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ABSTRACT

A closed form of the Picard-Fuchs equations for N = 2 supersymmetric Yang-Mills
theories with massless hypermultiplet are obtained for classical Lie gauge groups. We
consider any number of massless matter in fundamental representation so as to keep the
theory asymptotically free.
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1 Introduction

Recently duality has become a very important tool both in supersymmetric Yang-Mills

theories and string theory. Seiberg and Witten[?] have used duality and holomorphy to

obtain the exact prepotential of N = 2 SYM theory with gauge group SU(2). (For a

review see: e.g.[?], [?] and [?].)

The key point in N = 2 SYM models was the discovery of a hyperelliptic curve with

r complex dimensional moduli space (r is the rank of the gauge group) with certain

singularities, which gives information about the low energy Willsonian effective action.

The Seiberg-Witten data is a hyperelliptic curve with a certain meromorphic one form

(Eui, λSW).

Indeed, the prepotential of N = 2 SYM theory in the Coulomb phase can be de-

scribed with the aid of a family of complex curves with the identification of the vacuum

expectation value (v.e.v) ai and its dual aDi with the periods of the curve

ai= λ SW and a D i= λSW, (1)

where αi and $ are the homology cycles of the corresponding Riemann surface.

There are two well known methods for finding the periods and thereby the prepotential.

The first method is to calculate the periods directly from the above integrals. This

method has been developed in[?] and [?]. They explicitly calculated the full expansion of

the renormalized order parameters using the method of residues. By this method, they

worked out explicitly the perturbative corrections as well as the one and two instanton

contributions to the effective prepotential.

On the other hand, one may use the fact that the periods Π = (ai,aDi) satisfy the

Picard-Fuchs equations. Probably from the Picard-Fuchs equations one can obtain the

prepotential in an analytic way, which is for example, important in the instanton calculus.

Recently some of these equations have been obtained in [?] and[?]. Also in [?] we obtained

a simple closed form of the Picard-Fuchs equations for Pure N = 2 SYM theories for

classical Lie gauge groups. The Picard-Fuchs equations can also be obtained from the

mirror symmetry in Calabi-Yau manifold[?].

In this article we extend the results of [?] to obtain a closed form for N = 2 SYM

theories with classical Lie gauge groups which have massless matter in fundamental rep-

resentation.

The hyperelliptic curves for classical gauge groups with any number of matter in the

fundamental representation are known [?],[?] and [?]. Although in some cases different

hyperelliptic curves have been proposed for the same gauge group and the same hyper-

multiplet contents, but it was shown in [?] by explicit calculations up to two instanton

processes, that the corresponding effective prepotentials are the same for all these different



curves. This equivalence results from the fact that the effective prepotential is unchanged

under analytic reparametrizations of the classical order parameters [?].

The Seiberg-Witten data (Eui, λSW) for classical gauge groups with nf massless matter

in fundamental representation have been proposed as follows (see: [?],[?] and [?])

y2 = P2(X)-G(X),

G' ,xdx
(2)

ZLr y

where

m

i=2

with M = r + 1, i = 2, 3,..., e = 0 for Ar series and M = 2r, i = 2, 4,..., e = 0 for B r and

D r series, and m = 2r, i = 2, 4,..., e = 2 for C r series, and ui's, the Casimirs of the gauge

groups. Also
G = A2m~nf(x - 52m-1>nf)

nf for Ar

G = /\2m~'2-'2nfx2+2nf for B
(4)

G = /\2m~4:-'2nfx4+2nf for D

Note that the Dr series has an exceptional Casimir, t, of degree r, but in our notation

we set u2r = t2.

From the explicit form of λSW and the fact that the λSW is linearly dependent on the

Casimirs, setting -J^- = di one can see

diXsw = dx + dM,
y

•2e-i-j

p(x)dx + d(*). (5)

™2m+2e—i—j

didjXsw 7,

The procedure of derivation of the Picard-Fuchs equations is to find proper linear

combinations of ^—^dx and x "V 3p{x)dx which give total derivative, then by integration

from two sides and using (??) and (??), one can find second order differential equations

for the periods.

For example, from the second equation of (??) one can find the following identity for

the periods Li,j;p,qΠ = 0 where

Li,j;p,q = didj - dpdq, i+j=p + q ( 6 )



2 Br and Dr Cases

From (??) the proposed hyperelliptic curve for these gauge groups with nf < m — k — 1

massless matter in the fundamental representation are

where k = 1 for Br and k = 2 for Dr.

