
5

IC/90/325

INTERNATIONAL CENTRE FOR
THEORETICAL PHYSICS

ON CHARGED FERMIONS IN TWO DIMENSIONS

INTERNATIONAL
ATOMIC ENERGY

AGENCY

UNITED NATIONS
EDUCATIONAL,

SCIENTIFIC
AND CULTURAL
ORGANIZATION

S. Randjbar-Daemi

Abdus Salam

and

J. Strathdee

1990 MIRAMARE-TRIESTE

T I TIT





IC/90/325

International Atomic Energy Agency

and

United Nations Educational Scientific and Cultural Organization

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

ON CHARGED FERMIONS IN TWO DIMENSIONS

ABSTRACT

The integer quantum Hall effect and associated magnetic phenomena are reconsidered

in a 2-dimensional system with a flat boundary. The electromagnetic properties of this system are

governed by an effective Lagrangian which includes an induced Chem-Simons term. The effec-

tive Lagrangian is relevant for the description of fields which are slowly varying about a unifonn

magnetic background associated with a fermionic ground state in which a whole number of Landau
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I. INTRODUCTION

The behaviour of non-relativistic charged fermions, minimally coupled to the electro-

magnetic field in 2+1 dimensions is reconsidered. It is believed that the fermions are able to aggre-

gate in metastable configurations which sustain a non-vanishing but uniform magnetic field. These

metastable states are characterized by the filling of a whole number of Landau levels. Because

the magnetic field strength is a pseudoscalar with respect to reflections in two space dimensions,

these states are not parity eigenstates. The most characteristic feature of the parity violation is the

emergence of an induced Chem-Simons term, with quantized coefficient, in the effective action.

Because of this term, gradients in the magnetic field generate electric fields and vice versa. The

magnetic gradient can be attributed to a fermion current flowing in a direction orthogonal to the

associated electric field. It is a Hall current and, since it does not dissipate energy, it may, perhaps

usefully, be regarded as a supercurrem. The current is generally concentrated near the boundaries,

where the magnetic field is variable, and it satisfies a 2-dimensional London equation. It can be

argued that the magnetic field exhibits a kind of Meissner effect.

The existence of metastable states for systems of charged 2-dimen5ion."l fermions is

made plausible by energy considerations. The energy density associated with motion of a fixed

number (per unit area) of particles in the background of a uniform magnetic field exhibits local

minima at those values of the field strength which correspond to the filling of a Landau level. It

has been conjectured that these states can be stabilized, in a finite system, by applying an external

field at the boundary"'. The idea is that, with the magnetic field maintained at some fixed value on

the boundary, it will tend to relax in the bulk of the system towards one of the metastable values

associated with filled Landau levels and spatial uniformity. (It should perhaps be emphasized that

we are considering a strictly 2+1-dimensional electrodynamics: the field components are E\, Ei

and B = B^. Missing are the components £3 , B\ and Bi which would be needed to fill out the

usual electrodynamics. This means that, from the 3+1-dimensional viewpoint, we are dealing with

a cylinder, i.e. a block which is infinitely extended in the 13 direction, not a thin film. Hence, the

field in the interior is dynamically generated, not freely adjustable.) We believe that the most stable

arrangement would be for the bulk field to choose the value nearest to the externally imposed one.

This would minimize gradient contributions to the energy. But the validity of this conjecture has

yet to be established.

Much of this is well known but scattered 3 ) . Our purpose in reconsidering the integer

quantum Hall effect in cylindrical geometries is to attempt some clarification, particularly with

regard to edge effects. We shall argue in Section 3 that the status of the Chern-Simons term becomes

uncertain in the vicinity of boundaries where a question of gauge invariance arises. To settle this

question and, in particular, to find plausible matching conditions for field strength components at

*> This conjecture was originally expressed, as far as we know, by R.S. Markiewicz " . W e learned

of it from A. Cabo who had independently arrived at the same idea2) and to whom we are grateful

for telling us of his work prior to publication.

a boundary, we consider in some detail the problem of computing current density near a plane

boundary. The outcome of this is that the boundary layer, where the effective local theory with its

Chern-Simons term is expected to break down, is narrow relative to the length scale determined by

the effective theory, provided the number of filled Landau levels is not too large. (Or, equivalent!)',

provided the equilibrium field in the interior is not too small relative to the number density of

charged particles.) The same condition will ensure that the discontinuity of magnetic field strength,

across the boundary layer, is small relative to the interior field. On the other hand, it turns out that

the width of the boundary layer is comparable to the penetration depth if the magnetic field is

relatively weak, i.e., if the number of filled Landau levels is large. We will show that the latter

circumstance is also required for the existence of metastabte configurations.

