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0. Introduction

Throughout this paper, A denotes a Noetberian local ring with maximal ideal m
and M a finitely generated A module with d := dim^ M > 1.

Let x — xi,,.., Xi be a system of parameters (abbr. s.o.p ) of M and
n = ni,...,nd be ad- tuple of positive integers. We consider the following two problems:

i) When is the length of the Koszul homology

e(Hk(x^',...,x^ ; M))

a polynomial in n for all Jt = 0,..., d and t»i,..., nt sufficiently large (abbr. n » 0) ?
ii) Is the length of the generalized fraction l/(x™',..., x^', 1) in UJ^1 (M)M a

polynomial in n for n >> 0 ?
Note that the theory of generalized fractions has been introduced by R.Y.Sharp

and H.Zakeri in [S-Zl] and problem (ii) is asked first in [S-H|. An affirmative answer
is also proved for the problem (ii) in [S-H] when M is a generalized Cohen - Macaulay
(abbr. g.CM ) modules. On the other hand, the problem (i) is investigated in [Cl]
for the case k = 0 and a necessary and sufficient condition for x is given in this case
so that £(Ho{x"\ ...,i[J' ; M)) is a polynomial for n » 0. It is also well-known that
for a g.CM module M, ^(fft(x™', ...,iJJd; M)) (k > 0) is a constant for n >> 0 ( cf.
[C-S-T] ). Thus, the above both problems are solved for the case that M is a g.CM
module.

The purpose of this paper is to study the above problems for a class of modules
which strictly contains all of g.CM modules, namely, the class of modules having the
polynomial type at most 1. Recall that the polynomial type of a module M is defined
first in [C2] as follows:

Consider the difference between the length and the multiplicity

£(M/(x™1, ...,iJcl)M) — ni...nje(i; M)

as a function in n. Then the least degree of all polynomials in n bounding above
this function is independent of the choice of the s.o.p x. This invariant is called the
polynomial type of M and denoted by p(M). It is easily to see that M is g.CM if and
onlyifp{jlf)<0.

Now, let us to give a summarize of this paper. In Section 1, we prove some
preliminary result which will be used for next sections. In Section 2, we give some
results about local cohomology modules in case p(M) < 1. In Section 3, we show that
if p(M) < 1 then there exist is a s.o.p pi,...,xj of Af such that, for n > > 0,
£(ffi(i"',...,i"J ; M)) is a polynomial of degree p(JW) for i = l , j = d and constant
for the other cases. As a consequence, we get the same results for higher Euler - Poincare
characteristics

With same assumptions as in Section 3 for a s.o.p x, we prove in Section 4 that
£(M(l/(x"1, ...,x^*, 1))) is a polynomial for n >> 0 and this polynomial can be com-
puted by the lengths of local cohomology modules.



1. Preliminaries

From now on, for convenience, we will write

/„(t i ; x) =

or I(n\ x) for a fixed module M. Denote by ai(M) the annihilator of the i-th local
cohomology module H'm(M) of M with respect to the maximal ideal m and put a(M) =
aa(M)...ad_x{M).

First of all, we recall a result of P. Schenzel which will be often used in this paper.

Lemma 1.1. (see [S, Theorem 3]). Denote by r(M) the intersection of all annihil&tors
of modules

[xi,...,Xi-X)M : n f(xu...,xi_1} M,

where x = x\,...,x, runs through all subsets of systems of parameters of M. Then
a(JW)Cr(M).

Recall that a system of elements in A, x = i i , . . . , i< is said to be a d-sequence
of Mif

( X I , . . . , X J _ I ) M : Xi = (z],...,:r.i_1)Af : i j i j

for all i = 1,...,( and j > t. Then, as an immediate consequence of Lemma 1.1, we
have the following lemma.

Lemma 1.2. Let x = xlt ...,xd be a s.o.p for M such that {x2,..., xt)A C Rad a{M).
Then xfl, i"3,..., Xj' is a d- sequence of M for n » 0.

