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fillings of Landau levels. One immediate result of our work is a timple derivation of the oscillatory
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1. INTRODUCTION

In relativistic field theories it is nowadays common to express the contributions of quan-
tum corrections in the form of an effective Lagrangian. It is characteristic of the formalism that the
fields are slowly varying in space and time but not necessarily weak *'. Examples are provided by
the Euler Heisenberg *J formulation of electrodynamics in which the electron variables are elim-
inated, their virtual motions giving rise to non-linear corrections to the Maxwell equations and
the Coleman-Weinberg 5) formulation of gauge theories and its many extensions. This approach
can be usefully applied also in the case of non-relativistic theory 9K Such theories have their own
peculiarities including, in the case of fermions, a ground state in which the density of particles is
non-vanishing. In this note we undertake the task of constructing the leading terms of the effective
Lagrangian for the electromagnetic field in the presence of charged fermions. Although this system
has been analyzed quite thoroughly over the years, we believe that it may be instructive to consider
this old problem from a somewhat more modem point of view. In keeping with the general phi-
losophy of the method, we shall treat the magnetic field as a finite quantity although its derivatives
are small relative to the microscopic scales of the system. It will turn out that the effective field
equations are highly nonlinear. Indeed, there are singularities at those values of the fields which
correspond to thresholds at which new Landau levels 10> are opened to occupation **'. The result
of the computation to one—loop order is expressed in the form

(1.1)

where X and <t> are a pair of auxiliary scalar fields. Both Ej and all derivatives, dj<t>, 8}-Bk. etc. are
considered to be small quantities, powers of which are neglected. The potential U(<t>, B) is given

*) The effective action is also known as the generating functional for irreducible vertices. Starting
from the functional methods introduced by Schwinger " the properties of this functional were de-
veloped by many authors including particularly Jona-Lasinio 2) and De Witt J). When restricted to
slowly varying fields the effective action can be expressed as the spacetime integral of the effective
Lagrangian, a local function of the fields and their derivatives, up to any desired order. The lead-
ing term in the effective Lagrangian is the effective potential, which involves no derivatives. The
latter function was first shown by Goldstone, Salam and Weinberg *> to be of central importance in
the study of spontaneous symmetry breaking. In this context, the systematic expansion in powers
of derivatives was developed by Coleman and Weinberg s>. Historically, the first calculation of
the leading term in an effective Lagrangian was due to Heisenberg and Euler 6i who considered
the contribution of charged electrons in a constant electromagnetic field. Generalizations of the
effective action to functionals in which the Green's functions as well as the fields are treated as
independent variables were developed by, for example, De Domenicis ^ and Cornwall, Jacldw and
Tomboulis8'.

•*' Analogous singularities in the effective theory of charged fermions in 2+ 1 dimensional spacetime
were the subject of a recent study in induced Chem-Simons terms ">.

by a finite sum,

(1.2)

where B = •s/WjBj, e2 is the coupling strength, m is the fermion mass and N = N(<l>, B) is a
positive integer defined by the inequalities

/ i \ q

j . (13)

This means that the sum in (1.2) contains just those terms for which the quantity, 2 rrnfi - ( 2 n+1) B,
is positive. The permittivity tensor, £</, is defined by similar sums, given in the text below.

Although the potential U and its first derivatives are continuous functions of <j> and B,
its second derivatives are not. They, like the components of £</ have singularities at odd integer
values of the ratio, 2m^/B, where the function JV(<̂ , B) is discontinuous.

The auxiliary fields <j> and X have been introduced in order to express the effective La-
grangian in a gauge invariant form. They can be eliminated quite simply in the Coulomb gauge,
djAj = 0, by substituting <f> = AQ. This follows because sfx acts as a Lagrange multiplier. An
interpretation of the auxiliary fields is given in Section 2.

The one—loop contributions to U and ei;- are obtained in Section 2 where also there is
some discussion of the weak field approximation. Because of the above mentioned singularities the
effective Lagrangian is not analytic in B. For small values of the ratio, fl/2m^, the potential, for
example, exhibits the well-known de Haas-van Alphen oscillations ll), Section 3 is devoted to the
case of weak fluctuations on a uniform background. It is shown there that the uniform background
is stable and the spectrum of photon-like excitations is obtained

2. ONE-LOOP CONTRIBUTION

We consider the contributions due to a charged one-component non-relativistic fermion,
ij>. Its equation of motion is given by

(2.1)

