LIE BIALGEBRAS
WITH TRIANGULAR DECOMPOSITION

N. Andruskiewitsch
F. Levstein
and
A. Tiraboschi

MIRAMARE-TRIESTE
LIE BIALGEBRAS WITH TRIANGULAR DECOMPOSITION

N. Andruskiewitsch **
Max-Planck-Institut für Mathematik,
Gottfried-Claren Strasse 26, 5300 Bonn 4, Germany.

F. Levstein †
FAMAF, Universidad Nacional de Córdoba,
Valparaíso y R. Martínez, Ciudad Universitaria, CP 5000 Córdoba, Argentina

and

A. Tiraboschi ‡
International Centre for Theoretical Physics, Trieste, Italy.

MIRAMARE - TRIESTE
June 1992

Abstract. Lie bialgebras originated in a triangular decomposition of the underlying Lie algebra are discussed. The explicit formulas for the quantization of the Heisenberg Lie algebra and some motion Lie algebras are given, as well as the algebra of rational functions on the quantum Heisenberg group and the formula of the universal R-matrix.

§0. Introduction. One of the main points of the "philosophy of quantum groups" is to consider, as a subject of the "quantization" or deformation, an algebra of functions on a variety with a fixed, perhaps degenerated, Poisson bracket, in such a way that the Poisson bracket provided by the quantization coincides with the original one. According to this general principle, Drinfeld introduced the notion of Poisson-Lie groups: Lie groups which are Poisson manifolds, both structures related by imposing the multiplication to be a Poisson mapping. The infinitesimal version of this notion is that of Lie bialgebras: a vector space which is simultaneously a Lie algebra and a Lie coalgebra, both structures connected by a cocycle condition (cf. [D1]).

This paper is concerned with a family of Lie bialgebras whose cobracket has origin in a triangular decomposition of the Lie algebra. Examples of Lie algebras with triangular decomposition are, besides the Kac-Moody algebras, the Drinfeld's example that served us as inspiration, the (extended) Heisenberg algebras and some special motion Lie algebras. (We also benefited from the notes [MP] where a similar notion was discussed. Unfortunately, the Virasoro algebra does not fit in our scheme). Our first basic result states that these Lie bialgebras are quasitriangular. This enables us to provide new examples of classical r-matrices, see §2.

One of the central problems of the theory is: given an arbitrary Lie bialgebra, to quantize it (in the sense of [D2, §2, §6]). As far as we know, this problem was not solved yet. Partial answers are: quantization of triangular Lie bialgebras [D3]; quantization of simple Lie bialgebras and other important examples [D2]; and quantization of quasitriangular and coboundary Lie bialgebras, but in the more relaxed context of quasi-Hopf algebras [D4], [D5].

We give the explicit formula for the quantization - in the setting of Hopf (not quasi-Hopf) algebras - of the Heisenberg and (some particular) motion Lie algebras, §3. We also construct the ring of "rational functions" on the quantum Heisenberg group §4 and provide the explicit formula for the quantum R-matrix §6.
A Poisson structure on an arbitrary manifold provides a foliation of it by the so-called “symplectic leaves”, cf. [K3], [W], [S]. They are related to the representations of the algebra on functions on a quantum group, at least in the compact case [LS]. We classify the symplectic leaves of the real Heisenberg group in §5.

§1. Lie algebras with triangular decomposition. For simplicity we shall work on the field \(C \) of complex numbers, unless explicitly stated.

Definition. Let \(g \) be a Lie algebra. We shall say that the data \((g_0,g_+,0-,*(I))\) is a **triangular decomposition** (TD), of \(g \) if \(g_-,g_0,g_+ \) are subalgebras of \(g \), \(g_0 \) abelian, and

\[
k(\{\}) : g \times g \rightarrow C
\]

is a \(g \)-invariant, non degenerate, bilinear form such that \([g_+,g_-] \subset g_+ \), \(g = g_- \oplus g_0 \oplus g_+ \), direct sum of subspaces, and

\[
0 = k(g_+,g_-) = k(g_-,g_-) = k(g_0,g_0) = k(g_0,g_-).
\]

In what follows, we shall simply say “\(g \) is a Lie algebra with triangular decomposition”, without mentioning the data defining it.

We shall use the notation \(g \times g \rightarrow C \).

Example (a). Let \(g \) be an abelian Lie algebra and let \(< , > \) be a non degenerate bilinear form on \(g \). Then \((g,0,0,>(I))\) is a TD.

Example (b). Let \(A \) be a symmetrizable complex matrix and let \(g = g(A) \) be the corresponding contragradient Lie algebra [K, Ch. 1]. Then \(g \) has a well-known triangular decomposition, cf [K, 1.2, 2.2].

Example (c). Let \(A \) be a symmetrizable generalized Cartan matrix and let \(g = g(A) \) be the corresponding Kac-Moody algebra. Let \(l = g \times g \) be the motion Lie algebra with respect to the adjoint representation, i.e.

\[
[(x,y),(u,v)] = [(x,u),(y,v)] - [(y,v),(u,x)].
\]

Consider the usual decomposition \(g = n_+ \oplus n_- \), where \(h \) is the Cartan subalgebra, \(n_+ \) is the span of the positive root vectors, etc. Take

\[
l_0 = h, \quad l_+ = n_+ \oplus n_-, \quad \text{and} \quad l_- = n_+ \oplus n_-
\]

Thus \(l = l_+ \oplus l_0 \oplus l_- \). Let \(k(\{\}) : l \times l \rightarrow C \) be defined by

\[
k((x,y),(u,v)) = K(x'u) + K(y'u) + K(x'v).
\]

where \(K(\{\}) \) is the invariant non-degenerate bilinear form of \(g \) given by [K, 2.2]. Then \((l_0,l_+,...,l_-)\) is a TD of \(l \).

Remark 1. Let \(V \) be a \(g \)-module and consider the motion Lie algebra \(g \otimes V \), i.e. with the Lie bracket given by \([x,y),(u,v)] = [(x,u),(y,v)] - [(y,v),(u,x)]\). Suppose that \(g \otimes V \) admits a non degenerate invariant bilinear form \((\cdot) \). Obviously \((V \otimes V) = 0\). If \(V \) is irreducible and non trivial, \((V \otimes V) = 0 \) and we obtain a monomorphism of \(g \)-modules \(V \hookrightarrow \mathfrak{g}^* \). Assume that \(g \) is simple: then \(V \simeq \mathfrak{g}^* \). If in addition \(g \) is finite dimensional, identify \(\mathfrak{g}^* \) with \(g \) via the Killing form. Then any invariant non-degenerate bilinear form on \(\mathfrak{g} \otimes V \) is \(\alpha \otimes K(x'u) + bK(y'u) + bK(x'v) \), for some scalars \(a, b \). Let \(c \) be a scalar and let \(T \) be the motion Lie algebra automorphism of \(\mathfrak{g} \otimes V \), \(T((x,v)) = (x,cv) \). By using an appropriate \(T \), we may assume that an invariant non-degenerate bilinear form on \(\mathfrak{g} \otimes V \) is a multiple of the one considered in Example (c).

Example (d). Extended Heisenberg algebras. Let \(\mathfrak{h}^n \) be the Lie algebra generated by \(x_i, y_i, i = 1, \ldots, n, z, d \) with the following relations:

\[
[x_i,y_i] = \delta_{ij}z, \quad [d,x_i] = x_i, \quad z \text{ is central and} \quad [d,y_i] = -y_i.
\]

\(B = \{x_i, y_i, z, d\} \) is a basis of \(\mathfrak{h}^n \) and the bilinear form given by

\[
k(x_i,y_j) = \delta_{ij}, \quad k(d,z) = 1,
\]

the other products between generators equal to 0, is clearly invariant. Take

\[
\mathfrak{h}_0^n = \text{span}(z,d), \quad \mathfrak{h}_+^n = \text{span}(x_i : i = 1, \ldots, n), \quad \mathfrak{h}_-^n = \text{span}(y_i : i = 1, \ldots, n).
\]

Then \((\mathfrak{h}_0^n, \mathfrak{h}_+^n, \mathfrak{h}_-^n, k(\{\}))\) is a TD of \(\mathfrak{h}^n \).

