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ABSTRACT

We show thatl the mixed spim Tsing model with lour-spim micraction on the unon jack
(centered square) lattice is equivalent to the eight-vertex model. In certain subspaces of
pararncters Lthe model 1s solvable and we can locate exactly the coexistence snrlace helween
two ordered phases of the model {(symmetric case) and some critical points ([ree-lermion

case).
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In this Letter we consider the mixed spin lsing model on the union jack (centered
squarce) lattice. In this model at the cighi- (Tour-) coordinated sites there are spin 1/2 (1)
spin operators. Such models have been introduced in the context of describing certain
ferrimagnetic systems [1|. [lowever, competing interactions and higher spin operators
make the behaviour ol such models more imtricaie and sometimes only extensive numerical
calculations can provide the correct description [2].

In our previons paper [3] (herealter velerred 1o as T) il has been shown that, when
[ormulated on the nnion jack lTattice, such models are solvable due 1o 1the relation with
the symmetric eight-vertex model [1]. In the present Letter we consider a more general
version namely a model with lour-spin mteraction. The Hamiltonian ol our model 1

wrillen as
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where ;t; = &1 and 5; = 0,£1 are spin operators placed on the eight-and four-coordinated
sites respectively. The fivst and sccond summations are over nearest neighbonrs, the third
15 over [our-coordinaled sites and the last one 1s over the plaquettes. In the lollowing we
put Jy = 1. The case ( = 0 has been considered in 1.

The ground-state of this model can be casily found by comparing energies ol the
corresponding conligurations. Since the parameter space ol the model is stll very large in
graphical presentations we will restrict ourselves to the J; = —0.25 case. In such a case
the ground state 1s shown m Fig. 1. In region T the ground state is [erromagnetic with
all 1’s and 575 having the same values. In region Il i's are antiferromagnetically ordered
and 5; = 0. Regions 111 and 1V are strongly degenerate: p¢’s on each plaquette have to
salisly the condition that their product is negative: jppgpg = —1. In region TTT we have

S; = 0 and in region IV 5; takes the value of the majority of spins forming the plaquette:

]

S; = sign(p; + g5 + s + p10). Models with ground states like these in regions 111 and 1V
have recently been considered in some other context [5].
Iollowing the same procedure as that applied in [ we decimate over all four-coordinated

sites S0 The resulting model 15 cqmivalent to the cight-vertex model with the weights:

wy = (:"g(('_“Jrz“T")['l + 2677 cosh (4] Wy = 03{(_';_2;'}(.' + 2(:'8‘0) (2)
wy =wy =1+ 2077w =g = wr = ws = L 4 2(.‘.""”)(:()8]'1(2;"’)’)] (3)
where = 1/T and we put kg = 1. Spin conligurations corresponding to these weights

are shown in l'ig. 2.

The lrther analysis 1s based on the observation that in certaim subspaces ol parametor
space the cight-vertex model (2)-(3) is solvable. One branch ol solutions corresponds io
the symmetric case [1]. Since in our model we have wy = wy, w5 = wy and w; = wy thus

the symmetric case 18 oblained imposing the condition thal wy = wy or cqmvalently:

AN 4 267 cosh(43)] = ¢4 1 4 28 D] (4)



Let us note that this condition is (~independent and thus is exactly the same as that
obtained i 1. The real solutions of (4) exist only for —1 < J; < 0 and a plot of (4) [or
Ji = —0.25 is shown in Iig. 3.

On the manifold (1) the vertex model becomes critical when w, = wy + w5 + wr or

cquivalently:
G2 4 967 cosh(43)] = (1 + 2677) 4+ 26771 + 267" cosh(23 5
(1) { ) (23) {

l'or a fixed ./, a practical way to solve equations (1)-(5) is first to determine £ from (1)
as a [unction of T and then one can determine G [rom (3). Tn such a way we obtain the
critical line in the parameter space (. (i, 1") which is parametrized by 7". The projection
ol this ime into the T = 0 plane is shown in Fig. 1. Along this line critical exponents
change continuously [4]. Morcover, nsing the same arguments as in T we can show thal,
the solvable manifold (1) in the ordered region corresponds actually to the coexistence
surface of the ferromagnetic phase (T) and the antiferromagnetic phase (IT) and thus it
gives the location ol the livst-order transition between these two phases. The eritical ime
gives actually the location of the bicritical points in our model.

