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ABSTRACT

A necessary and sufficient condition is established for the strong convergence of

the steepest descent approximation to a solution of equations involving quasi-accretive

operators defined on a uniformly smooth Banach space.
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1. INTRODUCTION

Let E be an arbitrary Banach space. A mapping U with domain I{¥) and range
R(U)in E is called accretive (2] if the inequality

lz—yll <liz -y +s(Uz - Uy (1)

holds for every x, y € D(U) and for all s > 0. If (1) holds only for seme s > 0 then U/
is called monetone in the terminology of [20]. Let E* denote the dual space of E and let

J: E -+ 2F denote the normalized duality mapping of E defined by
Jz=A{z* € E*:{z,z") = ||z|| - |l=*{[, §=*} = |lz|i} ,

where (- ,-) denotes the generalized duality pairing. It is well known that if E* is strictly
convex then J is single-valued and if E* is uniformly convex, then J is uniformly continuous
on bounded sets (see e.g. [39]}. In the sequel we shall denote single-valued normalized
duality mappings by j. As a consequence of a result of Kato [20], it follows from inequality

{1) that U is accretive if and only if for each z, y € D(U) there exists j(z — y) € J(z —y)
such that

Re{Uz — Uy, j{z —y)) 2 0. (2)

Furthermore, U is called strongly accretive (see e.g., [2], [7], [20]) if there exists a constant
k > 0 such that

Re(Uz — Uy, j(z - y)) 2 kllz - g|f* . (3

If E = H, a Hilbert space, then (2) and {3) are equivalent, respectively, to the monotonicity
and strong monotonicity properties of U in the sense of Minty [26].

In the sequel, we shall call the map U ¢-strongly accretive if there exists a strictly
increasing function ¢ : {0,00) — [0, 0o} with ¢(0) = 0 such that the inequality

Uz = Uy, j(x — 1)) = @(llz — gDz - ol {4)

holds for all z,y € D(U). Let N(U) = {x € E : Uz = 0}. If N(U) # @, and the
inequalities (2}, (3) and (4) hold for any x € D(U) and y € N(U/), then the corresponding
operator U is said to be guasi-accretive, strongly quasi-accretive and -sirongly quasi-

accretive, respectively. Such operators have been studied by various authors (see e.g., [2],

(31, (8], [8], [23], [27), [35}).

The accretive operators were introduced in 1967 by Browder (2] and Kato [20).

Interest in such mappings stems mainly from the fact that many physically significant
problems can be modelled in terms of an initial valued problem of the form

dx
I } (5)
z(0) = x9

2



-

R

PR

;‘.

where T i3 either accretive, strongly accretive or y-strongly accretive in an appropriate
Banach-space. Typical examples of how such evolution equations arise are found in models

involving either the heat or wave or the Schrodinger equation.

An early fundamental result in the theory of accretive operators due to Browder
[2], states that the initial value problem (5) is solvable if T is locally Lipschitzian and
accretive on F. Utilizing the existence result for (5), Browder [2] showed that if T is
locally Lipschitzian and accretive then T is m-gccretive, ie. (I + T)(E) = E, where I
denotes the identity operator on E. This result was subsequently generalized by Martin
[25] to the continuous accretive operaters, and to demicontinuous accretive operators by
Deimling [13, Theorem 13.1}, where an operator A from E to E is said to be demicontinuous
if it is continuous from the strong topology of E to the weak topology of E.

We observe that members of N(T), the kernel of T, are in fact the equilibrium
points of the system (5). Consequently, considerable effort has been devoted fo developing
constructive techniques for the determination of the kernels of accretive operators (see
e.g., [7-10), [12], [13], [14), [19], [21], {24], [26], [28], [30], [31], [32-34], (36}, [37], [41), [42],
[43], [44], [45], [46], [47], {48], [49]). Moreover, since a continuous accretive operator can
be approxitmated well by a sequence of strongly accretive ones, particular attention has
been devoted to the kernels of strongly accretive maps. In this connection, but in Hilbert
space, Vainberg (41] and Zarantonello [49] introduced the steepest descent approximation
method,

Tatl = Tn— xlTp, € H, n=10,1,2,... (6)

and proved that if,

(1) T = I 4 J where [ is the identity map of H and J is a monotone and Lipschitz
map on H;

(i) cn=A€ (0,1}, n=0,1,2,...,

then the sequence {x,} defined iteratively by (6} converges strongly to an element of N(T').
This result has been extended to the class of bounded monotone operators (see e.g., [6],
(8], [17]). Typical of the results obtained is the following theorem:

Theorem * Let H be a Hilbert space, T : H — H a bounded strongly accretive map
with a nonempty kernel, N(T)}. Then the sequence {z,} defined iteratively by (6) with ¢,
in £2\f! converges globally to an element of N(T).

