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ABSTRACT

A generalization of the 5!7{2)-spin systems on a lattice and their continuum limit to
an arbitrary compact group G is discussed. The continuum limits are, in general, non-relativistic
a-model type field theories targeted on a homogeneous space G/H, where H contains the max-
imal torus of G. In the ferromagnetic case the equations of motion derived from our continuum
Lagrangian generalize the Landau-Lifshitz equations with quadratic dispersion relation for small
wave vectors. In the antifen-omagnetic case the dispersion law is always linear in the long wave-
length limit. The models become relativistic only when G/H is a symmetric space. Also dis-
cussed are a generalization of the Holstein-Primakoff representation of the SU(N) algebra, the
topologicai term and the existence of the instanton type solutions in the continuum limit of the
antiferromagnetic systems.
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INTRODUCTION

Spin systems have been studied for many years and continue to provide new insights
into the behaviour of quantum mechanical systems with many degrees of freedom '*. In this paper
the notion of spin is generalized to include the representations of groups larger than the three-
dimensional rotation group 2).

The usual spin system is a collection of SU( 2) spin operators associated with the sites

of a lattice and coupled to their neighbours. The Hamiltonian is

1
(11)

where lattice sites are labelled by sets of integers, m, n..., and the spin operators satisfy the SU( 2)
commutation rules,

In (1.1) only quadratic terms are indicated but higher order terms could be added. Non-isotropic
versions of (1.1), in which the 517(2) symmetry is broken, may also be considered.

If the lattice is one-dimensional and ihe spin operators are represented by Pauli matrices
then the problem can be solved exactly 3). Otherwise, the rigorous results are only partial and
it becomes necessary to use approximate or numerical methods ' \ Two regimes are particularly
suitable for approximation: large spins and long wavelengths4). In the large spin or correspondence
theory limit, the spin operators are represented by unit 3-vectors,

and the system becomes classical. In the long wavelength limit the system approaches a continuum
field theory appropriate for the study of low energy excitations. When both approximations are used
in conjunction the system is described by a non-linear cr-model5),

Corrections to the correspondence theory limit can be computed in the form of a loop expansion
in which the system is represented by a so-called "quantum" non-linear a-model. It is widely
believed that the quantum non-linear a-model provides an accurate description of the long wave-
length, low energy properties of the spin system, even in the small spin regime 6).

A primary goal in the investigation of spin systems is to find indications of phase transi-
tions and critical behaviour. Thus, at sufficiently low temperatures, it may be asked, is there long
range order? Does one find spontaneous magnetization in the ground state? In the classical regime
this is certainly true but, when quantum effects are taken into account the ground state may well be



disordered. For example, it is known that for the one-dimensional ( D = 1) system there is no long

range order in the ground state. On the other hand, for D = 3 there can be long range (antiferro-

magnetic) order. This order is destroyed at some finite critical temperature. For D = 2 ihe ground

state has been shown to exhibit long range antiferromagnetic order for a > 1 but the situation for

3=1/2 is not clear, at least in the isotropic models. Although there cannot beany long range order

for D = 2 at finite temperature, it is interesting to consider the behaviour of the correlation length

as the temperature goes to zero. Using renormalizaiion group methods it is possible to distinguish

two regimes according to the coupling strength 6). If ihe coupling exceeds a certain critical value

then the correlation length remains finite for T -» 0 , indicating a disordered ground state, if the

coupling is less than ihe critical value then the correlation length diverges exponentially, indicating

long range order in the ground state 7 ) .

Most of the work in this field is concerned with the 517(2) spin models since it is phys-

ically motivated. Our aim here is to extend some of these ideas to "spin" systems based on an

arbitrary Lie group. Instead of associating SU( 2) generators with the sites of a lattice we shall

use the generators from any classical Lie algebra. We shall not attempt to generalize any of the

rigorous theorems from the SU(2) literature. Rather, our purpose at this stage is to develop gen-

eral formalism for treating the long wavelength and correspondence theory limits. Our view is that

while such models may not have any immediate physical application, they may eventually serve to

caste some light on general features of the SU( 2) models by placing them in a broader context.

From a mathematical point of view the generalized models are interesting in themselves.

In going 10 groups of rank > 1 the structure becomes much richer. For instance, one may contem-

plate new varieties of long range order, beyond the familiar ferromagnetic and antiferromagnetic.

The SU( 3) analogue of the s = 1/2, SU(2) system would employ the triplets 3 and 3*. In the

ground state one might expect to find an orderly arrangement of these states on the lattice. On

the other hand, the large quantum number or correspondence limit will lead to a-models on one

or other of the manifolds, 5(7(3) /SU( 2) x U( l ) ,5C/ (3) / [ / ( 1) x [ / ( l ) , e t c . depending on the

ground stale.

To generalize the well-known SU{ 2) spin wave formalism it is necessary first of all to

generalize the Holstein-Primakoff representation of spin matrices. The approach followed here

start;, from the coherent state method used by Haldane 8) which is easy to generalize. In this

mctho'l, the finite dimensional vector spaces on which the spin matrices act are provided with

an over-complete basis labelled by coordinates on a coset space. Transition amplitudes in this ba-

sis are represented by path integrals whose meaning becomes unambiguous in the limit of large

quantum numbers, and which can be used to extract a correspondence limit Lagrangian. In prin-

ciple it would also be possible to use this Lagrangian in the sub-correspondence regime, applying

canonical quantization procedures to find corrections. However, the underlying path integral is

subject to ordering ambiguities which make the passage to quantum theory less straightforward.

This problem is solved, at least in the examples we have examined, by extrapolating directly from

the coherent basis expectation values of the generators to operator expressions whose correctness

3

is then verified by using the canonical commutation rules. The procedure will be illustrated in

Sec.6 for the case of CPN where a realization of the Holstein-Primakoff type is obtained for the

generators of SU( N + 1).