Example (e). The construction of Example (c) is valid replacing the Kac-Moody algebra \(g(A) \) by an arbitrary \(g \) with TD.

Example (f). The Virasoro algebra is not a Lie algebra with triangular decomposition in our sense: as is well-known, it lacks a non-zero invariant bilinear form.

Example (g). A Lie algebra \(g \) with TD such that \(g_0 = 0 \) is equivalent to a Manin triple.

We recall that a **Manin triple** is a data \((P,P_1,P_2)\), where \(P \) is a Lie algebra and \(P_1, P_2 \) are Lie subalgebras of \(P \), together with a bilinear form \(< \cdot, \cdot > : P \times P \rightarrow C \), such that

- \((P_1) \oplus P_2 = P \) as vector spaces,
- \(< \cdot, \cdot > \) is \(P \)-invariant, non degenerate and \(< P_1|P_1 > \geq 0 \).

Assume that \(P \) is finite dimensional. Then of course \(P_1 \cong P_2^* \) and \(P_1 \otimes P_1 \cong (P_2 \otimes P_1)^* \). Thus there is a bijection between Manin triples with a fixed \(P_1 \) and Lie bialgebra structures on \(P_1 \): the cobracket \(\delta : P_1 \rightarrow P_1 \otimes P_1 \) is the transpose of the bracket on \(P_2 \): i.e. \(\delta \) is given by

\[
< \delta(x)u \otimes v > = < x|[u,v] >, \quad \forall x \in P_1, \quad \forall u, v \in P_2.
\]

Let \(\{x_i\} \) be a basis of \(P_1 \) and \(\{x^i\} \) be its dual basis in \(P_2 \). If \([x^i, x^k] = b_{jk}^i x^i\), then

\[
\delta(x_i) = b_{jk}^i x_j \otimes x_k.
\]
Now let us allow the dimension of P to be infinite and let $\delta : P^* \to (P \otimes P)^*$ still denote the transpose of the bracket on P. We have inclusions $P_1 \hookrightarrow P_1^*$ and $P_1 \otimes P_1 \hookrightarrow (P_1 \otimes P_1)^*$. We want to find conditions insuring that $\delta(P_1) \subset P_1 \otimes P_1$, with those identifications. Let $(x_i : i \in I)$ be a basis of P_1 and assume that P_1 admits a basis $\{x^i : i \in I\}$ such that $(x_i, x^i) = \delta_{ij}$. Assume further that the support of the family $(\delta_{ik}^j)_{k \in I}$ is finite for each i, where as before $[x^i, x^j] = \delta_{ij}$. Then $\delta(P_1) \subset P_1 \otimes P_1$ and P_1 is a Lie bialgebra. On the other hand, let $(x_i : i \in I)$ be now only a set of generators of the Lie algebra P_1 and assume $\delta(x_i) \in P_1 \otimes P_1$ for all i. Again, $\delta(P_1) \subset P_1 \otimes P_1$ because of the cocycle condition $\delta([x, y]) = [\delta(x), \delta(y)] - [\delta(y), \delta(x)]$. Then it is clear that $\{x_i, u_0\}_{i \in I}$ (resp. $\{h_i, r_i\}_{i \leq i} \leq \leq _{n}^n$) is a basis of S_1 (resp. S_{1+}) whose dual basis is $\{y_i, v_0\}_{i \in I}$ (resp. $\{l_i, s_i\}_{i \leq i} \leq \leq _{n}^n$).

Remark 2. $\delta = 0$ if and only if $[g_+, g_0] = [g_0, g_+] = [g_0, g_0] = 0$.

The following statement will be useful later:

Proposition 1. Let g be a finite dimensional Lie algebra with TD. Then g admits a “canonical” structure of Lie bialgebra.

Proof. Let $P = g \times g$ with the product Lie algebra structure. Let $P_1 = \{(a, a) : a \in g\}$ and let $P_2 = \{(a_+ + a_0, a_0 - a_0) : a_0 \in g_0, a_0 \in g_0\}$. Then $P_1, P_2 \subset P$ are Lie subalgebras. Let $<, > : P \times P \to \mathbb{C}$ be the bilinear form defined by $<(x, y), (u, v)> = k(x, u) - k(y, v)$. Then $<, >$ is P-invariant, non degenerate and obviously $<P_1|P_1> = 0$. If $(x, y) = (x_+, x_0, x_+, x_0_0)$ and $(u, v) = (u_+, u_0 + u_0, u_0 + u_0)$ belongs to P_2, then

$$< (x, y), (u, v) > = k((x, u) - k(y, v) = k(x_0, u_0) - k(-x_0, u_0) = 0,$$

thus $<P_2|P_2> = 0$. It follows that (P, P_1, P_2) is a Manin triple and then $P_1 \subset g$ has a structure of Lie bialgebra. □

Remark 3. Let $\delta = 0$ if and only if $[g_+, g_0] = [g_0, g_+] = [g_0, g_0] = 0$.

The following statement will be useful later:

Lemma 1. Let g be a finite dimensional Lie algebra with TD, $\{x_j : j \in J\}$ a basis of g_+, $\{y_j : j \in J\}$ its dual basis in g_-, $\{h_i : i \in I\}$ a basis of g_0 and $\{l_i\}$ its dual basis in g_0. Identify g_1 with P_1, and g^* with P_2. Then the vectors

$$x^*_j = (y_j, 0), \quad y^*_j = (0, -x_j) \quad \text{and} \quad h^*_i = \frac{1}{2}(l_i, -l_i),$$

$j \in J, i \in I$ constitutes the dual basis of $B = \{x_j\} \cup \{y_j\} \cup \{h_i\}$.

The proof is trivial.

Example (c) (continued). Assume further, for notational simplicity, that A is a Cartan matrix. Let Φ be the root system of g, Φ^+ the set of positive roots and $\Pi = \{\alpha_1, \ldots, \alpha_n\}$ the set of simple roots. We choose $a_0 \in g_0 - \{0\}, \alpha \in \Phi, (g_0, g_0)$ is the root space and $H_1, m_1 \in h$ such that:

$$K(H_1, H) = \alpha(H), \quad \forall H \in h, \quad [a_0, a_0] = H_i,$$

$$K(a_0) = 1, \quad K(H_1m_1) = 0.$$
Let (g, \mathcal{E}) be a finite dimensional Lie bialgebra and let (P, P_1, P_2) be the corresponding Manin triple. The double of g, $D(g)$, is the Lie bialgebra whose underlying Lie algebra is P and whose Lie cobracket is ∂r, where r is the image of the canonical element of $g \otimes g^*$ under the embedding $g \otimes g^* \rightarrow D(g) \otimes D(g)$ (the canonical element is $e_i \otimes e^i$, where e_i is a basis of g and e^i is the dual basis in g^*). Let (Q, Q_1, Q_2) be the Manin triple corresponding to the Lie bialgebra $D(g)$ and identify Q_1 with $Q_i \otimes e'$, where e' is a basis of g and e' is the dual basis in g^*. Let (Q, Q_1, Q_2) be the Manin triple corresponding to the Lie bialgebra $D(g)$ and identify Q_2 with P thanks to the bilinear form (\cdot, \cdot); the Lie bracket in Q_2, denoted $\{,\}$, is

$$\{[u, v], w\} = [v, [u, w]] + [u, [v, w]]$$

where u, v, w belong to P_1, and the bracket in the right hand side is that of P. Indeed, $k(\mathbf{x})u \otimes v = \sum_i (\mathbf{x}, e_i)u(e^i)v + (\mathbf{e}^i, e_i) u(e^i)v) = \langle [x, u], v \rangle + (\mathbf{e}^i, e_i) u(e^i)v$. Note that in this way the double of a Manin triple makes sense even when the dimension of P_1 is not finite.