We should emphasize at once that we are not dealing with a theory of anyons4). We do

not introduce an independent statistical field 3) of the Chem-Simons type; our charged particles

are fermions. However, because the Maxwell equations acquire a Chem-Simons contribution as a

result of ground state fluctuations, it could be argued that, at least for large separations, the charged

fermions behave effectively like free anyons. We shall not pursue this argument here *>.

Our purpose is two-fold. Firstly, in Section 2 we review the derivation of the Peierls

formula for the energy density of charged fermions in a uniform magnetic background; neglecting

their mutual interactions. Although our main interest is with the zero temperature system, we

find it very helpful to employ a finite temperature expression for the density of free energy. This

detour serves to clarify the dependence of the energy on a constant electrostatic potential, in effect

the chemical potential, or Fermi energy. The energy density at zero temperature is a continuous

but not everywhere diffcrentiable function of the magnetic field with local minima that define the

metastable states.

Secondly, in Section 3 we consider the somewhat less uniform case in which the 2 -

dimensional space is divided into two half-planes, one occupied by the charged fermions and the

other empty. With such a simple geometry it is possible to understand the edge effects in some de-

tail. We estimate the surface current and hence the magnetic discontinuity at the boundary (orrather

the change across a boundary layer whose width we also estimate). For weakly varying electric

and magnetic fields the effective classical boundary problem is easily solved. The Meissner-like

behaviojr of the magnetic field, and the related Hall current can be seen clearly in this configura-

tion and it is possible to show that, under plausible circumstances the penetration depth is large in

comparison with the thickness of the boundary layer.

Much of the work done in connection with anyon models of superconductivity can also be used in

discussions of the integer quantum Hall effect *>-7)'*\ Both are based on the properties of Landau

orbitals. We found the paper, "Magnetic and Thermal Properties of the Anyon Superconductor" by

Hetrick, Hosotani and Lee 9 ), particularly useful in its treatment of the free energy density.



2. ENERGY DENSITY

To demonstrate the existence of metastable, translation invariant states it is necessary to

construct an energy density function and show that it has local minima. The construction which

we shall describe is not fully consistent since we shall treat the electromagnetic field as a fixed and

uniform background in which the fermionic motion takes place. In such a background it is easy

to compute the fermionic energy density. We can then adjust the background so as to minimize

this energy. It turns out that the minima correspond to electron configurations in which a whole

number of Landau levels is filled. This much is consistent, because it can be shown that a filled

Landau level is a translation invariant, non-degenerate state and is therefore not incompatible with

a uniform magnetic field. However, at values of the magnetic field for which there is a partially

filled level, i.e. away from the minima, it is not clear that translation invariance can be maintained.

Such a state may imply non-uniform charge and current distributions which would not be consistent

with the assumed uniform magnetic field.

To describe the fermion contribution to the energy density it is necessary to draw on

some properties of the Landau orbitals, eigenfunctions describing charged particles in a uniform

magnetic field. In order to make the discussion self contained we give a brief account.

The system comprising the Maxwell field, A?, and a 1-component (non-relativistic)

fermion, i>, is governed by the action

2 m ,
S = (2.1)

where /J , v = 0 , 1 , 2 and k, I = 1,2. The covariant derivatives are defined by

= d,, and

The coupling parameter, e2 , which has the dimensions of mass, is associated with the Maxwel!

kinetic term in (2.1) rather than the fermion term. This is a matter of convenience. The parameter,

rtg, is included in (2.1) to account for a neutralizing but non-dynamical background of electric

charge *J.

The Landau orbitals provide a basis for the solutions of the fermion equation of motion,

(<**S>
Although this mode! makes no reference to any crystal structure we can imagine that (2.1) is de-

scribing the remnant of a (3+l)-dimensional theory of electrons in a crystal with a layered structure

that inhibits motion in the 3-direction. With this in mind we can give a rough estimate of the pa-

rameters e2, m and n,, If the thickness of one layer is 6 then we should have e2 6 ~ 1 /137. The

electron density should also have atomic dimensions, rt ~ 6~2. There are two dimensionless

ratios*>'7 ) ,e2 /rn~ lO"5 andtv/m2 ~ lO" 6 .

in which the gauge potentials describe a uniform background. We choose

Vo = do-iAo, Vi = 3 i + i S i 2 , V2 = &i (2.2)

with Ac, and B constant. Since B is a pseudoscalar we shall assume that the coordinate axes arc

oriented so as to make it positive. With the choice (2.2) we have translation invariance in the xo

and xi directions. It is therefore convenient to expand as follows.