(2.2)

where, in the case of a uniform background the covariant derivatives are

Vo = 5b - iAo, V] = 9i + iBx2, V2 = dz, V3 - di

with Ao and B constant. We have here a constant electrostatic potential and a constant magnetic
field directed along the 3 axis. The general solution of (2.1) can be expressed in the form

(2.3)



where Jfc ) • The functions < sink > satisfy the equation

<S.\H\nk>=—~ {(di + iBx2)
2 + %

which can be separated. Its solution is given by

n = 0 ,1,2
functions,

(2.4)

(2.5)

—oo < ki, Jfc3 < oo. The functions vn represent normalized oscillator wave

and the eigenvalues are

2
(2.6)

which are seen to be independent of Jfcj. These are the well-known Landau levels characterizing
the motion of a charged particle in a uniform magnetic field10).

The equal time anticommutors are given as usual by

and, with the normalizations adopted here this implies

The fermion ground state, \F >, is defined by

0,
(2.7)

The Fermi energy is thereby identified with J4O . The fermion Green's function is defined by *J

, f £L ,-*-
J iTTt

J3 — i
(2.8)

where the Hamiltonian if is given by (2.4). The integration contour in (2.8) must be routed such
that the poles corresponding to occupied states lie above the contour, white the rest are below it.

*) The conventions adopted here are as in Ref. 11.

This can be achieved by taking the contour along the real axis and displacing the poles according
to the prescription

where TJ( H) is an infinitesimal real operator defined such that

The ground state expectation value s of the number and energy densities can be evaluated
by elementary methods,

<F\4>+(x)Mx)\F> = ilimG0(x,x')l
o—»+O

?/<&
B Af-I

(2.9)
0

t lim f - ^ - V̂ 2 - A , )
S-I-HI ^ ZT71 ' /

where N = N(Ao,B) is an integer defined by the inequalities

B

(2.10)

(2.11)

It is, of course, a discontinuous function of AQ and B.

Our main purpose here is to develop the leading terms in a expansion of the one-loop
contribution to the effective action for the electromagnetic field. This takes the form

i In DetG(A)

, * i (2.12)

where G( A) = Go + .. • denotes the fermion Green's function in the presence of a slowly varying
background. A,,- The function !7(1) is given by the expression on the right-hand side of (2.10)
with B understood to represent the positive scalar \JBjBj. The pseudoscalar io)AiBi will not
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be present in the model treated here because the electrodynamics of charged fermions is parity
conserving, f(1) = 0. The permittivity tensor, because of rotation invariance, has two independent
components,

<$ = A" fy + 4 " BtB, (2.13)

where et and £2 are functions of Ao and B. These functions can be expressed in terms of the
propagator, Go, defined above. If needed, it would be possible to compute higher order terms,
(dB)2 , E*, etc., in the expansion (2.12), We illustrate the method here by explicitly computing
the quantities t/(1) and £^l).

The functional derivatives of T(1) with respect to Ao (x) take the form.

TAo
- -%%- E<Ej •
2 3Aa

-x') -e\j>

(2.14a)

(2.146)

where, in the latter formula, we are evaluating at Et = 0, Ao, B ~ const. On the other hand, from
the definition (2.8) it follows that

SAo(x) ° "*""

This implies that the functional derivatives of F ( 1 ) = i in Det G evaluated in the uniform back-
ground are given by

•• iGo(x,x)

dAo

••iGo(x,x')Go(x',x)

64(i - x') + ...

(2.15)

(2.16)

Equation (2.15) is equivalent to (2.9) and serves to determine the function [7(!) up to a term which
is independent of Ao. Eq.(2,16) can be used to determine ejj'. It should be clear that higher terms
in (2.12) could be determined in a similar fashion by examining various functional derivatives
of r ( l ) , which can all be expressed in terms of Go when evaluated in the uniform background,
Ej = 0, Ao, B = const.

To continue with the evaluation of e ^ , take the Fourier transform with repect to x and
i'ofEq.(2.16),

(2TT)4

= [ i Go(x,x')Ga(x',x)

(2.17)

where G(w) = (,H+ir)(H)-w)~l and the trace is over the one-fermionHilbert space. Evaluation
of the trace is made somewhat complicated by the fact that the fermions are moving in a uniform
magnetic background, B, = B Sa. However, it can be handled by purely algebraic means.

