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0. Introduction

Throughout this paper, A denotes & Noetherian local ring with maximal ideal m
and M s finitely generated A module with d :=dims M > 1.
Let £ = zi,...,z4 be a system of parameters (abbr. s.o.p ) of M and
n = ny,..,nqbea d- tuple of positive integers. We consider the following two problems:
i) When is the length of ihe Koszul homology

A Hp(zT", .zl s M)

& polynomial in n for all k =0,...,d and n;,...,ns sufficiently large (abbr. n >>0) ?

i) Is the length of the generalized fraction 1/(z7,...,z3*,1) in U;_fl_](M)M a
polynomial in 2 forn >> 0 ?

Nate that the theory of generalized fractions has been introduced by R.Y Sharp
and H.Zakeri in [S-Z1] and problem (ii) is asked first in [S-H|. An affirmative answer
is also proved for the problem (ii) in [S-H] when M is a generalized Cohen - Macaulay
(abbr. £.CM ) modules. On the other hand, the problem (i} is investigated in [C1]
for the case k = 0 and a necessary and sufficient condition for z is given in this case
so that {(Ho(z7',...,z]* ; M)) is a polynomial for n >> 0. It is also well-known that
for a g.CM module M, ¢(Hi(z}*, ...,z M)) (k> 0)is a constant for n >> 0 ( cf.
[C-5-T] ). Thus, the above both problems are solved for the case that M is a g.CM
module.

The purpose of this paper is to study the above problems for a class of modules
which strictly contains all of g.CM modules, narnely, the class of modules having the
polynomial type at most 1. Recall that the polynomial type of a module M is defined
first in [C2] as follows:

Consider the difference between the length and the multiphecity

M2t 23 )M) — nynge(z; M)

as a function in n. Then the least degree of all polynomials in n bounding above
this function is independent of the choice of the s.0.p z. This invariant is called the
polynomial type of M and denoted by p{M). It is easily to see that Af is g.CM if and
only if p(M) < 0.

Now, let us to give a summarize of this paper. In Section 1, we prove some
preliminary result which will be used for next sections. In Section 2, we give some
results about local cohomology modules in case p(M) < 1. In Section 3, we show that
if p(M) < 1 then there exist is a s.o.p £1,...,24 of M such that, for n >> 0,

e(H (=, ...,:c;‘j i M) is a polynomial of degree p{M)for i = 1,j = d and constant
for the other cases. As a consequence, we get the same results for higher Euler - Poincare
characteristics

Xi(zD w2 My = Y (1) H(H(2D 2] 5 M),
ik

With same assumptions as in Section 3 for a s.o.p z, wec prove in Section 4 that
e(M(1/(e", ....x3*,1))) is & polynomial for » >> 0 and this polynomial can be com-
puted by the lengths of local cchomology modules.
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1. Preliminaries

From now on, for convenience, we will write
I(ny2) = €Mz, ., 27M) — e(z]", ..., 2% M)

or I{n;z) for a fixed module M. Denote by ai(}) the annihilator of the i-th local
cohomology module Hi (M) of M with respect to the maximal ideal m and put ¢{M) =
GQ(M)...GJ_]_(M).

First of all, we recall a result of P, Schenzel which will be often used in this paper.

Lemma 1.1. (see [S, Theorem 3]). Denote by r(M) the intersection of all annihilators
of modules

(l‘l,...,.’lf.'_l)M [ /(II,...,I,'_I} M,

where T = i,...,Z; runs through all subsets of systems of parameters of M. Then
a(M) Cr(M).

Recall that a system of elements in A, £ = T,,..., 3¢ is said to be a d-sequence
of M if

(g1, myxic}M 1 2, = (21,0 %)M @ zi;

for all i = 1,...,¢ and j > i. Then, as an immediate consequence of Lemma 1.1, we
have the following lemma.

