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1. INTRODUCTION

Let £ be an arbitrary Banach space. A mapping 17 with domain D(U) and range
R{U) in E is called accretive [2] if the inequality

holds for every X, y € D(U) and for all s > 0. If (1) holds only for tome s > 0 then V
is called monotone in the terminology of [20]. Let E* denote the dual space of E and let
J : E —» 2 denote the normalized duality mapping of E defined by

where {• ,-) denotes the generalized duality pairing. It is well known that if E' is strictly
convex then J is single-valued and if E* is uniformly convex, then J is uniformly continuous
on bounded sets (see e.g. [39]}. In the sequel we shall denote single-valued normalized
duality mappings by j . As a consequence of a result of Kato [20], it follows from inequality
(1) that U is accretive if and only if for each x, y e D(U) there exists j(x - y) E J{x - y)
such that

Rt{Ux-Uy,](x-y)) > 0 . (2)

Furthermore, U is called strongly accretive (see e.g., [2], [7], [20]) if there exists a constant
k > 0 such that

Re(Ux-Uy,j(x~y))>k\\x-y\\2 . (3)

If E = H, a Hilbert space, then (2) and (3) are equivalent, respectively, to the monotonicity
and strong monotonicity properties of U in the sense of Minty [26].

In the sequel, we shall call the map U tp-strongly accretive if there exists a strictly

increasing function y> : [0,oo) ^ [0, oo) with <p(0) = 0 such that the inequality

(V*-Vv,j(x-V))><rt\\*-V\\)\\z-V\\ (4)

holds for all x,y £ 13(17). Let N(U) = {x € E : Ux = 0}. If N(U) ± 0, and the
inequalities (2), (3) and (4) hold for any x € D(U) and y € N(U), then the corresponding
operator U is said to be quasi-accretive, strongly quasi-accretive and tp-strongly quasi-
accretive, respectively. Such operators have been studied by various authors (see e.g., [2],
[3], [6], [8], [25], [27], [35]).

The accretive operators were introduced in 1967 by Browder [2] and Kato [20].
Interest in such mappings stems mainly from the fact that many physically significant
problems can be modelled in terms of an initial valued problem of the form

dx \

i f\\ m I
(5)



r - l - . . — • • , . • ; _ - •

where T is either accretive, strongly accretive or ^-strongly accretive in an appropriate
Banach-space, Typical examples of how such evolution equations arise are found in models
involving either the heat or wave or the Schrodinger equation.

An early fundamental result in the theory of accretive operators due to Browder
[2], states that the initial value problem (5) is solvable if T is locally Lipschitzian and
accretive on E. Utilizing the existence resuk for (5), Browder [2] showed that if T is
locally Lipschitzian and accretive then X is m-accretive, i.e. (/ + T)(E) = E, where I
denotes the identity operator on E. This result was subsequently generalized by Martin
[25] to the continuous accretive operators, and to demicontinuou) accretive operators by
Deimling [13, Theorem 13.1], where an operator A from E to E is said to be demicontinuous
if it is continuous from the strong topology of E to the weak topology of E.

We observe that members of N(T), the kernel of T, are in fact the equilibrium
points of the system (5). Consequently, considerable effort has been devoted to developing
constructive techniques for the determination of the kernels of accretive operators {see
e.g., [7-10], [12], [13], [14], [19], [21], [24], [26], [28], [30], [31], [32-34], [36], [37], [41], [42],
[43], [44], [45], [46], [47], [48], [49]). Moreover, since a continuous accretive operator can
be approximated well by a sequence of strongly accretive ones, particular attention has
been devoted to the kernels of strongly accretive maps. In this connection, but in Hilbert
space, Vainberg [41] and Zarantonello [49] introduced the steepest descent approximation
method,

xn+l = z n - c n X x t ! , xoeH, rc = 0 , l ,2 , . . . (6)

and proved that if,

(i) T — I + J where 1 is the identity map of H and J is a monotone and Lipschitz
map on H;

(ii) cn = A €(0,1), n = 0,1,2,. . . ,

then the sequence {xn} defined iteratively by (6) converges strongly to an element of N{T).
This result has been extended to the class of bounded monotone operators (see e.g., [6],
[8], [17]). Typical of the results obtained is the following theorem:

Theorem * Let J? be a Hilbert space, T : H —t H a bounded strongly accretive map
with a nonempty kernel, N(T). Then the sequence {%„} defined iteratively by (6) with cn

in £2\t1 converges globally to an element of N[T).