To simplify the trace introduce the operator notation xt, Vi with [ %i, irj] = i £<;-, etc. The

Hamiltonian (2.4) is then given by

1

_1
2m'

where

(2.18)

(2.19)

Notice that the components P and Q are canonical conjugates, [ Q, P] = i. An independent canon-
ical pair, which commutes with if, is given by

(2.20)p=iri, q = i , +

It is necessary to express x\ and xi in terms of the new variables so that

The trace in (2.17) contains the factor

TV Jexp l- - ^ |p ) exp i (-k[q + ^ - k\)6(.k2 - fcj) . (2.21)

The other factor is

Tr exp - ( kiQ+ -J- P + k3Xi)G(ui)expi (k\Q + —• P •*• £323 } G(u»+ i
L > \ o / \ B )

Ip, KnjexpK^Q+^J7) W > \Z

(2.22)

where we have introduced a basis of oscillator eigenstates,

. P

s/2B

g

|0 >, n = 0 , l , 2 , .



Substituting the factors (2.21) and (2.22) into the right-hand side of (2.17) and integrating over w

we obtain

- At) - Ao) (9 O - erfpt*,)} (2 .23)

which is to be expanded in powers of fcM and compared with the left-hand side of (2.17). Consider
firstly the case Jfeo = fci = Jtj = 0, jt3 > 0. Apart from the momentum conservation factor, the
expression (2.23) reduces to

2ir

2m
-e^) ~ - Ao)8{Aa -

B 4m ^ f
= 2* 2* Z-y i p

Bffl

where

On comparison with (2.17) this gives

Bm r-\

n = O , l , . . . , / / - ! .

- < 2 n +

(2.24o)

(2.244)

Note that (2,24a) is consistent with the expression (2.10) for [7( 1}. To obtain a\ ,l> we should examine
the configuration Jfco = ̂ 2 = ki = 0, k\ > 0, picking out the coefficient of Jfcf in the expansion of
(2.23). For this we need the oscillator matrix elements

\2 =
B

so that (2.23) gives

2 / m 1m y V V 2 ; m 2m/

n k \ / B \ n f f \ \ B p 2 ^ N . / ^ / 1 \ B p 2 \
5T— 1 f l ( B - T — + T A o U ( J 4 o - n + - ;f-)-
fl/m 1 \ \ 2 / m 2 m / \ \ 2 / m 2m/

C n + - (2n+

(2n+ 3) i?) ^(2TT^J4O — (2n +

- ( 2 n + 3 ) B ) 1 / 2 |

which implies

(2.25)

This expression, together with (2.24b), determines the invariant components of the permittivity
tensor as expressed in die formula (2.13), viz.

e\'e\'\A0,B) =
N-l

- (2n+

- (2n+ ^ ( 2 m ^ - (2n+

The energy density, determined in the course of this calculation, is given by

!7(1)Uo,B) = - B A f - l

6ir2m

(2.26)

(2.27)

The results (2.26) and (2.27) are to be adjoined to the zeroeth order expressions repre-
senting the free Maxwell Lagrangian,

(2.28)
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where e2 denotes the electric charge. In principle one could compute higher order corrections to
these quantities, contributions of order (e 2 ) 1 ^ 1 corresponding to graphs with L loops. The final
result of these calculations is the effective Lagrangian

C = -U{Ao,B) + j ' (2.29)

The presence of the electrostatic potential Ao in the expression (2.29) is a little irritating
because it seems to suggest a lack of gauge invariance. This is an illusion, however, because the
constant part of Ao is gauge invariant: it is to be interpreted as the Fermi energy. To avoid even the
suggestion of non-invariance we can regard (2.29) as a Coulomb gauge formula. In the Coulomb
gauge, djAj = 0 so that we have

h (2.30)

Let us therefore introduce a Lagrange multiplier 22X to enforce the cosntraint (2.30), replacing
(2.9) by

£ = d]X(Ej + drf) - V{<)>,B) + j ei,(4>,B)EiEj + . . . (2.31)

regarding (p and X as auxiliary gauge invariant scalars. In this arrangement the Fermi level is
represented by the scalar field, ̂ . The other scalar, X, can be related to the fermion charge density.
Thus, in the presence of an external charge density, /Q1*, the Gauss law derived from (2.31) takes
the form

so that X can be interpreted as the electrostatic potential due to the fermion s.

The effective "Maxwell" equations derived from (2.31) are nonlinear in B and <j>. We
shall not attempt to discuss their properties in this note apart from an analysis, to be given in Section
3, of weak perturbations on a static uniform background Probably the most interesting feature of
(2.31) is the fact that the functions U and ei} are singular. They have branch points at the odd
integer values of the ratio, 2 m4>/B. Although U and its first derivatives are continuous at these
points, its second derivatives - which occur in the field equations - are divergent. The longitudinal
permittivity e% and the first derivatives of the transverse permittivity £\ are also divergent. These
singularities are associated with thresholds at which Ar( if>, B) changes disconrjnuously, and they
seem to imply the existence of spatial surfaces across which some of the field components are
discontinuous.

