INTERNATIONAL CENTRE FOR
THEORETICAL PHYSICS

ON THE WEAK APPROXIMATION
IN ALGEBRAIC GROUPS
AND RELATED QUESTIONS

Nguyen Quoc Thang

1990 MIRAMARE - TRIESTE
ON THE WEAK APPROXIMATION IN ALGEBRAIC GROUPS
AND RELATED QUESTIONS*

Nguyen Quoc Thang**
International Centre for Theoretical Physics, Trieste, Italy.

ABSTRACT

We prove here a theorem on the weak approximation in adjoint groups.

MIRAMARE – TRIESTE
October 1990

* To be submitted for publication.
** Permanent address: Institute of Mathematics, P.O. Box 631, Bo Ho, Hanoi, Vietnam.
1. INTRODUCTION

Let \(G \) be an algebraic group defined over a field \(k \). If \(k \) is a topological field, for example \(k = \mathbb{R} \) (real numbers) or \(k = \mathbb{C} \) (complex numbers), then the group \(G(k) \) of \(k \)-rational points of \(G \) can be considered as a topological group with the topology induced from \(k \). If \(k_v \) denotes the completion of \(k \) at a valuation \(v \) of \(k \) then we say that \(G \) satisfies the weak approximation with respect to a finite set \(S \) of valuations of \(k \), if, via the diagonal embedding, \(G(k) \) is dense in the product \(\prod_{v \in S} G(k_v) \) with respect to the product topology, and \(G \) satisfies the weak approximation over \(k \) if the above holds for any \(S \). We refer the reader to [P-R], [S] for more complete expostions of the question. There is a conjecture due to Platonov, stating that over any field \(k \), every adjoint semisimple \(k \)-group satisfies the weak approximation (see [P-R] for a stronger version of the conjecture), which generalizes a similar result of Harder [H] over global fields. (cf also [S]). In [Th1], [Th2] we have discussed this conjecture and related problems, showing that the conjecture holds for a large class of semisimple groups and also over a large class of fields.

In this paper we extend the class of adjoint semisimple groups, for which the conjecture holds. Namely we have the following

Theorem Let \(k \) be any field. Then every adjoint semisimple \(k \)-group, which contains neither anisotropic simple factors of exceptional type \(D_4, E_6 \), nor the types \(E_7^{13}, E_8^{13}, E_8^{133} \) (in Tits notation [T1]) satisfies the weak approximation over \(k \).

2. PRELIMINARIES

Throughout this paper \(k \) will denote a field, all algebraic groups are supposed to be linear, \(H^1(\cdot, \cdot) \) denotes the set of 1-Galois cohomology and \(\mu_2 \) denotes the group \((\pm 1)\). A set of valuations always means a set of nonequivalent valuations.

Lemma 1 Let \(\text{char} \cdot k \neq 2 \) and \(S \) be any finite set of valuations of \(k \). Then the canonical map \(H^1(k, \mu_2) \to \prod_{v \in S} H^1(k_v, \mu_2) \) is surjective.

Proof We have to prove that for any \(x_v \in k_v^* \), \(v \in S \), there is \(x \in k^* \) s.t. \(x \equiv x_v \) (mod. \(k_v^2 \)). But this follows immediately from the well known facts that \(k_v^2 \) is an open subgroup in \(k_v^* \) with respect to the \(v \)-adic topology and that \(k_v^* \) is dense in the product \(\prod_{v \in S} k_v^* \).

The following lemma and its corollaries have been proved in [Th3], but for the convenience of reading, we give its proof here.

Lemma 2 Let \(G \cdot H \) be an almost direct product of \(k \)-groups with \(F = G \cap H = (G \cap H)(k) \) (set-theoretic intersection). If \((\text{char} \cdot k, \text{card}(F)) = 1, \dim G \text{ (resp. } \dim H) > 0 \), then the \(k \)-projection \(\lambda_1 : G \cdot H \to G \cdot H/H \) (resp. \(\lambda_2 : G \cdot H \to G \cdot H/G) \)
is surjective on \(k\)-points.