By direct calculation one can see that

J xn y.n—1 ™m+ra—1 m m+n—l—i

— (x) = (n-k-nf) (m-nf-k)x3pP+Y ijn-k-nf - i)uix3 p (8)

Now from equation (??), we can find the second order diffrential equations for the

periods (LnΠ = 0) as follows

m

Ln= (k + rif- n)dm-n+i + (m-nf- k)d2dm-n-i - Y (m ~ k ~ nf ~ i)uididm-n+i- (9)
i=2

Here n = 2s — 1 and s = 1, ...,r — 1. Note that for s = r equation (??) does not give

the second order differential equation with respect to ui. So by this method we can only

obtain r — 1 differential equations. Another equation can be obtained by following linear

combination

D0 = (k + nf — m)d(x) + Y, ( m ~~ k ~~ nf + i ) u i d ( x ) (10)
v i=2 y

or
rn—i m 2m—i—j

h 53 iJ
T^2 v f^2 v

2nf+2k

- (m-nf- k)2A2m~2nf-2k

 3 p)dx. (11)

y

Note that, for the case of nf = m — k — 1, one cannot write the last term in the

above equation as the form of x "V ]p(x)dx, so it only gives the second order differention

equation for the periods in the case of 1 < nf < m — k — 2, which is

Lr = 1 + £ « ( « - 2)uA + jr ijmujdidj -{m-nf- k)2A2m-2k~2nfd2. (12)
i=2 j,i=2

where for SO(m + 1)
d2 = dnf-kdm-nfd2 = dm-nf-kdm-nf-k nf odd

(13)

— um—nf — 2kum—nf nf even

and for SO(m)
d2 = dm-nf-kdm-nf-k nf even

(14)

d2 = dm-nf-k-idm-nf-k+i nf odd

4



For the case of nf = m — k — 1 we should add an extra term to D0 to cancel the last

term, which is
rm-l

2 ( 1 5 )( )
V

so the last term of (??) changes to

A2JT(i-l)utd2dt. (16)
i=2

Equations (??) and (??) give a complete set of the Picard-Fuchs equations for the

periods for gauge groups Br and Dr with any number of massless matter so as to keep

the theory asymptoticlly free. (nf < m — k — 1).

3 Cr Case

First let us write the Picard-Fuchs equations for the pure gauge theory.1 The proposed

curve for pure N = 2 SYM with gauge group SP(m) is [?]

where
m

" ' " ; = 2,4,...,m (18)
i=2

By direct calculation one can see that

d xn xn~l xnp'

where z = xy. So from (??) we have the following second order differential for the periods

m

Ln = -ndm_n+3 + (m + 2)<92<9m-n+i -J2(m + 2~ i)uididm_n+3. (20)
i=2

here n = 2s + 1 and s = 1,..., r — 1. Just as for the Br and Dr cases, there is a difficulty

for s = r, again, we have only r — 1 differential equations. One can see that, the last

equation can be obtained by the following linear combination

m+3 m m+3-i

D0 = -(m + 2)d( x ) + ]T (m + 2 + i)uid( x ) - (m + 2)2Λm+2d(x) (21)
z i=2 z z

which gives a second order differential equation for the periods

m m m

L r = 1 + ̂ i ( i - 2)uA + ]T ijmujdidj + (m + 2)2Λm + 2 ^ (m - zK<9m<9J+2. (22)
i=2 j,i=2 i=0

our notation for Cr gauge group is different from the one in[?].



here u0 = — 1.

Let us return to our task of obtaining the Picard-Fuchs equations for Cr gauge group

with nf < m + 1 massless matter in the fundamental representation. From (??) the

proposed curve for this theory is

-2-nf)x2nf ( 2 3 )

m m-\-n—l—i

P + J2(m + 2-nf ~ i)ui x 3 p ( 2 4 )

which gives the following differential equations
m

Ln = (nf - n)dm-n+3 + (m + 2 - nf)d2dm-n+1 - Y (m + 2 - nf ~ i)uididm-n+3. (25)
i=2

As in the previous cases from this method we obtain only r — 1 differential equations.

The last equation can be obtained from the following linear combination

One

d

dx

can

xn

y

see that

\n nf)

r.n-l

y

y2

m + 2

= P2-

xr>

nf)

re+ri—1

y3

0 = (nf-m- 2)d(x) + ]T ( m + 2 - nf + i)uid( x ) (26)

or
i m

I I,-. \ nyir I > 7 I 7 / 17/ —I— > 7 rl 11 - 7 / T")

fp)dx. (27)
y3

Similar to Br and Dr cases, for nf = 1 and nf = m + 1, the last term in the above

expression cannot be rewriten in the form of x 2 g p(x)dx, so we should add an extra

term to D0. For the case of 2 < nf < m, the above equation gives a second order

differential equation
m m

jdidj - (m + 2 - nf)
2A2m+4-2nfd2. (28)

i=2 j,i=2

where d2 = dm+2-nfdm+2-nf for even nf and d2 = dm+i-nfdm+3-nf for odd nf. For

nf = m + 1 D0 should change to

= D0 + Λ2d( x ) , (29)

so the last term of equation (??) changes to Λ2 J2 (i — l)«i<92<9i, and for nf = 1

= D0-
 ( m + 1 ) 2 Λ 2 ( m + 1 ) d ( x ) , (30)

um y
and the last term of equation (??) changes to

A 2m+2 m-2

(m + 1)2 Λ E (m + 1 - i)Uidi+2dm (31)

where u0 = — 1.