To conclude this section we consider the behaviour of the effective Lagrangian for small
values of the ratio B/2m(j>. Quantities such as the potential, U, and the permittivities, eij, exhibit
branch point singularities associated with discontinuities of the function N((j>,B) and these become
dense at the origin, B/2 m<j> = 0. It is possible to develop asymptotic formulas for the neighbour-
hood of the origin where the quantities of interest show the oscillatory behaviour characteristic of

11

the de Haas-van Alphen effect. We begin with the potential (2.27),

(2.32)

where x = B/2 m4>. To manipulate sums of this kind it is useful to replace the power, 3/2 , by an
arbitrary number. Define the function

N-l 1 1
(2.33)

An asymptotic expression for the neighbourhood of x = 0 can be obtained by the method explained
in, for example, the text of Landau and Lifshitz l2i. It is based on the Fourier identity

E l / , , _\ _ V"1 _2iriJtti (n I J I

0\y — if) — y c \*f -J^J

n *
where the sums range over all integers. From (2.34) we have also.

This can be used to rearrange the sum (2.33) as follows.

The restrictions on the range of y serves to pick out the delta functions with n = 0 , I , . . . , J V ~ l .

The interchange of the order of summation and integration is justifiable if x does not coincide with

any of the singularities. The integral over t converges for Re a < 1. For it = 0 the integral is

elementary. For k ^ 0 it can be expressed in terms of incomplete gamma functions13>. Thus,

12



This result is presumably exact but, if x < 1, we can replace q by its asymptotic expansion,

which is valid for |u| —• oo, —3nr/2 < arp u < 3ir/2 . We obtain thereby, the asymptotic formula

-a) 2
1.36)

up to terms of order exp (— 1 /x). The convergence of the sum is rather delicate but the oscillations
in 1/s with period 2 are clear. Singularities at i = (2JV+1)"1 can appear when sis not sufficiently
negative. With s = - 3/j we obtain

Analogous formulae for e\]y and e\\y could be obtained from (2.36) by taking a = - '/j and s = Va.
In the latter case the sum over k diverges and ceases to be useful. The same is true for the derivatives
of E/( '*. We shall not take this any further since our purpose has been only to highlight the singular
aspects of the effective Lagrangian.

That the effective Lagrangian is not analytic in B is clear from expressions (2.24)-(2.27).
This may come as a surprise to those who are familiar with the development of relativistic field the-
ories where power series methods are commonly used. Relativistic theories are usually concerned
with perturbations on a Loientz invariant ground state, the vacuum. In contrast, we are dealing here
with a non-invariant ground state, one which is characterized by the occupation of some specified
one-fermion states. The specification of these states depends in a non-analytic way on the field B,
and is reflected in the fact that the fermion Green's function, Go, is not analytic in B. The various
terms in the effective Lagrangian which we have computed are basically functional of Go and
hence they too cannot be expanded in power series.

3. UNIFORM BACKGROUND

To test the consistency of the effective theory derived in Section 2 we consider the struc-
ture of weak perturbations on a uniform background. We suppose that the system is coupled to a
constant external charge density, Jo1* = n,. This is effected by adding to the Lagrangian (2.31), the
source term,

£.OTr« = - n . Mix) . (3.1)

It is straightforward to find a uniform solution of the effective field equations,

(3.2)

13

where B and <j> are constants. With this ansatz the field equations reduce to the pair,

n (3.3a)

n«- (3.36)

Equation (3.3a) serves to determine $ as a function of S, the latter being an arbitrary (positive)
constant. Although X is not well behaved in the case of infinite volume, this problem is an artifact
of the infinite volume limit and will not affect any question of substance.

We wish to study the weak perturbations of the uniform solution. To this end we write

in which the coefficients are defined by

(34)

where the primed quantities are small. When (3.4) is substituted into the Lagrangian, £ + C,mrc,,
the first order terms vanish while the second order terms take the form

(3.5)

1 dU

(3.6)

evaluated in the constant background, <j> = 4>,B = B~. The quantities (3.6), together with ey, are
given up to one-loop accuracy by the formulae of Section 2, (2.28), (2.27), (2.24) and (2.25). The
determination of ^ in terms of fl is a non-trivial algebraic problem: from (2.27) the one—loop
approximation to the equation of motion (3.3a) takes the form,

dB2

d2U
8<t>dB

~ - (2n+ (3.7)

The linearized equations for the weak fields, £{, etc., are obtained from the expression
(3.5). To test their stability it is useful to construct a Hamiltonian density

H2 = n / 3b 4 ; - C2

14
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where the canonical momenta HI are defined in the usual way.

