EQUIVARIANT HIGHER K-THEORY
FOR COMPACT LIE GROUP ACTIONS

Aderemi O. Kuku
International Centre for Theoretical Physics, Trieste, Italy.

MIRAMARE – TRIESTE
May 1997
Introduction

The aim of this paper is to construct an equivariant higher K-theory for compact Lie group actions in a way analogous to the ones constructed in [2], [3] for finite groups and [6] for profinite groups.

In Sec. 1 we discuss the category $\mathcal{A}(G)$ of homogeneous spaces on which Mackey functors are defined. In Sec. 2 we define the higher K-groups $K_n^G(G/H, \mathcal{C})$ $n \geq 0$ for any exact category \mathcal{C} and show that $K_n^G(\cdot, \mathcal{C}) : \mathcal{A}(G) \to \mathbb{Z}$-mod is a Mackey functor and that $K_n^G(\cdot, \mathcal{C})$ are $K_n^G(\cdot, \mathcal{C})$-modules. In Sec. 3, we explore induction techniques in the style of [4] to show that $K_n^G(G/G, M(\mathcal{C}))$ (all $n \geq 0$) are hyperelementary computable where $M(\mathcal{C})$ is the category of finite dimensional vector spaces over the complex numbers.

In a final section, we briefly discuss possible generalisations of the foregoing to the category of G-spaces of G-homotopy type of G-CW complexes.

1 Mackey Functors on the Category $\mathcal{A}(G)$ of Homogeneous Spaces

1.1 Let G be a compact Lie group, X a G-space. The component category $\pi_0(G, X)$ is defined as follows: Objects of $\pi_0(G, X)$ are homotopy classes of maps $\alpha : G/H \to X$ where H is a closed subgroup of G. A morphism from $[\alpha] : G/H \to X$ to $[\beta] : G/K \to X$ is a G-map $\sigma : G/H \to G/K$ such that $\beta \sigma$ is G-homotopic to α.

Note that since $\text{Hom}(G/H, X) \simeq X^H$ where $\varphi \to \varphi(eH)$, we could consider objects of $\pi_0(G, H)$ as pairs (H, c) where $c \in \pi_0(X^H) = \text{the set of path components of } X^H$.

1.2 A G-ENR (Euclidean Neighbourhood Retract) is a G-space that is G-homeomorphic to a G-retract of some open G-subset of some G-module V. Let Z be a compact G-ENR, $f : Z \to X$ a G-map. For $\alpha : G/H \to X$ in $\pi_0(G, X)$, we identify α with the path component X^H_α into which G/H is mapped by α.

Put $Z(f, \alpha) = Z^H \cap f^{-1}(X^H_\alpha) := \text{subspace of } Z^H \text{ mapped under } f_H \text{ into } X^H_\alpha$. The action of $N_\alpha H/H$ on Z^H induces an action of $N_\alpha H/H$ on $Z(f, \alpha)$ i.e. $Z(f, \alpha)$ is an $\text{Aut}(\alpha)$-space (see [4]).

1.3 Let $\{Z_i\}$ be a collection of G-ENR, $f_i : Z_i \to X$. Say that $f_i : Z_i \to X$ is equivalent to $f_j : Z_j \to X$ if and only if for each $\alpha : G/H \to X$ in $\pi_0(G, X)$, the Euler characteristic
\[\chi(Z(f_i, \alpha)/\text{Aut}(\alpha)) = \chi(Z(f_j, \alpha_j)/\text{Aut}(\alpha)). \]

Let \(U(G, X) \) be the set of equivalence classes \([f : Z \to X]\) where addition is given by \([f_0 : Z_0 \to X] + [f_1 : Z_1 \to X] = [f_0 + f_1 : Z_0 + Z_1 \to X]\); the identity element is \(\phi \to X \); and the additive inverse of \([f : Z \to A]\) is \([f \circ \phi : Z \times A \to Z \to X]\), where \(A \) is a compact \(G \)-ENR with trivial \(G \)-action and \(\chi(A) = -1 \) (see [4]).

Then \(U(G, X) \) is the free Abelian group generated by \([\alpha], \alpha \in \pi_0(G, X)\) i.e. \([f : Z \to X] = \Sigma n(\alpha)[\alpha]\), where \(G/H \times E^n \subset Z \) is an open \(n \)-cell of \(Z \), the restriction of \(f \) to \(G/H \times E^n \) defines an element \([\alpha]\) of \(U(G, X)\).

