United Nations Leducational Scientific and Cultural Organization and
 International Atomic Energy Agency
 INTFRNATIONAL CENTRF FOR THFORFTICAI PHYSICS

MIXED SPIN ISING MODEL WITH FOUR-SPIN INTERACTION

Aclam Lipowski ${ }^{1}$
International Centre for Theoretical Physics. 34100 Trieste. Italy.

ABSTRACT

We show that the mixed spin Jsing model with [our-spin interaction on the union jack (centered square) lattice is equivalent to the eight-vertex model. In certain subspaces of paramelers the model is solvable and we can locate exactly the coexistencesur Cace behween hwo ordered phases of the model (symmetric case) and some critical poims (Free-femion case).

MIRAMARL - TRILSTE
July 1996

[^0]In this Letter we consicler the mixed spin lsing model on the union jack (centered square) lathice. To this model at the eight- (fon-) coordinated sites there are spin $1 / 2$ (1) spin operators. Such models have been introduced in the context of describing certain ferrimagnetic systems [1]. However, competing interactions and higher spin operators make the behaviour of such models more int ricate and sometimes only extensive mumerical calculations can provide the correct description [2].

Itr our previous paper [3] (herealier referred to as I) it has been shown that, when formulated on the mion jack latice, such models are solvable due to the relation with the symmetric eight-vertex model [4]. In the present Letter we consider a more general version namely a model with [our-spin interaction. The Harriltonian of our model is writicm as

$$
\begin{equation*}
I=-J_{1} \sum \mu_{i} \mu_{j}-J_{2} \sum \mu_{i} S_{j}-D \sum S_{i}^{2}-G \sum \mu_{i} \mu_{j} \mu_{k} \mu_{1} \tag{1}
\end{equation*}
$$

where $\mu_{i}= \pm 1$ and $S_{i}=0, \pm 1$ are spin operators placed on the eight-and four-coordinated sites respectively. The first and second summations are over nearest neighbours, the third is over four-coordinated sites and the last one is over the plaqueties. Trt the following we put $J_{2}=1$. The case $G=0$ has been considered in l.

The gromd-state of this model can be casily fomd by comparing energies of the corresponding configurations. Since the parameter space of the model is still very large in graphical presentations we will restrict ourselves to the $\Lambda_{1}=-0.25$ case. In such a case the gromd state is shown in Fig. 1. In region T the ground state is Cemmagnetice with all μ 's and S 's having the same values. In region Il μ 's are antiferromagnetically ordered and $S_{i}=0$. Regions $1 I I$ and $I V$ are strongly clegenerate: μ 's on each plaquette have to satisly the condition that their product is negative: $\mu_{i} \mu_{j} \mu_{k} \mu_{j}=-1$. In region IIT we have $S_{i}=0$ and in region IV S_{i} takes the value of the majority of spins forming the plaquette: $S_{i}=\operatorname{sign}\left(\mu_{i}+\mu_{j}+\mu_{i}+\mu_{i}\right)$. Models with ground states like these in regions $1 I I$ and IV have recertity been considered in some olher cortext [5]
following the same procedure as that applied in I we decimate over all four-coordinated sites S_{i}. The resulting model is equivalent to the eight-vertex model with the weights:

$$
\begin{gather*}
\omega_{1}=e^{\beta\left(G+2 J_{1}\right)}\left[1+2 e^{3 D} \cosh (4 B)\right] \quad \omega_{2}=e^{3\left(G-2 J_{1}\right)}\left(1+2 e^{3 D}\right) \tag{2}\\
\omega_{3}=\omega_{4}=e^{\beta G(}\left(1+2 c^{\beta \beta)}\right) \quad \omega_{5}=\omega_{6}=\omega_{7}=\omega_{8}=e^{-B K T}\left[1+2 e^{\beta D} \cosh (2 \beta)\right] \tag{3}
\end{gather*}
$$

where $3=1 / T$ and we put $k_{\mathrm{B}}=1$. Spin configurations corresponding to these weights are shown in lig. 2.

