu_\mu \leftrightarrow \nu_e$ and $\nu_\mu \leftrightarrow \nu_\tau$ oscillations at the level of present experimental bounds. However, no zenith angle dependence of atmospheric neutrino deficit is expected.

6. Supernova neutrinos

Since ν_μ and ν_τ are (almost) maximally mixed, their level crossing occurs at zero (small) density. Let us introduce the eigenstates of system (ν_μ, ν_τ) in medium ν'_{2m}, ν'_{4m}, in absence of mixing with ν_e and ν_s. At zero density $\nu'_{2m} \approx \nu_2$ and $\nu'_{4m} \approx \nu_4$. Using the eigenvalues of ν'_{2m} and ν'_{4m} it is easy to find that the whole system (ν_e and ν_τ included) has three resonances (level crossings) in the neutrino channels and one resonance in the antineutrino channels (fig. 5): (i) ($\nu_e - \nu_\tau$) crossing at density $N_{\tau e}$, (ii) ($\nu_\mu - \nu'_{4m}$) crossing at N_{e4}, (iii) ($\nu_e - \nu'_{2m}$) crossing at N_{e2} and (iv) ($\nu_\tau - \nu'_{4m}$) crossing at $N_{\tau 4} \geq N_{e7}$. The mass hierarchy leads to hierarchy of the resonance densities (see fig. 5):

$$N_{\tau 4} \geq N_{e7} \gg N_{e4} \gg N_{e2}.$$

For $m_3 \leq 5$ eV we get $m_N N_{\tau 4} \leq 10^8$ g/cm3 (here m_N is the nucleon mass). That is, the $\bar{\nu}_\tau \rightarrow \bar{\nu}_s$ resonance conversion occurs outside the core. Moreover, the effective $\bar{\nu}_\tau - \bar{\nu}_s$ mixing in the core is very small: $\sin^2 2\theta_{\tau 4}^m \approx 4|U_{s3}|^2 \cdot N_{\tau 4}/N_{\text{core}}$, and generation of the sterile neutrinos is strongly suppressed. Consequently, there is no influence of the sterile neutrinos on the gravitational collapse and cooling of the core.

The nucleosynthesis of heavy elements due to the r-processes in the inner parts of supernovas implies that $\nu_\tau \rightarrow \nu_e$ conversion does not occur efficiently above certain densities [31]. This gives the restrictions: $m_3 \leq 2$ eV for $\sin^2 2\theta_{\tau 7} > 10^{-2}$, so that the conversion takes place above the nucleosynthesis region, or $\sin^2 2\theta_{\tau 7} < 10^{-5}$ for $m_3 > 2$ eV, so that the adiabaticity is strongly broken in the resonance and the conversion is not effective.

Let us consider consequences of transitions for neutrino fluxes detectable at the earth. Suppose first that all resonances are effective (which implies that $m_3 \leq 2$ eV). In this case the following transitions occur:

$$\nu_e \rightarrow \nu_\tau , \quad \nu_\mu \rightarrow \nu_e \rightarrow \nu_2 (\approx \nu_s, \nu_\mu) , \quad \nu_\tau \rightarrow \nu_e \rightarrow \nu_4 (\approx \nu_s, \nu_\mu),$$

$$\bar{\nu}_e \rightarrow \bar{\nu}_\tau , \quad \bar{\nu}_\mu \rightarrow \bar{\nu}_2 (\approx \bar{\nu}_s, \bar{\nu}_\mu) , \quad \bar{\nu}_\tau \rightarrow \bar{\nu}_4 (\approx \bar{\nu}_s, \bar{\nu}_\mu).$$

Thus one expects (i) disappearance (or strong suppression) of the ν_e-flux which can be established in experiment. (ii) ν_e’s will have soft spectrum (corresponding to the original ν_e- spectrum), and ν_τ’s disappear. (iii) Fluxes of ν_s’s and ν_μ’s are produced, and total energy
released in neutrinos is about 50% larger than that in observable neutrinos. In contrast, in the standard scenario one would expect $\nu_e \rightarrow \nu_e$ transition which leads to ν_e with hard energy spectrum (corresponding to the original ν_e-spectrum).

