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ABSTRACT

We introduce a set that is tightly closed to the set of the Jacobson radical of module

(the intersection of all maximal elements in support). In the last section, it is proved that

the set of zero divisors of a module is equal to the union of the maximal elements of the

support of module if the module in finitely generated and injective.
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0. Introduction

Throughout this note the ring R is commutative (not necessarily Noetherian) with

non-zero identity. The notion of prime ideals is central to the commutative ring theory.

The set Spec(R) of prime ideals of a ring R is a topological space, and the localization

of rings with respect to this topology is an important technique for studying them. In

addition, the maximal element of this set is very useful. There is a similar notion for

modules that is the support of modules. The set of prime ideals p such that there exists a

cyclic submodule N of M with p D Ann(N) is well-known to be the support of M, and is

written Supp(M). In [Y1] we have introduced the notion of cocyclic modules (that is, a

submodule of E(R/m), the injective envelope of R/m, for some m G MaxR) and it is used

to define the notion of cosupport (the dual notion of support) over Noetherian rings. In

this paper we define the notion of cosupport of modules over (not necessarily Noetherian)

rings. We study the maximal element of support and cosupport of modules. Let J R ( M )

be the Jacobson radical of the R-module M (intersection of all maximal elements of the

support of M). Let N R ( M ) be the union of all maximal elements of the support of M.

Then it is easy to see that J R ( M ) C NR(M) and there is equality if and only if the support

of M has only one element. The set N'R(M) is defined by

N'fl(M) = {xe M|x + NR(M) C NR(M)}.

We show that JR(M) C N'R(M) and there is equality if the support of M has only finite

elements. By an example we show that the inequality may be strict. In the last section we

prove that for any finitely generated and injective R-module M, the set of zero divisors

of M is equal to the set NR(M). As a corollary of this result we have that "if R is a

self-injective ring then each non-unit element in R is a zero divisor in R”.

1. Support of Modules

In this section we study the intersection and union of the maximal elements of the

support of a module.

Definition 1.1. Let M be an R-module. The support of M is denoted by Supp(M) and



it is defined by

Supp(M) = {pe Spec(R)|p D Ann(N) for some cyclic submodule N of M}.

The next lemma is a well-known result, cf. [M].

Lemma 1.2. The following hold:

a ) M / 0 i / and only ifSupp(M) ^ 0.

b) Supp(M) C Spec(R/Ann(M)).

c) If M is finite then we have equality in (b).

Remark 1.3. The inequality of (1.2b) may be strict, for example, if (R,m) is a local

ring and M = E(R/m), injective envelope of the field R/m, then Ann(M) = 0 and so

Spec(R/Ann(M)) = Spec(R). On the other hand Supp(M) = {m}.

Theorem 1.4. Let M be an R-module. Then

MaxSupp(M) C MaxSpec(R/Ann(M))

where MaxSupp(M) is the set of all maximal elements in Supp(M).

Proof. Set p G MaxSupp(M). Then by (1.2) we have that p G Spec(R/Ann(M)). Choose

m G MaxSpec(R/Ann(M)) such that p C m. By (1.1) it is easy to see that m G Supp(M).

Since p G MaxSupp(M) we have p = m and hence the assertion holds. •

Remark 1.5. The inequality in (1.4) may be strict. For example let R be an integral

domain and {m,n} C MaxSpec(R). Let M = E(R/m). Then MaxSupp(M) = {m} but

n G MaxSpec(R/Ann(M)) = MaxSpec(R).

Definition 1.6. Let M be an R-module. The Jacobson radical of M is denoted by

JR(M) and it is the intersection of all elements in MaxSupp(M). Also the union of all

elements in MaxSupp(M) is denoted by N

Lemma 1.7. Let M be an R-module. Then r G JR(M) if and only if 1 + tr / ~NR(M)

for any t G R.



Proof. "if" Let m G MaxSupp(M) such that r ^ m. Then m G Max(R) and hence

m + rR = R. Therefore, there exist x G m and t G R such that x + tr = 1 and hence

1 — rt G N R ( M ) , which is a contradiction.

"only if" Let t E R such that 1 + tr G N R ( M ) . Then there exists a maximal ideal

m G MaxSupp(M) such that 1 + tr G m. On the other hand tr G m. Therefore 1 G m,

which is a contradiction. •

Definition 1.8. The R-module M is said to be local module if |MaxSupp(M)| = 1. Also

the R-module M is said to be semi-local module if |MaxSupp(M)| < oo. Clearly, all

non-zero modules over a semi-local (resp. local) ring is a semi-local (resp. local) module.