Proof. Choose n » 0 so that (0 : X?)M = (0 : x\n')M and {x? xn/)A C a(M).
Then by Lemma 1.1, (0 : X"')M C (0 : x"')M for all i > 0 and

( x ^ , . . . , ^ 1 ) ^ : *•" = {x?,...,xZ~1')M : a{M)

for all i = 1,..., d and i < j < d. Therefore, i"1 , x J1,..., i J ' is a d- sequence of M for
n » 0.

Lemma 1.3. Let x = Xi, ...,irf be a s.o.p for M such that XA € a(M). Then

for all nj,...,nj > 1.

Proof. By [A-B,Corollary 4.3], we have

= 0

: *?

Since

by Lemma 1.1, we get

for i = 1, ...,ii — 1. Thus

= t{(x«1\.,.,x
n
d'_-s

1)M : xd 1 {x1\...tx
n
dl\

l)

by Lemma 1.1 again.

The lemma 1.3 enables us to get a result in [C3] as follows.

Corollary 1.4. dim A/a{M) > p(M).

Proof, Set k = dim Aja{M). Since p(M) < d, then the inequality holds for k = d.
Fork < d, we can choose a s.o.p x = x-y, ...,xd such that i t + 1 , ...,xd C a(M). Hence,
by Lemma 1.3,

I{n;x) = I{nu...,nk,l,...,\;x).

This implies that p(M) < k.

Lemma 1.5. Let y £ a(M) and set k = dim Aja{M). Then we have the exact sequence

0 —» H'm(M) —. H'jM/yM) —. ff^'(M) —. 0,

fori = it,..., <f-2.

Proof. Consider the following exact sequences

0 —. (0 : y)u — M — Jlf/(O : y)M —. 0 ,

0 - Af/(0 : j / ) M -» Af -» MjyM - 0 .

Note that dim(0 : y)w < dim A/a(M) = k by Lemma 1.1. The first exact
sequence yields isomorphisms

fi : H'JM) S JlJ,(M/(0 : V)M)



for all i > k and an epimorphism

fk : Hk
m{M) : y)M) 0.

Furthermore, since yH'm{M) = 0, for i = 0, ...,d - 1 and /; are surjective for all i with
i > it, from the commutative diagram

we deduce that gt is zero for all i = k,..., d - 1. Using the isomorphisms /, and the
second exact sequence we get the following exact sequence

— 0,0 - + HUM) —+H'm(M/yM) —+HI,

for all i - k,...t d - 2 as required .

2. Local cohomology modules

By [C-S-TJ we know that M is a g.CM module if and only if dim Aja(M) = 0.
Prom this section on, we will consider a class of modules M satisfying the condition
dim A/a(M) < 1. Then, every g.CM module is contained in this class. First of all we
have the following result.

Proposition 2.1. Suppose that dim A/a(M) < 1 then£(H'm(M)) < °°, > = Q,...,d-2.

Proof. We prove by induction on d.
It is clear for d = 2. For d > 2, let y £ a(M) auch that y is an element of parameter

of M. Then dim A/a(M/yM) = dim A/a(M) by [C2, Lemma 3.3]. Therefore,

Z{Hl(MlyM)) < oo, i = 0,...,d-3

by induction hypothesis. By Lemma 1.5 we have the exact sequence

0 —» HUM) — BUM/vM) — -ff̂ 1 W - ^ 0,

forf = l,...,<i-2. Hence £(ffi,(Jl/)) < oo, i = 0, . . . ,d-2 as required.

Lemma 2.2. Suppose that dim A/a(M) < 1. Let i = xi,..., xj be a s.o.p for M such
that (xj,...,Xi)A C Rad a{M). Then the following exact sequences hold:

and

for ni » 0.