The cell is called an \(n \)-cell of type \(\alpha \). Let \(n(\alpha) = \Sigma(-1)^i n(\alpha, i) \) where \(n(\alpha, i) \) is number of \(i \)-cells of type \(\alpha \) (see [4]).

If \(X \) is a point, write \(U(G) \) for \(U(G, X) \).

1.4 For a compact Lie group \(G \), the category \(\mathcal{A}(G) \) is defined as follows: \(\text{ob} \mathcal{A}(G) := \) homogeneous spaces \(G/H \); The morphisms in \(\mathcal{A}(G)(G/H, G/K) \) are the elements of the Abelian group \(U(G, G/H \times G/K) \) and have the form \(\alpha : G/L \to G/H \times G/K \) which can be represented by diagram \(\{G/H \xrightarrow{\alpha} G/L \xrightarrow{\beta} G/K\} \), so that \(U(G, G/H \times G/K) = \) free Abelian group on the equivalence classes of diagrams \(G/H \xrightarrow{\alpha} G/L \xrightarrow{\beta} G/K \) where two such diagrams are equivalent if there exists an isomorphism \(\sigma : G/L \to G/L' \) such that the diagram

\[
\begin{array}{ccc}
G/L & \xrightarrow{\alpha} & G/L' \\
\downarrow & & \downarrow \\
G/H & \xrightarrow{\sigma} & G/K \\
\downarrow & & \downarrow \\
& & \\
G/H & & G/K \\
\end{array}
\]

commutes up to homotopy.

Composition of morphisms are given by a bilinear map

\[U(G, G/H_1 \times G/H_2) \times U(G, G/H_2 \times G/H_3) \to U(G, G/H_1 \times G/H_3) \]

where the composition of \((\alpha, \beta_1) : A \to G/H_1 \times G/H_2 \) and \((\beta_2, \gamma) : B \to G/H_2 \times G/H_3 \) yields a \(G \)-map \((\alpha\bar{\alpha}, \gamma \bar{\gamma}) : C \to G/H_1 \times G/H_3 \), where \(\bar{\gamma}, \bar{\alpha} \) are maps \(\bar{\gamma} : C \to B \) and \(\bar{\alpha} : C \to A \).
Remarks (i) Each morphism $G/H \overset{\alpha}{\longrightarrow} G/L \overset{\beta}{\longrightarrow} G/K$ is the composition of special types of morphisms

$$G/H \overset{\alpha}{\leftarrow} G/L \overset{\text{id}}{\rightarrow} G/L \text{ and } G/L \overset{\text{id}}{\leftarrow} G/L \overset{\beta}{\rightarrow} G/K.$$

(ii) If π_0 (or G) is the homotopy category of the orbit category or (G), that is, the objects of π_0 (or G) are the homogeneous G-spaces G/H and morphisms are homotopy classes $[G/L \rightarrow G/K]$ of G-maps $G/L \rightarrow G/K$. We have a covariant functor π_0 (or G) $\rightarrow \mathcal{A}(G)$ given by $[G/L \overset{\beta}{\rightarrow} G/K] \rightarrow (G/L \overset{\text{id}}{\leftarrow} G/L \overset{\beta}{\rightarrow} G/K)$ and a contravariant functor π_0 (or G)

$$[G/H \rightarrow G/L] \rightarrow (G/H \leftarrow G/L \overset{\text{id}}{\rightarrow} G/L).$$

(iii) Addition is defined in $\mathcal{A}(G)(G/H, G/K) = \mathcal{U}(G, G/H \times G/K)$ by

$$(G/H \leftarrow G/L \rightarrow G/K) + (G/H \leftarrow G/L' \rightarrow G/K)$$

$$= (G/H \leftarrow (G/L) \cup (G/L') \rightarrow G/K)$$

where $(G/L) \cup (G/L')$ is the topological sum of G/L and $G/L'.$

1.6 Let R be a commutative ring with identity. A Mackey functor M from $\mathcal{A}(G)$ to R-mod is a contravariant additive functor. Note that M is additive if

$$M : \mathcal{A}(G)(G/H, G/K) \rightarrow R$-$\text{mod}(M(G/K), M(G/H))$$

is an Abelian group homomorphism.