Theorem 1.9. The following are equivalent:

i) M is a local module.

ii) JR(M) = NR(M).

iii) N R ( M ) is an ideal ofR.

Proof. "(i=>- ii)" and "(ii=>- iii)" are obvious.

(iii=>. i)" Since 1 ^ NR(M) we have NR(M) ^ R and hence there exists m G MaxSpecR

such that NR(M) C m. On the other hand m C NR(M). Therefore N R ( M ) = m and

hence MaxSupp(M) = {m}. D

Definition 1.10. Let M be an R-module. We define N'R(M) by

' = {x G NR(M)|x + NR(M) C N

Theorem 1.11. Let M be an R-module. Then the following hold:

a) JR(M) C N'R(M) C NR(M)

b) JR(M) = N'fl(M) ifand only i/N'fl(M) is an ideal ofR.

c) If M is a semi-local then JR(M) = ~N'R(M).



Proof. "(a)" Set x E JR(M) and t E NR(M). Then there exists m G MaxSupp(M)

such that t E m. Since x E m we have x + t E m and hence x + t G NR(M). Thus

JR(M) C N'fl(M).

"(b)" The 'Only if part is obvious. For the 'If part, set x E N'fl(M) and t E R.

Since N'fl(M) is an ideal of R we have tx G N'fl(M). We claim that 1 + te ^ NR(M). In

the other case if 1 + tx E N R ( M ) then 1 G NR(M), which is a contradiction. Therefore

x E JR(M).

"(c)" Let MaxSupp(M) = {m1,m2, ... ,m t}. Suppose x E N'R(M). Then there exists

1 < r < t such that x G P|^=1mj and x ^ Ui=r+im»- We claim that r = t. In the other

case by the prime avoidence theorem we have P| i=r,+1 rrij ^ UI=i m i a n d hence there exists

y G f|*=r+i \U[=im i - S i n c e y e NR(M) we have x + y E NR(M). On the other hand

x + y ^ mi for each 1 < i < t, which is a contradiction. •

Remark 1.12. The inequalities in 1.11 (a) may be strict. For the inequality in the right-

hand side let M be a semi-local module but not local then JR(M) = ~N'R(M) $Z NR(M).

For the inequality in the left-hand side, let (D,m) be a local regular ring that is not a

field. Then J D ( D ) = t n / 0 . It is easy to see that JD[X](D[X]) = 0 and

U{gE D[x]| deg(g) > 1}.

Now we show that N'D(D) C N'D[x](D[x]). Assume that a E N'D(D) then a E ND(D) and

hence a E ND[x](D[x]). Let f G ND[x](D[x]). Then we have two cases:

(i) "f G ND(D)" In this case we have a + f G ND(D) and hence a + f G ND[x](D[x]).

(ii) "f G D[x] with degf > 1" Let f = Y^cnx* and let an = 0. Then dega + f > 1 and

hence a + f E ND[x](D[x]). Therefore a E N'D[x](D[x\) and so N'D(D) C N'D[x](D[x\).

Since 0 = JD(L>) C N'D(D) C N'D[a.](D[a;]) we have that N'D[x](D[x\) ^ 0. On the other

hand JD[x](D[x]) = 0.

By using the next lemma we can put N'R(M) instead of J(M) in the Nakayama lemma

and in the Krull's intersection theorem.

Lemma 1.13. Let M be an R-module and let a be an ideal of R. Then a C N'R(M) if

and only if a C JR(M).



Proof. Let x E a and r E R. Then rx E a and hence 1 + rx ^ N'R(M). Therefore

x E JR(M) by (1.7). D

2. Cosupport of modules

In this section we study the intersection and union of the maximal elements of the

cosupport of a module.

Definition 2.1 (see[Y1]). An R-module L is said to be cocyclic, if L is a submodule of

E(R/m), the injective envelope of R/m, for some m E MaxR.

Definition 2.2. Let M be an R-module. The cosupport of M is denoted by Cosupp(M)

and it is defined by

Cosupp(M) = {p E Spec(R)|p ~D Ann(L) for some cocyclic homomorphic image L of M}.

Lemma 2.3. The following hold:

a ) M / 0 i / and only ifCosupp(M) ^ 0.

b) Cosupp(M) C Spec(R/Ann(M)).

c) If M is finitely cogenerated then we have equality in (b).