Extensions of Theorem * to more general Banach spaces have been obtained by
various authors . Vainberg [42, pp. 276-284] proved the convergence of (6) in Lf spaces for
1 < p < oo when T is Lipschitz continuous and strongly accretive; the author [7] obtained
the same result in Lf spaces, p ~> 2, under less restrictive conditions. Crandall and Pazy
[12] proved convergence of (6) for a continuous strongly accretive operator on an arbitrary
Banach space. Reich [33], and also Liu [22] proved the convergence of (6) for an arbitrary

strongly accretive operator acting on Banach spaces whose duals are uniformly convex (or
equivalently, on uniformly smooth Banach spaces).

We remark immediately that in these results in Banach spaces, the conditions imposed on
the iteration parameter cn are not convenient in applications. For instance, Crandall and
Pazy [12] required that at each iteration step, c* be determined by

c* = «t+i/(l + 6k+1) where 6k+l = 2""*

and nk is the least nonnegative integer such that

*)n 1

<ex P {-(6 ,

It is clear that c& can hardly be determined in an explicit form from the above condition.
CO

In [33], Reich imposed the additional assumption that £ c^l|Ta:n||
2 < +oo. Again this

condition causes computational difficulties.
Recently, some authors have proved convergence theorems for strongly accretive

operators in which the iteration parameter en is easily evaluated. In this connection we
have the following theorem:
Theorem 1 (Chidume [7]) Suppose A' is a nonempty closed bounded and convex
subset of Lp, p > 2 and X : K —» K is a Lipschitz map such that A — I — X is strongly
accretive. Let {cn} be a real sequence satisfying:

(i) 0 < cn < 1 for all n > 1,

00

n = l

(iii) f c\ < 00

Then the sequence { i n } ^ 0 generated by Xi £ A',

In+l = Zn - Cn7lxn, n > 1

converges strongly to the unique solution of Ax = 0.

An operator X such that (J — X) is strongly accretive is called strongly pseudo-
contractive (see e.g. [3], [7], [21], [24], [36], [37]). It is then clear that the mapping theory
for accretive operators is closely related to the fixed point theory of pseudocontractive
maps. A prototype for the cn in Theorem 1 is cn = l /(n + 1), n > 0. While Theorem
1 is restricted to Lr spaces, p > 2, the parameter cn is easily chosen at the start of the
iteration process.



Several authors have also generalized Theorem 1. In [36], Schu extended the
theorem to the class of real Banach spaces with property (U,a,m + l ,m), i.e. Banach
spaces in which the inequality \\x + y\\m+1 + c*\\x - y| |m + 1 - 2m(|Sx||m+1 + | |y |p+ 1) > 0
holds for all x,y € E, where m + 1 > 0, a 6 E . These Banach spaces include Lp

spaces for p > 2 (see e.g. [36], [40]) and in [37] he extended the theorem to the class of
uniformly continuous maps on smooth Banach spaces. Bethke [1] also announced a slight
generalization of the theorem, still in Lv spaces, p > 2, while Weng [46] and also Kang [19]
announced extensions of the theorem to the class of local strong accretive maps. Other
extensions can be found in Xu, Zhang and Roach [44] and ii Xu and Roach [45].

In [44], the authors interpreted the iteration process (6) as an Euler's difference
approximation to the initial value problem (5), defined a sequence of interpolation functions
of the iterates {xn} such that the sequence of functions takes the unique solution of the
initial value problem (5) as its limit point and then applied the asymptotic stability theory
for the equlibrium point of the system (5) to obtain global convergence of (6) with the
choice of the iteration parameter cn being independent of the operator. Their method
involves the following definitions:

For any x, y0 € D(A), let

U(x) = ; M(X) = : \\y - ya | |

J9(I) = sup{r € K.+ : pE(rM(x))/r < 2a~l\\Ax\\2 jK[a~

where a, A' and C are constants such that

{Ax-Ay,j(x-y))>a\\x-yf

K = max{8,128(V3 - l)e}

and

C = /, . •>?,„—r TT 11 +

TM{X) + X-c

with r0 = (^339 — 18)/30, and pE denotes the modulus of smoothness of £ (see e.g. [15],

[23]). With these definitions, and using the following inequality

\\*+V IP < A'max{MJ

which the authors proved (see [44]) holds for each x,y in any uniformly smooth Banach
space the authors proved the following therom:

Theorem XZR Let £ be a real uniformly smooth Banach space and A : D(A) = E —*
£ be a demicontinuous strongly accretive operator with Af(xo) < +°° f° r a^y element
io £ E. Suppose that {cn} JL0 is an arbitrary sequence of real numbers satisfying

(i) 0 < cn < zwniWa)-1),0(xo)/M(xo)} for any n > 0;

oo

(") Y, cn — OO
n=0

(iii) cn —* 0 as n —> oo.