(2.3)

(2.4)

where u^ ( x i ) satisfies the eigenvalue equation

This is just the problem of the simple harmonic oscillator and is solved by

(2.5)

; —00 < k < 00 and the functions vn are the orthonormalized oscillatorwhere n = 0 , 1 , 2 , . . .

wave functions,

The eigenvalues (2.5) are independent of k, indicating a degeneracy of the Landau levels. In the

next section we shall reconsider the eigenvalue problem (2.4) with particles restricted to the half-

plane , x2 > 0. In that case there is no degeneracy, the energies depend on it in a rather complicated
way.

The coefficients ^ in the expansion (2.3) satisfy the anticommutation relations,

- Jt')

and are realized in the usual way in Fock space. The fermion ground state \F > is defined by,

<F\\l>*k = 0, £„* < Ao (2.6)

where Ao is to be identified with the Fermi energy. Using this rule we can compute the ground

state expectation value of the density operator,

(2.7)
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In the simple case where £„* is independent of k, the definition (2.6) implies that the ground state

comprises an integer number, N, of occupied Landau levels. This integer is defined as a function

of Aa and B by the inequalities

£W_i < Ac < EN (2-8)

If the Fermi energy actually coincides with one of the Landau levels then (2.6) becomes ambiguous

and some refinement of the ground state definition is needed. This is the problem of partial filling

which we shall come back to. However, if the inequalities (2,8) are strict then (2.7) can be evaluated

using the normalized wave functions (2.5) and the result is a constant,

. (2.9)

We have reproduced here the well-known fact that the degeneracy of states is given by B /2 ir per

unit area, per Landau level. (In the case of the half-plane, to be considered in Section 3, this simple

rule fails near the edge where the number density is not uniform.) In the same way we compute the

expectation value of the energy density,

£ =< •— VfifVji - V Ao V >

J^ B{Ao - 2

(2.10)

g 2* [(n+2) ^A°\
NB

where N is regarded as a (discontinuous) function of Ao and B, defined by (2.8).

The problem of partially filled Landau levels is specific to two dimensions where the

spectrum of fermion energies is discrete. In three dimensions, where the spectrum is continuous,

it is possible to construct a non-degenerate ground state for arbitrary values of the magnetic field

and particle density. It is instructive to compare the formulae (2.9) and (2.10) with their three-

dimensional analogues. In three dimensions the spectrum is given by

l\ B
n+ - —•

2 / trt 2m

where fc3 denotes the momentum component parallel to the magnetic field. The eigenfunctions are

The densities are given by

N-l B
•J —T(2mA0 - (2n+

Af-t

* - E
B - ( 2 n + 1)B) 3 / 2

(2.9 ')

(2.10')

where the integer N is determined by the inequalities

exactly as in (2.8). In contrast with (2.10), the energy density (2.1O0 is an explicitly non-lindu"

function of the Fermi energy, Ao- This implies that the equation -d£/dAo = n, can be solved

for Ao as a function of B and n, with the latter quantities freely adjustable. In other words, for

arbitrary B and n, it is possible to determine the Fermi level such that the onc-fermion states of

given energy are either all occupied or all empty. There is no degeneracy. In two dimensions, where

Ao acts as a Lagrange multiplier, the corresponding equation constrains the quantity 2 irn,/B to be

an integer. If this constraint is not satisfied then one of the Landau levels must be partially occupied

and the ground state is degenerate. It should be emphasized that this qualitative distinction between

the two cases is due to the continuum nature of the three-dimensional spectrum.

The usual role of the electrostatic potential Ao(x) in electrodynamics is to act as a La-

grange multiplier in enforcing the Gauss law. In the end it should drop out of physically meaningful,

gauge independent quantities such as energy density. However, there is a qualification. The con-

stant part of Aa, which we have identified with the Fermi energy, is not affected by the allowable

gauge transformations, Ao —* Ao + obA, which must satisfy the restriction, A ( i o = + ° ° ) =

A (TO = - c o ) . The Fermi energy is indeed gauge independent and physical quantities must, of

course, depend on it.