At the classical level, where ordering problems are suppressed, it is possible to give an

explicit expression for the Lagrangian. The dynamical variables in terms of which it is expressed

can be interpreted as coordinates on a coset space, G/H, where H includes the Cartan subgroup

or maximal torus of G. If H is precisely ihe Cartan subgroup then G/H is a flag manifold. The

detailed structure of the Lagrangian depends on the coherent stale basis from which one starts. This

basis is generated by applying finite transformations, L+, belonging to the group G, to some chosen

reference state, |A >,

\4>> = L t \ \ >, L^eG -

The stability group, H, is defined as the set of transformations which leave the reference state

invariant, up to a phase

h\A > = |A > e1 he H CG.

The coordinates 4^, (i = 1,2, ..,dim G/H, may be chosen in any convenient way to parametrize

representatives, L^, from the cosets G/H. The Cartan components of the spin connection on G/H

are defined by the 1-fonn

T

where the operators Hj are generators of the Cartan algebra. These are among the generators of

the stability group, H, and their eigenvalues serve to label the reference state,

H/\A >= [A > A, .

The coherent basis system is established at each site on the lattice and their direct products

define an over-complete basis for the Hilbert space of the model. It wi!l be shown in Sec.2 that the

correspondence limit Lagrangian takes the form

(1-2)

where

and

where the functions Qa( <j>) are defined as coherent state expectation values of the generators of G,



Generalized spin waves are obtained by examining weak excitations of ihe system de-

scribed by (1.2). These are defined, at the classical level, when the coherent state at each site on

the lattice is close to its reference value. If the Lagrangian is translation invariant then the usual

Fourier techniques can be used to extract the spectrum. Some examples of this will be given in

Sec.3 where the question of classical stability is considered.

Still at the classical level, it is straightforward to make the restriction to long wavelength

confi durations, turning the lattice model into a continuum field theory. What emerges is a kind of

non-linear a-model with fields targeted on the coset space, G/H. The Lagrangian will be first

order in the time derivative but second (and higher) order in the space derivatives. However, if the

(classical) ground state is "antiferromagneiic" in the sense that the reference state weights, A^,,

alternate in sign across the kttice, then some of the dynamical variables are algebraic and can be

eliminated to give a Lagrangian which is second order in the time derivative. This Lagrangian is

generally non-relativsstic, even when higher order space derivatives are neglected, unless G/H

happens to be a symmetric space. This will be discussed in Sec.4.

In passing from the lattice to the continuum description, a term appears in the Lagrangian

density (for the antiferromagnetic case) which is a total derivative. Such a term has no relevance at

Ihe classical level since it makes no contribution to the equations of motion. It is only an artefact of

the method and may be safely discarded. In the quantized continuum theory, on the other hand, such

a term may not be negligible. If it makes a finite contribution to the action functional then it will

affect the sum over configurations. Since our discussion, in Sec.4, of the passage to the continuum

theory is couched in classical terms - the factor ordering question is ignored - we cannot determine

whether such terms are actually needed for the long wavelength description of spin systems at the

quantum level. Haldane observed this term in his treatment of SU( 2) spin systems in one space

dimension ( D = 1) and he noted that it has a topological interpretation, giving an alternating sign

factor in the sum over configurations when the spin is a half-integer 9 ) '2 ) . Within the limits of our

discussion we have confirmed that this effect persists in the generalized antiferromagnetic D = 1

spin systems. (For D > 1 our total derivative term does not seem to have a topogical significance

and should therefore probably be suppressed in the quantum theory 10).) Topological aspects of the

D = 1 systems are discussed in Sec.5 where first order equations for generalized instantons are

derived.

The classical non-linear cr-models obtained by this approach can be quantized in the

usual way. It is not at all obvious that such quantum non-linear a-models have much relevance to

the original spin problem but, as mentioned above, there is a common belief in the SU( 2) case that

they are good for describing the long wavelength, low energy features of the spin problem. Some

support for this view may perhaps derive from the standard treatment of quantized cr-models by

dimensional regularizaiion. In such treatments it is prescribed that quantum corrections associated

with factor ordering should be discarded. Recall that it is precisely these ordering contributions -

defined by the Holstein-Primakoff operator valued expressions for the generators Qa( <t>n) - which

distinguish the sub-correspondence regime on the lattice. If they are indeed not relevant in the

continuum limit then the quantum non-linear tj-model should be appropriate for the long wave

behaviour of the lattice model.

Finally, it may be remarked that (he loop expansions of the quantized theory comprise

quantum corrections to the classical spin wave amplitudes. Since both A^fi) and Qa(<j>) in (1.2)

are linear in the weights, A;, it is clear that the loop expansions can be read as expansions in powers

of 1 /A if the couplings Jmr. are redefined to absorb one power of A , J m n = J'mJS. . With this

interpretation, the classical theory emerges when A —> oo. This is what is meant by the expression,

large quantum number or correspondence limit.

2. THE SEMICLASSICAL REGIME

Our purpose is to discuss the large quantum number, or correspondence limit of gen-

eralized spin systems. Typically, the Hamiltonian is given as a sum of terms in which operators

associated with sites on a lattice are coupled,

H = — > /„£ Q i ' U . +• • • l^ -U

where m, n,... label the sites and the coefficients J^i are coupling parameters. The matrices Q[m}

are generators of some representation of a Lie group, G. They satisfy the commutation rules

The couplings are assumed to be G-invariant, i.e. proportional to the Killing metric,

and also translation invariant,

;ofl = Jmn j " ^

Jmn ~

(2.2)

(2.3)

(2.4)

Higher order and/or non-invariant coupling terms could be included in the Hamiltonian (2.1) but

we shall not consider such possibilities.

We are not looking for exact solutions. Following Affleck 2 \ ou: aim is to find a La-

gr. ngian description which can be used for semi-classical approximations, generalized spin waves,

and which leads to various a-model type theories in the continuum limit. Our approach is to gen-

eralize the method used by Haldane 3 ) . As outlined in Seel this involves the introduction of an

over-complete basis of coherent states in the finite dimensional vector space on which the Qa act,

followed by the construction of a path integral representation for transition amplitudes in the co-

herent basis. In the SU1.2) case the coherent states in question are associated with the points of the

manifold SU(2)/U{ 1) and they describe the orientation of the spin vector in the correspondence

theory limit. This picture generalizes easily to the cosets G/H.