Example (g) (continued). The Manin triple obtained from a a Lie bialgebra g with $\mathbf{g}_0 = 0$ (Proposition 1) coincides with the double of the Manin triple (g, g_+, g_-).

Let g be a finite dimensional Lie algebra with TD, and consider on g the structure of Lie bialgebra provided by Proposition 1.

Lemma 2. (i) $b_+ = g_0 \otimes g_+$ and $b_- = g_0 \otimes g_-$ are Lie subbialgebras of g. As Lie algebras, $b^*_+ \cong b_+$. (ii) $D(b_+)$ is isomorphic as a Lie algebra to the direct product $g \times g_0$.

Proof. (i) The subspace orthogonal to b_- (resp., b_-) in P_2 is $0 \times n_+(\text{resp., } n_- \times 0)$ which is clearly an ideal of P_2, and obviously $P_2/(0 \times n_+) = (n_+ \otimes g)$ (resp., $P_2/(n_- \times 0) = (g \otimes n_+)$) is isomorphic to b_- (resp., b_+), as Lie algebras. Notice that the pairing (\cdot, \cdot) between b_+ and b_- (resp., to the identification $b^*_+ \cong b_-$) is

$$\langle x, y \rangle = k(\mathbf{x})y_0 + k(y)\mathbf{x}$$

where $x \in b_+$, $y \in b_-$. Let $T : D(b_+) \rightarrow g \times g_0$ be the linear isomorphism $T(x + x_0, y_0 + y_0) = (x + x_0 \otimes y_0 + y_0, x_0 - y_0)$. We want to show that $T((x, y)) = T(x,y)$. We deduce from (7) that

$$\langle x, [y], 1 \rangle = \frac{1}{2} \langle x, y \rangle, \quad \langle x, [y], -1 \rangle = \langle x, [y] \rangle$$

and similarly,

$$\langle [x], y, 1 \rangle = \frac{1}{2} \langle [x], y \rangle, \quad \langle [x], y, -1 \rangle = \langle [x], y \rangle$$

Indeed, if $u \in b_-$, $\langle [x], y, u \rangle = \langle x, [y], u \rangle = k(x)[y, u] = \langle x, [y] ,u \rangle + \frac{1}{2} \langle [x], y \rangle, u \).

Clearly, (8) implies our claim. □

Remark 5. Lemma 2 and Theorem 1 suggest the following method of constructing Lie algebras with TD. Let b be a finite dimensional Lie bialgebra. Assume that (a) there exists an abelian subalgebra h such that, as vector spaces, $b = h \oplus [b, b]$; (b) $b^*_+ = [b^*_+, b^*_+]$ there exists an abelian subalgebra h such that, as vector spaces, $b^*_+ = h \oplus [b^*_+, b^*_+]$, and $\mathbf{b}^*_+ = [b, b]$; (c) for any $e \in h$, there exists a unique $\mathbf{e} \in b^*$ such that $a^* \mathbf{e}$ coincides with the unique derivation T_e of b^* satisfying $(\mathbf{u}, \mathbf{v}, w) = (u, T^e(w))$, for all $u \in b$, $w \in b^*$.

(To see that T_e is a derivation, proceed as follows. First, note that

$$(\mathbf{h}, y)_1 = 0, \quad \forall h \in b, y \in b^*$$

and similarly,

$$(\mathbf{h}, x)_2 = 0, \quad \forall h \in b, x \in b$$

Then, using the cyclicity condition on the cobracket of b^*, we obtain

$$\langle [u, x], w, t \rangle = \langle u, [w, T_t(w)] + [T_t(w), t] + \langle [x, w], t \rangle - \langle [x, t], w \rangle$$

for all $u, x \in b$, $w, t \in b^*$, which proves that T_e is a derivation when $x \in h$.)

Now there exists an isomorphism $h \rightarrow \mathbf{h}$ from h onto \mathbf{h} such that $(e, \mathbf{e}) = (\mathbf{e}, h)$. Let $e = (x, \mathbf{z}) \in h$, which is an ideal of $D(b)$, by (c) and (11). Let $g_+ = [b, b], g_- = [b^*_+, b^*_+]$, $g_0 = \{ (h, \mathbf{h}) : h \in h \}$. Then

$$T^e = g_0 \oplus g_0 + g_+$$
We claim now that \(p := 1 \) is a subalgebra of \(D(b) \). Let \(u, w \in b^* \), and write \([u, w]_b = [u, w] + [u, w]_\Delta + [u, w]_\cdot \), where \([u, w]_\Delta \in \Delta, [u, w]_\cdot \in \Delta \). Then we need to prove that

\[
[u, w]_b = [u, w]_\Delta.
\]

But if \(z \in \Delta, (z, [u, w]) = (z, [u, w]) = ([z, u], w) = ([u, w], z) = ([u, w], z)_\Delta. \) As \(g \) inherits a non-degenerate invariant bilinear form from \(D(b) \), we deduce that it has a TD.

Example (b) (continued). Let \(\hat{g} = \hat{g}(A) \) be the Lie algebra defined in [K, §1.2]. We preserve the notation \(h, w^+, w^- \) etc. from loc cit, but we denote \(X_i^+, X_i^- \) instead of \(e_i, f_i, o_i \). Let \(D = (d_1, \ldots, d_n) \) be an invertible diagonal matrix such that \(DA = A^T D \) and let \(h_w = d_i H_i \). Let \(\tau \) be the unique maximal ideal among the ideals intersecting in trivially; then \(g \cong g/t. \) It is known that the triangular decomposition of \(g \) gives rise to a Lie bialgebra structure \([D2]\); indeed, the cobracket is given by

\[
(12) \quad \delta(h_i) = 0 \quad \text{and} \quad \delta(X_i^+) = \frac{1}{2} (X_i^+ \otimes h_i - h_i \otimes X_i^+),
\]

where we still denote by \(X_i^+, h_i \), their images in \(g \). Now we claim that \((12)\) extends to a Lie bialgebra structure on \(g \). This follows from the following general fact.

Lemma 3. (a) Let \(I \) be a set and \(L \) the free Lie algebra generated by \(I \). Then any function \(\varphi : I \to \Lambda^2 L \) extends to a 1-cocycle \(\varphi : L \to \Lambda^2 L \).

(b) Let \(g \) be a Lie algebra, \(r \subseteq g \) an ideal, \(\delta : g \to \Lambda^2 g \) a 1-cocycle. Then \(\delta \) induces a 1-cocycle \(\delta' : g/r \to \Lambda^2 g/r \) if and only if \(\delta'(r) \subseteq \delta \circ r + r \circ \delta \), for some system of generators \(B \) of the ideal \(r \).