To compute the total energy density in a non-degenerate ground state with specified num-

ber density, n ,̂ it is necessary to add the fermion contribution (2.10) to the background contribution,

nj Aa, and minimize with respect to Ao,

U = Ao +
4irm 2 IT

Minimization of U with respect to Ao gives the constraint

B = — = BN •

(2.11)

(2.12)

Comparing this with (2.9) we find < if>*ij) > = rit which confirms the interpretation of rv as

fermion number. The resulting energy density is independent of JV,

(2.13)

It is generally believed that these states are in some sense stable: that charged fermions in a uniform

magnetic field will spread themselves in such a way as to satisfy (2.12), i.e., fill an integer number

of Landau levels. An old argument, due to Peierls, t0) which suggests that these configurations

correspond to local minima of an energy functional U(B), is intuitively appealing. It goes as

follows. Suppose that the Landau levels n « 0 , 1 , . . . , JV — 1 are full, with number density B/2%,



while the level n = AT is partially filled, with (uniform) number density 6n, < £, Then the total

number density is

and the total energy density is

NB

2 / m V 2/ m

(2.14)

This function, which is pictured in Fig.l, is continuous in B but not everywhere differentiate.

Since the inequality, Sn, < B/2-a, is assumed in the derivation we must regard JV as a discontin-

uous function of B defined to be the integer part of inndB. The Peierls formula (2.14) exhibits

local minima at B = BN- At these points, where it takes the value (2.13), the magnetization,

—dU/dB, is discontinuous (de Haas-van Alphen effect, Fig.2).

The Peierls formula can be obtained directly from (2. U) by making the substitution

Ao =
TO

<B<BN (2.15)

i.e., by choosing the Fermi level equal to the energy of the partially filled level. This is, of course,

a reasonable choice but it should be borne in mind that the locus (2.15) is discontinuous (Fig.3). It

is perhaps useful to see how this emerges from an examination of the equilibrium distribution at

finite temperature by going to the limit of zero temperature. The thermodynamic potential which

generalizes (2.11) is given by

B
(2.16)

where Ao is to be understood as a chemical potential. At finite temperature the dependence of £1

on Ao is not linear. Hence, the extremum condition, 9£i jdM - 0, can be solved for Aa as a

function of B and /3, at least in principle. The equation takes the form

B = £ (2.17)

and it clearly reduces to (2.12) in the zero temperature limit if Ao satisfies the inequalities (2.8).

However, if Ao approaches en such that

Ao = EM - -g (2.18)

where £ is real and positive and remains finite as p —» oo, then (2.17) becomes

(2 19)

in the limit. According to this scheme, the limiting value of Ao is SN where N denotes the integer

part of 2TMC/B. The locus of points in the AaB plane given by dil/dAo = 0 is a smooth

curve (Fig.4) at finite temperature but it should be emphasized that its limiting form (2.15) does not

correspond to an extremum of the function U defined in (2.11). Indeed, the equation dU/dAo = 0

gives only B = BN.

To go beyon'. these considerations and establish an effective electrodynamics for this

system it will be necessary to construct an action functional for slowly varying fields. The full

contribution of the fermionic degrees of freedom is expressed, formally, as a functional determ inant.

= iinDet G(A) (2.20)

where G( A) represents a 1-fermion Green's function in the background of a given gauge field, A,,.

If this background is uniform, (constant Aa and B) and if the fermionic ground state is translation

invariant, then the functional (2.20) must reduce to the integral over spacetime of minus the energy

density, £, given by (2.10). When the background is slowly varying we can expand in powers of

the derivatives. The result of this computation, accurate up to two derivatives, is given by 6)

• /
d?x\

N2B2 N— sgnB(AaB -4x Ai.E\)
L 4ff \B\ 4irm

(2.21)
where £,- = So ,4; - d,Ao, B = 9]/42 - & A\ and sjfiB = B/j.B|. The integer JV is a function

of J4O and |B | defined by the inequalities (2.8). In counting derivatives in the effective Lagrangian

we should recognize that B contains a piece of order zero, The third term in (2.21) is the Chem-

Simons action *'. It should perhaps be emphasized that although the de Haas-van Alphen effect

is well-known in a 3+1-dimensional gas of electrons in a magnetic background, the emergence of

the Chem-Simons term in (2.21) with its topologtcal implications is specific to 2+1-dimensional

systems.