Then the steepest descent approximation

!„+! = xn - cn Axn, n = 0,1,2, . . .

converges strongly to the unique solution of the equation Ax = 0.

For our next theorem we shall need the following lemma:

Lemma 1 (Reich [32]) Let £ be a uniformly smooth Banach space. Then there exists
a nondecreasing continuous function

b: [0,oo)-» [0,oo)

satisfying:

(i) b{ct) < cb(t) for all c > 1

(ii) lim b(i) = 0, and

(iii) ||x + y[

for all x, y € E.

+ 2Re(y, j(

With b as defined in this lemma, a more general result than Theorem 1 which
was discovered independently by the author [11] and Osilike [30] is the following theorem:

Theorem 2 Let £ be a real uniformly smooth Banach space and A" be a nonempty
closed convex and bounded subset of £. Suppose T : K —* K is a continuous strongly
accretive map. For a given / € K, define the sequence { i n }^_ 0 in K iteratively by Xg € K,

Zn+l = ^n - Cn(Txn - / ) , n > 0 ,

where {cn}JJl0 is a real sequence satisfying:

(i) 0 < cn < 1 for all n,

(") £ cn = +oo; and
n=0

(iii) £ enb(cn) < +oc.
nssO

Then {in)J°_0 converges strongly to the unique solution of Tx = / .



Remark 1 Nevanlinna and Reich [29] have shown that for any given continuous nonde-
creasing function 0(t) with /3(0) = 0, sequences {cn}£L0 always exist satisfying condition
(i)-(iii) of Theorem 2. If E = Lp, 1 < p < oo, we can choose any sequence {en}£L0 in ^'V^1

with a = p if 1 < p < 2 and a = 2 if p > 2. It is then clear how the iteration parameter cn

ran be chosen in Theorem 2.

In the special case when T is a strongly pseudocontractive operator or equivalently
A — (I — T) is strongly accretive (in particular, when T is nonexpansive, i.e., | |Ti — Ty\\ <
\\x — y\\ for all x,y in the domain of T), several authors have used the iteration process:
x0 € D(A) given by,

with cn £ (0,oo), Y^=ac» — +°° ' nmn—occn = 0 to determine solutions of the equation
Ax = 0 (see e.g. [2], [4], [5], [6], [8], [12], [16], [18], [32-34], [38], [41-42], [45], [49]).

Basically, the authors have proved the following typical results:

(a) Let £ be a uniformly smooth Danach space (or equivalently, £ is a Banach space
whose dual is uniformly convex) and A be a bounded, strongly accretive map.
Then there exists a real number T(x0) > 0 such that the iteration scheme (6)
with cn < T(x0) for each n, converges strongly to the unique solution of Ax = 0
(when it exists) [45, 47, 48].

(b) If A — I - T, where for a closed convex subset K of E, T : K —» K is a non-
expansive map with a nonempty fixed point set F(X), then the iterative scheme
(6), with cn € [0,1) for each n, converges strongly to a fixed point of T provided
T satisfies the condition

(7)

where / : [0, oo) —» [0, oo), /(0) = 0 is a strictly increasing function, and

d{x,F(T)) = inf{||:r - **l! : *' e F{T)} (see e.g. [18], [38]).

As a consequence of (a) and (b), Xu and Roach [45] studied the following two
natural questions:

(i) Can the iterative process (6) be used for quasi-accretive maps rather than just
for strongly accretive ones?

(ii) For nonexpansive maps, is the condition (7) necessary for the convergenc of the

iteration process (6)?

They gave an affirmative answer to both questions. However, while the conditions imposed
on the iteration parameters cn in their results do not involve the norm of the operator,
they involve the computation of an infinite product and also they depend explicitly on an
estimate of the modulus of smoothness of the space.

It is our purpose in this paper first to give a proof of the results of Xu and Roach
[45] in which the iteration parameter does not depend on an estimate of the modulus
of smoothness of the space and in which the computation of an infinite product is not
required. Then, we shall also prove a theorem which extends Theorem XZR to the class
of ^"-strongly accretive maps. Moreover, no interpolation theory or stability theory of
ordinary differential equations will be needed for our theorem.