Proof Let \(\Gamma = \text{Gal}(\overline{k}/k) \), where \(\overline{k} \) denotes a fixed algebraic closure of \(k \). It is clear that

\[
\pi_1^{-1}((G/F)(k)) = \bigcup_{f \in \text{Hom}(\Gamma, F)} \{ g \in G : g^s = f(s) \cdot g, \forall s \in \Gamma \},
\]

where \(\pi_1 \) is the \(k \)-projection \(G \to G/F \) and \(\text{Hom}(\Gamma, F) \) denotes the set of all group homomorphisms from \(\Gamma \) to \(F \). By the way, the above set is mapped onto \((G/F)(k) \) under \(\pi_1 \). We now prove that \((G \cdot H)(k) \) is mapped onto the set of \(k \)-points of \(G \cdot H/H \). Let \(\text{pr}_1 : G \times H \to G \) be the projection onto \(G \). Then, from the following commutative diagram of \(k \)-groups

\[
\begin{array}{ccc}
G \times H & \xrightarrow{\Delta} & G/F \\
\pi \downarrow & \nearrow & \downarrow \tau \\
G \cdot H & \xrightarrow{\lambda_1} & G \cdot H/H
\end{array}
\]

and from the separability of \(\Delta = \pi_1 \circ \text{pr}_1 \), \(\lambda_1 \) and \(\pi \) (by assumption), it follows the separability of the map \(\tau \), i.e. \(G/F \) is \(k \)-isomorphic to \(G \cdot H/H \) canonically as \(k \)-groups (cf. [R]).

Now let \(g \cdot h \in (G \cdot H)(k) \). Hence \((g \cdot h)^s = g \cdot h \) for any \(s \in \Gamma \), or equivalently, \(g^{-1} \cdot g^s = h \cdot h^{-s} = f(s) \in F \). Let \(\Gamma' \) be the subgroup of \(\Gamma \), consisting of all \(s \) fixing \(g \). It is clear that the map \(s \to f(s) \) is a homomorphism from \(\Gamma \) to \(F \), and \(\Gamma' = \text{Ker}(f) \). Let \(k' \) be the extension of \(k \) corresponding to \(\Gamma' \). Then \(g \in G(k'), h \in H(k') \) and denoting by the same \(f \) the induced homomorphism from \(\Gamma / \Gamma' \) to \(F \), we have \(g^s = f(s) \cdot g, h^s = f(s^{-1}) \cdot h \) for all \(s \in \Gamma / \Gamma' = \text{Gal}(k'/k) \). Hence we have the following equality

\[
(G \cdot H)(k) = G(k) \cdot H(k) \bigcup_{k' \in \text{Hom}(\Gamma', F)} \{ g \cdot h : g \in G(k'), h \in H(k'), s.t. g^s = f(s) \cdot g, h^s = f(s^{-1}) \cdot h, \forall s \in \Gamma = \text{Gal}(k'/k) \},
\]

where \(k' \) runs over all Galois extensions of \(k \) constrained in a fixed algebraic closure \(\overline{k} \) of \(k \). Now we consider the \(k \)-homomorphism \(\theta : G \cdot H \to G/F \), mapping \(g \cdot h \) to \(g \cdot F \). It is sufficient to prove that \(\theta \) is surjective on \(k \)-points since \(\tau \) is a \(k \)-isomorphism. Applying the map \(\theta \) to the above decomposition of \((G \cdot H)(k) \) we see that \(\theta((G \cdot H)(k)) = \theta(\pi_1^{-1}((G/F)(k))) = (G/F)(k), \) since \(\theta \) coincides with \(\pi_1 \) on \(G \).

From this lemma we deduce the following

Lemma 3 With the above notation, the induced map \(H^1(k, G) \to H^1(k, G \cdot H) \) (resp. \(H^1(k, H) \to H^1(k, G \cdot H) \)) is injective.

Proof It follows from the sequence of cohomology sets derived from the exact sequence of \(k \)-groups \(1 \to G \to G \cdot H \to G \cdot H/G \to 1 \) (resp. the exact sequence \(1 \to H \to G \cdot H \to G \cdot H/H \to 1 \)) and from lemma 2.
Let \(f \) be a nondegenerate hermitian form with respect to an involution of the first kind of a division algebra of finite dimension over its centre \(k \). Denote by \(\tilde{G} \) the special unitary \(k \)-group of the form \(f \) and by \(G \) the adjoint \(k \)-group of \(\tilde{G} \). An interesting characterization of the groups of \(k \)-points of these groups is given in the following

Lemma 4 With the above notation, assume that \(\text{char} \cdot k \neq 2 \). Then we have the following exact sequence of groups

\[
1 \rightarrow \mu_2 \rightarrow \tilde{G}(k) \rightarrow G(k) \rightarrow H^1(k, \mu_2) \rightarrow 0 .
\]

Proof We can form an almost direct product \(\tilde{G} \cdot G_m \) with \(\tilde{G} \cap G_m = (\pm 1) \). Let \(H = \tilde{G} \cdot G_m \) and we have the following commutative diagram with exact lines

\[
\begin{array}{ccc}
1 & & 1 \\
\downarrow & & \uparrow \\
1 & \rightarrow & \mu_2 \rightarrow \tilde{G} \rightarrow G \rightarrow 1 \\
\downarrow & & \uparrow \\
& & H \\
\rightarrow \downarrow & & \\
G_m & & G_m \\
\uparrow & & \\
1 & & 1
\end{array}
\]

and from this the following commutative triangle

\[
H^1(k, \tilde{G}) \xrightarrow{\gamma} H^1(k, G) \\
\alpha \downarrow \beta \Rightarrow \gamma \downarrow \beta
\]

From the Lemma 3 (resp. from the exact sequence of \(k \)-groups \(1 \rightarrow G_m \rightarrow H \rightarrow G \rightarrow 1 \)), it follows that \(\alpha \) (resp \(\beta \) is injective, hence \(\gamma \) is injective too, and from this the lemma follows.