The action functional (2.21) is meaningful in regions of spacetime where the potentials

are slowly varying and the magnetic field does not vanish and, more particularly, where the Fermi

energy lies in a gap between Landau levels. Its derivation assumes that the fermion ground state is

not degenerate.

Near points where the function JV(j4o, B) is discontinuous the functional (2.21) cannot

be used. These discontinuities are associated with partial filling or, in other words, with ground state

Note that the coefficient of AoB in (2.10) is -JV/2ir whereas in (2.21) it is N/4n. The factor 2 is

made up by the contributions of the term -ABz = —xzBdiAo + ... = BAo + • •. after integration

by parts.

10
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degeneracy. In cases where the ground state is degenerate, i.e., where An takes one of the values

(2.15), it is necessary to specify which states of the partially filled level are occupied. Presumably

this must be decided on the basis of a self-consistent calculation involving interactions bet.veen

the fermions. It is an unsolved problem.

To the extent that interactions can be neglected (he Peierls formula should give an accu-

rate representation of the fermion contribution to the energy density in a uniform magnetic field.

The total energy density is then obtained by adding the purely magnetic contribution, B2 jle1,

where e1 is the coupling parameter introduced in (2.1),

UM(B) s 2 ^ B m \~N<-N +
B V . ( 2 * + l ) B (2 22)

where N now denotes the integer pan of 2 trnc/B. This function has local "minima", in the sense

that dUht/dB changes sign, at the discontinuities of N(B). Thus, at B = 2-nr^jk.k - 1,2

we find

9B ) a . B k i

There is a change of sign if

k > Avrnje2 (2.23)

These minima are not degenerate and it is therefore plausible that they represent metastable con-

figurations of the system. They should decay by tunneling towards the stable minimum at k = oo.

If this picture is correct, it should be possible in principle to treat the decay of these

metastable configurations as a nucleation process, i.e., set up a Euclidean version of the effective

field theory and search for instanton-like solutions. Unfortunately, before this can be implemented

it will probably be necessary to develop a more complete version of the effective theory in which

the discontinuities of N are resolved. This of course means a theory in which the degeneracy of

the partially filled Landau level is lifted.

3. EDGE EFFECTS

The conclusions of the previous section, leading up to the effective action (2.21), are

based on the assumed translation invariance of the fermionic state. Indeed, the main point of the

discussion was that, in the absence of obvious symmetry breaking features such as boundaries, the

magnetic field would adjust itself to one of a discrete set of values such that a finite number of

Landau levels is filled. Such states would be translation invariant. Of course there may be other

homogeneous states or it may turn out that, when interactions are taken into account, the fermions

choose to crystallize, breaking the translation symmetry down to a discrete subgroup. But our pur-

pose here is only to consider the obvious kind of symmetry breaking associated with a boundary.

11

We shall suppose thai the fermions are confined to the half-plane, xi > 0 , the other half being vac-

uum. The behaviour of the electromagnetic field is then governed by the vacuum Maxwell equation

for xi < 0 and by the effective equations derived on the assumption of translation invariant" in the

interior, xi > 0 . Near the boundary, 12 = 0, it will be necessary to take account of the symmetry

breaking and include the effects of surface currents.

That some supplementary considerations are needed at the boundary can be seen by a
superficial examination of the effective action which is to be used In the interior, [t consists of the
approximate expression (2.21) combined with the free Maxwell action and the neutralizing term,

Si* 1 E? - ~ B2 + £-
2 2 8

- q,

where the permittivities are given by

(3.1)

1

e1 + 2* \B\

1 N2

e2 2nrn

The exterior action is

(3.2)

(3.3)

The problem with (3.1) is that it is not quite gauge invariant. The Chern-Simons term

changes by a total derivative in response to a gauge transformation and this will generally give a

non-vanishing boundary contribution. In the usual applications of the Chem-Simons theory, to

manifolds with no boundary, this problem does not arise. Here it is troublesome because, although

the actual field equations derived from (3.1) and (3.3) are gauge invariant, the matching conditions

on the boundary are not. The field equations deriving from (3,1) are

d\(t Ei) - ~ B

•—Ei . (3.4)

If we assume that these equations are satisfied for X2 > 0 then the variation of Sin reduces to a
boundary term,

\-6A0L
(We ignore the do and ft contributions which are associated with infinitely remote boundaries.)