The further analysis is based on the observation that in certain subspaces of parameder space the eight-vertex model (2)-(3) is solvable. One bratuch of solutions corresponds to the symmetric case [1]. Since in our model we have $\omega_{3}=\omega_{1}, \omega_{\overline{3}}=\omega_{6}$ and $\omega_{7}=\omega_{8}$ thus 1.he symmetric case is obtained imposing the condition that $\omega_{1}=\omega_{2}$ or expivalertily:

$$
\begin{equation*}
\mathrm{e}^{2 \beta A_{1}}\left[1+2 \mathrm{e}^{6 \beta t} \cosh (4 \beta)\right]=\mathrm{c}^{-2 \beta, t_{1}}\left[1+2 c^{2} \beta D\right] \tag{4}
\end{equation*}
$$

Let us note that this conclition is G-inclepenclent and thus is exactly the same as that obtained in T. The real solutions of (4) exist only for $-1<J_{1}<0$ and a plot of (4) for $J_{1}=-0.25$ is shown in lig. 3.

On the manifold (1) the vertex model becomes critical when $\omega_{1}=\omega_{3}+\omega_{\overline{3}}+\omega_{1}$ or equivalentily:

$$
\begin{equation*}
e^{i \beta\left(\xi+2 \cdot h_{1}\right)}\left[1+2 e^{\beta \phi} \cosh (1 \beta)\right]=e^{\beta G}\left(1+2 e^{i \beta)}\right)+2 \mathrm{e}^{-i G G}\left[1+2 e^{i \beta)} \cosh (2 \beta)\right] \tag{5}
\end{equation*}
$$

For a fixed J_{1} a practical way to solve equations (1)-(5) is first to determine D from (1) as a furction of T ard then one cart determine G from (b). In such a way we obtain the critical line in the parameter space (D, G, T) which is parametrized by T. The projection of this line into the $T=0$ plane is shown in Fig. 1. Along this line critical exponemis change combinuously [4]. Worcover, using the same argments as in I we can show that the solvable manifold (4) in the ordered region corresponds actually to the coexistence surface of the Cemromagnetice phase (T) and the antiferromagnetic phase (IT) and thus it gives the location of the first-order transition between these two phases. The eritical line gives actually the location of the bicritical points in our model.

From Fig. 3 it follows that for $J_{1}=-0.25$ in the range $-3.7562 \ldots<D<-3$ the manifold (4) is a clouble-valued function. A consequence of this fact is that in this range of D the phase diagram in the (C, T) plane has the form as shown in lig. 4. The location of bicritical points and the horizontal lines of first-order transitions can casily be cletermined exactly for a given J_{1} and D. For example, for $J_{1}=-0.25$ and $D=-3.5$ solving (1)-(5) we obtain that the bicritical points are located at (1) $G=0.98052 \ldots, I=$ $1.25366 \ldots$ (2) $G=3.69970 \ldots, T=2.98374 \ldots$ The vertical coorditates of these poirtis determine the location of first-order transition lines. We expect that transitions to the paramagnetice phase will be cortinuous and of 2 D Ising universality class. For $G=0$ such scemario has been confirmed in I. Itr our opinion, it is quite interesting that the model with such complicated phase diagram, which contains even two consecutive first-order phase transitions, car be studied to some extent exactly. Tet us also emphasize that the temperature of first order transitons does not depend on G. This is a consequence of the already mentioned G-inclepenclence of the manifold (1).

Amalysis of (4)-(5) reveals that for $D>-3$ there is only one phase order transitiont. An interesting point is that such a transition always exists for sufficiently large G.

The second branch of solutions corresponds to the so-called free-fermion case. In this case the weights ω_{i} have to satisly the following equation

$$
\begin{equation*}
\omega_{1} \omega_{2}+\omega_{3} \omega_{1}=\omega_{\overline{3}} \omega_{6}+\omega_{\pi} \omega_{8} \tag{6}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
c^{2 j G}\left(1+2 e^{(j)}\right)\left[1+2 e^{\beta n} \cosh (4 \beta)\right]+e^{2 / G G}\left(1+2 e^{\beta n}\right)^{2}=2 e^{-2 j G \epsilon}\left[1+2 e^{\beta t} \cosh (2 \beta)\right]^{2} \tag{7}
\end{equation*}
$$