Extensions of Theorem * to more general Banach spaces have been cbtained by
various authors . Vainberg [42, pp. 276-284] proved the convergence of (6) in L, spaces for
1 < p < oo when T is Lipschitz continuous and strongly accretive; the author [7] obtained
the same result in L, spaces, p > 2, under less restrictive conditions. Crandall and Pazy
[12] proved convergence of (6) for a continuous strongly accretive operator on an arbitrary
Banach space. Reich [33], and also Liu [22] proved the convergence of (6) for an arbitrary
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strongly accretive operator acting on Banach spaces whose duals are uniformly convex (or
equivalently, on uniformly smooth Banach spaces).

We remark immediately that in these results in Banach spaces, the conditions imposed on
the iteration parameter ¢, are not convenient in applications. For instance, Crandall and
Pazy [12] required that at each iteration step, cx be determined by

ck = Sk41/(1 + 6y41) where §pqq =27

and ny is the least nonnegative integer such that

< exp{~{6; + 82 + ...+ G5 +1)]

an 1
]A (TTz_n“”‘ - I+—2A) = Az

It is clear that ¢ can hardly be determined in an explicit form from the above condition.
OO0
Tn [33], Reich imposed the additional assumption that Y ¢&||Tz.||* < +oc. Again this
n=0
condition causes computational difficulties.
Recently, some authors have proved convergence theorems for strongly accretive

operators in which the iteration parameter ¢, is easily evaluated. In this connection we
have the following theorem:

Theorem 1  (Chidume [7]) Suppose N is a nonempty closed bounded and convex
subset of L,, p > 2 and T: K — K is a Lipschitz map such that 4 = I — T is strongly
accretive. Let {c,} be a real sequence satisfying:

()0<ca<lioralln>1,

%0
(i) ¥ ¢y =oo; and
n=1

el
(i} 3 2 < oo
n=]
Then the sequence {z,}%%, generated by z;: € K,
Tngl = Tn — cnAzn, n 21

converges strongly to the unique solution of 4z = 0.

Au operator T such that (I — T} is strongly accretive is called strongly pseudo-
contractive (see e.g. [3], [7], [21], [24], [36], [37]). 1t is then clear that the mapping theory
for accretive operators is closely related to the fixed point theory of pseudocontractive
maps. A prototype for the ¢, in Theorem 1 is ¢n = 1/(n 4 1), n = 0. While Theorem
1 is restricted to L, spaces, p > 2, the parameter ¢, is easily chosen at the start of the
iteration process.



Several authors have also generalized Theorem 1. In [36], Schu extended the
theorem to the class of real Banach spaces with property (U, a,m + 1,m), i.e. Banach
spaces in which the inequality iz + y||™*' + a|lz — y|™*+! — 2™(l=|™** + |ly|™ ) = 0
holds for all z,4 € E, where m+ 1 > 0, a € R . These Banach spaces include L,
spaces for p > 2 (see e.g. [36], [40]) and in [37) he extended the theorem to the class of
uniformly continuous maps on smooth Banach spaces. Bethke [1] also announced a slight
generalization of the theorem, still in L, spaces, p > 2, while Weng [46] and also Kang [19]
announced extensions of the theorem to the class of local strong accretive maps. Other
extensions can be found in Xu, Zhang and Roach [44] and it Xu and Roach [45].

In [44], the authors interpreted the iteration process (6) as an Euler’s difference
approximation to the initial value problem (3), defined a sequence of interpolation funetions
of the iterates {z,} such that the sequence of functions takes the unique solution of the
initial value problem (5) as its limit point and then applied the asymptotic stability theory
for the equlibrium point of the system (5} to obtain glebal convergence of (6) with the
choice of the iteration parameter c, being independent of the operator. Their method
involves the following definitions:

For any «, yo € D(4), let
Ulz) = {y € E: |lyll < a7l Az|l}; M(x) = sup{[[{A9)]] : ly - yoll < &~ (| 42|l + || Axol)}:

Alz) = sup{r € R* : p, (rM(z))/7 < 207" || Az||*/ Ko | Az|| + rM(z) + %cl}

where oo, K and C are constants such that
(Az — Ay, j(z —y)) = afz —y)?
K = max{8,128(v3 — 1)¢}

and -~
4Tu 151’0
SR, [

with 75 = (/339 — 18)/30, and p, denotes the modulus of smoothness of E (see e.g. [15],
[23]). With these definitions, and using the following inequality

i 1
lle +y i < flell? + 2y, J2) + K max{]z]} + |lyll, 5CYp £ llyll)

which the authors proved (see [44]) holds for each z,y in any uniformly smooth Banach
space the authors proved the following therom:

Theorem XZR Let E be a real uniformly smeoth Banach space and A : D(A4) = E —
E be a demicontinuous strongly accretive operator with M(zg) < +oo for any element

zy € E. Suppose that {c,}5%, is an arbitrary sequence of real numbers satisfying

5

(i) 0 < ey < min{(2a)~1), Blae)/M{zo)} for any n > 0;

{ii) éﬂ Cp = 0O

(iii) cn =+ 0 as n > oo.