E/j + d%X (3.9)

One finds

" 2 — "̂~ &ij E'i&j * "T Ct> " i " f + p V i?3 — -r"- V — U7A (7jP + l ljOi/ l0 (. J.1U)
2. L 2

where BJ is to be read as a function of n,' and 8iX' given by (3.9). The variables ft, X1 and A'o are
not dynamical and should be eliminated. Notice firstly that the variational derivative with respect
to AQ gives the Gauss law constraint,

diH! = 0, (3.11)

Secondly, variation of ft gives the equation

, 1 , j

I*1 i

which can be used to eliminate <ft from (3.10). When this is done the Hamil toman reduces to

(3.12)

H2 = i Ei} E^Ef, + «iS BjflJ + ~ (3.13)

Finally, the auxiliary variable X' could be eliminated by solving the equation

8H2

dX'
0

(3.14)

but this would lead to a non-local expression. In any event, the expression (3.13) for the energy
density associated with weak fluctuations is positive if the matrices £i;- and o<; are positive defi-
nite and if fi1 > 0. If these conditions are met then the uniform solution is stable against weak
perturbations. We list the relevant formulae,

an = « H
 = ^ j

(3.15)
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In each of these sums the upper limit N = N(<f/, B) is determined by the inequalities

(2N+ \)B~>lm4>>(2N-\)~B . (3.16)

Observe that n1 is represented by a sum of positive quantities. It is clear also that the ey and ay
can be positive for some range of 4> and B because the coupling parameter e2 is an independent
positive quantity. For this range stability is thus ensured.

To conclude this analysis we compute the excitation spectrum. The most efficient way
to do this is to eliminate the auxiliary fields ft and X' from the Lagrangian (3.5), reducing it to the
non-local form,

1 , ; / 1
2 „„-,-, jatijBiBi + pB^d,

Add to this the gauge-fixing and source terms,

C" = C'djA'j +

on)

(3.18)

where C is a Lagrange multiplier and J^ is an external current. The linear, inhomogeneous equa-
tions of motion which result are

13

"h
SL1 ept +

- 0 Bat dt - A'o + {-e < + fi2}A'0=Jo

• 0 . (319)

The equation for C' is easily isolated from these,

22 C = dn / " ,

so that C can be eliminated. The resulting four equations for A'^ can be solved algebraically in
momentum space. For determining the spectrum the relevant quantity is the determinant of the
coefficients, A (k), which is a polynomial in the frequency, ko. It takes the form

A / L\ f L̂ 1 L L^ _t ^ / *\ ^A\
ti \ K) = -^ \Q KQ — 0 SQ + Cj \J .£*))

where the coefficients, a,t,care rather complicated functions of the wave vector kj. The frequen-
cies of the propagating waves are given by the zeroes of of A, viz*

2a

16
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The result of a lengthy computation is

a

b

kj)2

atet+

atst)k
2kj

and

- l ( fc2 _ 4QC) = { ( -

In these formulae we distinguish transverse and longitudinal components:

<*t, k2 + k\ = k2, A3 =

etc. These quantities are all positive. It follows that o, 6, c and b2 — 4ac are also positive. Hence
the frequencies w+ and w_ are both real. This confirms the stability argument given above. (It may
also be remarked that w±(k) ~ O( i 2 ) as k_ -* 0.)

4. SUMMARY AND FINAL REMARKS

In this paper we used well developed methods of relativistic quantum field theory to
obtain an effective nonlinear electrodynamic in non-relativistics QED. The nonlinearities are pro-
duced by the excitation spectrum of electron motion in a uniform magnetic field. A one-loop
formula which is valid for weak as well as strong background fields is obtained and is shown to
correctly reproduce the well-known oscillatory behaviour in the appropriate limit. We have also
calculated various permittivities in the one-loop approximation and by proving the positi vity of the
Hamiltonian for weak pertubations we have shown that the uniform background is stable. We have
then confirmed this result by showing that the frequencies of the slowly varying electromagnetic
perturbations (photons) are real.

The one-loop effective Lagrangian has singularities at odd integer values o(2m4>/B,
where B is the magnetic field and <ji is the Fermi energy. These singularities correspond to thresh-
olds at which new Landau levels are opened to occupation. The nonlinear field equations derived
from our one-loop effective action may admit interesting solutions. However, in this paper we
have not investigated such possibilities.
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