Remarks 1.7 M comprises of two types of induced morphisms

(i) If $\alpha : G/H \rightarrow G/K$ is a G-map, regarded as an ordinary morphism $\alpha_1 : G/H \overset{\text{id}}{\leftarrow} G/H \overset{\alpha}{\rightarrow} G/K$ of $\mathcal{A}(G)$, we have an induced morphism

$$M(\alpha_1) = M^*(\alpha) =: \alpha^* : M(G/K) \rightarrow M(G/H).$$

(ii) If α in (i) is induced from $H \subset K$, i.e. $\alpha(gH) = gK$, call α^* the restriction morphism.

(iii) If we consider α as a transfer morphism $\alpha_1 : G/H \rightarrow G/K \rightarrow G/K$ in $\mathcal{A}(G)$, then we have

$$M(\alpha_1) =: M_*(\alpha) =: \alpha_* : M(G/H) \rightarrow M(G/K)$$

and call α_* the induced homomorphism associated to $\alpha.$
1.6 Let M, N, L be Mackey functors on $\mathcal{A}(G)$. A pairing $M \times N \rightarrow L$ is a family of bilinear maps $M(S) \times N(S) \rightarrow L(S) (x, y) \rightarrow x \cdot y (S \in \mathcal{A}(G))$ such that for each G-map $f : G/H = S \rightarrow T = G/K$ we have $L*f(x, y) = (M*f x) \cdot (N*f y) (X \in M(T) y \in N(T)$.

$x \cdot (N*fy) = L*f((M*f x) - y)$, $x \in M(T), y \in N(S)$.

$M*fx) \cdot y = L*f(x \cdot (N*fy)), x \in N(S), y \in N(T)$.

A Green functor $V : \mathcal{A}(G) \rightarrow R$-mod is a Mackey functor together with a pairing $V \times V \rightarrow V$ such that for each object S, the map $V(S) \times V(S) \rightarrow V(S)$ turns $V(S)$ into an associative R-algebra such that f^* preserves units.

If V is a Green functor, a left V-module is a Mackey functor M together with a pairing $V \times M \rightarrow M$ such that $M(S)$ is a left $V(S)$-module for every $S \in \mathcal{A}(G)$.

1.7 Remarks The Mackey functor as defined in 1.5 is equivalent to the earlier definitions in [2], [3], [7] defined for finite and profinite groups G as functors from the category \hat{G} of G-sets to R-mod. Observe that if $(M_*, M^*) - M$ is a Mackey functor (bifunctor) $\hat{G} \rightarrow R$-mod (see [7]) we can get $\bar{M} : \mathcal{A}(G) \rightarrow R$-mod by putting $\bar{M}(G/H) = M_*(G/H) = M^*(G/H)$ on objects while a morphism $G/H \leftarrow^{\alpha} G/L \rightarrow^{\beta} G/K$ in $\mathcal{A}(G)$ is mapped onto $M(G/H) \leftarrow^{M_*(\alpha)} M(G/L) \rightarrow^{M_*(\beta)} M(G/K)$ in R-mod. Then M is compatible with composition of morphisms.

Conversely, let $\bar{M} : \mathcal{A}(G) \rightarrow R$-mod be given and for $(\alpha, \beta) \in \mathcal{A}(G)(G/H, G/K)$ $\bar{M}^*(\alpha)$ and $M_*(\beta)$ as defined in 1.7. Then, we can extend \bar{M} additively to finite G-sets to obtain Mackey functors as defined in [2], [3], [7].

1.8 Universal Example of a Green Functor Define $\bar{V}(G/H) := U(G, G/H) = U(H, G/G) := \bar{V}(H)$. Now, consider $U(G, G/H) = U(G, G/H \times G/H)$, as a morphism set in $\mathcal{A}(G)$. Then, the composition of morphisms

$U(G, G/H \times G/K) \times U(G, G/H \times G/K) \rightarrow U(G, G/G \times G/H)$

defines an action of \bar{V} on morphisms.

Theorem 1.9 [4] $\bar{V} : \mathcal{A}(G) \rightarrow \mathbb{Z}$-mod is a Green functor, and any Mackey functor $\bar{V} : \mathcal{A}(G) \rightarrow \mathbb{Z}$-mod is a \bar{V}-module.