Lemma 1.2. Let ¢ = #1,...,24 be a s.0.p for M such that (z3,...,x4)A C Rad a{M).
Then x',x32,...,z]" is a d- sequence of M forn >> 0.

Proof. Choose n > 0 so that (0: 2™ )y = (0 : z3™ ) and (z]?,..., 23 )4 C a(M).
Then by Lemma 1.1, (0 : 27 )ar € (0: x{)ps for all 1 > 0 and
(™, 2 M 2™ = (2P a2 )M e(M)
= (37,2 M ozl

foralli = 1,..,d and i < j < d. Therefore, z}*,237%,...,23* is a d- sequence of M for
n>> 0

Lemma 1.3. Letz = zy,...,74 be a s.o.p for M such that x4 € a(M). Then
I(ryyeang; ) = I{ny, . naor, 1)

for all ny,...,ng > 1.

Proof. By [A-B,Corollary 4.3], we have

I(n;z) = (a7, zg 3 IM ¢ 2g? [ (2] 2t )M)

+ 3 e(Titt e zg s (@ M 2l [ (2] T M),

Since - s - m "
(27t i OM o2 [ (27 w1 M) = 0

by Lemma 1.1, we get
e(zitt ozl (@l oz P OM s 2l (2] e IM) = 0,
fori=1,...,d - 1. Thus
Hn;z) = &{(z,...,a* 1M @ 23 [ (2D, .., 207 )M )
=£((:c;",...,:c:i'!‘)M : .r,;/(z;",,..,:r:‘_'ll)M) = I(ny,..,ng_1,1; 7}

by Lemma 1.1 again.

The lemma 1.3 enables us to get a result in [C3] as follows.

Corollary 1.4. dim Afa(M} > p(M).

Proof. Set k = dim 4/a(M). Since p(M) < d, then the inequality holds for & = d.
For k¥ < d, wecan choose asopzr = z1,...,24 such that 544, ...,z4 C a(M). Hence,
by Lemma 1.3,

I(nyz) = Iing,..,ng1,..,12).

This implies that p(M) < k.

Lemma 1.5. Lety € a(M) and set k = dim Afa(M). Then we have the exact sequence
0— Hp(M) — Hp(M/yM) — HIY (M) — 0,

fori = k,.., d—2.

Proof. Consider the following exact sequences
0 — O:ylp — M-—M/0:y4)1y — 0,

0 M/(D: )y - Mo MiyM—0.

Note that dim(0 : y)p < dimA/a(M) = k by Lemma 1.1. The first exact
sequence yields isomorphisms

fi HiL (M) = HL (M/(0:y)y)



for all ¢ > k and an epimorphism
Fu: HE(MY — HE(M/(0:y)a) — 0.

Furthermore, since yHi (M) =0, for i =0,...,d ~ 1 and f; are surjective for all i with
i > k, from the commutative diagram

Hy (M) HL (M)

i gi

Ho(M/(0:y)m)

we deduce that g; is zero for alli = k..., d — 1. Using the isomorphisms fi and the
second exact sequence we get the following exact sequence

0 — Hi(M) — HL(M/yM) — H}'(M) —0,

foralli = k,..., d— 2 as required .

2. Local cohomology modules

By [C-8-T] we know that M is a g.CM module if and only if dim A/a(M) = 0.
From this section on, we will consider a class of modules M satisfying the condition
dim A/a{M) < 1. Then, every g.CM module is contained in this class. First of all we
have the following result.

Proposition 2.1. Suppose that dim A/a{M) < 1 then (HL(M)) < oo, i =0,...,d~2.

Proaf. We prove by induction on d.
It is clear for d = 2. For d > 2, let y € a(M) such that y is an element of parameter

of M. Then dim A/a(M/yM) = dim A/a(M) by [CZ, Lemma 3.3]. Therefore,
HHL(M/yM)) <00, 1 = 0,..,d=3
by induction hypothesis. By Lemma 1.5 we have the exact sequence
0— HL(M) — Hi(M/yM) — H(M) —0,

fori = 1,..,d— 2 Hence {HL(M)) < oo, i = 0,...,d — 2 as required.