Then the steepest descent approximation
Tppy = Tpn—Cp Az, n=0,12,...

converges strongly to the unique solution of the equation Az = 0.
For our next theorem we shall need the following lemma:

Lemma 1 (Reich [32]) Let E be a uniformly smooth Banach space. Then there exists
a nondecreasing continuous function

b:[0,00) — [0,00}
satisfying:
(i) blet) <ch(t) foralle> 1
(11} tl_i»réx+ 5(t) =0, and
(iif) flz + yll* < ll=l1? + 2Re{y, j(2)) + max{|l=], 1} [y l6Clly 1)

forallz,y€ E.

With b as defined in this lemma, a more general result than Theorem 1 which
was discovered independently by the author [11] and QOsilike [30] is the following theorem:

Theorem 2 Let E be a real uniformly smooth Banach space and A be a nonempty
closed convex and bounded subset of E. Suppose T : K — K is a continuous strongly
accretive map. For a given f € K, define the sequence {r,}%, in K iteratively by =y € K,

xn+1=$n~cn(r$n_.f)1 "203

where {cn}52, is a real sequence satisfying;

(i) 0 € ¢q < 1 for all n,

o0
(ii} ¥ cqn = 4oc; and
n=>0

=]
(iil} ¥ eabdlen) < +oo.
ns=0
Then {z,}2L, converges strongly to the unique solution of Tz = f.
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Remark 1 Nevanlinna and Reich [29) have shown that for any given continuous nonde-
creasing function A(t) with 3{0) = 0, sequences {c,}32, always exist satisfying condition
(i)-(iii) of Theorem 2. If E = L,, 1 < p < oc, we can choose any sequence {e,}72 in £2\#!
withs=pifl<p<2and s=2if p> 2 Itis then clear how the iteration parameter c,

can be chosen in Theorem 2.

In the special case when T is a strongly pseudocontractive operator or equivalently
A = (I -T) is strongly accretive (in particular, when T is nonezpansive, ie., ||[Te —Ty[l <
Iz — yll for all z,y in the domain of T}, several authors have used the iteration process:
z9 € D{A) given by,
Ept) = In —CnAzg,
with ¢, € (0,00}, Z?:o ¢, = 400, im, . ¢, = 0 to determine solutions of the equation
Az =0 (see e.g. [2], [4], [5], [6], [8]. (12]. [16]. [18}, [32-34], [38], [41-42), [45], [49)).

Basically, the authors have proved the following typical results:

{a) Let E be a uniformly smooth Banach space (or equivalently, E is a Banach space
whose dual is uniformly convex) and A be a bounded, strongly accretive map.
Then there exists a real number T{zo) > 0 such that the iteration scheme (6)
with ¢, < T(zg) for each n, converges strongly to the unique solution of Az =0

{when it exists) [45, 47, 48].

(by If A = I — T, where for a <losed convex subset K of E, T : K — K is a non-
expansive map with a nonempty fixed point set F(T'), then the iterative scheme
(6), with e, € [0,1) for each n, converges strongly to a fixed point of T provided

T satisfies the condition

Jlw = Tw)) 2 fld(z, F(T))), (7)
where f @ [0,00) — [0,00), f(0) = 0 is a strictly increasing function, and
d(x, F(T)) = inf{||x — z=|| : =* € F(T)} (see e.g. [18], [38]).

As a consequence of {a) and (h), Xu and Roach [45] studied the following two

natural questions:

{1} Can the iterative process (6) be used for quasi-accretive maps rather than just

for strongly accretive ones?

(i) For nonexpansive maps, is the condition (7) necessary for the convergenc of the

iteration process (6)7

They gave an affirmative answer to both questions. However, while the conditions imposed
on the iteration parameters ¢, in their results do not involve the norm of the operator,
they involve the computation of an infinite product and also they depend explicitly on an
estimate of the modulus of smoothness of the space.

7
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It is our purpose in this paper first to give a preof of the results of Xu and Roach
[45] in which the iteration parameter does not depend on an estimate of the modulus
of smoothness of the space and in which the computation of an infinite product is not
required. Then, we shall alsc prove a theorem which extends Theorem XZR to the class
of p-strongly accretive maps. Moreover, no interpolation theory or stability theory of
ordinary differential equations will be needed for cur theorem.

2. MAIN RESULTS

Following [45], we shall say that a quasi-accretive operator 4 on a Banach space
E satisfies Condition [, if, for any z € D(A), 2* € N(4) and any j(x — z*) € J{z — z*),
the equality (Az, j(z — 2*)) = 0 holds if and only if 4z = Ax* = 0. It is clear from this
definition that any strongly guasi-accretive operator satisfies Condition I. Furthermore, as
has been shown in [45), if T is a2 nonexpansive wap defined on a uniformly convex Banach
space then (I-T) satisfies Condition 1.