Proof. (a) Apply [B, Ch. II §2 Prop 8] to \(M = \Lambda^2 L(I) \). (b) is obvious. \(\Box \)

Now let \(L \) be the free Lie algebra generated by \(h, X_i^+, R \) the ideal generated by \([H, H'], [H, X_i^+] \pm o_i[H]X_i^+, [X_i^+, X_j^-] - \delta_{ij} H_i, \delta : L \to \Lambda^2 L \) the cocycle defined by \((12)\). Then

\[
\delta([H, X_i^+]) = o_i[H]X_i^+ + [H, h_i] - [H, h_i] \otimes X_i^+ - X_i^+ \otimes [H, h_i];
\]

\[
\delta(X_i^+X_j^-) = (X_i^-X_j^-) - \delta_{ij} H_i \otimes (h_j + h_i) - (h_i + h_j) \otimes (X_i^-X_j^-) - \delta_{ij} H_j + X_j^+ \otimes (X_i^-) - \delta_{ij} H_j + \alpha(h_j)X_i^+ + \alpha(h_i)X_j^+ - \delta_{ij} H_j + \alpha(h_j)X_i^+ \otimes X_j^- + \alpha(h_i)X_j^- \otimes X_i^+.
\]

This shows that \(\delta(R) \subseteq L \otimes R + R \otimes L \) and hence \((12)\) defines a 1-cocycle on \(\hat{g} \). The co-Jacobi identity is also easy to check; indeed it suffices to verify it on generators, because of the formula

\[
(13) \quad \delta(\otimes \varphi \delta(x, y)) = \varphi(\delta \otimes \phi)\delta(y) - \varphi(\delta \otimes \phi)\delta(x) + [y, x] \otimes x' \otimes y',
\]

\[
+ x \otimes [y, x] \otimes x' \otimes y' - [y, x] \otimes x \otimes y' \otimes x' - x \otimes [y, x] \otimes y' \otimes x' + [y, x] \otimes x \otimes y' \otimes x',
\]

where \(\delta(x) = x \otimes x' - x' \otimes x, \) etc. An elementary computation shows that \((12)\) provides \(L \) (and \(a \) fortiori \(\hat{g} \)) with a Lie bialgebra structure.

Example (c) (continued). We take \(h_i, r_i \) a basis of \(\Lambda_0 \), and the dual basis \(s_i, t_i - s_i \). We have also that \(m_i = \sum \{m_i[m_i]_i\}, \) then \(s_i = \sum \{m_i[m_i]_i\}, \) and \(t_i - s_i = \sum \{m_i[m_i]_i\}, \). And then

\[
(14) \quad r_0 = \sum_{a \in \mathbb{C}^+} (a_o, 0) \otimes (0, a_0) + (0, a_o) \otimes (0, a_0) + (a_0, 0) \otimes (0, a_0) + (0, a_0) \otimes (a_0, 0).
\]

Example (d) (continued). Here we choose the basis \(\{x_i, \sqrt{q}(d+z), \sqrt{q}(d-z), y_i\} \). Then the dual basis is \(\{y_i, \sqrt{q}(d+z), \sqrt{q}(d-z), x_i\}. \) So

\[
(15) \quad r_0 = \sum x_i \otimes y_i + \frac{1}{2} d \otimes z + \frac{1}{2} z \otimes d.
\]

Note that \((14)\) and \((15)\) are new examples of classical \(r \)-matrices.

§3. Quantizations. We recall that a quantization of a Lie bialgebra \((g, \delta)\) is a topological Hopf algebra \(A \otimes \mathbb{C}[h]\) such that \(A/AA \cong \hat{g} \) (as Hopf algebras), \(A \) is topologically free over \(\mathbb{C}[h] \) and satisfies

\[
\delta(\alpha) = \Delta(\alpha) - \Delta'(\alpha) \mod h
\]

where \(\Delta \) denotes the coproduct in \(A, \Delta^T = \Delta \otimes \Delta, \tau(x \otimes y) = (y \otimes x) \).

Let \(q = \exp(h/4). \) Given \(u \in \Lambda_0, \) we denote (as usual)

\[
[u]^q \tau = \prod_{1 \leq i \leq n} (1 - q^{-1} - q^t).
\]

Example (b) (continued). The quantized universal enveloping algebra of \(g \) is the \(\mathbb{C}[h] \)-algebra \(\hat{U}_h \) generated (in the \(h \)-adic sense) by \(\hat{h}, X_i^\pm \) with the relations

\[
[H, H'] = 0 \quad \forall H, H' \in \mathbb{C}[h], \quad [H, X_i^\pm] = \pm o_i[H]X_i^\pm \quad \forall H \in \mathbb{C}[h];
\]

and also

\[
[X_i^+, X_j^-] = 2\delta_{ij}(h_i)^{-1}h_i h_j / 2.
\]

It can be shown that \(\hat{U}_h \) is a topologically free \(\mathbb{C}[h] \)-module and that there exists a homomorphism \(\Delta : \hat{U}_h \to \hat{U}_h \otimes \hat{U}_h \) such that

\[
\Delta(X_i^+) = X_i^+ \otimes q^{h_i} + q^{-h_i} \otimes X_i^+
\]

\[
\hat{\Delta}(H) = H \otimes 1 + 1 \otimes H \quad \forall H \in \mathbb{C}[h]. \) \(\Delta(\hat{g}) \) is a quantization of \(\hat{g} \). Let \(\hat{U}_h^\pm \) (resp., \(\hat{U}_h^\mp \)) be the subalgebra of \(\hat{U}_h \) generated by \(X_i^\pm \) (resp., \(h_i \)). The Diamond Lemma [Be] implies an isomorphism \(\hat{U}_h \cong \hat{U}_h^\pm \otimes \hat{U}_h^\mp \) provided by the multiplication.
Example (c) (continued). Let \(\mathcal{U} \) be the associative algebra over \(\mathbb{C}[[h]] \) generated by \(u, x_{\pm 0}, y_{\pm 0}, \). (\(\alpha \in I \)), with the following relations:

\[
[1, x_{\pm 0}, u_{\pm 0}^2] = 0, \quad [u_{\pm 0}, x_{\pm 0}] = 0, \quad [u_{\pm 0}, u_{\mp 0}] = 0, \quad \quad \quad \quad \quad [x_{\pm 0}, x_{\mp 0}] = \pm \alpha_i(b)x_{\pm 0} \pm \alpha_i(b)u_{\pm 0}, \quad \forall a, b \in \mathbb{G}
\]

\[
[x_{\pm 0}, x_{\mp 0}] = \pm \alpha_i(b)u_{\pm 0}, \quad \forall a, b \in \mathbb{G}
\]

The Hopf algebra \(\mathcal{U} \) is a quantization of the extended Heisenberg Lie algebra. Let \(\mathcal{U} \) be the algebra over \(\mathbb{C}[[h]] \) generated in the \(\alpha \)-adic sense by \(X_i, Y_i, Z, D, \) with the following relations:

\[
[X_i, Y_i] = X_i \otimes q^{2r_i} + q^{-2r_i} \otimes Y_i, \quad \Delta(X_i) = X_i \otimes 1 + 1 \otimes X_i, \quad \Delta(Y_i) = Y_i \otimes q^{2r_i} + q^{-2r_i} \otimes Y_i, \quad \Delta(Z) = Z \otimes 1 + 1 \otimes Z, \quad \Delta(D) = D \otimes 1 + 1 \otimes D;
\]

the counit (resp., the antipode) is zero (resp., minus the identity) on the generators \(X_i, Y_i, Z, D. \)

Note that the subalgebra of \(\mathcal{U} \) generated (in the \(\alpha \)-adic sense) by \(X_i, Y_i, Z, D, \) is in fact a Hopf subalgebra; it is a quantization of \(\mathfrak{h}', \) cf. Remark 4.

Remark 6. Another interesting approach to the quantum Heisenberg algebra (different from ours) was given in [GF], cf. also [R]. The motivation there is noncommutative algebra (geometry) and \(q \)-analysis.