From Fig. 3 1t [ollows thal for J; = —0.25 m the range —3.7562... < I} < —3 the
manifold (1) is a double-valued function. A consequence of this fact is that in this range
of D the phase diagram in the ((\.7) plane has the form as shown in Iig. 1. The
location ol bicritical pomts and the horizontal lines of lirst-order transitions can casily be
determined exactly for a given ./, and . lor example, for ./, = —0.25 and D = —3.5
solving (1)-(3) we obtain that the bicritical points are located at (1) ( = 0.983052...,1" =
1.25366... (2) G = 3.69970...,T = 2.98374... The vertical coordinates of these points
determine the location of first-order transition lines. We expect that transitions to the
paramagncetic phase will be contimuous and of 21 Tsing universality class. For & = 0 such
scenario has been conflivmed i I In our opimon, 1t 1s quite mteresting thatl the model
with such complicated phase diagram, which contains even two consecutive first-order
phase {ransitions, can be studied 1o some extent exactly. Lel ns also emphasize thai the
temperature of first order transitons does not depend on (. This is a consequence of the
already mentioned (~independence of the manifold {1).

Analysis ol (4)-(5) reveals that for 17 > —3 there is only one phase order transition.
An interesting point is that such a transition always exists for sutficiently large (',

The second branch of solutions corresponds to the so-called free-fermion case. In this

case the weights wy have 1o salisly the lollowing equation
Wiy - Waldy = wWhlds + Whitds (6)
or equivalently

P 2671 4 267 cosh (43)] + HTF(1 4 2672 = 26720 1 4 26 coshi (29)]% ()



Let us note that this equation is ./,-independent. L'or some values of &' the plot of (7) is
shown in Fig. 5. On the solvable manifold (7) there are two branches ol eritical points.
One branch, obtained as a solution of the equation w, = wy + wy + wy corresponds to
the decomposition of the ferromagnetic order (I) while the other. wy = w| + wy + wy,
corresponds 1o the decomposition of the antiferromagnetic order (IT). Using (2)-(3) these

equations read

62.3J| [l _I_ Zejpt?osh(lq‘\}] _ {16—23.}'1 N 2)(]_ + eﬁD\} (1,) (8)
o M+ 2(:3‘0(:0%{\’—"L,f‘?)] = (\(.‘._23‘}" -1 + O,BD) (IT) (9)
These cquations are G-independent and {or J; = —0.25 their plots are shown in Fig. 5.

Crossing points ol (8)-(9) with (T) determine the eritical points.

As it has already been noticed in [, for (4 = 0 the only free-fermion solutions correspond
to some limiting, and alrcady well-known cases, namely 1) = oo (5 = 1/2 union jack
lattice model) or J; = 0 (S = 1/2 square lattice model). On the contrary, lor G <
0 this branch gives solutions in quite nontrivial and novel cases. Another interesting
point is that in the Timit 7 — oc the solvable [ree-lermion manilold (7) lies entively
in the ordered ground states (L) or (I1). This suggests (but obviously not proves) that
the disordered ground states (L1} or (1V) do not support any kind of long range order.

5] such ground

However, as suggested by recent. Cluster Variational Method calenltions |
states might support a weak ferromagnetic order in some other 5 = 1 models with four-
spim interactions. The existence ol such order would be quite miceresting and 1s certanly
worth [urther study.

In summary. we have shown that the mixed spin [sing model with four-spin interaction
on the union jack lattice 1s cquivalent 1o the cight-vertex model. Tn the four-dimensional
parameter space (T,G,Jp, D) ol this model there are two three-dimensional subspaces
where this model is solvable. This mixed spin model has a very rich and intricate critical

behaviour and the oblained exactl solution should coniribute 1o 1ts better understanding.
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Figure captions

Fig. 1: The ground-state configurations for J; = —0.25. The dotted line is a 7' = 0 projec-
tion of the critical line (5).

Fig. 2: Configurations of the eight-vertex model in the spin representation.
Fig. 3: Solvable manifold (4) for J; = —0.25.

Fig. 4: Qualitative phase diagram for a fixed J; and D within a range (-3.7562,-3). Thick
vertical lines, whose location can be found exactly, denote first-order phase transi-

tions. Thin lines are conjectured lines of second-order phase transitions.

Fig. 5: Solid lines represent the solvable manifold (7). The dashed lines are the critical
lines (8)-(9).
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