Assuming that the vacuum Maxwell equations are satisfied for 12 < 0 , the variation of (3.3) will

reduce to the boundary term

12



In the normal boundary problem one would develop consistent matching conditions by requiring

S Si« + & S,xt = 0 for arbitrary variations 6 Ao and B A\ on the boundary, i.e.

4 * A* W J«t
B N
— - — Ao

1

But these equations are not gauge invariant, and we must conclude that the simple effective action

given by the sum of Si* and Sta is not adequate in the boundary region.

It is not difficult to spot the source of this inadequacy. In trying to evaluate the fermionic

contribution, i in Det G{A), for slowly varying fields, it is necessary to separate A^ into the sum

of a uniform background piece A,, and a smalt variable piece, aM. The effective action can be

expanded in powers of a^.

f(A) = T(A) + fdixr"(x,A)ali{x)f
j f d1xd3xTi"'(xlx',A)all<.x)aAx') + ... (3 5)

where the integrals are restricted to xi > 0 . The coefficients, T ^ T ' " ' , . - • are built from correlation

functions of the femiion currents and, since these currents must vanish at the boundary, they cannot

be translation invariant. Thus, I**1 will depend on i 2 , r ( " on i 2 a n d i j (not simply xi - i'2),

etc. The sort of approximations that led to the local form (2.21), involving in particular the long

wavelength term,

4 7T

are not credible near the boundary. There must be a boundary layer in which the functional (3.5) is

truly non-local. Our aim here is to study this boundary layer, estimate its thickness, and the current

that flows in it. But first we consider, briefly, the behaviour of electric and magnetic field strengths

in the interior, away from the boundary, where (3.1) is presumably trustworthy.

A solution of the equations, (3.4) which depends only on i 2 . is easily extracted,

E, = 0

E2 = J5° e—/*

B = Bf, + B° e~xi'x (3.6)

where E® and S ° are integration constants and Bn = 2irnt/7v'. The electric and magnetic fields
decay with distance from the boundary, the one towards zero and the other to a uniform background
value. The scale of this decay, the relaxation length, X, is given by

e'n. Nj 2ir m
(3.7)

13

where we have substituted B = BN in the formula (3.2) for E.

Eqs.(3.4) can be read as 2+1-dimensional Maxwell equations for the electric displace-

ment, Di = s Ei and magnetic intensity, H = B/fi. The right-hand sides are then interpreted as

reai charge and current densities. The current defined in this way,

is evidently a Hall current and the associated conductivity, - N / 2 ir, is quantized. Moreover, since

the solution (3.6) is time independent and not dissipative, the current j \ = —(N/2ir)E2, can be in-

terpreted as a supercurrent. The exponential fall off in the magnetic field can likewise be interpreted

as a Meissner-type effect. There is a penetration region, of order X, in which the supercurrent flows

and the magnetic field decays. However, in contrast with the usual superconductor, there is also an

electric field in this region and the magnetic field does not fall to zero but only to its background

value"'.

If the boundary layer is very thin in comparison with the relaxation length, A, then its

contribution to the development of electric and magnetic field strengths can be represented ap-

proximately as discontinuities. Such discontinuities should be ascribed in the usual way to surface

currents, and these currents must be given, to a first approximation by the coefficient F*1 in (3.5).

We turn now to the estimation of these currents as welt as the width of the boundary layer. Unfor-

tunately, we shall find that the "boundary layer" is not always thin. Indeed, it turns out that values

of N which are large enough to meet the metastabitity criterion (2.18), N > 4 i fm/e i , will be

associated with boundary layers whose width is comparable to X. Thin boundary layers arise only

when N, the number of filled levels, is relatively small.

The fermion current operators, j * = S S/S A^, are defined by the action functional (2.1),

and jk = - - ! -
2m + h.c.,

where the covariant derivatives refer to the uniform background, (2.2). The ground state expecta-
tion values of these currents are obtained, in the 1-lcop approximation, by substituting the mode
expansions (2.3) for ty and^* and using the defining property (2.6) of the ground state, \F >. One
finds

- < F\i>+$\F >

(3.8)

It may even increase towards the background value, depending on the history of die system. We

believe that for a given field strength at the boundary, one of the values BN for the interior will

define a stable configuration but this needs to be proved.