\section{The algebra of rational functions on the quantum Heisenberg group.}

In this section we describe the algebra of rational functions on the quantum Heisenberg group. We shall follow the approach of [A]. Let \(\{A, m, \mu, \delta, \epsilon, S\} \) be a Hopf algebra over \(\mathbb{C} \) and let \(\{\rho, \nu\} \) be a finite dimensional representation of \(\mathcal{A} \). We denote by \(T(V \otimes V^*) \) the tensor algebra of \(V \otimes V^* \). Let \(\gamma^* = (\rho, S) \) be the dual representation of \(\rho \). Let \(\phi : T(V \otimes V^*) \to \gamma^* \) be the linear application induced by \(\rho \). Then the subalgebra of \(\gamma^* \) spanned by \(\phi(T(V \otimes V^*)) \) (i.e. the image of \(\phi \otimes \phi \)) is a Hopf algebra dual to \(\gamma \); we shall denote it by \(\text{Coeff}(\rho) \).

A *-Hopf algebra is a Hopf algebra provided with a star operation for the algebra structure, such that \(\delta(\alpha^*) = \delta(\alpha)^* \), \(S(\alpha^*) = \alpha^* \). Assume further that \(\mathcal{A} \) is a *-Hopf algebra and let \(T : A \to A \), \(T(a) = \lambda(a)^* \) (note that \(T \) is an antilinear multiplicative anti-multiplicative involution which satisfies \((TS)^2 = id \); conversely, any such \(T \) gives rise to a *-Hopf algebra structure on \(\mathcal{A} \)). Assume that there exists an antilinear isomorphism \(T : V \to V^* \) such that \(T(v) = \lambda(a)v \), \(v \in V \). Then \(\text{Coeff}(\rho) \) is a *-Hopf algebra, where the star is defined by \((\alpha^*)^* = \alpha \), \(\lambda(a)^* \lambda(b)^* = \lambda(ab)^* \), \(x \in A \).

Now we turn our attention to \(A = \mathcal{U} \). Let \(V \) be a \(n+2 \)-dimensional complex vector space, fix a basis of \(\{e_1, \ldots, e_n, \mu\} \) of \(V \), let \(\{\mu_1, \ldots, \mu_n\} \) be its dual basis. It is easy to see that the assignment \(\rho(X_i)e_j = \delta_{i+j+1, e_1} \), \(\rho(Y_i)e_j = \delta_{i+j+2, e_1} \), \(\rho(Z)e_j = \delta_{i+j+1, e_1} + \delta_{i+j+2, e_1} \), \(\rho(D)e_j = \delta_{i+j+1, e_1} + \delta_{i+j+2, e_1} \), extends to a representation \(\rho : \mathcal{U} \to \text{Coeff}(\rho) \).

(Note that if \(h = 0 \) this is the fundamental representation of \(\mathfrak{h}' \), see §5.). Let \(T : \mathcal{U} \to \text{Coeff}(\rho) \) be the unique multiplicative anti-multiplicative involution such that \(T(X_i) = Y_i, \quad T(Y_i) = X_i, \quad T(Z) = -Z, \quad T(D) = -D \); clearly, \(T \) is anticomultiplicative and \(TS^2 = id \). Let \(J : V \to V^* \) be the antilinear isomorphism given by

\[
J(e_i) = -\mu_{i+n+2}, \quad J(e_i) = \mu_i (1 < i < n+2), \quad J(\mu_{n+2}) = -\mu_1.
\]

From the above considerations, it follows that \(\text{Coeff}(\rho) \) is a *-Hopf algebra, generated by \(\mu_1, \ldots, \mu_n \), \(e_1, \ldots, e_n \), \(\gamma_i = \phi_{\rho}(\mu_i) \). We want to give an explicit presentation of \(\text{Coeff}(\rho) \). Let \(B \) be an associative algebra and let \(u_1, \ldots, u_n \in B \). If \(i = (i_1, \ldots, i_n) \in \mathbb{N}^n \), set \(x^i = x_{i_1} \cdots x_{i_n} \), \(|i| = 1 + \ldots + i_n \), \(|i| = 1 \ldots i_n \) and \(\left(\begin{array}{c} i \\ j \end{array} \right) = \binom{i_1}{j_1} \cdots \binom{i_n}{j_n} \). The next Lemma will be useful later.
Lemma 4. Assume that
(a) \(\{ v^i : i \in \mathbb{N}, n \geq 0 \} \) is a basis of \(B \).
(b) \(u_k u_{\ell} - u_{\ell} u_k = \sum_{1 \leq j \leq n} a_{k,\ell}^j u_j, \) if \(1 \leq \ell < k \leq n \).

Then \(B \) is isomorphic to the quotient of the free algebra \(L \) in generators \(U_1, \ldots, U_n \) by the ideal \(R \) generated by \(U_k U_{\ell} - U_{\ell} U_k = \sum_{1 \leq j \leq n} a_{k,\ell}^j U_j, \) \(1 \leq \ell < k \leq n \).

Proof. The application \(L/R \to B \) which sends \(U_j + R \mapsto u_j \) sends a system of generators to a basis, hence it is an isomorphism. □

Let \(i, j \in \mathbb{N}^n \) and \(m, l \in \mathbb{N} \). If \(u = X^i Y^j D^m Z^l \neq 1 \in U_k \delta^n \) and \(2 \leq s, t \leq n + 1 \), then

\[
\nu_c = \begin{cases} c_1 & \text{if } u = D^m \\ 0 & \text{otherwise} \end{cases}
\]

\[
\nu_{c_s} = \begin{cases} c_1 & \text{if } u = X_{s-1} \\ 0 & \text{otherwise} \end{cases}
\]

\[
\nu_{c_{n+2}} = \begin{cases} c_{n+2} & \text{if } u = D^m \\ e_s & \text{if } u = Y_{s-1} D^m \\ c_1 & \text{if } u = D^m Z, \text{ or } X_s Y_s D^m \\ 0 & \text{otherwise} \end{cases}
\]

Thus, we get

\[
\mu_{1k}(u) = \begin{cases} 1 & \text{if } u = D^m \text{ and } k = 1, \text{ or } u = X_{s-1} \text{ and } k = s, \\ 0 & \text{otherwise} \end{cases}
\]

\[
\mu_{s}(u) = \begin{cases} 0 & \text{otherwise} \end{cases}
\]

\[
\mu_{k,n+2}(u) = \begin{cases} 1 & \text{if } u = Y_{s-1} D^m \text{ and } k = s, \text{ or } u = D^m \text{ and } k = n + 2 \\ (-1)^m & \text{if } u = D^m, \text{ and } k = 1 \\ 0 & \text{otherwise} \end{cases}
\]

\[
\gamma_{1k}(u) = \begin{cases} (-1)^{m+1} & \text{if } u = X_{s-1} D^m, \text{ and } k = s, \\ 0 & \text{otherwise} \end{cases}
\]

\[
\gamma_{s,n+2}(u) = \begin{cases} -1 & \text{if } u = Y_{s-1} \\ 0 & \text{otherwise} \end{cases}
\]

Also, \(\gamma_{s,1} = \mu_{s,1} \), \(\gamma_{n+2,n+2} = \gamma_{11} \), and \(\mu_{s,1} = \mu_{n+2,1} = \mu_{n+2,s} = \gamma_{n+2,1} = \gamma_{n+2,s} = 0 \).