Suppose now that $\nu_e - \nu_{2m}$ resonance is not efficient (which may occur in compact stars with small mass and large density gradient in the outer layers). Then transitions proceed as follows:

$$
\nu_e \rightarrow \nu_e; \quad \nu_{\mu} \rightarrow \nu_e; \quad \nu_{\tau} \rightarrow \nu_e \rightarrow \nu_{4} \approx (\nu_{\mu}, \nu_{s})
$$

(transitions in the antineutrino channels are as in (31)). Thus now ν_e’s do not disappear, and moreover, the ν_e-flux has hard spectrum (corresponding to the original ν_e-spectrum).

Finally, suppose that $\nu_e \rightarrow \nu_{\tau}$ resonance is not efficient because of smallness of U_{e3}. (In this case the mass m_3 can be larger than 2 eV.) The following transitions take place:

$$
\nu_e \rightarrow \nu_4 \approx (\nu_{\mu}, \nu_s); \quad \nu_{\mu} \rightarrow \nu_e \rightarrow \nu_2 \approx (\nu_{\mu}, \nu_s); \quad \nu_{\tau} \rightarrow \nu_{\tau},
$$

and transitions in the antineutrino channels are as in (31). Again the ν_e-flux disappears. Half of the ν_{μ}-flux is converted to the ν_s-flux, and it acquires a soft component due to the $\nu_e \rightarrow \nu_4$ transition. New detectors (the Super-Kamiokande, SNO, ICARUS) will be able to identify these changes of fluxes.

7. Primordial Nucleosynthesis

The oscillations $\nu_\mu \leftrightarrow \nu_s$, $\nu_\mu \leftrightarrow \nu_s$ with parameters implied by the atmospheric neutrino problem result in appearance of the equilibrium concentration of sterile neutrinos in the early Universe. Therefore, during the time of nucleosynthesis, $t \geq 1s$, the effective number of neutrino species is $N_\nu = 4$. This disagrees with bound $N_\nu < 2.6$ based on low values of deuterium abundance [32]. Four neutrino species are, however, in agreement with recent conservative estimations $N_\nu < 4.5$ [33,34] which use large abundance of 4He. In view of these uncertainties let us comment on the possibility to suppress generation of sterile neutrinos. It was shown that leptonic asymmetry in active neutrinos $L_\nu \equiv (n_\nu - n_\bar{\nu})/n_\gamma > 7 \cdot 10^{-5}$ at the time $t > 10^{-1}s$ [35], is enough to suppress $\nu_\mu \leftrightarrow \nu_s$ oscillations. Such a L_ν produces the potential due to $\nu - \nu$ scattering: $V \sim G_F L_\nu n_\gamma$ which suppresses the effective mixing angle in matter: $\sin^2 2\theta_{m} \sim \sin^2 2\theta \Delta m^2 / TV$ (T is the temperature). Although there are no strong restrictions on leptonic asymmetry one would expect that L_ν is of the order of the baryon asymmetry: $L_\nu \sim 10^{-10}$. It is argued [36] (see also [37]) that large L_ν can be produced in oscillations of the tau neutrinos to sterile neutrinos: $\nu_\tau \rightarrow \nu_s, \nu_\tau \rightarrow \nu_s$ in earlier epoch ($t < 10^{-2}s$). In the presence of small original leptonic asymmetry, $L_\nu \sim 10^{-10}$, these oscillations can lead to an exponentially fast increase of L_ν (the task is non-linear). For $m_3 \geq 1$ eV, the increase occurs at $T \sim 16$ MeV. The lower value of m_3 required by this mechanism is approximately proportional to Δm^2. Thus, for $\Delta m^2 = 3 \cdot 10^{-3}$ eV2 we get from [36] $m_3 \geq 6$ eV2 and $\sin^2 2\theta_{m} \leq 8 \cdot 10^{-6}$. For $\Delta m^2 = 10^{-3}$ eV2 the corresponding bounds are $m_3 \geq 2$ eV2 and $\sin^2 2\theta_{m} \leq 4 \cdot 10^{-5}$. For larger angles the $\nu_\tau \rightarrow \nu_s$ oscillations themselves produce the equilibrium concentration of sterile neutrinos. These conditions can be satisfied in our scenario.
8. Properties of mass matrix

Let us find the elements of the neutrino mass matrix in the flavor basis, $|m_{\alpha\beta}|$, ($\alpha, \beta = e, \mu, \tau, s$) which lead to the scenario under discussion (fig. 1). Suppose first that mixing of ν_e is very small and it does not influence masses and mixing of lighter neutrinos. Then in the rest system: (ν_s, ν_e, ν_μ) the sub-system (ν_s, ν_μ) with bigger masses and approximately maximal mixing dominates. This means that we can find masses and mixing of ν_s and ν_μ considering the 2×2 sub-matrix $|m_{s\beta}|$, with $\alpha, \beta = s, \mu$ only. The effect of mixing with ν_e gives small corrections.