14
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2m

(3.9)

r2=o
where At, is the Fermi energy and u ^ (x i ) is an eigcnfunction of energy e^. The eigenvalue

problem is based on the differential equation (2.4) but the domain is restricted to the semiaxis,

x2 > 0, and the eigenfunetions are required to vanish at x2 =0. They are normalized such that

r
Jo

(3.10)

It rums out that these eigenfunetions are real, and it is for this reason that V2 vanishes. The current

flow is parallel to the boundary.

It is not surprising that the determination of u ^ and e^ is less elementary than the calcu-

lation of Section 2 where the domain of 12 was unrestricted. The boundary condition, u ^ (0) = 0,

distinguishes this from the problem of the simple harmonic oscillator. It is still soluble, but the fa-

miliar Hermite polynomials are replaced by parabolic cylinder functions. The qualitative features

of the spectrum are easily extracted. We give a brief account.

It is convenient to replace z% by the new variable

and define a new wave function.

It satisfies the equations

and it is normalized such that

'•A

(3.11)

(3.12)

(3.13a)

(3.136)

(3.14)

The general solution of (3.13a) is a linear combination of two parabolic cylinder functions n > ,

), where the index v is defined by

B
= 1/+=- - •
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The allowed values of u are to be determined by the boundary condition (3.13b). This means

searching for the zeroes of the /?„.

Being associated with a second order differential equation with only one singular point, an

irregular one at z = 00, the parabolic cylinder function Du( z) is relatively straightforward. It is an

entire function in the complex z plane. It vanishes like exp( -z2/4) for \z\ —» oo, \arg z\ < i r /4.

Along the positive real axis it is very well behaved but, along the negative axis it blows up unless

v is a non-negative integer. (It is the latter fact which makes the simple harmonic oscillator indeed

simple.) The other important property of Du(,z) is that, for real u, it has [ n + 1] real zeroes n ) .

We have not been able to find much information about these zeroes in the mathematical

literature but it is not difficult to guess the main features. These are most easily comprehended

by representing them as trajectories in the i/z-plane (Fig.5). The zero trajectories, vn(z),n =

0 , 1 , 2 , . . . are monotonically increasing functions of x (real). The value of z at which the trajectory

un crosses the integer m > n is given by one of the zeroes of the hermite polynomial Hm( zfyl);

the furthest one to the left for n = m - 1, the next left for n= m - 2 , etc. In general,

—' n f°r

= 2 n + l

z
un(z) ~ — for z —* +00

4
(3.15)

The behaviour at large positive z can be deduced from the well studied large n behaviour of the

zeroes *J of Hn.

The solutions of the eigenvalue problem (3.13) are given by

(3.16)

where ( = k/\/B and n = 0 , 1 , 2 , . . . ; JVn is a normalization factor. The eigenvalues can be read

directly from Fig.5. Their most important feature is the tendency to increase with it. This means

that, for finite Ao, the integrals (3.8) and (3.9) have an upper cutoff.

Since un(Q,t) is supported mainly in the vicinity of Q = 0 , it follows from the def-

inition (3.11) that if X2 is sufficiently positive then k will have to be negative to the extent that

y,( k\j2jB ) ~ n. In this case the wave function is Gaussian in k, peaked at a negative value,

and the upper cutoff is not significant. This means that the translation invariant regime of Sec-

tion 2 is effectively restored when X2 is sufficiently positive. What is the relevant scale? Since

For example, the largest positive zero of HB(z) is given for large n by Siego 12) in the formula,

16



Q = \[B 12 + fc/v'S.3™* we simple oscillator wave function un(Q) haswidthAQ -

it appears that translation invariance must be restored for

where N labels the highest "filled" level. Substituting the background value, B =

arrive at an estimate for the width of the boundary layer,
, we

(3.17)

This length is to be compared with the relaxation length of Eq.(3.7),

y
Nj

N1 -2 s "'

= 1 + Ne1 Nm1 (3.18)

To satisfy the metastability criterion (2.18) we must have Avm/Ne1 < 1 and this implies 6 ~ X

(unless tit > Nm2, which does not seem realistic). We must therefore conclude that the simple

translation invariant equations (3.4) are not trustworthy in the metastable cases. However, in the

strong field configurations where N is relatively small, it is reasonable to use (3.4) and in these

cases the boundary layer is thin.