Let G be a Lie group and H one of its subgroups. We are interested in those subgroups

which include at least the Cartan subgroup (maximal Abelian subgroup). If H is precisely the

Cartan subgroup then G/H is a flag manifold, but we may consider larger, non-Abelian subgroups

so that G/H becomes a subspace of she flag manifold.

Suppose that G is decomposed into left cosets with respect 10 the subgroup, H. From

each coset one can choose a representive element L$ E G where $ = {<^} labels a point on the

manifold G/H. This m?Hns that, for arbitrary g <LG, there is a map

defined by

gLt = L?h (2.5)

where h = h(cj>,g) e H. The detailed form of the functions <j>'(<j>,g) and h{<j>, g) depends on the

choice of representative elements, L+.

In the vector space that carries one of the irreducible representations of G, choose one

vector, |A >, that is invariant, up to a phase, under the action of H,

h\\ > = jA
(2.6)

This vector will be referred 10 as the "reference state". Now, corresponding to the points <frEG/H,
define the coherent slates,

\$ > = L$ |A > . (2.7)

Under the action of G these states are transformed according to

g\<k> = \4>' > ef*(l>) (2.8)

where 0' and h are determined by (2.5).

The coherent states can be expanded in an onhonormal basis,

1̂  > = ^2 |̂  > < \\L$\A > (2.9)
x

and it is possible to project the onhonormal basis vectors from the coherent states by integrating
over the coset manifold,

|A > = / d^(<f>) \tj> > < A | L 7 | ^ > (2.10)

where dp is a suitably normalized G-invariant measure on G/H. The coherent states therefore

constitute an over-complete basis.

Of particular interest is the overlap between neighbouring states,

= < A \L^l^ L* |A >

= A |(1 -I'' dL^A >

= l + ̂ A y (2.11)

where the 1-forms, J4 ; = d<M" A^i 4>), are the Cartan components of the spin connection on G/H.

To obtain this we have expanded the Maurer-Cartan form in a basis of the Lie algebra of G.

e" Qa

-A! Hj + e" Q-a + e* Qa

where the operators Qa satisfy the commutation rules

(2.12)

(2.13)

The generators of the Cartan algebra are denoted, Hj. These operaiors are all in the algebra of H

together (in general) with non-Abelian elements, Q a . The remaining generators are denoted by

Qa. Their coefficient 1-fonns, e", in the Maurer-Cartan form define the frames on G/H. The

requirement (2.6) that |A > be invariant, up to a phase, under the action of H means

Hj |A > = |A > A,

Qc, \A > = 0 . (2.14)

The operators Q& belong to some representation of H. This representation is often reducible

but it cannot contain any components that are neutral with respect to the Cartan algebra. Hence

< A|Q a |A > = 0 and the result (2.11) follows.

The infinitesimal formula (2.11) can be integrated to obtain a path integral representation

for the finite overlap. To do this one makes repeated use of the completeness condition (2.10) or

•I (2.15)

Thus, one writes firstly

= / <4>N\4>N-\>

where <j>N = 4>' and 4><i = <t>- The intermediate points, ^ ^ _ ] , 0 ^ - z , ••• ,<Pi are integrated over

G/H. In the limit N —» oo this gives rise in the usual formal way to a path integral over configu-

rations 0 ( ( ) . T h e factors in the integrand are given by (2.11),

to rir; i order in dt. Hence, the finite overlap is

< 4>'\4> > (2.16)



Finally, ihe coherent state transition amplitudes are represented by the path integrals

T I dtL) (2.17)

where the Lagrangian is given by

L= — i" A^it) Aj — Hi<p) . (2.18)

The classii -il Hamiltonian, H(<£), is defined by the diagonal elements of H in the coherent basis,

Hit) =<<t>\H\t> . (2.19)

The Euler Lagrange equations deriving from (2.18) take the form

h . „,• ;„ dH
(2.20)

where = d^ A>u - du 1 are the Cartan components of the curvature tensor on G/H.

The path integral representation (2.17) is of course only formal. To give it a precise

meaning one must apply canonical quantization methods to the classical Lagrangian (2.18) and in-

vent a suitable prescription for interpreting the ambiguous factor ordering in H(4>). The canonical

momenta are define by

dL

h_
i

( 2 2 1 )

To proceed further with this it wilt be necessary to choose some parametrization of G/H and obtain

explicit formulae for the components A'^. Once the commutation rules have been determined for

the 0", it becomes possible to consider the structure of Hi 4>) • For the systems we are concerned

with, the Hamiltonian is given as a polynomial in the generators Qa. This means that the classical

Hamiltonian will be expressed in terms of the functions

Qa(<t>) =<4>\Qa\<P>

These functions are unambiguous at the classical level but when the dynamical variables i

quantized it is necessary to determine the factor ordering such that the algebra is realized.

(2.22)

This is precisely the problem solved by Holstein and Primakoff n ) for the case of SUi 2). In Sec.6

we shall give a generaliza:;on for the case of SU( N + 1) with coordinates ^ on C P N . There it

wil! be verified that the ^-commutators vanish like 1 /A in the limit A —> oo (see Eq.(6.10)). But

first we shall continue with the classical approximation (i.e. the large quantum number limit).

3. WEAK EXCITATrONS AND CLASSICAL STABILITY

Suppose that the Hamiltonian for the generalized spin system on a lattice is given as a

sum over pairs of sites, etc., as described in S e e l . In the classical approximation,

(3.1)

where ga& is the Killing metric and the functions Qa{<j>) are denned by (2.22). It is convenient

to express these functions in terms of matrix elements of L^ in the adjoint representation. These

matrices, Da &, are defined by

If follows from the definition (2,7) of the coherent states that

Qa(4>) = < A | Z , ^ ' QaL4, |A

Hence (3.1) takes the form

H(4>) = 1 :

where the invariance of the metric has been used,

g^ Da
!(L) =g'a

(32 )

(3.3)

The indices ; , k refer to components in the Cartan algebra, and we take a basis such that the metric

tensor is block diagonal.

Since the coset manifold is homogeneous, no generality is lost by assuming that tj>a be-

comes independent if n in tnc ground state, i.e.