Using the technique of [43] and the inequality of Reich, we prove the following
theorems:

Theorem 3 Let E be a real uniformly smooth Banach spaceand let A: D(A)=FE - E
be a quasi-accretive, bounded operator whicl: satisfies Condition I. Then, for any initial
value xo € D(A) there exist positive real numbers T'(zy) such that the steepest descent
approximation method

Tnpl =In —Cp Azp, n 20 (8}
with
(i) 0 < cn £ T(zy) for each n;
(i) iﬂ e, = 0o; and
(i) lim co =0,
(iv) fj;u en Ben) < 00

converges strongly to a solution z* of the equation Ax = 0 if and only if there exists a
strictly increasing function ¢ : 10, 00) — [0, c0), (0) = 0 such that

(Azn — Az%,j(za — 27)) 2 @(flxa — 2" IDilzn — =" (9)

Proof. Necessity This follows exactly as in [45].

8



Sufficiency Suppose now that inequality {9) holds. We prove that there exists T(zo) > 0
such that the iteration process (8) with ¢, < T{(z,) for every n converges strongly to z*,

a solution of the equation Az = 0. In the sequel, we shall make repeated use of Lemma 1.
Let M{za) = sup{JlAull : Ju ~ zol] € 3™ (|l Ao} -

Let T be the largest positive real number such that

2o~ ([ Azo )} Azol]

") xlze [ Azol . 1] max{M(ze), 1) M(zo) °

(10)

where b is the function defined in Lemma 1.

(Note that (10) is possible because b is continuous and ¥0) = 0).

-1
Set, T{z¢} = min{7, %‘i‘%ﬁﬂu}

We now prove the following claims:

Claim 1 The sequence {z,} defined by (8) with ¢, < T{ze) is bounded. The proof of
this claim is by contradiction. So asswmne that {z,} is not bounded. Then there are two
possible cases.

Case 1 There exist integers ng > 0 such that
lzn = 2*ll > @7 (| Azofi} ¥n 2 ng {11)

Without loss of generality we may assume ny is the smallest integer for which (11) holds.
Consequently,

[ £no—1 — 2l < o7 (|| Azol) (12)

Furthermore,

I2ny = 2Nl < N2ngm1 = 2% + eng—rllAzng || < @7 (| Azoll) + T(zo)[| Azno—all  (13)
But since,
(Zng—1 = Zall S llzng—1 = 2l + ll=™ = zoll < w7 ([l Azoll) + @7 ([l Az0]l} = 207" (| Azol])
it follows that ||Az,,—1|| € M{z,). Hence from (13)

l2n, — 2% < @7 (| Azoll) + T(za)M(%a) < 207 (|| Azoll) (14)

Consequently,

lno = 2oll = llzng —2*f +a* ~ zoll < 207 ([l Azoll) + %~ (Azoll) = 3 (| Azol)) (15)

9

so that ||Aza,|| € M(zq). We now compute:

[[2net1 = 2* I = li€ny = 2° = CnoATn, [*
SHlzn — """.“2 = e, (AT g, j {20, — TN+
+ max{||zn, — 2°||, 1L} engll AZno[|B{eng | AZnql)
S lieng = @)1 = 2engp(lm, = 2 DliEne — 2|

+ max{llzn, — 2*| Len, | Azn, | max{|| Azl 1}5{cn, ) (16)

Recall that j|z,, — 2*|| > @~} {|| Az n, ||} so that o(|jzn, —x*]) > | AT A, ]l

Hence (16) reduces to:

lwmo+1 — 2*[* < flng — 2l|* = 2eu,{| Axolle ™ (| Axoll)
+ max{2¢ " || Azo]), 1} en, M(zo) max{M (7o), 1 }6(cp, )
< lleng = 2|1 = 2en, | Azalle ™ (| Azoll)
+ masc{ 2 (| 4zol1), L} eng M{zo) max{M(20), 1}H(T(xa))

since b is nondecreasing, we also have b(T(zp)) < b(7) se that

[ng 41 = 27112 < flzmg 2|1 ~ cng {207 (| Azol}l| Awoll = Kb(7)} (17)

where K = max{2p (|| Azlj, 1} M(2q) max{M(z,),1}.
Inequalities {17) and (10) yield

lZng+1 — 2"l < flwg — 2™ -
In the same way one can show that for all n > ng,
|zast =z S flzn =27 S ... £ Jlzae — 27,

which contradicts the assumption that {z,} Is not bounded.