2 An Equivariant Higher K-Theory for G-Actions

2.1 Let G be a compact Lie group, X a G-space. We can regard X as a category \mathcal{X} as follows. The objects of \mathcal{X} are elements of X and for $x, x' \in X, X(x, x') = \{ g \in G | gx = x' \}$.
2.2 Let X be a G-space, \mathcal{C} an exact category in the sense of Quillen \cite{1}. i.e. \mathcal{C} is an additive category embeddable as a full subcategory of an Abelian category \mathcal{O} such that \mathcal{C} is equipped with a class \mathcal{E} of exact sequences

$$0 \to M' \to M \to M'' \to 0 \quad (I)$$

such that (i) \mathcal{E} is the class of sequences (I) in the \mathcal{C} that are exact in \mathcal{O}.

(ii) \mathcal{C} is closed under extensions in \mathcal{O} that is, if (I) is an exact sequence in \mathcal{O} and $M', M'' \in \mathcal{C}$ then $M \in \mathcal{C}$.

Let $[X, \mathcal{C}]$ be the category of functors $X \to \mathcal{C}$. Then $[X, \mathcal{C}]$ is an exact category where a sequence $0 \to \zeta' \to \zeta \to \zeta'' \to i$ is exact in $[X, \mathcal{C}]$ if and only if

$$0 \to \zeta'(x) \to \zeta(x) \to \zeta''(x) \to 0$$

is exact in \mathcal{C}. In particular for $X = G/H$ in $\mathcal{A}(G)$, $[G/H, \mathcal{C}]$ is an exact category.

Example 2.3 The most important example of $G/H, \mathcal{C}]$ is when \mathcal{C} is the category $\mathcal{M}(\mathbb{C})$ of finite dimensional vector spaces over the field \mathbb{C} of complex numbers. Here, the category $[G/H, \mathcal{M}(\mathbb{C})]$ can be identified with the category of G-vector bundles on the compact G-space G/H where for any $\zeta \in [G/H, \mathcal{M}(\mathbb{C})]$, $x \in G/H$, $\zeta(x) \in \mathcal{M}(\mathbb{C})$ is the fibre of $\tilde{\zeta}$ of the vector bundle $\tilde{\zeta}$ associated with ζ. Indeed, $\tilde{\zeta}$ is completely determined by ζ_0 where $\tilde{e} = eH$ (see \cite{10}).

Definition 2.4 For $X = G/H$ and all $n \geq 0$, define $K_n^G(X, \mathcal{C})$ as the n^{th} algebraic K-group of the exact category $[X, \mathcal{C}]$ with respect to fibre-wise exact sequence introduced in 2.2.

Theorem 2.5 (i) For all $n \geq 0$, $K_n^G(-, \mathcal{C}) : \mathcal{A}(G) \to \mathbb{Z}$-mod is a Mackey functor

(ii) $K_0^G(-, \mathcal{C}) : \mathcal{A}(G) \to \mathbb{Z}$-mod is a Green functor and $K_n^G(-, \mathcal{C})$ is a $K_0^G(-, \mathcal{C})$-module for all $n \geq 0$.

Before proving 2.5, we first briefly discuss pairings and module structures on higher K-theory of exact categories.

2.6 Let $\mathcal{E}, \mathcal{E}_1, \mathcal{E}_2$ be three exact categories and $\mathcal{E}_1 \times \mathcal{E}_2$ the product category. An exact pairing $\mathcal{E}_1 \times \mathcal{E}_2 \to \mathcal{E} : (M_1, M_2) \to M_1 \circ M_2$ is a covariant functor from $\mathcal{E}_1 \times \mathcal{E}_2 \to \mathcal{E}$ such
that \(\mathcal{E}_1 \times \mathcal{E}_2((M_1, M_2), (M'_1, M'_2)) = \mathcal{E}_1(M_1, M'_1) \times \mathcal{E}_2(M_2, M'_2) \to \mathcal{E}(M_1 \circ M_2, M'_1 \circ M'_2) \) is bi-additive and bi-exact, that is, for a fixed \(M_2 \), the functor \(\mathcal{E}_1 \to \mathcal{E} \) given by \(M_1 \to M_1 \circ M_2 \) is additive and exact and for fixed \(M_1 \), the functor \(\mathcal{E}_2 \to \mathcal{E} : M_2 \to M_1 \circ M_2 \) is additive and exact. It follows from [12] that such a pairing gives rise to a \(K \) theoretic product \(K_1(\mathcal{E}_1) \times K_2(\mathcal{E}_2) \to K_{i+j}(\mathcal{E}) \) and in particular to natural pairing \(K_0(\mathcal{E}_1) \times K_n(\mathcal{E}_2) \to K_n(\mathcal{E}) \) which could be defined as follows.