4 Ar Case

Consider gauge group SU(m) with nf < 2m — 2 massless hypermultiplets2 in the defining

representation of the gauge group. From (??) the hyperelliptic curve for this model is

y2 = p2(x)-A2m-nfxnf (32)

where

p(x) = xm -Y,u%xm~% (33)
i=2

By direct calculation one can see that

r] rf-n „ ™n-l „ ™m+ra-l m m+n-l-i

s ( 7 ) = (— f ) — - ('" - f ) - ^ + g (" " f " •)*—^s—P Pi)
From (??) we can find the second order differential equation for the periods (LnΠ = 0)

as follow

£n = ( y - n)5m_ r a +i + (TO - y)<92<9m_ra_i - 53 (m - y - i)uididm_n+1. (35)
i=2

where n = s — 1 and s = 2,..., r — 1. As before, for s = r (??) does not give the second

order differential equation. Moreover, here for s = 1 the same difficulty arises as well. So

by this method we can only find r — 2 equations. Two other equations can be obtaind by

considering a particular linear combination of d(xj).

Consider the following linear combination

Tm+l m

D0 = (nf - m)d(x) + ]T ( M - nf + i)uid( x ) (36)
^ y i=2 2 y

or
" i rpin—i m 2

p- (m- -^)2A2™-™/— p)dx. (37)
2 y3^ y ^2 y 2 y

which gives the second order differential equation for the periods in the case of 0 < nf <

2m — 4 and take the following form

Cr = l + Yj%{%- 2)uA + J2 VuiuAdJ -(m- '^-)2k2m-nfd2. (38)
i=2 j,i=2 2

where d2 = dmdm_nf for nf < m — 2 and d2 = <92<9TO_|_2 a n d l = ~l>0, ...,m — 4 for

TO 1 f n f ( = M + l) < 2 M — 4. For the cases of 2m — 3 < nf < 2m — 2, one should add

an extra term to D0 as follows

2For nf = 2m — 1, because of Λ dependent term ((x — a0Λ)fn where the coefficient a0

comes from instanton calculations), there is a difficulty, which also arises in the massive
case. So we postpone it to future study.



For nf = 2m — 3

D = D0 + 3Λ3d( x ) , (39)
2 y

so
m m o mo m o o

£r = 1 + E * ( * " 2K<9, + E iJUiUjdidj + -A3 E (* " ~)uid3di + -A3<93. (40)
3 i 4i=2 j,i=2 2 i=2 2 4

For nf = 2m - 2

D = D0 + Λ2d( x ) , (41)
V

so
m m m

Lr = 1 + E i(i ~ ^iiidi + E iJUiuAfy + A " E (* " 1)^2^. (42)
i=2 j,i=2 i=2

Finally, the last differential equation for the periods can be obtained from the following

linear combination (which is analogous to d(1) in the pure case [?])

„ m „ rf.m—2 „ m m—i

E0 = (m )d( x ) + nf(nf — 2m — 4)u2d( x ) + (m f)2 E uid( x ). (43)
2 y 4 y 2 i y

which gives the second order differential equation for periods in the cases of 1 < nf <

2 m - 3 .
m m m

i=2 i=3 i=2

/ J V / ^ 3 ~̂r-L 3 c\ ' V /

where d2 = dmdm_nf+i for nf < m — 1 and d2 = <92<9TO_i_i, l = 0,..., m — 3 for m < nf(=

m + l) < 2m — 3 and also e = (m — nf), ci = me + ̂ - . For the case of nf = 2m — 2 one

should add an extra term as follows

(45)
dx y

and then the last term in equation (??) changes to

(1 - riiiidsdi). (46)
i=2

At the end, note that equation (??) is not valid for SU(2) with nf = 1 as it should be.

This inconsistency comes from the d(1) term in (??). One can see that the Picard-Fuchs

equation for this case is obtained from the following combination

n A3 ™2 Q.,

and gives the well-known result

A = 1 + (4u2 + ̂  — )d2

v, (48)
64 u



5 Conclusion

To compare our results for the groups of rank r < 3 with the results of [?] and [?], let

us, for example, consider SU(4) with one massless matter. From the equations (??), (??)

and (??) we have

2 + (8ut ~ 224«4)<923 + Il7u2u3d24
49

(49u2
3 + 128u2u3)dM + (49u3u4 - yA7)<944,

1 = <94 — 7<922 + 3«2<924 + u3d3i — «4<944,

3 = 1 + 3u3d3 + 8M454 + iuld22 + (9u32+16

- — A')dM, (49)

where dij = didj. One can check that these equations are linear combinations of those

To summarize, we have obtained a closed form for the Picard-Fuchs equations for

N = 2 SYM theories with classical Lie gauge groups which have massless matter in the

fundamental representation.

Note: After the completion of this work, I received the paper[?] which has considerable

overlap with our work.
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