71

With this convention the ground state value of the Hamiltonian (3.3) reduces to

>= j

(3.4)

(3.5)

10
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Minimization of this expression must be our guide in choosing the weights An thai define the ground

state configuration. To be more specific, we shall suppose that the pattern of weights takes the form

of a finite number of translation invariant sublattices. Write the variables in the form

{*-} = {*a»} (3.6)

where n = (ni, m,,.., no) is a D-vector with integer components and u = 1 , . . . , / indicates

the subiattice. The weights are independent of 71,

A™ = A_ .

The .ranslation invariant coupling parameters J7SJ1^ depend on ra — n. The ground state energy

per cell is then given by

— 2 J Jru-.oi/ K • A,,'. (3.7)

and, in the adjoint representation,

To minimize the ground state energy density in, for example, a one-dimensional system

with nearest neighbour couplings one should choose Ar • Anti to be positive (negative) if /«,«•!

is negative (positive). In this way one is led to the most obvious generalizations of ferromagnetic

(antiferromagnetic) order. In more than one dimension there are new possibilities. For example, in

two dimensions with a triangular lattice each site has six nearest neighbours. If all nearest neigh-

bours are coupled with the same positive strength then one can make an ordered ground state with

three distinct sublattices such that the energy density is

J (Ai A 2 + A2 A3 -t- A3 Ai ) = — I (A] + Aj •+ A3) — A^ — A2 — A3 j .

Hence the configuration with Ai + A2 + A3 = 0 would be favoured. Such a generalized "antifer-

romagnet" becomes a possibility in the SU( 3) models.

To test the stability of conjectured ground state configurations one can compute the energy

associated with weak perturbations and find the excitation spectrum. Write

d) n
 = (b "f" A G) n ( 3 . 0 /

where <j> is a constant and A$n is small. Substitute into (3.3) and collect the bilinear terms. To

carry out this computation we need the formula

- ' d,, L + j A <t>" A 4," t - 1 a^ft, L +• . . .

Qa + i " Qa + eM <" e , / Qa Q0)

which derives from (2.12). Hence,

With this approximation the Hamiltonian (3-3) takes the form

where k^ is a symmetric G-invariant tensor on G/H defined by

(3.9)

( 3 1 0 )

The ground state will be stable against weak classical perturbations if the matrix, Jmn fc™, is

positive. To examine this question it is helpful to express the algebra of G in the Cartan-Weyl

basis with generators Hj and Ea, where a denotes a root. The commutation rules include

\HJtE±a\ =±ctjE±a,

[Eo,E^a] =a>' H,

Since we are dealing with unitary representations we can choose the basis such that

Hj * = Hj and Ea
 + = £ _ a .

The root vectors are then real. However, it is important to remark that since L~' dL is antihermitian,

the frame components in tî r; Cartan-Weyl basis must satisfy

The tensor (3.10) reduces in this basis to a sum over roots,

Therefore,

(3.11)

It follows that the conjectured ground state will be stable if the matrix, /mT1 Am; A,^, is negative

definite. This is a sufficient condition. It would be straightforward in principle to sharpen this

criterion for a specific model but it would not be very useful to pursue the question in generality.

We conclude this discussion with brief remarks about the excitation spectrum. To sim-

plify the notation define the frame components of the weak fluctuations,

A (bn ^ Pix a = l^ a ~ " ( V'TT™) • ( 3 . 1 2 )

1! 12



In terms of these variables the bilinear part of the Hamiltonian (2,31) becomes

- -I W A W « _ / ° l 2

ill - — / / ., ' • " n • <* a • A n |i/in ^ r a |
(313)

where the sum is restricted to positive roots. With the translation invariant background, described

above, comprising a finite number of sublattices, {n} = {n, v), it is natural to use Fourier series.

Define the Fourier components,

to = E *l> e~-
n

(3.14)

where the integration ranges over a cell of volume ( 2 T T ) D . The Hamiltonian (3.13) then takes the

form

1 ^

• Jnugi/ A , - O I Q ' A ,

r / J L \ D

/U~ ) WC(t)W(fl' (3.15)

Stability requires that she matrix, //"„,( fc), should be positive definite for each root.

To obtain the frequency spectrum it is necessary to extract the bilinear part of the La-

grangian (2.18),

Substituting (3.8) and discarding a tota' derivative gives

(3.16)

To obtain this expression we have used the Maurer-Cartan expression for the curvature tensor,

13

In the Cartan—Weyl basis this gives

(3.17)

The linearized equations of motion are easily obtained,

- a • A, -r dt

The frequencies are therefore given by the zeroes of the determinant

det (a • Au 6UI/ hui - H (3.18)

To illustrate, we consider the one-dimensional chain with nearest neighb< ur coupling

where there are two familiar cases, ferromagnetic and antiferromagnetic, for which the spectrum is

easily obtained.

(a) Ferromagnetic ground stale {J < 0)

In this case we have a simple lattice with A independent of n. The fluctuation Hamilto-

nian (3.13) takes the form

a>0
E d i 2

i.e.

so that

Ha(k) = -4J(a-A)2sin2 / t /2

hw = -4 7 a • A sin2 k/2

(3.19)

(3.20)

The sign of ui is not significant. If a • A < 0 we can interpret ip" as the creation operator and ifr~a

as the annihilation operator for an excitation of energy h |u| .

(b) Antiferromagnetic ground state ( / > 0)

In this case we have two sublattices with Ai = A = — A2. The Hamiltonian (3.13) now

takes the form

= J

a>0

14



- * . * (

The secular determinant (3.18) is

det

so that

- 2 / ( a A ) 2 2/(a.A)2e-*''3cosfc/2

2 / ( Q A ) 2 e'^1 cask/2 -a - A hui-2J{aA)1

= (a • A)2 ( - fcV + 4 J 2 ( a . A)2 sin2 fc/2)

fcw = ± 27(0- A) sin it/2 .

( 3 2 1 )

(3.22)

In contrast to the ferromagnetic case (3.20), the spectrum is linear in k near k = 0 . For symmetric

spaces ! ikeSI / (A r + M)/SU(N) x SU(M) x t / ( l ) , i t c a n be shown that a A is independent

of a and hence, so are the frequencies. The spectrum is relativistic for small k. In this case the

corresponding low energy field theory will turn out to be the well known relativistic non-linear

a-model targeted on the appropriate symmetric space.