-* 0 , i = 0,,..,rf- 3

(0:x" l)H^i (M) —10

Proof. SetM = M/(0 :_x_"l)Af.Forni >>0,byLemmal.2wegetdim(0 : i " " ) M = 0,
therefore H'm(M) S H'm{M) for i > 0. Thus, from the exact sequence

0 —> ~M —• M —* M/x^M —> 0,

we get the following exact sequences

0 —• Hl(M) —» < ( A f / ^ ! M ) - * (0 : . f ) i i i (« ) — 0

and

o (o : ^ } o

for all i > 0. In virtue of Lemma 2.1 we deduce that m™1 H'm(M) = 0, i = 0,...,d-2
for nj >> 0. Hence x"lH'm{M) = 0, i = 0, ...,<i - 2 and the lemma follows from the
above exact sequences.

Theorem 2.3. Suppose that <&mA/a(M) < 1. Let x = i i , . . . , i j be a s.o.p for M
such that (12, ...,X,()J4 C Rad a(M). Then, for n » 0, we get

i) /M(TI, X) is a poJynomiaJ.

iij Mjx\lM is a g.CMmoduJe and xj3, ...,xj* is a standard s.o.p ofM/x^M,
i.e,

IM/x^At(n^—>n<K xt,...,xt) = IM/x^M(2n2,...,2nd; x2,-,Xi)-

Hi)

aapt(HUM/x^M)) < oo, i = 0,...,d-3
ni >1

and t{H^~2(M'j'x"1 M)) is a polynomial in n> of degree p(M).

Proof, (i). It follows from the hypothesis that ( i j 3 , . . . , ! ^ ' ) ^ £ a(M) for n2>...,nd > >
0. Therefore / ( n ; i ) = / ( n ^ 1,..., 1;x) by Lemma 1.3. Using Corollary 4.3 of [A-B] we
get

I(nltlt...,l;x) = t((x3 xd)M : x?/(xa,...,

d

X ) ' ( * i + i , - , I J , i i i ( 1 2 , - , i i - i ) A f : Xi I ( i j , . .
i=2



Thus i(n; i ) is a polynomial for n » 0 as required.
(ii). PutM = Mjx^M, x' = xi,...,xdaadn' = (n2, ...,nd). Since dim(0

x"' )M = 0 for ni >> 0 by Lemma 1.2, then

I(n;x) = Ijiin^x') - e(*J», ...,*?; (0 : *?)„) = %(n';*')-

Therefore, for n » 0, we deduce by Lemma 1.3 that

Ifj(ri2,-~,nd;x') = JM(n\ x) = JM(n1,2n2)..M2n,i;z)

So x^V-i^d ' >s a standard s.o.p of M.
(Hi). By Lemma 3.2, we get the exact sequence

for nj >> 0. Hence

s u p ^ t f ^ M / z ^ M ) ) <oo, « = 0, ...,<*-3.

On the other hand, by (ii) and [C-S-T],

IM(n;x) = IM/^M(n2,...,nd; xt *,) = ^('^(H

for n » 0. It follows from (i) that £(,ff£-2(M/x"'M)) is a polynomial in n, of degree
p{M).

3. Lengths of the Koszul homology modules

We begin with the following lemma.

Lemma 3.1. Let n = n\,..-,nd a d-tuple of positive integers and x = i i , . . . , xd be a
s.o.p for M such that i"1 , ...,x^ is a d- sequence for all nlt ...,nt > 1. Then the length
of the Koszul homology module Hi(x*1,..., at"' ; M ) is Unite and given by

(*) e(H.ix?,...,x? ; M)) = j 'jyrJ-
if j < i

? x ? ) M ) ) i f j > i

forij = l,...,d.