If the boundary layer is indeed narrow then it makes sense to estimate the total current

flowing through it,

h
/ '

where

Wn(t) -r dQQuJQ,t)2

(3.19)

(3.20)

If t is sufficiently negative then u,(Q,<) ~ vn(Q) and the integral (3.20) will vanish. On the

other hand, if t is positive then Wn(t) > t. Its actual value will reflect the spread, A Q, in the wave

function but, to a first approximation we shall ignore this and write

Wn(t) = J o , t < o
[t, t>0

(3.21)
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which mukes the integral (3.19) easy to evaluate. The result is

4irm
(3.22)

where fcn represents ihe upper limit, determined by £„* = An, and the sum is restricted to those

ievels for which kn is positive. The largest contribution is from the n = 0 level which we estimate;

by means of the asymptotic expression (3.15),

1 \ B
L J m

2m '

On setting this equal to the Fermi energy, Ao = 27rnt/m, obtained in Section 2, we arrive at the
estimate

Since the leading asymptotic part of un is independent of n, this estimate can probably be used for

all the more or less full levels, n < JV - 1. We thereby obtain the total surface current.

Ii ~ N (3.23)

By an application of Ampere's law the discontinuity in the magnetic field, due to the
current (3.23), is given by

V (3.24)= JV -

where the permittivity is given by (3.2). If N2e2 < 2irm then ft ~ e2 and the discontinuity
reduces to

AS ~ Nnce
2/m (3.25)

which is small in comparison with BN ~ 27rn,/JV. Indeed, we have AS/fiir ~ (&/\)2. This
indicates that there is no significant concentration of current in the boundary layer.

An expression for surface charge, analogous to (3.23), could be obtained by evaluating

the integral
rt

•Zl ( To — fl,)

on the assumption that n, is strictly constant. However, this does not seem to be a very reason-

able assumption near the boundary. It would be more plausible to suppose that the neutralizing

background, represented rather simplistically by tv, would adjust itself so as to make the external

electric field vanish. We shall not attempt to pursue this question.
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To summarize, if AT is not too large, more precisely if e2JV2 < 2 Tim, then the boundary

layer is small in comparison with the penetration depth and it is permissible to use the translation

invariant effective Lagrangian and assume that the field strengths are continuous across the bound-

ary. On the other hand, if e2 N > 4 •nm then 6 ~ >. and the exponential decay indicated in (3.6)

would be significantly modified.

4. CONCLUSIONS

Two dimensional charged fermions are expected to aggregate in translation invariant

states which sustain a uniform non-vanishing magnetic field. These states, comprising a whole

number, N, of filled Landau levels are metastable if N > 47rm/e2 . If this number is not too

large or, in other words, if the magnetic field is not too weak relative to the fermion density, then

metastability is lost but edge effects will not be important. Weak perturbations around these states

can be analyzed by means of an effective action formalism and, as far as long wavelength and low

frequency modes of the electromagnetic field arc concerned, the main effects are accounted for by

electric and magnetic permittivities and by a parity violating Chem-Simons term whose strength is

proportional to the number of filled Landau levels. Because of the Chern-Simons term, gradients

in the magnetic field generate electric fields and vice versa. These are associated with a Hall current

and the conductivity is proportional to the number of filled levels. In contrast, if the number of filled

levels is sufficiently large, i.e. when the magnetic field is relatively weak, then metastable config-

urations are possible but the local form of the effective action is compromised near the boundary

and the Chern-Simons description becomes unreliable.

It would be interesting to compute the lifetime of the metastable states and, more gen-

erally, the speed with which the system responds to changes in the external magnetic field. The

system that we have considered is highly idealized: it is strictly 2-dimensional and does not in-

clude any remnant of 3-dimensional electrodynamics like B\, Bi or E3 • In a somewhat more

realistic model it would be necessary to take account of these in addition to structures associated

with the "neutralizing background", band structure, impurities, etc. Even within the limitations of

the idealized model from which we started, the neglect of interactions is a gross simplication. It is

quite conceivable that these interactions could destabilize the translation invariant states and favour

the emergence of a lattice structure. We hope to come back to some of these questions in the future.
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FIGURE CAPTIONS

Fig.2 Magnetization density at zero tempe
rature.

Rg.4
0 a, low but finite t e m p e r .

Fig.5 Trajectories of zeroes of the paraboUc cylinder functi
nction D
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