Proof. "(a)" Use [Y2; 2.10 and 3.7].

"(b)" Let p E Cosupp(M). Then there exists a cocyclic homomorphic image L of M

such that p D Ann(L). Therefore p D Ann(M).

"(c)" Since M is a finitely cogenerated R-module, there exists simple modules S1, S2, • •, Sn

such that E(M) = E(S1) 0 E(S2) 0 • • • 0 E(Sn). If p E Spec(R/Ann(M)), then p D

n i
=1Ann(E(Si)). It follows that p D Ann(E(Si)) for some 1 < i < n, thus p E Cosupp(M).

Now the assertion follows from (b). •

Theorem 2.4. Let M be an R-module. Then

MaxCosupp(M) C MaxSpec(R/Ann(M))

where MaxCosupp(M) is the set of maximal element in Cosupp(M).



Proof. Set p G MaxCosupp(M). Then by (2.3) we have that p G Spec(R/Ann(M)).

Choose m G MaxSpec(R/Ann(M)) such that p C m. It is easy to see that m G

Cosupp(M). Since p G MaxCosupp(M) we have that p = m and hence the assertion

holds. •

Theorem 2.5. Let M be an R-module. Then the following hold:

a) MaxSupp(M) C MaxCosupp(M)

b) We have equality in (a) if M is finitely generated.

Note: The inequality in (a) may be strict.

Proof. Use [Y1; 2.11]. •

Definition 2.6. Let M be an R-module. The Jacobson coradical of M is denoted by

CR(M) and it is the intersection of all elements in MaxCosupp(M). Also, the union of

all elements in MaxCosupp(M) is denoted by UR(M).

Lemma 2.7. Let M be an R-module. Then r G CR(M) if and only if 1 + tr <£ UR(M)

for any t G R.

Proof. "if" Let m G MaxCosupp(M) such that r ^ m. Then m G Max(R) and hence

m + rR = R. Therefore there exist x G m and t G R such that x + tr = 1 and hence

1 — rt G UR(M), which is a contradiction.

"only if" Let t G R such that 1 + tr G UR(M). Then there exists a maximal ideal

m G MaxCosupp(M) such that 1 + tr G m. On the other hand tr G m. Therefore 1 G m,

which is a contradiction. •

Definition 2.8. The R-module M is said to be colocal module if |MaxCosupp(M)| = 1.

Also the R-module M is said to be semi-colocal module if |MaxCosupp(M) | < oo. Clearly,

all non-zero modules over a semi-local (resp. local) ring is a semi-local (resp. local)

module. Also if M is a colocal (resp. semi-colocal) module then M is a local (resp.

semi-local) module.

Theorem 2.9. The following are equivalent:

i) M is a colocal module.



iii) U R ( M ) is an ideal of R.

Proof. "(i=>- ii)" and "(ii=>- iii)" are obvious.

"(iii=>- i)" Since 1 <£ UR(M) we have XJR(M) ^ R and hence there exists m G

MaxSpecR such that UR(M) C m. On the other hand m C UR(M). Therefore UR(M) =

m and hence MaxCosupp(M) = {m}. D

Definition 2.10. Let M be an R-module. We define XJ'R(M) by

U'fl(M) = {x G UR(M)|x + UR(M) C UR(M)}.

Theorem 2.11. Let M be an R-module. Then the following hold:

a) CR(M) C U'fl(M) C UR(M)

b) CR(M) = U'fl(M) if and only i/U'fl(M) is an ideal of R.

c) If M is a semi-colocal then CR(M) = VR(M).

Proof. "(a)" Set x e CR(M) and t G UR(M). Then there exists m G MaxCosupp(M)

such that t G m. Since x G m we have x + t G m and hence x + t G UR(M). Thus

CR(M) C U'fl(M).

"(b)" The 'Only if part is obvious. For the 'If part, set x G V'R(M) and t G R.

Since U'fl(M) is an ideal of R we have tx G U'fl(M). We claim that 1 + tx £ UR(M). In

the other case if 1 + tx G UR(M) then 1 G UR(M), which is a contradiction. Therefore

x G CR(M).