Case 2 The interval [0, p~(}|Axo|)] contains infinitely many |z, — z*|| of the sequence
{llzn. — 2*|}. Compactness of this interval implies that in this case, there exists some real
number p > 0 and a subsequence {&,, } of {z.} such that ||z,, ~2*]| = pask — oc . But
by assumption {||z, — z*}|} is not bounded. Henee R\[0,2¢ ~}(||Azo}|)] must also contain

infinitely many ||z, — 2*{|. Consequently, the sequence {||z, —z*[{} must pass through the
interval

1 4
o+ e Azl p+ T (140l

infinitely many times. So we can find two subsequences of {z,}, say, {z,,} and {zm,}
such that

10
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(a) ng < mg
() |Zny—s — 2| € p+ Lo~ (| Axo]l) and |izn, — 2*|| > p+ 7 (|| Azol])
(€} Jomyos — 2% € o + $p~ (I Azol]) and ||z m, — 2*]| > o + 4o~ (1| Azo)

Let My = sup{[lduf : flu —z*|| < p+ ¢ (}|dzol])} and observe that since [z, .y —z*|| <
p+ 3¢ ([Axo])) < p+ ¢~ ([l Azo||) we have

lizn, = 2ny-2l) = oy 1l Azp<ll Cenp1 Mo ~0ask — 00
Hence,
. 1 _
Nzn, = & € llZay = znpall + Ty —1 — 25| = 2 + Fid Y| Azoll) (18)
Orn the other hand, for every n € [ny,m; — 1] we have:
|2

“-Tn+] - T :“rn“'—‘:'1-4-:[:'1";17‘”2

< len 217 = 2enlAzni(an = %) + mex{[a ~ 2 LenAznlbenh Azl
< lftn " =2enpl20 =" liza = 2l +5ax{lan =27, Venl Azl max(ldzaf, 1ben)
< frw — 2717~ 2ewlo + 5o Azallllp + g~ X140 )]
smaxlp+ 397 (1420l el 4z limaz (I 42 o, 1}8(en)
< fom = "I = 2enplo + 37 (lAzalip + g9 (I Azall
max{p+ S0 ([ Awoll)} Mo max{Ma, Leablcs)
< lew =21~ cal2olp + 3o (FAol} o + 5o (2ol - Kabeal, (19)

where Ky = max{p + %o~ (||Axol/}) Mo max{ Mo, 1} Since ¢, — 0, b is continuous and
b(0) = 0, it follows that there exists N* > 0 such that for all n > N*,

1 _ 1 _ ,
200p-+ o~ Az Ho + 5o~ (1 42o1)} = Kabea) 2 0
Hence, {or all n > N=, it follows from (19) that

s =2l < en— 22 forall n € [ny,m;—1n, 2 N

So, in particular,
Hzm; — 2| Sllzmy~1 ~ ' | ... € [fzn; —2*]| forall n; = N

11

But then, using the second part of condition (¢) and inequality (18), we must have:

4 . . , . 1 _
o+ 57 (1Azol) < limsuplom, ~ 2*] < ... <Bmlza, ~ 2"l < o+ 2o~ (1Az )
7

which is a contradiction. This, together with Case 1 completes the proof that {x,} is
bounded.

Claim 2 The sequence {[[x, — z*{|} is convergent. Assume this is not the case. The
boundedness of {z,} then implies that there exist at least two real numbers p; and p; and
subsequences {n,}, {zn;} such that

flzn, —2%f = p1 (1 = 00}y |lza, —z*[ = p2 {7 — 00} .

Without loss of generality we may assume p; > pa. Thus the sequence {l[z, — 2*}{} must
pass through the interval [p; + $p1,p2 + $p1] infinitely many times, Consequently, an
argument similar to that used in Case 2 of Claim 1 shows that this is impossible. Hence
the sequence {{z, — n*||} must be convergent. Let ||z, — 2*|| = § > 0 as n — co.

Claim 3 & = 0. Suppose this is not the case (i.e. suppose that § > 0). Let N > 0 be
such that [[x; — z*|| = &/2 for all ; > N. Thus, in particular,

liminf o([lz, — z*[) > @(6/2) > 0 (20)

Furthermore, since A is a bounded operator {by hypothesis) and {r,]} is bounded, we can
set M* = sup,,., {|Az,| and compute as follows:

”xﬂ+l - I*”‘z = H-rn -z = CnAman
< lzn - 3.”2 ~ 20 (AT, j(zn — 7)) + max{|len —~ z*||, 1}cn|| Az a]|blcq|| Ax.])
< Jlzn = 2% ~ 2en0(l|2n — 2* )iz ~ = *| max{{|z, — 2*||, L}enli Az u || max{|| Az ||, 1}b(c..)
< |z — 2% - 2enp(len — 2°|Mza — 2*) + max{llz, — z*]|, 1} M* max{M* 1} e b(c,)

Hence, for some constant M > (0, we obtain:
21 = 2" < |lzn — 2*I1* = 2engplfizn — 2™ M|zn — 2*|| + Meablen)

Iteration of this inequality from 1 to N yields:

N N

eyt =2 < fles =27 =2 cyollie; — 27|z, — =)+ MY ¢;8(c,)
j=1 i=1

As N — oc, using Condition (iv) and the fact that {f{z, — z*([} is bounded we obtain:

o0

> eelliay — 2 Ipllz; — 27l < +o0

j=1

12



which then implies (by Condition (ii) and the assumption that ||z, — z*|| — § > 0) that
lminf p{jjz; — =)= 0,
contradicting (20). So, § = 0. This completes the proof of the Theorem.