2. MAIN RESULTS

Following [45], we shall say that a quasi-accretive operator A on a Banach space
E satisfies Condition 7, if, for any x £ D(A), x* € N(A) and any j(x - x*) G J(x - x*),
the equality (Ax,j{x — x")) = 0 holds if and only if Ax = Ax' = 0. It is clear from this
definition that any strongly quasi-accretive operator satisfies Condition I. Furthermore, as
has been shown in [45], if T is a nonexpansive map defined on a uniformly convex Banach
space then (I-T) satisfies Condition I.

Using the technique of [45] and the inequality of Reich, we prove the following
theorems:

Theorem 3 Let E be a real uniformly smooth Banach space and let A : D{A) = E -+ E
be a quasi-accretive, bounded operator which satisfies Condition I. Then, for any initial
value XQ £ D(A) there exist positive real numbers T(x0) such that the steepest descent
approximation method

x n + 1 = x,, -cn Axn, n>Q (8)

w i t h

(i) 0 < cn < r(z0) for each n;

(ii) E c« = ° ° ; a n d

(iii) lim cn = 0,
n—»oo

(iv) f c n 6 ( c n ) < o o

converges strongly to a solution x' of the equation Ax = 0 if and only if there exists a
strictly increasing function <p : [0, oo) —> [0, oo), y>(0) = 0 such that

(Axa - Ax\j(xn - x')) > (9)

Proof. Necessity This follows exactly as in [45],

8



Sufficiency Suppose now that inequality (9) holds. We prove that there exists T(xo) > 0
such that the iteration process (8) with cn < T(x0) for every n converges strongly to x*,
a solution of the equation Ax = 0. In the sequel, we shall make repeated use of Lemma 1.

Let M(xa) = :

Let r be the largest positive real number such that

b(r)<

where b is the function defined in Lemma 1.

(Note that (10) is possible because b is continvious and b(0) = 0).

(10)

We now prove the following claims:

Claim 1 The sequence {xn} defined by (8) with cn < T(xo) is bounded. The proof of
this claim is by contradiction. So assume that {xn} is not bounded. Then there are two
possible cases.

Case 1 There exist integers no > 0 such that

V n > n 0 (11)

Without loss of generality we may assume n0 is the smallest integer for which (11) holds.

Consequently,

| | ^ 0 _ 1 - a - - | j<^ - I ( | |A^ | | ) (12)

Furthermore,

\\xno - x'\\ < !!,„„_! - ^ | | +c n o _ 1 | |A .r n o _, || < <p-H\\Axo\\)

But since,

K . - 1 - soil < ||*».-i - ar'H + ||a:- - xa\\ < <p-\\\Axa\\) + v - '

it follows that Pa;,,,,.,!) < M(i 0 ) . Hence from (13)

lk». - *1I < V-l(\\Ax0\\) + T(Xo)M(xB) < 2¥>-1

Consequently,

T(xo)\\Axnt-i\\ (13)

= 2^-1(\\Ax0\\

(14)

- T O | | = \\xna - \\x' - xo\\ <

so that pXnJI < M(io). We now compute:

\\xno - x'\\2 -

Recall that \\xno - x'\\ > v -

Hence (16) reduces to:

n.!!) so that v(\\x^ - x'||) > \\Ax

(16)

since 6 is nondecreasing, we also have b(T(x0)) < 6(r) so that

where K = max{2¥3-1(||Ai(,||, l}M(io)niax{A/(i0), 1}.

Inequalities (17) and (10) yield

In the same way one can show that for all n > no,

- Kb(r)} (17)

which contradicts the assumption that {xn} is not bounded.

Case 2 The interval [0, v?~a(||J4.XO||)j contains infinitely many ||.Tn — x*\\ of the sequence
{!|xn — £*!)}• Compactness of this interval implies that in this case, there exists some real
number p > 0 and a subsequence {xnt} of {xn} such that \\xah —x*\\ —> p as k —t oo . But
by assumption {||zfl — x'\\} is not bounded. Hence IR\[0,2^~1(||A:rol|)] must also contain
infinitely many ||a;n — x*\\. Consequently, the sequence {||xn — x'\\} must pass through the
interval

infinitely many times. So we can find two subsequences of {xn}, say, {xni}
such that

10



(a) nk < mjfc

(b) ||*Bi_, - x'\\ < p + y~H\\AXa\\) and \\xnt - x'\\ > p + l^-HlUxoll)

(c) | | I m i_, - i*|| < p + ^-\\\Axo\\) ^ d ||xmi - z*|| > p + fv-HHAxotl)

Let Mo = sup(mu|| : | |u-z*|| < p + v5~1(ll̂ -̂ ol!)} and observe that since ||xn,_i
p + ^-'(WAxoW) <p + V-l{}\Axa\\) we have

- x*\\ <

Hence,

0 as fc -+ oo .