We want to find the structure of \(\text{Coeff}(\rho) \). Now, if \(n_1, n_2 \in \mathbb{N}^n \) and \(n_3, n_4 \in \mathbb{N} \):

\[
\Delta(X^m Y^n D^m Z^n) = \sum_{i+j=n} \binom{n_1}{i} \binom{n_2}{j} \binom{n_3}{t} \binom{n_4}{s} X^i Y^j D^m Z^n \otimes X_1^j Y_2^i D^m Z^n \otimes D^m (\omega_{i,j})^m Z \otimes X_1 Y_2 D^m Z^n \otimes D^m (\omega_{i,j})^m Z.
\]

If \(\mu, \mu' \in (U_k \delta^n)^* \) and \(u \in U_k \delta^n \), \((\mu \otimes \mu')(\delta(u)) \), hence

\[
\mu_{11} n_{1,n+2} = \begin{cases} -1 & \text{if } u = 2 \\ 0 & \text{otherwise} \end{cases}
\]

furthermore \(\gamma_{11} n_{11} = \mu_{11} n_{11} = 1. \) We denote \(X_s = \mu_{1,s+1}, Y_j = -\alpha_{s,n+2}, Z = -\alpha_{n+2,s}, D = n_{11} \); clearly \(D^{-1} = 1. \) If \(t, i \in \mathbb{N}^n, k \in \mathbb{N} \) and \(r \in \mathbb{N} \):

\[
\chi^I(u) = \begin{cases} \left(\frac{r}{r+n} \right)^m & \text{if } u = X^I Y^I D^m Z^m, \text{ and } m \in \mathbb{N}, 0 \leq m \leq r \\ 0 & \text{otherwise} \end{cases}
\]

Then \(\mu_{1,n+2} = D(Z + \sum_{i=1}^n X_i Y_i), \mu_{s,n+2} = Y_{s-1} D, \gamma_{1,s} = -X_{s-1} D^{-1} \) and \(\gamma_{n+2,n+2} = -D^{-1} Z. \) So \(X_i, X_{s}, D, D^{-1}, Z (i = 1, \ldots, n) \) generate \(\text{Coeff}(\rho) \) as algebra. Now we shall see the defining relations. We have that \(D \) and \(D^{-1} \) are central, \([X_i, Y_j] = [X_i, Y_j] = [X_i, Y_j] = 0 (i, j = 1, \ldots, n) \), but

\[
X_i Z(u) = \begin{cases} \frac{h}{4} & \text{if } u = X_i \\ \frac{h}{4} & \text{if } u = X_i \end{cases}
\]

\[
Z X_i(u) = \begin{cases} \frac{h}{4} & \text{if } u = X_i \\ 1 & \text{if } u = X_i \end{cases}
\]

0 otherwise

that is \([X_i, Z] = \frac{h}{4} X_i. \) Similarly, \([Y_i, Z] = \frac{h}{4} Y_i. \)

Lemma 5. Let \(\text{Coeff}(\rho) \) and \(X_i, Y_i, D, D^{-1}, Z \) \((i = 1, \ldots, n)\) be as above. Then \(B = \{ X^IY^JZ^k : s, t \in \mathbb{N}_0, k \in \mathbb{Z}, r \in \mathbb{N} \} \) is a basis of \(\text{Coeff}(\rho) \).

Proof. As \(X_i, Y_i, D, D^{-1}, Z \) generate \(\text{Coeff}(\rho) \) as an algebra, one deduces from the above relations that the span of \(B \) is \(\text{Coeff}(\rho) \).

Let \(s, t \in \mathbb{N}_0 \), \(r \in \mathbb{N}_0 \), and \(U = \sum a_{s,t}X^sY^tD^rZ^k \). From (17) we have \(U(X^IY^JZ^k) = e \sum a_{s,t}X^sY^tD^rZ^k \) for all \(n \in \mathbb{N} \), where \(e \) is a constant not equal to 0. If \(U(X^IY^JZ^k) = 0 \) for all \(n \), then \(A = 0 \) for all \(k \in \mathbb{Z} \), so \(U = 0 \); hence \(\{ X^IY^JZ^k \} \) is linearly independent.

Let \(W_{uv} = \text{span}(X^IY^JZ^k) : k \in \mathbb{Z} \). Let \(u_{w,v} \in W_{w,v} \) and suppose that \(u_{w,v} = 0 \). But then \(\sum u_{w,v}(X^IY^JZ^k) = 0 \) and hence \(\sum_{w,v} u_{w,v}(X^IY^JZ^k) = 0 \). In particular, \(u_{w,v}(X^IY^JZ^k) = 0 \) and by the preceding, \(u_{w,v} = 0 \). By an inductive procedure, we deduce that \(u_{w,v} = 0 \) for all \(t, w, v \); this implies the Lemma. □

Remark 7. To obtain the coproduct and the antipode in \(\text{Coeff}(\rho) \) it is useful to know the product in \(\mathcal{U}_0 h^n \). If \(t, k, l, p \in \mathbb{N}_0 \) and \(m, r, v, s \in \mathbb{N}_0 \),

\[
(18) \quad (X^IY^JZ^k)(X^rY^sZ^t) = \sum_{i=0}^{\min\{k,l\}} \sum_{j=0}^{\min\{k,l\}} (-1)^{|i|} \binom{1}{i} \binom{1}{j} \frac{(k)}{j} j! x^{i+k-j} y^{r+j-s} (D + [k - |s|])^m Z^{r+s+|s|}.
\]

From the preceding Lemmas and general facts in Hopf algebra theory, we obtain:

Theorem 2. \(\text{Coeff}(\rho) \) is the Hopf algebra generated by \(X_i, Y_i, D, D^{-1}, Z \) \((i = 1, \ldots, n)\), with the following relations:

\[
[X_i, X_j] = [Y_i, Y_j] = 0, \quad [X_i, Z] = \frac{h}{2} X_i, \quad [Y_i, Z] = \frac{h}{2} Y_i, \quad DD^{-1} = 1,
\]

\((i, j = 1, \ldots, n)\) and \(D, D^{-1} \) are central elements. The comultiplication \(\Delta \), the star \(\ast \), the antipode \(S \) and the counit \(e \) are defined by:

\[
\Delta(X_i) = X_i \otimes 1 + 1 \otimes X_i, \quad \Delta(Y_i) = Y_i \otimes 1 + 1 \otimes Y_i, \\
\Delta(D) = D \otimes D, \quad \Delta(Z) = -\sum_{s=1}^{\infty} Y_i \otimes X_i + Z \otimes 1 + 1 \otimes Z, \\
S(X_i) = -X_i D^{-1}, \quad S(Y_i) = -Y_i D, \quad S(Z) = -Z, \quad S(D) = D^{-1},
\]

and \(e(u) = 0 \) for all \(u \) generator. Moreover, \(\text{Coeff}(\rho) \) is a \(\ast \)-Hopf algebra, where the \(\ast \) is given by \(X_i^\ast = Y_i, \quad Y_i^\ast = X_i, \quad Z^\ast = -Z \) and \(D^\ast = D^{-1} \).

Remark 8. Let \((\rho', V) \) be the representation of \(\mathcal{U}_0 h^n \) which is the restriction of \(\rho \). In the same way as above we can obtain \(\text{Coeff}(\rho') \) as the \(\ast \)-Hopf algebra generated by \(X_i, Y_i, Z \) \((i = 1, \ldots, n)\), with the following relations:

\[
[X_i, X_j] = [X_i, Y_j] = [Y_i, Y_j] = 0, \quad [X_i, Z] = \frac{h}{2} X_i, \quad [Y_i, Z] = \frac{h}{2} Y_i,
\]

\((i, j = 1, \ldots, n)\). The comultiplication \(\Delta \), the star, the antipode \(S \) and the counit \(e \) are defined by:

\[
\Delta(X_i) = 1 \otimes X_i + X_i \otimes 1, \quad \Delta(Y_i) = 1 \otimes Y_i + Y_i \otimes 1, \\
\Delta(Z) = -\sum_{s=1}^{\infty} Y_i \otimes X_i + Z \otimes 1 + 1 \otimes Z, \\
S(X_i) = -X_i D^{-1}, \quad S(Y_i) = -Y_i D, \quad S(Z) = -Z,
\]

and \(e(u) = 0 \) for all \(u \) generator. Moreover, \(\text{Coeff}(\rho') \) is a \(\ast \)-Hopf algebra, where the \(\ast \) is given by \(X_i^\ast = Y_i, \quad Y_i^\ast = X_i, \quad Z^\ast = -Z \) and \(D^\ast = D^{-1} \).