Proo/. Since i"',.. . , i j * is a d-sequence, by [G-Y, Corollary 1.5],

- 0,

for», j" = l,...,d.'IhuBl(Hi(Xil,...,Xj' ; A/)) < oo, for i, j = l,...,d. Furthermore,
since i™1,..., x j ' is a d-sequence for all nj,..., nj > 1, from the exact sequence

we get the following exact sequence

for t, j > 1. Now, we will prove the formula (*) by induction on j . For j = 1,
Hi(x?;M) = 0 for all i > 2, and / r , ( i ^ ; M ) = (0 : X^')M = H^(M). Therefore, the
formula (*) holds for j = 1. Let j > 1, and assume that the formula (*) holds for
j — 1, we need to prove it for j . In the case i = 1, from the above exact sequence, we
get the following exact sequence

o—.#!(*?' *;iv; M ) — • #,(*?',...,*;'; M) —

Therefore, by the induction hypothesis, we have

HHt(x?,...,xV; M)) =

Hence formula (*) is true for j > l,i = 1. For : > l , j > 1, we get by the induction
hypothesis

The lemma is proved.

The main result of this section is following theorem.

Theorem 3.2. Let M be A-module with dimA/a(M) < 1, and xi, ...,xj a s.o.p for
M such that (x*,...,Xd)A C Rad a(M). Then, for all n » 0, d > j > i > 1,



i(iJ1,...,x"ji; Af)) is a constant if i > l,j ^ d and
polynomial of degree p(M). Moreover it holds

r?1, ...,xn/; Mj) is a

Proof. Since x|",... ,arj ' is a d-sequence for n >> 0 by Lemma 1.2, it follows from
Lemma 3.1 that

0 if j < i

for i,j = l,...,d and ni,....,net >> 0. But, by Theorem 2.3, i j 3 , . . . , ! ^ is a standard
s.o.p for M/x^M, using [T, Lemma 1.7], we can easily show by induction on s that

So we get the formula of the theorem. Furthermore, it implies from Lemma 2.2 and
(iii) of Theorem 2.3 that f (ff^Af/x"1,..., z?')M)) is a constant for s < d - 1 and it
is a polynomial in nj degree p(M) for s = d — 1. Hence, <(/?,-(»"', ...,xj'; Mj) is a
constant if i > 1, ji ^ d and it is a polynomial in nj of degree p(M) if i = 1, j = <i
(for n >> 0) as required.

Theorem 3.2 deduces the following consequence.

Corollary 3.3. Under same assumptions as in Theorem 3.2. Then, for n >> 0, the
higher Euler - Poincare characteristics

x?,..., x?; M) =

is a poJynomjaJ of degree p(M) for j = d, t = 1 and constant for the other cases.

Proof. Since

* » ( * ? ' , . . . . x j * ; Af) + X * + , ( * ? ' , . . . , xJ J ; Af) = f ( ^ * ( x ^ , . . . , xn.-; Af)) ,

the corollary follows immediately from Theorem 3.2.

4. Lengths of modules of generalized fractions

First of all, we recall some definitions about modules of generalized fractions
which have bee introduced fitat in [S-Zl] by R.Y. Sharp and H. Zakeri.

Let k be a positive integer. We denote by D/t(A) the set of all k x k lower
triangular matrices with entries in A; for H £ Dk(A), the determinant of H is denoted
by \H\; and we use T to denote matrix transpose.

A triangular subset of Ak is a non-empty subset U in Ak such that (i) whenever
(uj,...,!!*) £ U, then (u" l,...,uj*) € U for all choices of positive integers rii,...,njt,
and (ii) whenever (m,,..,«*) and (t>i,...,«»} € £f, then there exist (u>i,..., tut) £ [/ and
H, K € Dk(A) such that

ff[Ul,...,Ufc]
T = [w,,...,!!;*]1' = K[vu...,vt]

T.

Given such a t/ and an A-module M, R.Y. Sharp and H. Zakeri have constructed the
module of generalized fractions U~kM of M with respect to U as follows.