Lemma 2.2. Suppose that dim A/a(M) < 1. Letz = z1,...,24 be a s.o.p for M such
that (zq,-..,z4)A C Rad a(M). Then the following exact sequences hold:

0 — HY (M) — Hi (M/z]'M) — HF' (M) —0,i = 0,..,d-3
and
0 — HI Y M) — HIH M2 M) — (0 21 ) gt pn) — 0

for ny >> 0.

Proof. Setﬂ_ = M/(U :i;")M. For n; >> 0, by Lemma 1.2 we get dim(0 : 277 )y = 0,
therefore H} (M) = H} (M) for i > 0. Thus, from the exact sequence

0~ M-— M— M/izPM— 0,
we get the following exact sequences
0 — Ho (M) — HY(M/zP M) —+ (0: 27 ) a1y — 0
and
0 — Ho(M)/zV HE (M) — HL(M/zP M) — (0 1 2] )izt py) — 0

for all ¢ > 0. In virtue of Lemma 2.1 we deduce that m™ HL (M) =0,i=0,.,4d-2
for ny >> 0. Hence ' HE (M) = 0, 1 = 0,...,d — 2 and the lemma follows from the
above exact sequences.

Theorem 2.3. Suppose that dim Afa(M) < 1. Let x = 2,,...,24 be a s.op for M
such that (z2,...,z4)A C Rad a(M). Then, for n >> 0, we get
i) In(n,z) is 8 polynomial.
i} M{zT' M is a g.CM module and 237, ..., 23" is a standard s.o.p of M/z[" M,
i.e,
IM/t;H. M(ng, ey Tid; T2, ...,E'g) = IMII;H M(2"21 saay 2ng; T2y ney 9:4).
i)

sup £(HL(M[z]'M)) < o0, i = 0,..,d—3
nj ZI
and e(HE*(M/z]' M)} is & polynomial in ny of degree p(M).

Proof. {i). It follows from the hypothesis that (z3?,...,z3*)A C a(M) for ng,...,ng >>
0. Therefore I(n;z} = I{n,1,..,1;2) by Lemma 1.3. Using Corollary 4.3 of {A-B] we
get

I(n, 1, 552) = £((z2y 0 zd)M 1 2P f(22y-, Ta) M)

d
+ny Ze(z;“,...,zg,zl;(zg, e T )M 2z [ {Zay e 2i0) M),

=2
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Thus I(n; ) is a polynomial for n >> 0 as required. '
(i1). Put M = M/z'M, 2" = z;3,..,zg8nd n' = (ng,...,nq}. Since dim(0
i)y = 0forny >>0 by Lemma 1.2, then

I(n;z) = Igp(n's2") — e(zy?,...,z3% (0 : 1) m) = Ig{niz')
Therefore, for n >> 0, we deduce by Lemma 1.3 that
Ig(na,ynaia’) = Im(niz) = Ip(ny,2ng,..,2n4;7)

= Lf(2ng,...2ngz").

So z3?,...,zy* is a standard s.o.p of M.
(iii). By Lemma 2.2, we get the exact sequence

0 — Hi(M) — HE(MJaP M) — HF' (M) — 0, i = 0,...d=3
for n; >> 0. Hence

sup £(Hp(M/z"M)) < oo, i = 0,....d—3.

ny>1
On the other hand, by (ii) and [C-5-T],

d—2

Tn(ni7) = Ipgpems gz oty T20003a) = 3 (VU H (M M)
=0

for n > 0. It follows from (i) that £(H3 2 (M/z ' M)) is a polynomial in n; of degree
p(M).

3. Lengths of the Koszul homology modules

We begin with the following lemma.