The main feature of our scenario is the maximal mixing of two states with at least one order of magnitude mass hierarchy: $\epsilon \equiv m_2/m_4 = 0.03 - 0.10$. Maximal mixing and strong hierarchy imply that sub-matrix $|m_{s\beta}|$ has small determinant and all its elements are of the same order. Indeed, we find the following relations:

$$\frac{m_{ss} - m_{\mu\mu}}{m_{ss}} = \frac{2}{\tan \theta_{atm}^2},$$

$$\frac{m_{\mu\mu}m_{ss} - m_{\mu s}^2}{(m_{\mu\mu} + m_{ss})^2} = \frac{\epsilon}{(1 + \epsilon)^2}.$$

and $m_4 \approx m_{\mu\mu} + m_{ss}$. For maximal mixing the masses are determined by

$$m_{ss} = m_{\mu\mu} \approx m_{ss} \cdot \frac{1 + \epsilon}{1 - \epsilon}. \quad (34)$$

For $0.03 - 0.1$, the eq. (34) gives $m_{ss} \approx (1.05 - 1.2) \cdot m_{ss}$ or $m_{ss} \approx -(0.95 - 0.8) \cdot m_{ss}$. In the case of non-maximal mixing larger spread of masses is possible. For $\sin^2 2\theta_{atm} = 0.9$ we find: $m_{ss} = m_{\mu\mu} + m_{ss}$, and $m_{\mu\mu} : m_{ss} : m_{ss} = 0.67 : 1 : 1.3$. Thus, a spread of the elements can be within a factor of 2. Taking $m_4 \approx 2m_{ss}$, we get: $m_{ss} \sim (1 - 3) \cdot 10^{-2}$ eV.

Diagonalizing the sub-matrix $m_{(2)}$ one can find the mass matrix for the light neutrino system (ν_e, ν_2'), where ν_2' is the neutrino with mass m_2. From this we get the mixing of the light neutrinos:

$$\sin \theta_\delta \approx \frac{1}{m_2} (m_{e\mu} \cos \theta_{atm} - m_{es} \sin \theta_{atm}) \approx (3 - 5) \cdot 10^{-2}. \quad (35)$$

and if there is no strong cancellation in (35):

$$m_{e\mu}, m_{es} \leq \sqrt{2} \sin \theta_\delta \cdot m_2 \approx 2 \cdot 10^{-4} \text{ eV}.$$

The structure of the mass matrix can be substantially different if the mixing of the tau neutrino is not small. In particular, the desired mass m_{ss} can be generated by this mixing: $m_{ss} \approx -(m_{s\tau})^2/m_{\tau\tau}$, if, e.g., $m_{s\tau} \approx 0.1$ eV and $m_{\tau\tau} \approx (1 - 2)$ eV. This corresponds to a rather large $\nu_\tau - \nu_s$ mixing parameter: $\sin^2 2\theta_{s\tau} \sim (2 - 4) \cdot 10^{-2}$ for which the equilibrium concentration of ν_s is produced in the early Universe already in $\nu_\tau \leftrightarrow \nu_s$ oscillations. The mechanism of generation of the lepton asymmetry [35] does not work.

As follows from the above estimations of the mass terms, the mass matrix for the active neutrinos can have usual hierarchical structure with small mixing. It can easily be generated.
by the see-saw mechanism with linear hierarchy of masses of the right-handed neutrinos. Also \(\nu_s \) can have the hierarchy of couplings with different generations: \(m_{e_s} \ll m_{\mu s} \ll m_{\tau s} \). Some elements can be zero: e.g., \(m_{e s} = m_{\tau s} = 0 \).

9. Conclusion

We have considered a minimal modification of the “standard” scenario for the neutrino mass introducing one additional sterile neutrino. The sterile neutrino mixes strongly with muon neutrino, so that the \(\nu_\mu \leftrightarrow \nu_s \) oscillations solve the atmospheric neutrino problem.

We show that the parametric enhancement of the \(\nu_\mu \leftrightarrow \nu_s \) oscillations occurs when high energy atmospheric neutrinos cross the core of the Earth. This effect can be relevant for the explanation of the anomaly in the zenith angle distribution observed by the MACRO experiment. Suppression of the \(NC \)-events in the atmospheric neutrinos (\(\pi^0 \)-like events) is another signature of the scenario.