Let a = ((ui,...,ttjt),z), /? = ((ui,...,u t),t/) £ [/ x M. Then we write a ~ /?
when there exist (tui, ...,uijt) 6 (7 and if, K £ .Djt(A) such that

,...,«*]r =

and

This relation is a equivalent relation on the set U x M. For x € M and (tij,..., m) € J7, we
define the formal symbol x/(uj,..., m) to be the equivalence class of ((«i,..., u*J, x) and
let U~kM denote the set of all these equivalence classes. Then U~kM is an A-module
described as follows. If x,y € M and (ui, ...,ujt),(ui,...,tjjt) 6 17, then

for any choice of (u>j, ...,«)*) € U and H, K € Di(A) such that #[«i, . . . ,ui. jT =
(iii],...,uit]:r = K[vi,...,vt]T- Also, with the the above notation, and for a £ A,

Consider the set
{/(Af)d+i = {(i|,...,x,(,l) € A : there exists j with 0 < j < d such that

ii,...,Xj form a subset of a s.o.p of A/and Xj+i = ... = x& = \).
Then [/(A/)^! is a triangular subset of Ad+1. Let Xi,...,xj be a s.o.p for M. Denote
by Af(l/(x^, . . . ,xJd , l )) the submodule {m/ (x^ , . . . , i j ' , l ) ;m 6 M} in ^
this cyclic submodule is annihilated by Ann^A/ + ( i" 1 ,...,xjd)j4; so it has

Following [S-H] we also call this length the length of the generalized fraction



The aim of this section is to compute this length under the assumption that
dim A ja(M) < 1. To do this, we need some following definitions about secondary rep-
resentation (see [S-H]).

Let L be an Artinian A— module with a minimal secondary representation L =
k

y C; , C; is Pj- secondary and set

Att£ = {P, Ph},lo= Y, f=iC("

Then Xo is a submodule of X which IB independent of the choice of minimal secondary
representation for i , will be called the residuum of L. Note that L/LQ has finite length.
We shall call this length the residual length of L and denote it by R£(L).

An element a € m is called pseudo-X-coregular if a holds one of equivalent
conditions:

(i) o 0 U P,
PeAttL-{m)

(ii) aLa = La.
We define the stability index 5 = s(L) of L to be the least integer i > 0 such

that m'L = Lo. Thus a is the least integer that a'L = Lo for each pseudo-L-coregular
a.

Extending the proofs of [S-H, 2.1] and [S-Z3, 2.4 and 2.7] to modules we can
easily prove the following two Eemmas.

Lemma 4.1. Put Af = M/H$,(M). Let ~ : M -» M be the natural module
homomorphism. Then there is an isomorphism of A-moduJes

•which is such that, for y £ M and («i, .. . ,uj, 1) € U(M)d+i,

Lemma 4.2. Suppose that d >_1. Let xi € m be a noji-zero- divisor of M. Put
M = MjxxM and let ~ : M -*~M denote the natural homomorphism. Then there is a
homomorphism

which is such that, for aJJ j / € M and (uj,..., uj, 1) £ l/(Af)&,

Moreover, kerV<i+i = C

The following lemma is analogous to Proposition 3.6 of [S-H].

10
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Lemma 4.3. Assume that M i s a g-CM module and yi,...,yd is a standard s.o.p for
M. Then

for a l J r > 0 .

Proof. We use induction on d.
In the case d = 1, the lemma is proved by [S-H, Lemma 2.8]. For d > 1

and assume that the assertion is true for g.CM modules of dimension < d. Lemma 4.1
enables us to assume that depth M > 0. Then, by [C-S-T, Satz 3.3], every parameter
element of M is a non-zero-divisor.

Let a £ UiM^^M such that (yu..., yd)
ra = 0. By [S-Z2, Corollary 3.6],

there exist y € M and positive integers ni,...,n^ such that a = y/{j/"*,..., y^", 1).
Set M = M/y"lM and let ~ : M —> M be natural module homomorphism. From
Lemma 4.2 we get the following exact sequence

0 *-!±i U{M)i

in which

for each s.o.p. U2,... ,uj of M and c £ M. Let

/J = x/(y?,...,y?,i)eU(M);'tM.