4. THE CONTINUUM LIMIT

To extract a continuum description of the long wavelength behaviour of the system one

supposes that the dynamical variables are slowly varying across the latrice,

In the correspondence theory limii this means

Qa{K)Qa(4>«)m\!nDl
ki

where k^ is the tensor introduced above.

(4.1)

^1T($) - 2_j ev **($) ef a("A) Chm • a){a • An) .
roots

The idea is to express quantities like H(0) as functionals of smooth interpolating fields,

W i ) , . . . ) (4.2)

15

iJIt.^j^ ^^ a.

defining thereby a Hamiltonian density. Since the interpolating fields are supposed to be slowly

varying one aims to find the leading terms in an expansion in powers of d<j>, d2 ij>, etc. The lattice

sums one meets are usually simple enough thai this expansion can be found by inspection. How-

ever, it is probably worth (jointing out that there is a systematic procedure that employs Fourier

expansions. The lattice variables, 4>n may be represented by Fourier integrals,

T.) X*""* (4.3)

where the wave vectors are integrated over a cell of volume (2 J I ) D . The Fourier components

are periodic in k_ with period 2 IT. The Hamiltonian may be regarded as a functional of 0, e.g.

1
(4.4)

where the coefficient functions, HN, are of course periodic in the wave vectors lt_l, k2, - • - kK. If

<j>n is slowly varying then 4>{k) is non-vanishing only in the neighbourhood of k = 0 (mod 2 7 T ) .

In this case it is therefore legitimate to expand the coefficient functions in powers of k_lt.. .,kN,

e.g.

. * w ) = ( 2 T T ) D

The periodicity in k is now irrelevant and one may substitute

= [dDze'z^i

Define the interpolating fields <j>i x) by the continuum Fourier integral,

^ 0(4) e*V

One then obtains H(<j>) in the form (4.2) with

(4.5)

(4.6)

In the following WL: shall discard terms containing more than two derivatives of the in-

terpolating fields. Since the expression (4.1) is bilinear in 4>m — <Pn it will be sufficient to keep only

the first derivative in this quantity. However, a minor complication arises from the need to keep

track of the various translation invariant sublattices. We write

I 1 , c

Ptiu = Pn + tri (4.7)
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where ri is a D-vec to r with integer—valued components and v = 1 , . . . , / labels the sublattice. The

variables £„„ are constrained to satisfy

E (4.8)

and they are small quantitieb of order, <£„ - tfr^. Hence, to leading order,

which is to be substituted into the formula for the Hamiltonian,

Using the translation invariance of Jn^nV, one obtains the density,

(4.9)

(4.10)

It is generally assumed that the coupling strengths fall off rapidly with distance between sites so

that the sum over n in this expression contains only a few terms. Defining the moments,

a

(4,11)

one obtains

H-

\{lt ft** 9;*' + 2 Jj»' 9»
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(4.12)

Although this general result may look rather forbidding, it can simplify in specific applications.

For example, if the couplings are isotropic and / ' = 0 , Jl> ~ &'1. In the ferromagnetic case there

are no sublattices so the variables £„ disappear along with the label, u. In the antiferromagnetic

case there are usually only two sublattices and £2 = —£1. A-2 = —Ai and, moreover, one usually

assumes Ju = J22 = 0 , etc.

To complete the discussion of the continuum limit, it is necessary to consider the kinetic

term,

(4.13)

where An is the spin connection oaQ/H. Substituting the expression (4.7) for 0 a „ and expanding

in powers of f, one obtains after discarding a total derivative,

it

where Ap = A}
9 Au;- and Fpx is the corresponding curvature tensor.

In the ferromagnetic case there is nothing further to do. Only the first term in (4.14) is

present and the equations of motion will imply $/rj> ~ O(kl) to the approximation used in (4.12).

In other cases, if we impose the condition,

E A» = ° •

ihen the first erm in (4.14) is absent and the most important term becomes

(4.15)

(4.16)

Here the equations of motion imply that both tj>/<j> and £„ are O{ k). It is therefore consistent in this

approximation to discard all other terms in (4.14). Notice, in particular, that („ disappears from

the Lagrangian. This means that £„ becomes an algebraic variable and can be eliminated from the

dynamics *).

To conclude, the Lagrangian for the ferromagnetic spin waves is given by

f n \h 1 ;. 1
J [i " 4 j

where Au = A>, At and

If the condition (4.15) is not imposed then £„ becomes a true dynamical variable associated with

optical branches in the spectrum, i.e. j / f remains finite in the limit k —> 0 .
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The tensor J1 ' is assumed to be negative definite.

The equations of motion derived from (4.17) are generalizalions of the well known Landau-
Lifshitz 13) equations for ferromagnetic spin waves. They are

MU A 4,"

where we have assumed an isotropic coupling, i.e.

J'j = J 6i! J < 0

and where the "Laplacian" is given by

df <t>"+ k-" (d k + dA V = df - dp d.

It is not difficult to verify that for G/H = SU(2)/U( 1) these equations assume their familiar
form 13)

h d, n = -— s nxV, n

where s is the spin and n is a unit vector describing the target space S2 •

For the amiferromageniic case (with two sublattices),

A, = A = -A2

Z i = ( = - 6
the Lagrangian is given by

L = jdPx ^it'F^dtP-

- (r> d,r d,<t>u + 4 J1 3,^" C + 4 J f f ) *,„(*) (4.18)

where, for simplicity, we have taken J\{ = j£ = 0 and we have suppressed the sublattice indices,
writing

and

(4.19)

The tensor / ' ; is assumed to be positive definite. The auxiliary variable f can be eliminated from
(4.18) by solving the Euler Lagrange equation 8L/6£* = 0,
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This gives

L = j dDz \^j -. j

where the tensor g^fy) ' s defined by

(4.20)

(4.21)

(The formulae (4.19) and (3.17) have been used.) The tensorg^ is G-invariant and positive defi-
nite.

For symmetric spaces there is a unique C-invariant second rank symmetric tensor on
01H implying that

k^('t') = v1 g „„(<!>)

when v is independent of <l>. If in addition we also have invariance under space rotations, then

J'J1

•6"

and the theory becomes fully relativistic. This obtains automatically for D = 1 for which we

recover the well known two-dimensional tr-models targeted on symmetric spaces.