"(c)" Let MaxCosupp(M) = {m1,m2, ...,m t}. Suppose x G U^(M). Then there exists

1 < r < t such that x G Pli=i m i andx/ x ^ Ui=r+im»- ^ e dai111 that r = t. In the other+1

case by the prime avoidence theorem we have P|*=r.+1 rrij ^ UI=i m i a n d hence there exists

y G f|*=r+i \UI=im i - S i n c e y e UR(M) we have x + y G UR(M). On the other hand

x + y / rrii for each ! < « < £ , which is a contradiction. •



3. Injective and flat modules

Recall that the set of zero divisors of M, ZR(M), is defined by

ZR(M) = {a G R\M ̂  M is not injective}

Now we bring the dual notion of ZR(M).

Definition 3.1 (see [Y1]). For the R-module M the subset WR(M) of R is defined by

WR(M) = {ae R\M ̂  M is not surjective}.

Lemma 3.2. Let M be an R-module. Then the following hold;

a) WR(M) C NR(R)

b) JR(R) C WR(M) i fM is a finitely generated R-module.

Proof. "(a)" Set x G WR(M). Then xM =£ M and hence x is a non-unit element of R.

Therefore x G NR(R).

"(b)" Set x G JR(R). Then Rx C JR(R) and hence by the Nakayama lemma we have

that xM = (Rx)M ^ M. D

Theorem 3.3. Let M be an R-module. Then the following hold;

a) WR(M) C NR(M)

b) We have equality in (a) if M is a finitely generated R-module.

Proof. "(a)" If M = 0 then there is nothing to prove. Let M ^ 0 and let x e WR(M).

Then i M ^ M and hence M/xM ^ 0. Let m e MaxSupp (M/xM). Then (M/xM)m = 0

and hence Mm/(x/1)Mm ^ 0. Therefore by (2.2a) we have x/1 G WRm (Mm) C NRm ( E J =

mRm and hence x G m. Now the assertion follows from the fact that m G MaxSupp(M).

"(b)" If M = 0 then there is nothing to prove. Let M = 0 and let x G NR(M). Then

there exists m G MaxSupp(M) such that x G m. Thus x/1 £ mRm = JR(Rm). Since M is

a finitely generated R-module we have Mm is a non-zero finitely generated Rm-module.

Therefore by (2.2b), we have that JRm(Rm) C WRm(Mm) and hence x/1 G WRm(Mm).

Thus Mm/(x/1)Mm = 0 and hence (M/xM)m = 0. Therefore M/xM = 0 and so x G

D
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Theorem 3.4. Let M be an R-module. Then the following hold;

a) ZR(M) C NR(M)

b) We have equality in (a) if M is a finitely cogenerated R-module.

Proof. "(a)" Use [Y2; 1.1].

"(b)" Since M is finitely cogenerated we have Supp(M) C MaxSpec(R) and hence

Z(M) = N(M) by [Y2; 1.1]. D

Theorem 3.5. Let M be an injective R-module. Then the following hold;

a) WR(M) C ZR(M)

b) We have equality in (a) if M is a finitely generated R-module.

Proof. "(a)" Set x e WR(M). If x ^ ZR(M) we have the map <p : xM^M with ^(xt) = t

for any t £ M. Since M is an injective R-module, the map ip induces the map ψ : M^M

such that for all t G M we have that t = <p(xt) = ψ(xt) = xψ(t) G xM. Thus xM = M,

which is a contradiction.

"(b)" We have x E ZR(M) C N(M) by [Y2; 1.1]. Now the assertion follows from

(3.3b). •

Corollary 3.6. If R is a self-injective ring then the set of zero divisors of R is equal to

the set of non-units in R.

Theorem 3.7. Let M be a flat R-module. Then the following hold;

a) ZR(M) C WR(M)

b) We have equality in (a) if M is a finitely cogenerated R-module.

Proof. "(a)" Set x £ ZR(M). Then there exists a non-zero element t £ M such that

xt = 0. Thus we have the non-zero map ip : R/(x) —> M with ip(r + (x)) = rt for any

r £ R. Therefore Hom(R/(x), M) ^ 0 and hence there exists an injective module E such

that Hom(Hom(R/(x),M),E) ^ 0. Since

Hom(Hom(R/(x), M), E) ^ =R/(x) 0 Hom(M,
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we have that x G WR(Hom(M, E)). Since Hom(M, E) is an injective module we have

x G ZR(Hom(M, E) by (3.4), and hence Hom(R/(x), Hom(M, E)) is non-zero. Therefore

Hom(R/(x) ®M,E)^0 and hence R/(x) 0 M ̂  0. Thus x G WR(M)

"(b)" By (3.3) and (3.4b) we have

C NR(M) = Z

Now the assertion follows from (a). •
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