§5. Symplectic leaves in the Heisenberg group. Throughout this section, we shall work on the field of real numbers \(\mathbb{R} \). Our objective in this section is to compute the symplectic leaves of the Poisson structure on the real Heisenberg group. Let \(P_i \) be a (finite dimensional) Lie bialgebra, \((p_1, p_2) \) the corresponding Manin triple. Let \(P \) be the connected simply connected Lie group with Lie algebra \(p \) and let \(P_1 \) (resp., \(P_2 \)) be the connected subgroup of \(P \) with Lie algebra \(p_1 \) (resp., \(p_2 \)). Suppose that the multiplication induces a diffeomorphism \(P \cong P_1 \times P_2 \); then the symplectic leaves in \(P_1 \) are the orbits of the so-called dressing action of \(P_2 \) on \(P_1 \) and this action can be computed as follows. Let \(x_1 \in P_1, x_2 \in P_2 \) and express \(x_1 x_2 \) as a product

\[
x_1 x_2 = y_1 y_2, \quad y_1 \in P_1, \quad y_2 \in P_2.
\]

Then the dressing action of \(x_1 \) on \(y_1 \) see [S] and also [LW]. The “factorization problem” \(P \cong P_1 \times P_2 \) not always a positive answer. Fortunately, it does in our case.

For convenience, let us identify the Heisenberg algebra \(h^n \) (resp., its extension \(h^n \)) with the Lie algebra of real \((n + 2) \times (n + 2)\)-matrices of the form

\[
\begin{pmatrix}
0 & t_1 & \ldots & t_n & z \\
0 & \ldots & \ldots & \ldots & \ldots \\
0 & u_{n-1} & \ldots & 0 & u_n \\
0 & \ldots & \ldots & \ldots & 0 \\
0 & \ldots & \ldots & \ldots & v
\end{pmatrix}
\]

(resp.,

\[
\begin{pmatrix}
0 & t_1 & \ldots & t_n & z \\
0 & \ldots & \ldots & \ldots & \ldots \\
0 & u_{n-1} & \ldots & 0 & u_n \\
0 & \ldots & \ldots & \ldots & 0 \\
0 & \ldots & \ldots & \ldots & v
\end{pmatrix}
\]

Then the Heisenberg group \(H^n \) (resp., its extension \(H^n \)) can be taken as the Lie group of real \((n + 2) \times (n + 2)\)-matrices of the form

\[
\begin{pmatrix}
1 & X_1 & \ldots & X_n & C \\
1 & \ldots & \ldots & \ldots & \ldots \\
1 & Y_1 & \ldots & 1 & \ldots \\
1 & \ldots & \ldots & \ldots & 1 \\
1 & \ldots & \ldots & \ldots & 1 \\
\end{pmatrix}
\]

(resp.,

\[
\begin{pmatrix}
1 & X_1 & \ldots & X_n & C \\
1 & \ldots & \ldots & \ldots & \ldots \\
1 & Y_1 & \ldots & 1 & \ldots \\
1 & \ldots & \ldots & \ldots & 1 \\
1 & \ldots & \ldots & \ldots & 1 \\
\end{pmatrix}
\]

\(D > 0\)).

Let \(D = H^n \times H^n \); according to the proof of Proposition 1, \(D \) can be identified with the double group of \(H^n \), i.e. the group having Lie algebra \(D(h^n) \). Let us identify
Lemma 6. The multiplication provides a diffeomorphism $\mathcal{D} \cong \mathcal{H}^a \times \mathcal{H}^b$.

Proof. Let $(a, a') \in \mathcal{D}$, where

$$a = \begin{pmatrix} a_1 & \ldots & a_n \\ X_1 & \ldots & X_n \end{pmatrix}, \quad a' = \begin{pmatrix} a'_1 & \ldots & a'_n \\ X'_1 & \ldots & X'_n \end{pmatrix}.$$

We denote $u = \sqrt{DD'}(D'C + DC' - \sum X'_i(DY_i - D'Y_i))$ and $u' = \sqrt{DD'}(D'C - DC' + \sum X_i(DY'_i - D'Y'_i))$. Then $(a, a') = (b, b')(c, c')$, where

$$b = \begin{pmatrix} \sqrt{DD'} & X_1 & \ldots & X_n \\ 1 & \ldots & \frac{\sqrt{DD'}}{D} Y_1 \end{pmatrix},$$

$$c = \begin{pmatrix} \sqrt{DD'} & X'_1 & \ldots & X'_n \\ 1 & \ldots & \frac{\sqrt{DD'}}{D} Y'_1 \end{pmatrix},$$

$$c' = \begin{pmatrix} \sqrt{DD'} & 0 & \ldots & 0 \\ 1 & \ldots & \frac{\sqrt{DD'}}{D} Y_1 \end{pmatrix},$$

and this decomposition is unique. □

Remark 9. The preceding Lemma fails of course if the base field is \mathbb{C}.

It follows that the dressing action of

$$\begin{pmatrix} \omega & \gamma & 0 & \ldots & 0 \\ 1 & \ldots & 0 \end{pmatrix} \begin{pmatrix} \omega^{-1} & 0 & \ldots & 0 & -\phi \omega^{-2} \\ 1 & \ldots & 1 & \mu_n \omega & \omega^{-1} \end{pmatrix}$$

on

$$\begin{pmatrix} \delta \alpha_1 & \ldots & \alpha_n & \gamma \\ 1 & \ldots & \beta_1 \\ \vdots \\ 1 & \beta_n \end{pmatrix}$$

is given by

$$\begin{pmatrix} \delta \omega^{-1} \alpha_1 & \ldots & \omega^{-1} \alpha_n & \gamma + \frac{i}{2}(\omega^{-1} - 1) \sum \alpha_i \beta_i - \epsilon \sum \alpha_i \mu_i \\ 1 & \ldots & 1 & \omega^{-1} \beta_n \\ \vdots \end{pmatrix}$$

Proposition 5. The symplectic leaves in the extended Heisenberg group are the one-point sets

$$\begin{pmatrix} \delta & 0 & \ldots & 0 \\ 1 & \ldots & 0 \\ \vdots \\ 1 & 0 \end{pmatrix}$$

and the 2-dimensional submanifolds

$$\left\{ \begin{pmatrix} \delta \omega \alpha_1 & \ldots & \omega \alpha_n & \gamma \\ 1 & \ldots & \omega \beta_1 \\ \vdots \end{pmatrix} : \omega > 0, \gamma \in \mathbb{R} \right\},$$

where $\delta, \alpha_i, \beta_i$ are fixed and some α_i or some β_i is not 0.

§6. The universal R-matrix of the quantum Heisenberg group. In this section we prove that the quantum Heisenberg group is a quasitriangular Hopf algebra by showing explicitly the corresponding universal R-matrix. We shall follow the approach of [D2]. Let A be a Hopf algebra and R be an invertible element of $A \otimes A$. We say that the pair (A, R) is a quasitriangular Hopf algebra if $\Delta^q(a) =
opposite co-multiplication. The symbols R^{12}, R^{13}, R^{23} have the usual meaning; if $R = a_1 \otimes a'$ then $R^{12} = a_1 \otimes a' \otimes 1$, $R^{13} = a_1 \otimes 1 \otimes a'$ and $R^{23} = 1 \otimes a \otimes a'$. We call R the universal R-matrix of A.