Any object \(M_1 \in \mathcal{E} \) induces an exact functor \(M_1 : \mathcal{E}_2 \to \mathcal{E} : M_2 \to M_1 \circ M_2 \) and hence a map \(K_n(M_1) : K_n(\mathcal{E}_2) \to K_n(\mathcal{E}) \). If \(M'_1 \to M_1 \to M''_1 \) is an exact sequence in \(\mathcal{E} \), then we have an exact sequence of exact functors \(M'_1^* \to M_1^* \to M''_1^* \) from \(\mathcal{E}_2 \) to \(\mathcal{E} \) such that for each object \(M_2 \in \mathcal{E}_2 \) the sequence \(M'_1^*(M_2) \to M_1^*(M_2) \to M''_1^*(M_2) \) is exact in \(\mathcal{E} \) and hence by a result of Quillen [9] induces a relation \(K_n(M'_1^*) + K_n(M''_1^*) - K_n(M_1^*) \) held. So the map \(M_1 \to K_n(M_1) \in \text{Hom}(K_n(\mathcal{E}_2), K_n(\mathcal{E})) \) induces a homomorphism \(K_0(\mathcal{E}_1) \to \text{Hom}(K_n(\mathcal{E}), K_n(\mathcal{E})) \) and hence a pairing \(K_0(\mathcal{E}_1) \times K_n(\mathcal{E}) \to K_n(\mathcal{E}) \).

If \(\mathcal{E}_1 = \mathcal{E}_2 = \mathcal{E} \) and the pairing \(\mathcal{E} \times \mathcal{E} \) is naturally associative (and commutative), then the associated pairing \(K_0(\mathcal{E}) \times K_0(\mathcal{E}) \to K_0(\mathcal{E}) \) turns \(K_0(\mathcal{E}) \) into an associative (and commutative) ring which may not contain the identity.

Now, suppose that there is a pairing \(\mathcal{E} \circ \mathcal{E}_1 \to \mathcal{E}_1 \) which is naturally associative with respect to the pairing \(\mathcal{E} \circ \mathcal{E} \to \mathcal{E} \), then the pairing \(K_0(\mathcal{E}) \times K_n(\mathcal{E}_1) \to K_n(\mathcal{E}_1) \) turns \(K_n(\mathcal{E}_1) \) into a \(K_0(\mathcal{E}) \)-module which may or may not be unitary. However, if \(\mathcal{E} \) contains a unit i.e. an object \(E \) such that \(E \circ M = M \circ \mathcal{E} \) are naturally isomorphic to \(M \) for each \(\mathcal{E} \)-object \(M \), then the pairing \(K_0(\mathcal{E}) \times K_n(\mathcal{E}_1) \to K_n(\mathcal{E}_1) \) turns \(K_n(\mathcal{E}_1) \) into a unitary \(K_0(\mathcal{E}) \)-module.

Proof of 2.5(i) It is clear from the definition of \(K_n^G(G/H, \mathcal{C}) \) that for any \(G/H \in \mathcal{A}(G) \),

\[
K_n^G(G/H, \mathcal{C}) \in \mathbb{Z}\text{-mod.}
\]

Now suppose that \(G/H \xleftarrow{\alpha} G/L \xrightarrow{\beta} G/K \)

\[
= K_n^G(G/H, \mathcal{C}) \xleftarrow{} K_n^G(G/L, \mathcal{C}) \xrightarrow{} K_n^G(G/K, \mathcal{C})
\]

in \(R\text{-mod}(K_n^G(G/K, \mathcal{C}), K_n^G(G/H, \mathcal{C})) \) and that if we write \(K_n^G \) for \(K_n^G(-, \mathcal{C}) \), then

\[
K_n^G(G/H \xleftarrow{} L \cup L' \to G/K)
\]

\[
= K_n^G(G/H \xleftarrow{} G/L \to G/K) + K_n^G(G/H \xleftarrow{} G/L' \to G/K).
\]