(18)

On the other hand, for every n 6 [ni.,nn — 1] we have:

\\xn+i - T'\\2 = \\xn - cnAxn - x-\\2

< \\xn - x*\\2 - 2cn(Axn,j(xn - x*)) + max{| |xn - i*| | , l}cn\\Axn\\b(cn\\Axn

1 1

< ||xn - x'f - 2cn<

-^-l(\\Ax0\\)} - K2b(cB)] , (19)
u 5

where A'2 = max{p + ^"'(HAxoll)}Mo max{Mo, 1} Since cn —* 0, 6 is continuous and
6(0) = 0, it follows that there exists JV* > 0 such that for all n > N*,

+ ~<p-H\\Axo\\)}{l> + ^ " ' ( > 0

Hence, for all n > JV*, it follows from (19) that

H * n + 1 - x l 2 < \\xn-x'\2 for all n € (n^m, - l],n, > JV* .

So, in particular,

for all

11

But then, using the second part of condition (c) and inequality (18), we must have:

p + U
0

< limsup ||Imj - x'\\ < ... < lira ||xrtj - x*]| < p + L - i (

which is a contradiction. This, together with Case 1 completes the proof that {xn} is
bounded.

Claim 2 The sequence {||in — £*||} is convergent. Assume this is not the case. The
boundedness of {xn} then implies that there exist at least two real numbers pj and pi and
subsequences {xBj}, {xnj} such that

\\xn, - I'll -» Pi (i -• 00); | | i n . - x*|| -+ p2 0 -+ 00) .

Without loss of generality we may assume p\ > p?. Thus the sequence {||xn — z*||} must
pass through the interval [p2 + ~pi,pj + |f>i] infinitely many times. Consequently, an
argument similar to that used in Case 2 of Claim 1 shows that, this is impossible. Hence
the sequence {\xn — n*\\} must be convergent. Let ||xn — r*|| —» 6 > 0 as n —t 00.

Claim 3 6 = 0. Suppose this is not the case (i.e. suppose that 8 > 0). Let N > 0 be
such that \\XJ - x*\\ > 6/2 for all j > JV. Thus, in particular,

liminf v3(||i> - x*\\) > 0 (20)

Furthermore, since A is a bounded operator (by hypothesis) and {jn} is bounded, we can
set M* = supn > 1 ||Axn|| and compute as follows:

max{||xn -< IK - x*||2 - 2cn{Axn, j(xn - x')

< ||SB - x*||2 - 2c.v»(||*B - * ' | | ) | | * n - **|| + nwx{||xn - x'\\, 1}M'

Hence, for some constant M > 0, we obtain:

||*-+i " x'tf < ||*» - * 1 2 " 2 c n ^ ( | j ^ - x'lDHarn - x' | | + Mcnb{cn)

Iteration of this inequality from 1 to JV yields:

N N

\\xN+i - x'f < Hx, - x«||2 -2Y,cM\\*i ~ *1I)II^ - ^11 + M E c>*<c>)

As JV -* 00, using Condition (iv) and the fact that {||in — z*||} is bounded we obtain:

12



which then implies (by Condition (ii) and the assumption that ||xn — i*|j —+ 6 > 0) that

Urninfv>(||Tj - I ' l l ) = 0 ,

contradicting (20). So, S = 0. This completes the proof of the Theorem.