Lemma 3.1. Let n = nq,...,nq a d-tuple of positive integers and ¢ = ,,..,z2 bea
s.o.p for M such that z7', ...,x}* is a d- sequence for all ny,...,ng 2 L. Then the length
of the Koszul homology module Hi(z}*, ...z}’ ; M ) is finite and given by

0 if 7<1
() OB s M) = S ey oaer, M) 52

fori,7 = 1,..,d.

Proof. Since z7', ..., 73 is a d-sequence, by [G-Y, Corollary 1.5],
((zf‘,...,x}")A{-—AnnA(M))H‘-(a:'l",..‘,a:;”' M) =0,

6

fori, 5 = 1,...,d. Thus E(H.-(z;", ,a:;" ;i M)) < oo, for i, j = 1,...,d. Furthermore,
since &1*,...,23* is a d-sequence for all ny,...,n¢ > 1, from the exact sequence

0 — Hi(z1*, .. 233 s M)z Hi(z ]t 205 M)

1,..]! ‘J—l’

. nj
—r H(-f, IR y-’ﬂ M) ( h IL'J- )H’.- (= "i;l;M] — 0,

we get the following exact sequence

OHHi(x;‘lx yxn__lllM)_) Hi(x?ll"',x;li;M)—’Hi—l(a:;“s - ;I’_llxM)“’O
for ¢, j > 1. Now, we will prove the formula {(*) by induction on j. For j = 1,
Hi{z!; M) = Oforalli> 2, and Hy(z}; M) = (0: 27")y = HE(M). Therefore, the
formula (*) holds for § = 1. Let ;7 > 1, and assume that the formula (*) holds for
7 - 1, we need to prove it for 7. In the case ¢ = 1, from the above exact sequence, we
get the following exact sequence

0 — Hy(zf, .23 M) —+ Hi(z], ..

J-...] s

M) —

5_,1

— Ho(M/(z]*, 277 )M) — 0.
Therefore, by the induction hypothesis, we have

LH (a2 M)) = HHi (2], 270305 M) + QHL(M[(z], . 275 )M)

- J-—l

i-1
S UHL(M [z, .., 30 )M)).
a=0

Hence formula (*) is truefor j > 1,1 = 1.Fori > 1,7 > 1, we get by the induction
hypothesis

E(H,-(a:?’,. M)) = L’(H.(:r:l ,e ,IJ 2 ,M)) + E(H‘_l(.zl - ,z M))
G—1—i jm2mi

= > CITHHHMM (27, 2m)M)) + ST ULTHHHLM (27, 2T ) M)
=0 a=0

= Z("" Y(HLM /(253 )M)).

=0
The lemma is proved.
The main result of this section is following theorem.

Theorem 3.2. Let M be A-module with dim A/a(M)} < 1, and z1,...,24 & s.0.p for
M such that (z3,..,74)A C Rad a(M). Then, foralln >> 0, d > j > i > 1,



e(Hiz],. ,z ‘s M) is a constant if i > 1,7 # d and (Hy(zD,..,zils M) isa
polynomial of d'egree p(M). Moreover it holds

i—
EH2] -z M) = ZJ - ‘)Z("‘)e(ﬂ (M/z3M)).

=0 =0

Proof. Since z7*,...,23* is & d-sequence for n >> 0 by Lemma 1.2, it follows from
Lemma 3.1 that

0 if j<i

o(Hiz™,..,2¥ s M) = ¢ =

(Hi(z" 2] ) S CTOHEL(M (5 22 M)) i § 2
=0

fori,j = 1,...,d and n;,...,nq >> 0. But, by Theorem 2.3, 232, ...,23° is a standard
s.0.p for M,/x,‘M using [T, Lemma 1.7}, we can easily show by induction on s that

GHO(M{(2}, ., 23 )M)) = Z(’*l)e(H;(M/r;“MU-

So we get the formula of the theorem. Furthermore, it implies from Lemma 2.2 and
(iii) of Theorem 2.3 that £(HS(M/zt,...,z™)M)) is a constant for s < d—1 and it
is & polynomial in n; degree p(M) for s = d — 1. Henee, &(Hi(=]",...,e}’; M))isa
constant if ¢ > 1,7 # d and it is a polynomial in n; of degree p(M)if: = 1, j = d
{for n >> 0) as required.