Then a = ^d+i((3). Since y\, ...,yd is a standard s.o.p of M, (y2, . . . ^ j J J f^ ' fM) = 0.
It follows by the hypothesis that

/»e(o : ( f ! , - ,w ) f +

Note that M is a g.CM module and yz, ...,yd is a standard s.o.p of M. Hence, by the
inductive assumption,

Thus a = ?/(Vjni ,^+ ' ' , . . . , ! / ;+' ' , 1) for some element z of M. Note that

(see [S-H, Corollary 2.5]) and every permutation of a standard s.o.p is also a standard
s.o.p. Repeat the above argument we get

for some element v of M. The induction is finished.

With the same method which has been used in the proof of Theorem 3.7 of [S-H]
and applying Lemma 4.3 we get the following lemma.

11



Lemma 4.4. Let M , yi,...,yd be as in Lemma. 4.3. Then, for all ni,...,n,{ > d, we
have

= ni...nd.e{yu...,yd;M)-

Lemma 4.5. Suppose that dim A/a(M) < 1. Let x\ xj be a s.o.p of M such that
(x2,...,xd) C a(M). Then, for all n > ^ ( ^ - ' ( M ) ) , x^H^'^M) is the residuum of

Proof. Lemma 4.2 enable us to assume that depth M > 0. Then

It follows from [K, Theorem 124) that there exists a € (x2,..., xt) such that t/i :=
a $ U •P- Thus yi and all positive powers of it axe pseudo- H^~

coregular. Note that there is 6 € (x?, ...,xj) such that y" = x™ -f i. Therefore the
residuum of Hd

m~\M) = y^Hi~\M) = (*f + ft)**"1^) = * r ^ " ' ( ^ ) a s

required.

Theorem 4.6. Suppose that dim A/a(M) < 1. Let z = i i , . . . , I (J be a s . ap of Af such
that (22 , . . . , id) C PUd a(Af). Then the length of M(l / (x" ' , ...,xn

d", 1)) is a poiynomiai
given by

( ) = ni...rne(xi,...,xd\ M)

d-2

for n » 0.

Proof. Applying Lemma 4.1 we may assume that depth M > 0. Write M = M/x" 'M.
Since X] is a non-zero-divisor of M by Lemma 1.2, it follows by the hypothesis that M
is a g.CM module, let ~ : M —• M be the natural map. FVom Lemma 4.2 we have
the exact sequence

0

in which
?', » 2 , - . M.I)

for each s.o.p. !/2,...,yj of M. Note that, there exist a positive integer n0 enough
large such that (x" l , . . . , iJ ' )A C a(A/) and by Theorem 2.3 such that Tj% ...,xj1 ' is a

12

standard s.o.p. of M for all n2>.••,"<; > "o- Since {x™D,...,rjj'1)kerV'rf+1 = 0 it follows
from Lemma 4.3 that

for all n2,..., n<j > no + d. So we get an exact sequence of j4-modules of finite lengths

0 —, Hd
m-\M)lx?H$r\M) — 3?(1/(*J' aj ' ,1)) —»

Therefore, by Lemma 4.5, the -e is a positive integer it such that

for all m > i . Thus, applying Lemma 4.4 to the g.CM M, w deduce for all ti, > k and
n2,...,n.4 >nB+d that

d-2

Since X] is a non-zero-divisor on M/x"1 M,

e(x?,...,x?; M/x?M) = e(*f, *;»,...,*?• ; A/).
Hence

<(Af(l/(*r',...,xJ-,l))) = nI...nie(*I x,; M)

1 = 1

is a polynomial for all nj, . . . . , nd > max {n0 + k}. The proof of Theorem is complete.

Theorem 4.6 and Theorem 2.3 lead to the following interesting result.

Corollary 4.7. Suppose that dimA/a(M) < 1. Let x = xi,...,z^ be a s.o.p. as in
Theorem 4.6. Consider the following difference

JM(n;x) = ni...nde(x;M) -

as a /unction in n. TJien, for all n » 0, J M ( " ; ^ ) is a constant for d < 2 and if is a
pojynomiai of degree p(M) for d > 3.
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