Remark 1 In [45], the authors proved Theorem 3 by using the inequality (*#) and
showed that the iteration process

Zpp1 = Tp - Cpdan,n=01,2__.

with {e,} C(0,T(z0}), Y, cn = +00, ¢, — 0 as n — oo converges strongly to the unique
solution z* of Ax = 0, where

T(zq) = min{F ¢~ (|| Azo])}/M(z0)}
M{zo} = sup{|Aul| < [l — 24| < 37" ([ Azo[)}

w is the function given in inequality (9), 7 is the largest positive real number such that

207 (|| Az}l Aol
131 Az} + 3CT

B pe(BM(xo)) € T (21)

K, = max{8, v128(V3 - 1)C}
and ' = “T:ﬁ%ﬁz?:l(l + 2%57 m¢) with rg = Jl/_—333%'18.
As has been remarked earlier, it is clear that to use the method of [45] one has to first com-

pute the infinite product 1'[ (14 315 7o). (Note that in [45] the series E (14 5 )

is written instead of the mﬁmte product. This is probably a typographlcal error. In fact,
the series does not even converge!) Then using the values of K, and C (as above) one
has to get an estimate of # from inequality {21). This inequality depends explicitly on the
modulus of smoothness of the space. This modulus is, in general, not easy to compute.
(Our method does not require the computation of any infinite product and does not depend
explicitly on the modulus of smoothness of the space.

We now present the following immediate Corollary of Theorem 3. We shall need
the following definitions:

For any z,ye € D(A), let
U(z)={ue E: |uj < '(]4zl)}

M(z) = sup{[|Au|| : Jlu = yoll £ 0™ {[i A2} + ¢ (Il Awoll)}
and let T{x,) be as defined in the proof of Theorem 3. Then we have the following
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Corollary

Let E be a real uniformly smooth Banach space, 4 - D(A)= E — E be a -
strongly quasi-accretive operator such that M{zry) < 400 for an element z4 € E. Suppose
that {c,} is a real sequence satisfying the following conditions:

(1) 0 < eq < T(zy),

(i) 5 cu= 400

n=0

(i) lim ¢, =0.
N—00

(iv) 35 ca ben) < co.
n=0

Then the steepest descent approximation

Tatl = Tn —Cnda,, n 20, (22)

converges strongly to the unigue solution of the equation 4x = 0.

Proof Let & be an element of N{A). Clearly A is quasi-accretive, satisfies inequality
(9} and consequently satisfies Condition I. It then follows as in the proof of Theorern 3
that the sequence {z,)} defined by {22} is bounded and that {|[z, — z*[|}52, converges.
(Note that the boundedness assumption on the operator 4 in Theroem 3 is needed only
in the proof of Claim 3). Now let ||z, — z*|| = & 2 0 as n — oc.

Claim. é=10 Suppose this is not the case. Let N > 0 be such that ||z; — z*| > /2
for all j > N. Then

lim inf o({lz; — ") > ¢(§/2) > 0 .

Observe that since A is -strongly quasi-accretive,

(| Ayofl - flwo ~ *|| = {Ayo — Ax™, j{yo — =) 2 wlllva — 7" Dllyo — z*|}

so that

o — 2*[| < o~ (J|Anoll)
Similarly,

leo — =l < ™" (|| Azoll}
hence,

len = yo | < flza — 2%l + llvo — 2”1 < w7 (|l Azoll) + (]l Avoll)
and hence, since M(zy) < o0, sup [[Azq}l exists. Let M* = sup |[Az 4|, and the claim

now follows as in the proof of Theorem 3, completing proof of the Coro[lary

14
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Remark 3 The above Corollary is a significant generalization of the main result of [44],
Theorem XZR, in the sense that the Corollary extends the main result of [44] from the
class of strongly accretive operators to the more general class of @-strongly quasi-accretive
maps (It suffices to define ¢ : [0,00) — {0,00) in the Corollary by @(t) = kt for each
t € [0,00)). Moreover, our proof is direct and does not involve any interpolation theory or

=

stability theory of ordinary differential equations.