The Lagrangian (4.20) gives a sensible description of antiferromagnetic spin waves if

J > 0 , Ji>-J-1L>Q (4.22)

The middle term in (4.20),

y P.* dtf (4.23)

is j f a topological nature, li makes no contribution to the classical equations of motion. Indeed,

it can be expressed as a total derivative. The integral of this quantity over a spacetime region, M,

reduces to a boundary integral,

- ~ f dtdDx d
1 J J«

(4.24)

If M is a compact two-dimensional manifold this integral is a topological invariant - an integer

multiple of 2n/i for the 2-sphere as will be shown in the following section. In general the integral
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(4.24) has no topological significance. For compact manifolds of higher dimension it has been

argued that this term should vanish 10).

It was shown by HaSdane, who discovered the term in the case of a one-dimensional

antiferromagnetic spin system with nearest neighbour couplings, that the topological contribution

gives an alternating sign in the sum over configurations for half-integer spin systems **. In the

following we consider some classical aspects of the one-dimensional case.

5. INSTANTONS

The continuum theory that emerges from the one-dimensional antiferromagnetic chain

is described by a Lagrangian of the type (4.20). Consider now the Euclidean version of this theory.

The Lagrangian density is

1

47
J' (5 1)

where we take h = 1 and discard the topological term. The tensors g^ and k^, given by (4.21)
and (4.19), respectively, are positive definite and we shall assume that J and J' are positive.

There is a simple argument that suggests the possible existence of finite action solutions

of the equations of motion, i.e. the instantons. Consider the expressions

where

~ ± 2 I

- r
i

± li

(5.2)

TDCtS

a • A (5.3)

In a busis of real coordinates the components F^ are pure imaginary. Hence the expresssions (5.2)

are real and positive, i.e.

J_
4 / 9>

21

This means that the Euclidean action has a lower bound,

f Sx f

>

J'

(5.4)

It remains to determine whether there are configurations for which the integral on the right-hand

side is finite.

Suppose that the two-dimensional Euclidean spacetime has the topology of a sphere.

The coordinate functions, ^(x), define the image of this sphere in the manifold, GjH. It is not

difficult to see that such maps have a topological classification, The manifold is generally covered

by more than one coordinate patch. If the coordinates in two patches that intersect are associated

with the group elements L^ and Li2 ' , as described above in Sec.2, then at points in the overlap

there is a relation,

Lf = L™h"*W (5.5)

whereh ( 1-y £ H. Only the Abelian pan of /i ( l i 2 > is of interest because this is what determines the

relation between A'{<j>) in the two patches. With

it follows from the definition (2,12) that

A'm =

(5.6)

(5.7)

If the overlap between the two patches is not simply connected then the angles \j>'( tj>) can be mul-

tiple valued, i.e.

= I
where the integral is taken around a closed path in the overlap. However, it is essential that the
group element/i(1>2) be single valued and this implies

Aj G 2 irZ . (5.8)

On the other hand, the flux of F' A; associated with a compact 2-space must reduce to a sum of

such terms. With the 2-sphere suppose that the northern hemisphere maps into patch 1 while the

southern maps into patch 2. Then the flux is given by

f F> \j = f dA' A;-

(5.9)
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«*mm'- •-' •*m * • # •

where the contour runs around the image of the equator. The flux is an integer multiple of 2 wi. This
integer, N, serves to classify the configurations and, in each class the Euclidean action is bounded
below by \2i\Ns/IrTj\.

To saturate the bound one needs to solve the first order differential equations,

g^ dtV + 2 iv /77 7 Fw dx<j>" = 0

or, more explicitly,

The solutions of these equations comprise the instantons. If G/H is a complex symmetric space it
can be shown thai Eq.(5.10) reduces to the well studied case l2)

di C = 0

where z is a complex coordinate in the 2-dimensional Euclidean spacetime and ( C O ls a s e t °f
complex coordinates on the target space G/H.

Returning to Haldane's observation, it will be seen that our result (4.20) appears to differ
in some respects. The Euclidean version of (4.20) with topological term included is

(5.11)

where we have again set h = 1. The coefficients J, J* and J" are given in terms of the spin
couplings, Jw.jia'. by 'he lattice sums (4.11). In particular,

J ~ a n d (5.12)

Due to the presence of the topological term the Euclidean action contains the imaginary contribution

2niN Jx/J

where N is the instanton number. Haldane's result, obtained for SU{2) spin models with nearest
neighbour couplings, is simply ii\N. In fact, this result does agree with ours since it can be shown
quite generally that Jx = J/2. The relevant coupling parameters are

= ./n+2,l;n2 =

3,l,n2 = K5 , (5.13)
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etc., corresponding to nearest, third nearest, fifth nearest,. . . neighbours on the lattice. Substituting

into (5.12) gives

J1 =

which confirms Haldane's result in the more general context.

(5 14)

To summarize, the Euclidean path integral for the generalized antiferromagnetic spin
chains includes the sign factor, e"1", where N is an integer defined by the flux integral,

= NjA>. (5.15)

The weights A'' = g'k Ak are integers for any finite dimensional unitary representation of G. The
coefficients, Nj are integers that characterize the configuration, fix). Models in which the A ' are
all even wilt not be sensitive to the classes of configurations-like the integer spin SU(2) models.
Other models, in which one or more of the A> are odd, will be sensitive - they must generalize, in
various ways, the half-integer spin SU{2) models.

6. OPERATOR REALIZATION FOR SU{N + 1)

To resolve the factor ordering ambiguities in the quantized theory it is necessary to con-
struct a realization of the generators Qa{ <j>) in terms of the dynamical variables <£„. The details of
such a realization will depend on the nature of the targei manifold G/H and the quantum numbers
of the reference state, |A >. We are not able to give a general solution but we can illustrate a
method which works in at least some cases. Here we discuss the realization of SU{N + 1) in terms
of operators associated with the coordinates of CPN•

The algebra of SU(N + 1) is spanned by the N(N + 2) generators, QA
 a

tA,B =
1,2,... ,N + 1, which satisfy the commutation rules

and the constraint, QA
 A = 0. The fundamental representation of this algebra is generated by the

(N + l)-dimensional traceless hermitian matrices,

(QAB)CD = &A&C-
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We shall consider cosets of SU(N + 1) with respect to the subgroup SU(N) x U{ 1)

generated by the N2 operators, Q, ' , i,j = 1 , . . . , N. The finite transformations, Lt, that represent

the cosets can be chosen such that, in the fundamental representation.