Hence \(K_n^G(-, \mathcal{C}) \) is a Mackey functor

(ii) From the discussion in 2.6, it is clear that if we put \(\mathcal{E}_1 = \mathcal{E}_2 = \mathcal{E} = [G/H, \mathcal{C}] \). Then

\[
K_0^G(G/H, \mathcal{C}) \times K_0^G(G/H, \mathcal{C}) \to K_0^G(G/H, \mathcal{C})
\]

6
turns $K_0^G(G/H, \mathcal{C})$ into a commutative ring with identity. Also,

$$K_0^G(G/H, \mathcal{C}) \times K_n^G(G/H, \mathcal{C}) \rightarrow K_n^G(G/H, \mathcal{C})$$

turns

$$K_n^G(G/H, \mathcal{C})$$

into $K_0^G(G/H, \mathcal{C})$-modules

Examples 2.7

(i) In general $[G/H, \mathcal{C}] = \text{category of } H\text{-representations in } \mathcal{C}$. Hence $[G/G, \mathcal{C}] = \text{category of } G\text{-representations in } \mathcal{C}$. If $\mathcal{C} = \mathcal{M}(\mathbb{C})$, the category of finite dimensional vector spaces over the complex numbers \mathbb{C}, $K_0^G(G/G, \mathcal{M}(\mathbb{C}))$ is the complex representation ring denoted by $R_{\mathbb{C}}(G)$ or simply $R(G)$ in the literature.

(ii) If $\mathcal{C} = \mathcal{M}(R) := \text{category of finitely generated } R\text{-modules, where } R\text{ is a Noetherian ring compatible with the topological structure of } G$, then $K_n^G(G/H, \mathcal{M}(R)) \simeq G_n(RH)$.

(iii) If $\mathcal{C} = \mathcal{P}(R) = \text{category of finitely generated projective } R\text{-modules}$, we have

$$K_n^G(G/H, \mathcal{P}(R)) = G_n(H, R)$$

when R is regular, $G_n(R, H) \simeq G_n(RH)$.

3 Induction Theory

In this section, we discuss the induction properties of the Mackey functors constructed in Sec. 2.

Definition 3.1

Let G be a compact Lie group. A finite family $\Sigma = ((G/H)_{j \in J})$ is called an inductive system. Such a system yields two homomorphisms $p(\Sigma)$ (induction map) and $i(\Sigma)$ (restriction maps) defined by

$$p(\Sigma) : \bigoplus_{j \in J} M(G/H_j) \rightarrow M(G/G)$$

$$(x_j)_{j \in J} \mapsto \sigma_j \sigma_i h_j x_j$$

$$i(\Sigma) : M(G/G) \rightarrow \bigoplus_{j \in J} M(G/H_j)$$

$$x \mapsto (p(H_j)^* x | j \in J)$$

Σ is said to be projective if $p(\Sigma)$ is surjective and Σ is said to be injective if $i(\Sigma)$ is injective.

Note that the identity $[\text{id}]$ of $\mathcal{U}(G, G/K \times G/H)$ has the form

$$[\text{id}] = \Sigma_\alpha n_\alpha [\alpha : G/L_\alpha \rightarrow G/K \times G/H] \quad (I)$$

see 1.3.
3.2 Let $S(K, H)$ be the set of α over which the summation (I) is taken and let $\alpha = (\alpha(1), \alpha(2))$ be the component of α.

Define induction map

$$p(\Sigma, G/H) : \bigoplus_{j \in J} (\bigoplus_{\alpha \in S(H_j, H)} M(G/L_\alpha)) \to M(G/H)$$

by

$$(x(j, \alpha)) \mapsto (\Sigma_{j \in J} (\Sigma_{\alpha \in S(H_j, H)} n_\alpha \alpha(2)) x(j, \alpha)) .$$

and restriction maps

$$i(\Sigma, G/H) : M(G/H) \to \bigoplus_{j \in J} (\bigoplus_{\alpha \in S(H_j, H)} M(G/L_\alpha))$$

by

$$x \to \alpha(2)^* x \ (\alpha \in (S(H_j, H)) j \in J) .$$

3.3 Let $V : A(G) \to \mathbb{Z}\text{-mod}$ be a Green functor and $M : A(G) \to \mathbb{Z}\text{-mod}$ a left V-module (Take the K-theoretic functors defined in Sec. 2), i.e. $M = K^G_\mathbb{Z}(-, \mathcal{C}), V = K^G_0(-, \mathcal{C})$. If Σ is projective for V, then for each homogeneous space G/H, the induction map $p(\Sigma, G/H)$ is split surjective and the restriction map is split injective. So induction theorems for $K^G_0(-, \mathcal{C})$ implies an induction theorem for

$$K^G_n(-, \mathcal{C})$$

Proof Since $p(\Sigma)$ is surjective for V, there exists elements $x_j \in V(G/H_j)$ such that $\Sigma(H_j), x_j = 1$.