We now conclude this paper with the following theorem which shows that in
the special case in which A = I — T with T a nonexpansive mapping with a nonempty
fixed point set, F(T), in a certain sense, the condition |z — Tz|| 2 g(d{z, F(T))), where
g1 [0,00) — [0, 00}, g(0) = 0, is a strictly increasing function and
d(z,F(T)) = inf {|z ~2*] : =* € F(T)} is a necessary and sufficient condition for the

convergence of the iteration process (8) to a fixed point of T

Theorem 4 Let E be a uniformly smooth banach space, let K C E be a nonempty closed
convex subset of E, and let T : ¥ — K be a quasi-nonexpansive mapping (i.e. F{T)# 0
and ||Tz — Te*)| < )Jlx —z*|| forall » € I\, »* € F(T}). Then for any initial value 24 € K,
the iteration process {8) with A = I — 7" and the real sequence {c,} satisfying:

- -

(i) 0 < cq < 1 for all n,
OO0

(it} 3 en = o0
n=0

(i) Bm ¢, =0
O

(iv) 3 enben) <0
n=0

converges strongly to a fixed point x* of T if and only if there exists a strictly increasing
function g : [0, 00) — [0, 00), g(0) = 0 such that

fzn = Tz|| 2 gld{z, F(1))), nz0.

The proof of Theroem 4 which makes use of Theorem 3 follows exactly as in {45].

Acknowledgments

The author wishes to thank Professor Abdus Salam, the International Atomic
Energy Agency and UNESCQ for hospitality at the International Centre for Theoretical
Physics, Trieste.

PR

15

10.

11.

12.

13.
14,

15.

REFERENCES

M. Bethke, “Approzimation von Fizpunkien streng pseudokontrakliver operatoren”
{Approximation of fixed points of strongly pseudocontractive operators), Math.
Naturwiss. Fak. 27, No. 2 (1989}, 263-270.

. F.E. Browder, “Nonlinear mappings of nonezpansive and aceretive type in Banach

apaces”, Bull. Amer. Math. Soc. 73 (1967), 875-882,

. F.E. Browder, “Nonlinear operators and nonlinear equations of evolution in Ba-

nach spaces” in Proc. Symyp. Pure Math., Vol. 18, Part 2, Amer. Math. Soc.,
Providence RI, 1976.

. F.E. Browder, “Nonlinear monaeione and accretive operators in Banach spaces”,

Proc. Nat. Acad. Sci. USA 61 (1568), 388-393.

. F.E. Browder and W.V. Petryshyn, "Conatructien of fized points of nonlinear

meppings in Hilbert space”, J. Math. Anal. Appl. 20 (1967}, 197-228.

. R.E. Bruck, “The iterative solution of the equation y € v + Tz for a monoione

operator T in Hilbert space”, Bull. Amer. Math. Soc. 79 (1973), 1258-1261.

. C.E. Chidume, “Iterative approzimation of fired poinis of Lipschitz strictly pseu-

docontractive mappings”, Proc. Amer. Math. Soc. 99 [1987), 283-288.

. C.E. Chidume, “The iferative solution of the equation of # + Tx for a monoione

eperator T in L? spaces”, J. Math. Anal. Appl. 116 (1986), 531-537.

. C.E. Chidume, “[terative solution of nonlinear equations of the monotone type in

Banach spaces”, Bull. Austral. Math. Soc., Vol. 42 (1990), 21-31.

C.E. Chidume, “Approzimation of fired points of stringly pseudo-contractive map-
pings”, Proc. Amer. Math. Soc. (to appear.

C.E. Chidume, “Merative solution of nonlinear equaiions with strongly accretive

operators”, ICTP Trieste, preprint 1C/91/361 (1991).

M.G. Crandall and A. Pazy, “On the range of accretive operntors”, Israel J. Math.
27 (1977), 235-246.

K. Deimling, Nonlienar Functional Analysis (Springer-Verlag, Berlin, 1983).

K. Deimling, “Zeros of accretive operators” Manuseripta Math. 13 (1974), 365-
374.

J. Diestel, Geomeiry of Banach spaces - Selected Topics, Lecture Notes in Math-
ematics 485, Springer Verlag, New York 1975.

16



16,

17.

18,

19.

20.

21

22,

23.

24,

25,

26.

27.

28.

29.

30.

W.G. Dotson, “On the Mann iteration process’, Trans. Amer. Math. Soc. 149
(1970), 65-73.

A. A. Fonarev, “The solution of nonkinear equations with monotone transforma-
tions” (Russian), Differential'nye Uravneija 14:A (1978).

S. Ishikawa, “Fized points and tteration of & nonexpansive mapping en a Banach
space”, Proc. Amer. Math. Soc. 59 (1976), 65-71.

Zon Bao Kang, “Ierative approzimation of the solution of o locally Lipschitzian
equation”, Appl. Math. Mech. (English Ed.) 12 {1991), No. 4, 409-414; trans-
lated from Appl. Math. Mech. 12 (1991}, No. 4, 385-389.

T. kato, “Nonlienar semigroups and evolution equetions”, J. Math. Soc. Japan
19 (1967), 508-520.

W.A. Kirk, Remarks on pseudocontractive mappings”, Proc. Amer. Math. Soc.
25 (1970), 820-823.