(6.3)

where <j> is an N-component column vector. The coordinates, 4>i, ° " the manifold, €.PN, belong to

the fundamental representation of SU(N). It is not difficult to verify that the matrix (6.3) is both

unitary and unimodular.

According to the general discussion of Sec.2, the reference state, |A >, from which the

coherent states are generated, must be invariant up to a phase under the action of the stability group,

SU(N) x U( 1). In particular, it must be a singlet ofSU(N). We are therefore restricted to those

representations of SU{N + 1) which contain such a singSet. In terms of Young tableaux these

representations {ni, nj) are characterized by m columns with JV boxes and n2 columns with 1

box. Each of these representations contains just one singlet of SU(N). We shall find that the

realizations to be obtained depend on n\ — m, only.

The Cartan subalgebraof SU( JV+1) is spanned by the JV elements, Q\ ' , Q2
 2,..., QN

 N,

whose eigenvalues define the components of the weight vectors

f V | A > = |A > A,, ; = 1,... ,JV.

Since the reference state is a singlet of SU(N) these components are al! equal

A[ = A2 = . . . = A

It is convenient to define the hypercharge operator

(6.4)

(6.5)

to stani for the SU( N) singlet generator. In the fundamental representation it is a diagonal matrix,

1/(JV+ 1)

The value of the hyperclic.-ge in the reference state is given by

N/(N+ 1).

(6.6)

Y\A > = ^ ^ Qj1' IA > = -JVA|A
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On the other hand, since this state is ihe singlet component of a representation contained in the

direct product of nz fundamental representations and m conjugates, it follows that

JV"

N+ 1

or
A = ni - B 2

N + 1
(6.7)

The [/(l)-component of the spin connection on CPN is defined by

Z,;1 dLt~\AY + ...

With the parametrization chosen in (6.3) this gives

(6.8)

The overlap between neigithouring coherent states is therefore,

= \~iA < A\Y\\

1 (Ar

where A is given by (6.7). Hence the Lagrangian (2.18) in this case takes the form

2 i

Canonical quantization gives the commutation rules

(6,9)

IO;I = O (6.10)

where (AT + 1) A is an integer.

To construct the generators out of these operators it is helpful to consider firstly their

coherent state expectation values,

< 4 > \ Q A B \ 4 > > =<A\Lj QA
B L*\A>

< A | Q C
D | A > ( L ; 1 ) D

R
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where Y is the hypercharge matrix in the fundamental representation (6.6). Wilh the matrices

( L^A H given by (6.3) one obtains,

\ QA " |
A - ( J V + 1)A 4><j,+ -(N +

(6.11)

using ihe elementary identities

and

The classical expressions on the right-hand side of (6.11) suggest ihe following operator realization
for A < 0,

=A&>-(N+ 1)A <$

= ( A - \)&{-(N+

Q, w + 1 (

DA 0
1

(JV+ 1)A

-(/V+ 1)A

-/VA + (JV +

1

(JV + 1)A

(6.12)

It is easy to verify, using the commutation rules (6.10) that these operators satisfy the algebra of

SU( N + 1). The reference state is annihilated by </>,. The basis for a finite dimensional unitary

representation of SU(N + 1) is given by

where p = -(JV + 1) A = n2 - m is a positive integer. The rest of the Fock space, spanned

by vectors with p + l , p + 2 , , . . creation operators, carries a non-unitary infinite dimensional

representation of SU( N + 1) •

Similarly, for A > 0 the operator realization is given by

A &{ - i

(A + 1)

-(JV +

1)A

(JV+ 1)A
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= - ( / V -
1

—
A

DA J l +
JV

(N •

D A 4>*

(6.14)

Here the reference state is annihilated by <£* and the basis for a finite dimensional unitary repre-

sentation is given by

|A >,

where p = (JV + 1)A = n , —

(6.15)

It appears from the structure of the basis sets, (6.13) and (6.15) that the operators (6.12)

and (6.14) realize, respectively, the unitary representations (O.Tfe — xii) and(m — n— 2 ,0) but

not the general case (n\, 112). Our approach clearly leaves something to be desired. This should

not be a surprise since we began with the assumption that commutators should be ignored in the

first approximation - an assumption that is appropriate 10 the correspondence theory limit. The

resulting formula should therefore be read as corrections to this limiting case valid, we expect, for

large n\ and 02 such that

172] — 712 I ^ " I + 712 •

We believe that it should be possible to construct exact expressions from (j> and 4>* that realize

the general case (ni ,n2) and which reduce to the forms (6.12), (6.14) when higher powers of

|ri] —nz\/(n\ +112) are neglected. Probably these expressions will have branch point singularities

at <ji = 0. In support of the conjecture we have examined a Holstein-Primakoff type realization for

the SU{2) case which depends explicitly on the spin, s, and helicity, \, and which reduces to the

standard Holstein-Primakoff form when \ = ± s. This realization is discussed in the appendix.

Finally, in applying these formulae to an SU(N + 1) lattice model one must construct

the Hamiltonian operator, H(4>, 4>*) and set up the Feynman rules. Typically, the free propagator,

< T 4>n4>m >' w ' " h a v c t h e Fourier representation

(m — ri2)huj — H(k)

and the higher order contributions will be suppressed by powers of [n\ — n.2)"1. Corrections to

the classical theory are obtained in the usual way as a loop expansion. Of course, at any finite order

the approximate charge operators will give rise to transitions into the unphysical (non-unitary) part

of the representation. This defect is endemic to the semiclassical treatment of spin waves,
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7. OUTLOOK

In this paper we have begun the investigation of a class of spin systems based on an

arbitrary Lie group. The purpose of this study is to develop a better understanding of the role of

symmetry in the behaviour of spin systems in general. We believe that it may eventually be possible

to generalize some of the rigorous work that has traditionally been concentrated on the 517(2)

systems, particularly that which concerns the nature of the ground state: the question of long range

order :md its dependence on parameters such as spin, coupling strength and the dimensionality of

space. At this point we have not addressed such questions. The work described in this paper is

of a preliminary nature, being concerned with kinematics and only the simplest approximations:

the correspondence theory limit and the naive long wavelength limit. Even so, we believe that the

results have some interest.