Let $(A, m, \Delta, \eta, \varepsilon, S)$ be a Hopf algebra and let $(A^*, m^*, \Delta^*, \eta^*, \varepsilon^*, S^*)$ be some Hopf algebra dual to it. Denote by A^0, A^0 but with the Hopf algebra structure $(m^*, \Delta^*, \eta^*, \varepsilon^*, S^*)$, i.e. with the opposite co-multiplication. It is well known that there exists a unique quasitriangular Hopf algebra $(D(A), R)$ such that

(a) $D(A)$ contains A as Hopf subalgebras,
(b) R is the image of the canonical element of $A \otimes A^0$ under the embedding $A \otimes A^0 \hookrightarrow D(A) \otimes D(A^0)$ (if e_i is a base of A and e^i is the dual base in A^0, then the canonical element is $e_i \otimes e^i$),
(c) the linear mapping $A \otimes A^0 \rightarrow D(A)$ given by $a \otimes b \mapsto ab$ is bijective.

As a vector space, $D(A)$ can be identified with $A \otimes A^0$ (here the tensor product must be interpreted in an appropriate topological way). We can explicitly describe the Hopf algebra structure of $D(A)$: by (c) we may think the elements of $D(A)$ as linear combinations of elements of the form $a^i f, a \in A, f \in A^0$. We want to know $g^b, g \in A^0, b \in A$. Let Δ^0 be the co-product in A^0. If

$$ (1 \otimes \Delta^0)(b) = \sum b_1 \otimes b_2 \otimes b_3 $$

and

$$ (1 \otimes \Delta^0)(a) = \sum g_i \otimes g_2 \otimes g_3, $$

then

$$ g^b = \sum_{i,j} g_j (S(b_i)) g_2 g_3 b_2 g_2. \quad \tag{19} $$

Now we start to work with the quantum Heisenberg group. We shall use the notation of §4. Let us denote by U_n^+ (resp. U_n^-) the Hopf subalgebra of $D(A)$ generated by X_i, D, Z (resp. Y_i, D, Z) ($i = 1, \ldots, n$). We are interested in the structure of U_n^+ and U_n^-. Let D_i be the element in $(U_n^+)^0$ given by $D_i(X^ID^{m}Z^p) = \delta_{i,1} \delta_{m,n} \delta_{p,1}$. Now, if $k \in \mathbb{N}^n$ and $l, r \in \mathbb{N}$, formula (18) and the definition of product in $(U_n^+)^0$ give us

$$ X^k D^l Z^r \mu_{klr} = \begin{cases} \left(\frac{|k|}{4} \right)^{r-s} \frac{1}{(r-s)!} & \text{if } u = X^k D^l Z^r, \quad (0 \leq s \leq r) \\ 0 & \text{otherwise} \end{cases} $$

Let $(\mu_{klr}) \subset (U_n^+)^0$ the dual basis of $(X^k D^l Z^r)$. We can deduce by induction that

$$ \mu_{klr} = \sum_{i=0}^{r} \left(\frac{|k|}{2} \right)^{r-i} \frac{1}{i!} \frac{1}{l!} D^i Z^r, \quad \tag{20} $$

so $[X_i, D, Z]$ generates $(U_n^+)^0$ as algebra. In an analogous way, as in §4, we obtain that $[Z, X_i] = \frac{1}{2} X_i$, $[X_i, X_j] = 0$ and D_i is central. From (18) and the definition of coproduct in $(U_n^+)^0$ we have $\Delta^0(X_i) = 1 \otimes X_i + X_i \otimes \sum_{i=1}^\infty D_i$. Formula (20) says that $D_i = D_i$; thus $\Delta^0(X_i) = 1 \otimes X_i + X_i \otimes e^D$. Then

Lemma 7. $(U_n^+)^0$ is the Hopf algebra generated by X_i, D, Z ($i = 1, \ldots, n$) with the following relations:

$$ [Z, X_i] = -\frac{h}{2} X_i, \quad [X_i, X_j] = \delta_{ij} $$

($i,j = 1, \ldots, n$) and U is central. The comultiplication Δ^0, the antipode S and the counit ε are defined by:

$$ \Delta^0(X_i) = 1 \otimes X_i + X_i \otimes e^D, $$

$$ \Delta^0(Z) = Z \otimes 1 + 1 \otimes Z, $$

$$ \Delta^0(D_i) = D_i \otimes 1 + 1 \otimes D_i, $$

$$ \varepsilon(S(X_i)) = -X_i e^D, \quad \varepsilon(D_1) = e^D, \quad \varepsilon(Z) = -Z, $$

and $\varepsilon(u) = 0$ for all u generator.

Corollary. $(U_n^-(h)^0)$ is a Hopf algebra isomorphic (as Hopf algebra) to $U_n^+(h)$ and the isomorphism on the generators is given by $X_i \rightarrow h Y_i^0, \quad D \rightarrow \frac{1}{2} Z, \quad Z \rightarrow -\frac{1}{2} D$.

Remark 10. Let us define $Y_i := \frac{1}{2} \epsilon^{-D_i}, Z' := \frac{1}{2} D_1$ and $D' := \frac{1}{2} Z$; then it is clear that the isomorphism of above send $Y_i \rightarrow Y_i, D' \rightarrow D$ and $Z' \rightarrow Z$.

Proposition 6. There is a unique epimorphism of Hopf algebras $\theta : (U_n^+(h)) \rightarrow (U_n^-)(h)$ defined on the generators by $\theta(X_i) = X_i, \theta(D) = D, \theta(Z) = D, \theta(Z) = 0$. The previous implies that there exists a morphism $\theta_2 : (U_n^+(h)) \rightarrow (U_n^-)(h)$ such that $\theta_2(Y_i) = Y_i, \theta_2(D) = D$ and $\theta_2(Z') = Z$. Let $\theta_2 = \theta_2 \otimes \theta_2$. Applying (19) we obtain \check{Z} and Z' are central elements of $(U_n^-)(h)$, $D, D' = 0$, $[D', X_i] = X_i, [D, Y_i] = -Y_i$ and $[X_i, Y_i] = \delta_{ij} (z' z - z - z')$. Thus θ is a Hopf algebra morphism.

Theorem 3. $(U_n^+(h, R))$ is a quasitriangular Hopf algebra, where R is equal to

$$ \frac{1}{2} \sum_{1 \leq k < r} \frac{(-1)^{k+1}}{k! l! r!} X^k D^l Z^r, \quad (0 \leq s \leq r) \tag{21} $$

Proof. From (20) we know that

$$ \theta_2(\mu_{klr}) = \left(\frac{1}{2} \right)^{s-t} \frac{1}{s!} \frac{1}{l!} \frac{1}{r!} Y^k (D - \frac{|k|}{2}) Z^r \mu_{klr}. $$

Let $R' = \sum_{k,l,r} X^k D^l Z^r \otimes \mu_{klr}$ be the universal R-matrix of $D(U_n^+(h))$, then from (22) we obtain that $\theta(R')$ is equal to (21), furthermore $R = \theta(R')$ is the universal R-matrix of $U_n^+(h)$). Now, the term of degree 0 (respects to h) of $\theta(R')$ is $1 \otimes 1$, so $\theta(R')^{-1}$ also belongs to $U_n^+(h)$. We conclude that R satisfies all the requirements to be the universal R-matrix of $U_n^+(h)$. □
ACKNOWLEDGMENTS

One of the authors (A.T.) would like to thank Professor Abdus Salam, the International Atomic Energy Agency and UNESCO for hospitality at the International Centre for Theoretical Physics, Trieste, where part of this article was written.

REFERENCES

[D5] ______, On quasitriangular quasi-Hopf algebras and a group closely related to \text{Gal}(\mathbb{Q}, \mathbb{Q})