The scenario can supply the hot dark matter of the Universe.

The solar neutrino problem is solved by \(\nu_e \) conversion to \(\nu_\mu \) and \(\nu_s \). The solution has characteristics (spectra distortion, day-night effect, \(NC/CC \) ratio) being intermediate between characteristics of \(\nu_e \rightarrow \nu_\mu \) and \(\nu_e \rightarrow \nu_s \) conversions.

The probability of \(\bar{\nu}_e \rightarrow \bar{\nu}_s \) oscillations in the LSND experiment can reach \(O(10^{-3}) \). It can be further enhanced if new neutrino state has the mass \(m_4 \geq 0.3 \) eV. (In this case, however, the atmospheric neutrino deficit will have no zenith angle dependence.)

The disappearance of the \(\nu_e \)-flux from supernovas is another possible signature.

The scenario can be well identified or rejected by the neutrino experiments of new generation (Super-Kamiokande, SNO, Borexino, ICARUS and others).

Acknowledgments.

The authors are grateful to E. Akhmedov and S. P. Mikheyev for useful discussions, and to R. Volkas and X. Shi for valuable comments. This work has been accomplished during the Extended Workshop on Highlights in Astroparticle Physics (ICTP, Trieste, October - December, 1997). The work of Q.Y.L. is supported in part by the EEC grant ERBFM-RXCT960090.
REFERENCES

Figure Captions

Fig. 1. Qualitative pattern of the neutrino masses and mixing. Boxes correspond to different mass eigenstates. The sizes of different regions in the boxes determine flavors of mass eigenstates, $|U_{ei}|^2$. White regions correspond to the sterile flavor, light and dense shadowed regions fix the electron and muon flavors correspondingly; admixtures of the tau flavor are shown in black.

Fig. 2. The zenith angle dependence of the survival probability $P(\nu_\mu \leftrightarrow \nu_\mu)$ for atmospheric neutrinos for different values of the neutrino energy (figures at the curves in GeV) and $\Delta m^2 = 5 \cdot 10^{-3}$ eV2. Solid lines correspond to $\nu_\mu \leftrightarrow \nu_s$ oscillations, the dashed line is for $\nu_\mu \leftrightarrow \nu_\tau$ oscillations.

Fig. 3. The conversion probabilities of solar neutrinos as functions of $E/\Delta m^2$ for $\sin^2 2\omega = 0.01$, $\cos^2 \psi = 0.5$ and $\sin \phi = -0.2$; $P(\nu_e \rightarrow \nu_e)$ is shown by the solid line, $P(\nu_e \rightarrow \nu_\mu)$ - dotted line, $P(\nu_e \rightarrow \nu_s)$ - dashed line.

Fig. 4. The expected distortion of the recoil electron energy spectrum in the Super-Kamiokande experiment. The ratio of numbers of events with and without conversion R_e is shown by histograms: the bold solid line corresponds to $\nu_e \rightarrow \nu_s, \nu_\mu$ conversion considered in this paper; the solid line is for $\nu_e \rightarrow \nu_\mu$ conversion, and dotted line is for $\nu_e \rightarrow \nu_\mu$ conversion. The following values of parameters were used: $\Delta m^2 = 5 \cdot 10^{-6}$ eV2, $\sin^2 2\omega = 8.8 \cdot 10^{-3}$, and (for our scenario) $\cos^2 \psi = 0.5$ and $\sin \phi = 0$. Also the Super-Kamiokande experimental points from 306 days of observation are shown (statistical errors only).

Fig. 5. The level crossing scheme for supernova neutrinos. Solid lines show the eigenvalues of ν_3m, ν_4m, ν_2m and ν_1m. Black dots represent 4 resonances. Dashed lines correspond to energies of ν_e, ν_τ (straight lines) and ν'_4m, ν'_2m.

19
FIG. 1.
FIG. 2.
Figure 3.

The image shows a graph with the x-axis labeled as $E_{\text{ANN (MeV)}}$ and the y-axis labeled as Probability. The graph includes several curves with labels: pes, pet, pee, and pee. The x-axis ranges from 10^{-9} to 10^{7}, and the y-axis ranges from 0.0 to 0.4.
FIG. 4.
FIG. 5.
- pure sterile case
- pure active case
- this paper

Evis (MeV)