Firstly, we have shown that the classical theory which emerges in the correspondence

theory limit is associated with a flag manifold or one of its submanifolds. These manifolds are

not, in general, symmetric spaces although they are homogeneous and can be analyzed by group

theoretic methods. At least the preliminary features of the semi-classical theory can be discerned

in that it is possible to identify dynamical variables and formulate a canonical quantization pro-

gramme. The problem of factor ordering, however, has been only partially resolved. To express

interesting Hamiltonians as well defined self-adjoint and group invariant operators it will probably

be necessary to obiain more general versions of the Holstein-Primakoff realization than we have

found. Our version, discussed in Sec.6, is able to realize only a limited class of representations,

those for which (he weights are not degenerate. These representations are characterized by a single

quantum number, n\ - na in the case of SU( N + 1). One of our motivations for going beyond

SU( 2) was to have a richer variety of quantum numbers on which interesting physical quantities

might depend. This remains to be achieved.

Secondly, we have shown that the long wavelength properties of the classical theory are

described by generalized non-relativistic a-models in which the fields take their values on a coset

space G/H in which H includes the maximal torus. The Lagrangian is of first order in the time

derivative but, depending on the nature of ihe ground state ordering, it may be equivalent to a

second order theory. Such second order systems resemble the relativistic a-models except that the

space rr.d tit ie derivatives are coupled to independent tensors, k^ and g^, respectively. The flag

manifold generally admits more than one invariant tensor of rank 2. This is to be contrasted with

the homogeneous symmetric spaces which admit only one: cr-models on symmetric spaces such

as CPN are inevitably relativistic.

A question that calls for investigation is the long wavelength behaviour of the quantized

theory. At present it is not clear whether the factor ordering ambiguities are significant in the

continuum limit. If they are not, then it should be possible to set up renormalization group equations

and search for fixed points. In particular, it would be interesting, in the case of second order a-

models to see whether the tensors k^ and g^ evolve towards the relativistic form, k^ = c^g^, at
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the fixed point. This idea is pursued in a separate paper.

Finally, for generalized spin systems in one space dimension we have shown that the

Haldane topological term emerges in the continuum limit of the antiferromagnetic chain. As in the

SU( 2) case it appears that representations for which the contravariant weigh! components, A >, are

odd integers are distinguished. They contribute an alternating sign to the path integrals.
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APPENDIX THE REALIZATION OF S[/( 2)

A generalization of the Holstein-Primakoff realization can be obtained by applying the

method discussed in Sec.2. The structures here are sufficiently simple that all formulae can be

exhibited in detail and so provide a useful illustration of the method. In particular, we shall be able

to see how the Holstein-Primakoff formulae emerge as a special case.

Consider the (2 s + 1 )-dimensional representation of SU( 2) defined by

J-i \m > = \m > m

/+ \m > = \m + 1 > v C s -

/_ |m > = |m - 1 > i / ( s + m ) ( s — m +

where m = —a, — s + I , . . . , s and < m\m' > = &mm'- The coherent states are defined by

\8p > = Lg9 \\ >

(4.1)

(4,2)

where 0 < 0 < ir, 0 < p < 2 IT and \\ > is one of the eigenstates of J3. The expectation value of

X is a 3-vector of length |X|,

<6ip\J±\6<p > =\sm$e

< 9p\J3\9<p > = Xcosfl . (4.3)

Applying the methods of Sec. 2, computing the infinitesimal everlap of coherent states and

expressing the transition amplitudes in path integral notation one arrives at the classical Lagrangtan

where (cos 6 — 1)tip is the spin connection on the 2-sphere in polar coordinates. The canonical

variables are

p and 7T = hMcos 9 - 1) .

In the quantized theory they are represented by operators subject to the commutation rule

ft

or, more precisely, since states should be represented by periodic functions of p.

In the basis which diagonalizes p the eigenstates of Js are represented by

(A.5)

(A.6)
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The canonical momemtum can be represented by the differential operator

w = —h{idv + X)

which gives \ cos 6 = —idv. With this choice one finds, using (A. 1) and (A.6),

Ji = \ cos 9

(-4.7)

-X cos

- >• cos 9 + 1) (a + \ cos 9) e-^ (4.8)

It is straightforward to verify that the operators (A.8) satisfy the commutation rules of SU(2) as

well as the constraint

—f r r J- r r i + r2 — e f«+ 11 HOI

It is clear form (A.5) that the operators <p and 8 become commutative in the limit \\\ —»

oo. Also the large quantum number behaviour of the operators (A.8) approximates the classical

formulae (A.3). For example, under the assumptions

s1 -\7&0(\>.\) and | A | s i n 2 £ > l

as s and \\\ become large, one finds the expansion

(4.10)

/+ ~ \ e'v sin 9 1 +1
s(s+ \) ~\2 ~ Xcos 9 1

8
1) - X2 - XcosflX

(4.11)

To recover the usual form of the Holstein-Primakoff realization define the operator

fl - cos 9

1 - \ - cos 9
(4.12)

and its hermitian conjugate, tj>+, The commutation rule becomes

[^+] = —L (4.13)

which is the SU(2) version of (6.10). The definition (A.I2)canbe inverted to give

1 — 2<b*(j> a n d e ~ ' p = <j> , = , <f>. (4.14)
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Hence, substituting into (A.R),

J- = J*. (4.15)

The singularity at <f> = 0 in these formulae is eliminated by choosing s = ± X. For example, with

>. = —$, (A. 15) reduces to the familiar form

(A16)= 2 s i / l + — -

within,<^+] = l / 2 s . This is the S[/( 2) version of the realization (6.12). On the basis of this

simple example we are encouraged to believe that it may be possible to generalize the operators

(6.12) and (6.14) to yield the representation (111,7*2) of SU{N + 1).
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