Theorem 3.2 deduces the following consequence.

Corollary 3.3. Under same assumptions as in Theorem 3.2. Then, for n >> (, the
higher Euler - Poincare characteristics

Xe(zl, .2y M) = Z(_l)"-*e(ﬂ,-(z Ty M)
>k
is a polynomial of degree p(M) for j = d, k = 1 and constant for the other cases.

Proof. Since

X*(I;‘li -1 J $M)+Xk+1(m] [ -‘i;M)=£(Hk(I;“, M))

= J 1

the corollary follows immediately from Theorem 3.2.

4. Lengths of modules of generalized fractions

First of all, we recall some definitions about modules of generalized fractions
which have bee introduced first in [S-Z1] by R.Y. Sharp and H. Zakeri.

Let k be a positive integer. We denote by Di(A) the set of all k x k lower
triangular matrices with entries in A; for H € Dx(A), the determinant of H is denoted
by |H|; and we use T to denote matrix transpose.

A triangular subset of A* is a non-empty subset U in A* such that (i) whenever
{(u1,...,us) € U, then (ul',...,up*} € U for all choices of positive integers ni,..., n,
and (i) whenever (ui,...,u:) and (vy, ...,uz)} € U, then there exist (w1,..,wy) € U and
H, K € Di(A) such that

Hiup,ooug]T = [wy, o wi]? = Koy, ..., ve].

Given such a U/ and an A-module M, R.Y. Sharp and H. Zakeri have constructed the
module of generalized fractions I/ —*M of M with respect to U as follows.

Let & = ((u1,...u)z), 8 = ((v1,....,v&), %) € U x M. Then we write o ~
when there exist (wy,...,wx) € U and H, K € Di(A) such that

Hiug,opud)T = Jwy,cwill? = Koy, ..ovp)7

and

k=1

|Hiz — |Kly € ()" Aw)M.

i=1
This relation is a equivalent relation on the set I/ x M. For z € M and (u1,...,ux) € U, we
define the formal symbol z/{uy,...,uy) to be the equivalence class of ((v1, ..., us),z) and
let U~*M denote the set of all these equivalence classes. Then U ~*M is an A-module
described as follows. If z,y € M and (uy, ..., #x),{¥1,...,v¢) € U, then

sy, eatk) + ¥, 0ve) = (|H|lz + IKly)/(wy, ..., we)

for any choice of (wy,..,wx) € U and H, K € Di(A) such that Hluy, ..., }T =
fwy, .y we)T = Kvi,...,vx]7. Also, with the the above notation, and for a € 4,

a(zf(ury i) = az/(ur, . ug)

Consider the set

UM)g+1 = {(z1,.-,24,1) € A : there exists j with 0 £ j < d such that
Zy,...,2; form a subset of asopof M and 2j41 = .. = 24 = 1}.
Then U(M)g41 is a triangular subset of 49, Let 1,,...,z4 be a s.0.p for M. Denote
by M(1/(«*,...,z5*,1)) the submodule {m/(z]*,...,z} ,1),m € M} in UM)7E4 M,
this eyclic submodule is annihilated by AnnaM + (z71, ..., 279 }A; sc it has

E(M(1/(=F, ..., 25%,1))) < oo
Following [S-H| we also call this length the length of the generalized fraction

/(2,234 1)
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The aim of this section is to compute this length under the assumption that
dim A/a{M) < 1. To do this, we need some following definitions about secondary rep-

resentation (see [S-H]).

Let L be an Artinian A— module with a minimal secondary representation L =
&

ZC.- , Ci is Pi-secondary and set

i=1

Att L = {P],...,Ph} , Lg = Z :-'=]C,'.
Pieanl—{m}

Then Lo is a submodule of L which is independent of the choice of minimal secondary
representation for L, will be called the residuum of L. Note that L/Lq has finite length.
We shall call this length the residual length of L and denote it by RE(L).