Define a homomorphism

$$q(\Sigma, G/H) : M(G/H) \to \bigoplus_j (\bigoplus_{\alpha} M(G/L_\alpha))$$

by

$$q(\Sigma, G/H)/x = \alpha(1)^* x_j \cdot \alpha(2)^* x \text{ such that } \alpha \in S(H_j, h)$$

$j \in J$. Then $p(\Sigma, G/H)q(\Sigma, G/H)$

$$= \Sigma_j (\Sigma_{\alpha} n_\alpha \alpha(2), (\alpha(1)^* x_j \cdot \alpha(2)^* x))$$

$$= \Sigma_j (\Sigma_{\alpha} n_\alpha \alpha(2), (\alpha(1)^* x_j)) x$$

$$= \Sigma_j (\Sigma_{\alpha} n_\alpha \alpha(2), \alpha(1)^* x_j) x$$

$$= \Sigma_j p(H)^* p(H_j, x_j) \cdot x$$

$$= \Sigma_j p(H)^* (\Sigma_j p(H_j, x_j)) x$$

$$= p(H)^* (1 \cdot x = x) .$$
So, \(p(\Sigma, G/H)q(\Sigma, G/H) \) is the identity. Hence \(q(\Sigma, G/H) \) is a splitting for \(p(\Sigma, G/H) \).

We can also define a splitting \(j(\Sigma, G/H) \) for \(i(\Sigma, G/H) \) by \(j(\Sigma, G/H) : \oplus_j (\oplus_n (MG/L_n)) \rightarrow M(G|H) \) by

\[
x(j, \alpha) \mapsto \Sigma_j (\Sigma_n \alpha_n(2)_* \alpha(1)^* x_j \circ x(j, \alpha) .
\]

Definition 3.4 A finite set \(E \) of conjugacy classes \((H)\) is an induction set for a Green functor \(V \) if \(\oplus V(G/H) \rightarrow V(G/G) \) given by

\[
(x(H)) \mapsto \Sigma_V(H)_* x(H) \text{ is surjective}.
\]

Define \(E \leq F \) iff for each \((H) \in E\), there exists \((K) \in F\) such that \((H) \leq (K)\) i.e. \(H \) is subconjugate to \(K \).

3.5 Every Green functor \(V \) possesses a minimal induction set \(D(V) \)-called the defect set of \(V \). Hence \(K_0^G(\rightarrow, C) \) have defect sets. For proof see [4].

3.6 Let \(M \) be a \(V \)-module. Define homomorphism \(p_1, p_2 : \oplus_{\alpha \in S(i)} M(G/K_\alpha) \rightarrow \oplus_{k \in J} M(G/H_k) \) by \((x(i, j, \alpha) = \Sigma_{i \in J} \sigma_{\alpha \in S(i)} \eta_\alpha(2)_* x(i, j, \alpha) \) where \(S(i, j) \in S(H_i, H_j), [\alpha] \in U(G, G/H \times G/K) \).

3.7 Let \(M = K_\alpha^G(\rightarrow, C) \). Then there exists an exact sequence

\[
\oplus_{i \in J} (\oplus_{\alpha \in S(i)} M(G/L_\alpha))^{p_2-p_1} \oplus_{k \in J} M(G/H_k) \xrightarrow{p} M(G/G) \rightarrow 0
\]

Proof We have seen in 3.3 that \(p \) is surjective through the construction of a splitting homomorphism \(q \) such that \(pq=\text{identity} \). We now construct a homomorphism \(q_1 \) such that \((p_2 - p_1)q_1 + qp = \text{id} \) from which exactness follows.

Since \(p_2 \) is defined as \(\oplus_{k \in J} p(\Sigma G/H_k) \) we define \(q_1 = \oplus_{k \in J} q(\Sigma G/H_k) \) and obtain as in the proof of 3.3 that \(p_2q_1 = \text{identity} \). One can also show that \(p_1q_1 = qp \). Hence the result.