Lemma 5 (cf. [Th2]) Let \(Q \) be a connected reductive \(k \)-group, \(P \) be a parabolic subgroup of \(Q \) defined over \(k \), \(P = M \cdot R_u(P) \) be a Levi decomposition of \(P \), \(S \) be a finite set of valuations of \(k \). By \(A(S, \cdot) \) we denote the defect of the weak approximation in \(S \), i.e. \(A(S, Q) = \prod_{v \in S} Q(k_v)/Q(k) \) (the closure is taken in the product topology), etc. Then we have the following bijections

\[
A(S, Q) \leftrightarrow A(S, P) \leftrightarrow A(S, M)
\]

In particular, \(Q \) satisfies the weak approximation with respect to \(S \) if and only if \(P \) (and so \(M \)) satisfies.
3. **PROOF OF THE THEOREM**

From the results of [Th2] it follows that we have only to prove the weak approximation property for adjoint almost simple \(k \)-groups of type \(C_n \) and \(D_n \). Let \(G \) be such a group and let \(\check{G} \) be its unitary covering over \(k \), \(S \) be a finite set of valuations of \(k \). We may assume that \(\text{char} \cdot k \neq 2 \), since otherwise, the assertion follows from the pure inseparability and we may use the Cayley transform in any characteristic cf. [D]). Now we have the following commutative diagram with exact lines

\[
\begin{array}{c}
\check{G}(k) \rightarrow G(k) \rightarrow H^1(k, \mu_2) \rightarrow 0 \\
\downarrow \quad \quad \downarrow \quad \quad \downarrow \sigma \\
\prod_{v \in S} \check{G}(k_v) \rightarrow \prod_{v \in S} G(k_v) \rightarrow \prod_{v \in S} H^1(k_v, \mu_2) \rightarrow 0
\end{array}
\]

due to Lemma 3 in the Sec.1. Now, by making use of the weak approximation in the group \(G \), combining with the surjectivity of the map \(\sigma \) (Lemma 1), by the same method of chasing on diagram as in [K], the weak approximation property of \(G \) follows.

4. **THE UNIVERSAL PROPERTY**

The following discussion can be given in a more general context, but for the sake of simplicity, we restrict ourselves to the case of algebraic groups. A \(k \)-group \(G \) is said to satisfy the weak approximation universally if for any extension \(k' \) of \(k \), \(G \) satisfies the weak approximation over \(k' \). In their important work [C-S] J.L. Colliot-Thélène and J. J. Sansuc have considered this notion in the case of algebraic tori and have shown that tori, which satisfy the weak approximation universally are the obvious ones; namely they are factors of rational \(k \)-varieties. One may ask if the same result is still true for other algebraic groups. We have the following

Proposition Any quasi-split semisimple \(k \)-groups, which satisfy the weak approximation universally, are direct factors of varieties rational over \(k \) (i.e. birationally isomorphic to affine space over \(k \)).

Proof Let \(G \) be a quasi-split semisimple \(k \)-group, \(S \) be its maximal \(k \)-split torus, contained in a maximal \(k \)-torus \(T \) of \(G \). Then as it is well known, \(T \) coincides with the centralizer of \(S \) in \(G \). Thus by Lemma 5, \(T \) satisfies the weak approximation universally, hence is a direct factor of a rational \(k \)-variety. Since \(G \) is birationally equivalent to the product of \(T \) with \(k \)-split unipotent groups by Bruhat decomposition, hence the proposition follows.

5. **REMARKS**

With respect to the case of anisotropic exceptional simple groups \(D_4 \), \(E_6 \) and groups of type \(E_7^{28} \), \(E_8^{28} \) and \(E_6^{133} \) the situation seems to be quite unexpected since we do not have sufficiently
clear models of these groups. However, one may hope that using the approach proposed by Tits [T2] we can study some of these groups (strongly inner, . . .) basing on the connection between the Brauer group $Br(k)$ and Jordan algebras over k.

Acknowledgments

The author would like to thank Professor Abdus Salam, the International Atomic Energy Agency and UNESCO for hospitality at the International Centre for Theoretical Physics, Trieste.
REFERENCES