Remark 1 In [45], the authors proved Theorem 3 by using the inequality (**) and
showed that the iteration process

x n + ] = i n -cnAxn,n = 0,1,2. . .

with {cn} C (0,X(xo)), Y,nc" ~ +°° ' cn -> 0 as n - t oo converges strongly to the unique
solution i* of Ax = 0 , where

M ( i o ) = sup{|A?ij| : ||K — 3T0|| < 3tp 1{\\Axo\\)} ,

is the function given in inequality (9), ft is the largest positive real number such that

fer- <21)

C =

K, = max{8, \ / l 2 8 ( \ / 3 -

+ & r0) with r0 = ^

As has been remarked earlier, it is clear that to use the method of [45] one has to first com-

pute the infinite product n (l + T̂TT T0). (Note that in [45] the series £ (l + n^r r0)
•=i i=i

is written instead of the infinite product. This is probably a typographical error. In fact,
the series does not even converge!) Then using the values of Ki and C (as above) one
has to get an estimate of 0 from inequality (21). This inequality depends explicitly on the
modulus of smoothness of the space. This modulus is, in general, not easy to compute.
Our method does not require the computation of any infinite product and does not depend
explicitly on the modulus of smoothness of the space.

We now present the following immediate Corollary of Theorem 3. We shall need
the following definitions:

For any x,yg € D(A), let

V(x) = {ueE:\\u\\<<p-*(\\Ax\\)}

M(x) = sup{||AU|| : ||u - yoll < ^ ( IP M I ) + ^ ( P y o l l ) }

and let T(x<>) be as defined in the proof of Theorem 3. Then we have the following

13

Corollary

Let B be a real uniformly smooth Banach space, A : D(A) = E —* E be a tp-
strongly quasi-accretive operator such that M(x0) < +oo for an element x0 £ E. Suppose
that {cn} is a real sequence satisfying the following conditions:

(i) 0 < c < T(x0),

(ii) £ t n = +oo
it=0

(iii) lim cn = 0.

(iv) X) cn b(cn) < oo.

Then the steepest descent approximation

= -rn -c nA.r n , n > 0,

converges strongly to the unique solution of the equation Ax = 0.

(22)

Proof Let x* be an element of N(A). Clearly .4 is quasi-accretive, satisfies inequality
(9) and consequently satisfies Condition I. It then follows as in the proof of Theorem 3
that the sequence {xn} defined by (22) is bounded and that {J|in — i*[|}JL0 converges.
(Note that the boundedness assumption on the operator A in Theroem 3 is needed only
in the proof of Claim 3). Now let | |rn — x*|| —• 6 > 0 as n —> oo.

Claim. S = 0 Suppose this is not the case. Let JV > 0 be such that \\xj - x*\\ > 6/2
for all ; > JV. Then

Observe that since A is ^-strongly qua si-accretive,

ll̂ Jfoll ' llvo — i*|| > (AJ/O - Ax*,j(i/0 - x*)) >

so that

Similarly,

hence,

and hence, since M(xq) < +oo, sup|[Azn|( exists. Let M* = sup||Axn||, and the claim
n>l n>l

now follows as in the proof of Theorem 3, completing proof of the Corollary.

14
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Remark 3 The above Corollary is a significant generalization of the main result of [44],
Theorem XZR, in the sense that the Corollary extends the main result of [44] from the
class of strongly accretive operators to the more general class of (^-strongly quasi-accretive
maps (It suffices to define y> : [0,oo) —> [0, oo) in the Corollary by y>(t) = kt for each
t 6 [0,oo)). Moreover, our proof is direct and does not involve any interpolation theory or
stability theory of ordinary differential equations.

We now conclude this paper with the following theorem which shows that in
the special case in which A = I — T with T a nonexpansive mapping with a nonempty
fixed point set, -F(X), in a certain sense, the condition ||i — Tx\\ > g(d(x, F(T))), where
g : [0, oo) —> [0,oo), (?(0) = 0, is a strictly increasing function &nd

d{x,F{T)) = inf {\\x - x*\\ : i* € F(T)} is a necessary and sufficient condition for the
convergence of the iteration process (8) to a fixed point of T.

Theorem 4 Let £ be a uniformly smooth banach space, let A' C £ be a nonempty closed
convex subset of E, and let T : K —> K be a quasi-nonexpansive mapping (i.e. F(T) ^ 0
and \\Tx - Tx*\\ < \\x - x*\\ for all x £ A", x' £ F(T)). Then for any initial value x0 e AT,
the iteration process (8) with A — I — X and the real sequence {cn} satisfying:

(i) 0 < cn < 1 for all n,

(iii) lim cn — 0
n —KJO

(iv) cnb(cn)< oo

converges strongly to a fixed point x* of T if and only if there exists a strictly increasing
function g : [0, oo) —> [0, oo), g(0) = 0 such that

\\xn-Tr\\>g(d(x,F{t))), n>Q.

The proof of Theroem 4 which makes use of Theorem 3 follows exactly as in [45].
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