An element a € m is called pseudo-L-coregular if a holds one of equivalent
conditions:

(i)ad U A
PeAul—{m}
(ll) GLU = Ln.

We define the stability index s = s(L) of L to be the least integer ¢ > 0 such
that m'L = Lg. Thus s is the least integer that a®L = Ly for each pseudo- L-coregular
a.

Extending the proofs of [$-H, 2.1] and [S-Z3, 2.4 and 2.7] to modules we can
easily prove the following two lemmas.

Lemma 4.1. Put M = M/H®(M). Let — : M — M be the natural module
homomorphism. Then there is an isomorphism of A-modules

£ UM)ZETM — UM (M)
which is such that, for y € M and (u1,...,u4,1) € U{M)ay1,

Fly/(ugy o ug, 1)) = Ff{ug,onug, 1)

Lemma 4.2. Suppose that d>1 Letz €m be a non-zero- divisor of M. Pui
M = Mjz,M and let —: M — M denote the natural homomorphism. Then there is a

homomorphism o
e : UM — UMM

which is such that, for all j € M and (uz,...,uq,1) € UM)q,
Yar1(F/(uz, o ta, 1) = p/f(z1, 42, . 2, 1)-
Moreover, ker a41 = HI VM) /2, HE(M).

The following lemma is analogous to Proposition 3.6 of [S-H].

10
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Lemma 4.3. Assumne that M is a g CM module and y1,...,y4 Is a standard s.o.p for
M. Then

(0 : (yll ...,y,;)'A)U(M).‘.:I_; M < M(l/(y;*’d, ey y£+d’ 1))'

for all r > 0.

Proof. We use induction on d.

In the case d = 1, the lemma is proved by [S-H, Lemma 2.8]. For d > 1
and assume that the assertion is true for £.CM modules of dimension < d. Lemma 4.1
enables us to assume that depth M > 0. Then, by [C-$-T, Satz 3.3], every parameter
element of M is a non-zero-divisor.

Let a € U(M);’:l'lM such that (y1,...,y4)"@ = 0. By [5-Z2, Corollary 3.6],
there exist y € M and positive integers ny,...,ng such that & = y/{yf", .., ¥7*,1).
Set M = M/y"M andlet = : M — M be natural module homomorphism. From
Lemma 4.2 we get the following exact sequence

0 — HA(M)/yP HE (M) — U3 28 v (M) i M
in which
¢d+1(5/(u'23 oes Udy 1)) == c/(y;h sy, U, 1)
for each s.o.p. ug,...,ug of M and ¢ € M. Let
B = z/(y3*, ..., ¥5*. 1) € UM);'M.

Then o = th4+1(8). Since g1, ..., ya is a standard s.o.p of M, (y2,.., vy ) HL (M) = 0.
It follows by the hypothesis that

BE( 1 (vamwd) ™M &) g iy

Note that M is a g-CM module and y3,...,y4 is a standard s.o.p of M. Hence, by the
inductive assumption,

BeM(1/(yt, .. u7t 1))

r+d

Thus o = z/(y;",y?d, o 4374 1) for some element z of M. Note that

a = —z/(y;* "yt Lyt )

(see [S-H, Corollary 2.5]) and every permutation of a standard s.o.p is also a standard
s.0.p. Repeat the above argument we get

a = o/(u gt it

for some element v of M. The induction is finished.

With the same method which has been used in the proof of Theorem 3.7 of [S-H]
and applying Lemma 4.3 we get the following lemma.

11



Lemma 4.4. Let M | y1,...,y4 be as in Lemma 4.3. Then, for all ny,...,nq4 2 d, we
have

d--1

MO/ ¥ ) = mingelys,ova M)— D (C5EHL(M)).

i=1

Lemma 4.5. Suppose that dim A/a(M) € 1. Let z,,...,za be a s.o.p of M such that
{(22,., T2} € a(M). Then, for all n > s(HI (M), 2] HL (M) is the residuum of
HiT'(M).