Let us note that this equation is J_{1}-inclepenclent. For some values of G the plot of (\bar{i}) is shown in Fig. 5. Ot the solvable matifold (7) there ame two branches of critical point.s. One branch, obtained as a solution of the equation $\omega_{1}=\omega_{2}+\omega_{3}+\omega_{1}$ corresponds to the decomposition of the ferromagnetic order (I) while the other. $\omega_{2}=\omega_{1}+\omega_{3}+\omega_{1}$, corresponds t.o the decomposition of the antiferomagnetic order (IT). Uising (2)-(3) these equations read

$$
\begin{align*}
& \mathrm{e}^{23 J_{1}}\left[1+2 \mathrm{e}^{3 D} \cosh (13)\right]=\left(\mathrm{e}^{-23 J_{1}}-2\right)\left(1+\mathrm{e}^{3 D^{2}}\right) \tag{8}\\
& \mathrm{c}^{23 J_{1}}\left[1+2 \mathrm{c}^{3 D} \cosh (4 \beta)\right]=\left(\mathrm{e}^{-23 J_{1}}-2\right)\left(1+\mathrm{e}^{3 D}\right) \tag{9}
\end{align*}
$$

These equations are G-independent and [or $J_{1}=-0.25$ incir plots are shown in Fig. 5. Crossing points of (8)-(9) with (7) determine the critical points.

As it has already been noticed in I, for $G=0$ the only free-fermion solutions correspond to some limiting, and already well-known casces, mamely $D=\infty(S=1 / 2$ union jack latitice model) or $J_{2}=0(S=1 / 2$ square latitice model). Ot the contrary, for $G<$ 0 this branch gives solutions in quite nontrivial and novel cases. Another interesting point is that in the limit $T \rightarrow \infty$ the solvable [rec-[ermion marifold (\bar{i}) Ties entirely in the ordered ground states (I) or (II). This suggests (but obviously not proves) that the disordered ground states (III) or (IV) do not support any kind of long range order. However, as suggested by recent. Cluster Variational Wethod calcoltions [5] such gromod states might support a weak ferromagnetic order in some other $S=1$ models with fourspin interachions. The existence of such order would be quite interesting and is certainly worth further study.

In summary, we have shown that the mixed spin Ising model with four-spin interaction on the union jack latice is equivalent to the eight-vertex model. The the fom-dimensional parameter space $\left(T, G, J_{1}, D\right)$ of this model there are two thece-dimensional subspaces where this model is solvable. This mixed spin model has a very rich and intricate critical behaviour and the obtamed exact solution should comtribute to its better understanding.

Acknowledgements

I arn gratefin to the Intemational Centre for Theoretical Physies [or their kimd hompitality during the period when this work was completed. I would like to thank A. Pelizaola and C.Buzano for interesting discussions. The research clescribed in the present paper is supported by the grant KBN 2 P302 09107.

References

[1] Kaneyoshi T and Chen J 1991 J. Magn. Mag. Mat. 98201
[2] Buendia G M, Novotny M A and Zhang J 1994 Computer Simulations in Condensed Matter Physics VII ed D P Landau, K K Mon and H B Schüttler (Heidelberg: Springer)
[3] Lipowski A and Horiguchi T 1995 J. Phys. A: Math. Gen. 28 L261
[4] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York: Academic)
[5] C.Buzano, L.R.Evangelista and A.Pelizzola, Phys.Rev. B 53 (1996) 15063

Figure captions

Fig. 1: The ground-state configurations for $J_{1}=-0.25$. The dotted line is a $T=0$ projection of the critical line (5).

Fig. 2: Configurations of the eight-vertex model in the spin representation.
Fig. 3: Solvable manifold (4) for $J_{1}=-0.25$.
Fig. 4: Qualitative phase diagram for a fixed J_{1} and D within a range ($-3.7562,-3$). Thick vertical lines, whose location can be found exactly, denote first-order phase transitions. Thin lines are conjectured lines of second-order phase transitions.

Fig. 5: Solid lines represent the solvable manifold (7). The dashed lines are the critical lines (8)-(9).

\emptyset

$$
\begin{array}{lll}
1 & 1 \\
1 & + \\
+ & \\
1 & 1 \\
1 & + \\
1 & 1 & \\
1 & 1 & \\
+ & \\
+ & \\
+ & \\
1 & \\
+ & \\
1 & \\
+ & \\
+ & \\
+ & \\
+
\end{array}
$$

[^0]: 'Permanent address: Magnetism 'Iheory Division. Department of Physics, A. Mickicwic, University, Ul. Watcjki 48/49, Pozmani, Poland.