Kunkun Kiu, “Herative method for constructing zeros of accretive sets”, M.Sc.
Thesis, Xi'an Jalotong University 1984.

J. Lindenstrauss and L. Tzafriri, " Clessical Banach speces II- Function space”
{Springer-Verlag, Berlin, 1979).

C. Morales, “Surjectivity theroems for multi-velued mappings of accretive type”,
Comment. Math., Univ. Carolin. 26, 2 (1985).

R.H. Martin, “A4 global existence theorem for autonomous differential equations
in Banach spaces, Proc. Amer. Math. Soc. 26 {1970), 307-314.

G.J. Minty, Monotone (nonfinear) operators in Hilbert space, Duke Math. J. 29
(1962), 541-546.

E. Mitidieri and G. Morosaru, “Asymptotic behaviour of the solution of second
order difference equations associated to monotone operators”, (384) {1985-86),

419-434.

Q. Nevanlinna, “Global iteration schemes for monotone operaiors” Nonlinear
Anal 3 No. 4 (1979).

O. Nevanlinna and S. Reich, “Strong convergence of coniraction semigroups and
of iterative methods for eccretive operators in Banach spaces”, Israel J. Math. 32
(1979) 44-58.

M.O. Osilike, “Ishikawa and Menn steration methods for nonlinear sirongly ac-
cretive mappings”, Bull. Austral. Math. Soc., Vol. 46 (1992), 411-422.

17

31.

32,

33.

34.

35.

36.

37.

38.

39.

40,

41.

42,

43.

44.

45,

D. Pascali and S. Sharlan, “Nonlinear mappings of menotone type” Editure
Academiai Bucarestl, Romania, 1978.

S. Reich, “An iteretive pracedure for constructing zeros of accretive sets in Banach
space”, Nonlinear Anal. 2 (1978), 85-92.

5. Reich, “Constructive techniques for accretive and monotone aperators”, in Ap-
plied Nonlinear Analysis, pp. 335-345, Academic Press, New York 1979,

S. Reich, “Constructing zeros af accretive operators, I, II", Appl. Anal. 8 (1979},
349-352; Appl. Anal. 9 (1979), 159-163.

R.T. Rockajellar, “Monotone operator and the prozimal point algorithm™, SIAM
J. Control. Optim. 14, No. 5 (1976).

J. Schu, “On a thearem of C.E. Chidume concerning the iterative approziamtion
of fired points”, Math. Nachr. 153 {1991), 313-319.

J. Schu, “Herative consiruction of fized points of strictly psendocontractive map-
pings”, Applicable Analysis, Vol. 40 (1801), 67-72.

H.F. Senter and W.G. Dotson, “Appromimating fized poinis of nonezpansive map-
pings”, Proc. Amer. Math. Soc. 44 (1974}, 375-380.

V.L. Smul’yan, “On the derivative of the norm in a Banach space, Dokl. Acad,
Nauk SSSR 27 (1940), 255-258.

Yu. V. Trubnikov, “Hanner inequality and convergence of iferation procedures”,

Soviet Math. {Izvestiya) 31 (7) (1987), 74-83.

M.M. Vainberg, “On the convergence of the method of steepest desceng for non-
linear equations”, Sibirsk. Math. Z. 2 (1961}, 201-220.

M.M. Vainberg, Variational Metiod and Method of Monotone Operators in the
Theory of Nonlinear Equations, John Wiley and Sons, 1973.

Zongben Xu and G.F., Roach, “Chaeracteristic inequalitics fo uniformly convex

end uniformly smooth Benach spaces”, J. Math. Anal. Appl. 157 (1991), 189-
210.

Zongben Xu, Bo Zhang and G.F. Roach, “On the steepest descent approzimation

to solutions of nonlinear strongly accretive operator equations™ J. Comput. Math.,
Vol. 7. No. 2 (1992).

Zongben Xu and G.F. Roach, “A necessary and sufficient condition for conver-
gence of steepest descent approzimation to accretive operator equations”, J. Math.
Anal. Appl. 167 (1992), 340-354.

13




-

-

_— .

46.

47.

48,

49,

-

Xinlong Weng, Proc. Amer. Math, Soc., Vol. 11, No. 3 {1991), 727-731.

Zhao You and Zongben Xu, “A class of tteration methods for a strongly mono-
tone operator equation and epplication to finite element approzimate solution of
nonlinear elliptic boundary value problem”, J. Comput. Math. 2 (1984), 112-121,

Zhaoyong You, Zongben Xu and Kunkun Liu, The region contraction algorithm
for constructing zeros of ¢ quesi-strengly monone operator”, J. Engr. Math. 1
(1984), 11-28.

E.H. Zarantonello, “The closure of the numerical range contains the spectrum”,
Bull. Amer. Math. Soc. (N.5.) 70 {1964), 781-783.

19