Proof. Lemma 4.2 enable us to assume that depth M > 0. Then

(z1,- 2} & U P.

PEAU(HN ' M) —{m}

1t follows from [K, Theorem 124] that there exists a € (3, ..., q) such that y; = z, +

a ¢ U P. Thus y, and all positive powers of it are pseudo- H& *(M)-
PeAt(Ha ' M)—{m}

coregular. Note that there is b € (x2,...,%4) such that yf' = z} + b Therefore the

residuum of HEW(M) = yrHI- 1(JM) = (27 + BHE 1(1\/1} = zPHIYM) as

required.

Theorem 4.6. Suppose that dim Afa{M) < 1. Let z = =zi,...,z4 be a s.0.p of M such
that (z4,..., 24) C Rad a(M). Then the length of M(1/(z7,...,z3%,1)) is a polynomial
given by

E(M(l/(r;",...,m:‘,l))) = ny..nge(zi, .., x4 M)

- Z(._a)f(H (M/z*M)) - RE(HZT'(M))

forn >> 0.

Proof. Applying Lemma 4.1 we may assume that depth M > 0. Write M = M/z" M.
Since 7 is a non-zero-divisor of M by Lemma 1.2, it follows by the hypothesis that M
is a g.CM module, let = : M — M be the natural map. From Lemma 4.2 we have
the exact sequence

0~ HETH(M)/27 HEN (M) — UD);M =5 M)z M
in which
Pa+1(T/ (12, v, 1)) = /(27" 92, ¥a,1)

for each 8.0.p. ¥g,...,y4 of M. Note that, there exist a positive integer ny enough
large such that (23*,..,234)A € a{M) and by Theorem 2.3 such that £3?,...,23¢ is a
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standard s.0.p. of M for all ng,...,ng > ng. Since (23", ..., " Y ker g4y = 0 it follows
from Lemma 4.3 that

kert) 41 C (0 : (:n;"’,...,x;"))m-y)‘_a-ﬂ CM(1/(z32H, 2zt )

CM(1/(a3, .., 23", 1))
for all ng,...,n4 2> ng + d. So we get an exact sequence of A-modules of finite lengths
0 — HIU(M)/zPHEY(M) — M(1/(237,...,274,1)) —
— M(l/(.?:1 ¥ 2L zd‘,l)) — 0.
Therefore, by Lemma 4.5, thee is a positive integer & such that
HHENM)/2 T HEY(M)) = RIHE (M)
for all ny = k. Thus, applying Lemma 4.4 to the g.CM M, wi deduce for all n; > k and
n2,...,n4 = Rp + d that
(M3, 1) = T/, 1)) - Re(HEH M)

d-2
= el 2t M0 M) = 3 (EHH(M2] M) = REHITM)).

Since zy is a non-zero-divisor on M/ M,
n: ny, n fng
e(zy?,..,zg%s Mz M) = e(z]", =} Tty M.

Hence

L’(M(l/(:c{",...,:r:‘,l))) = ny.nge(zy, ... oq4 M)

- Z(*‘*")e (Ho{M/a7 M) — RE(HIT(M))
is & polynomial for all ny,....,nq > max {ny + k}. The proof of Theorem is complete.

Theorem 4.6 and Theorem 2.3 lead to the following interesting result.
Corollary 4.7. Suppose that dimAfa{M) < 1. Let £ = z,,..,z4 be a s.o.p. as in
Theorem 4.8, Consider the following difference

Im(niz) = ny.nge(z; M) — e(M(1/(x;h,...,zg-*,1)))

as a function in n. Then, for alln >> 0, Ju(n;z) is a constant for d < 2 and it is a
polynomial of degree p(M) for d > 3.
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