Definition 3.8 A subgroup \(C \) of \(G \) is said to be cyclic if powers of a generator of \(G \) are dense in \(G \). A subgroup \(K \) of \(G \) is called \(p \)-hyerelementary if there exists an exact sequence \(\rightarrow C \rightarrow K \rightarrow P \rightarrow 1 \) where \(P \) is a finite \(p \)-group and \(C \) a cyclic group such that the order of \(K/C \) is prime to \(p \). It is called hyperelementary if it is \(p \)-hyper-elementary for some \(p \). Let \(\mathcal{H} \) be the set of hyperelementary subgroups of \(G \). We now have the following result which typifies results that can be obtained.
Theorem 3.9 Let $M = K^G_n(-, m(C))$. Then $\oplus_H M(G/H) \to M(G/G)$ is surjective (i.e. M satisfies hyper-elementary induction) i.e. $M(G/G)$ can be computed in terms of p-hyperelementary subgroups of C).

Proof It suffices to show that if $V = K^G_n(-, m(C))$ then $\oplus_H V(G/H) \to V(G/C)$ is surjective (since M is a V-module). To do this it suffices to show that $\Sigma_H V(G/H)_{(p)} \to V(G/G)_{(p)}$ is surjective. Now V is an algebra over the universal Green functor V and every torsion element in $V(G/G)$ is nilpotent (see [4])

It is also known that $V(G/G) \otimes Q \to \prod V(G/H) \otimes Q$ is surjective. Hence the induction map $\oplus_{K \in H(p)} V(G/K)_{(p)} \to V(G/G)_{(p)}$ is surjective (see [11]).

4 Remarks on Possible Generalizations

4.1 Let \mathcal{B} be a category with finite sums, a final object and finite pullbacks (and hence finite products).

A Mackey functor $M : \mathcal{B} \to \mathcal{Z}$-mod is a bifunctor $M = (M_*, M^*)$, M_* covariant, M^* contravariant such that $M(X) = M_*(X) = M(X)$ for all $x \in \mathcal{B}$ and (i) For any pullback diagram

\[\begin{array}{ccc}
A' & \xrightarrow{p_2} & A_2 \\
\downarrow p_1 & & \downarrow f_2 \\
A_1 & \xrightarrow{f_1} & A \\
\end{array} \]

in \mathcal{B}

the diagram

\[\begin{array}{ccc}
M(A') & \xrightarrow{p_2^*} & M(A_2) \\
\uparrow p_1^* & & \uparrow f_2^* \\
M(A_1) & \xrightarrow{f_1^*} & M(A) \\
\end{array} \]

(ii) M^* transforms finite coproducts in \mathcal{B} over finite products in \mathcal{Z}-mod.

Example 4.2 Now suppose that G is a compact Lie group. Let \mathcal{B} be the category of G-spaces of the G-homotopy type of G-CW-complexes (e.g. G-ENR spaces see [4] or [8]). Then \mathcal{B} is a category with finite coproduct (topological sums) final object and finite pullbacks (fibred products) (see [1]). Hence a Mackey functor is defined on \mathcal{B} along the lines of 4.1.

Hence in a way analogous to what was done in [2] or [3] we could define for $X, Y \in \mathcal{B}$, the notion of Y-exact sequences in the exact category $[X, C]$ (where C is an exact category) and obtain $K^G_n(X, C, Y)$ as the n^{th} algebraic K-group of $[X, C]$ with respect to Y-exact sequences.
We could also have the notion of an element $\zeta \in [X, C]$ being Y projective and obtain a full subcategory $[X, C]_Y$ of Y-projective functors in $[X, C]$ so that we could obtain $P_n^G(X, C, Y)$ as the n^{th} algebraic K-group of $[X, C]_Y$ with respect to split exact sequences and then show that $K_n^G(_, C, Y)$, $P_n^G(_, C, Y)$; $B \to \mathbb{Z}$-mod are Mackey functors and that $K_0^G(_, C, Y) : B \to \mathbb{Z}$-mod is a Green functor and $K_n^G(_, C, Y)$, $P_n^G(_, C, Y)$ are $K_0^G(_, C, T)$-modules in a way analogous to what was done in [2], [3].

It is hoped to explore these possibilities for further results in a future paper.
References

