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ABSTRACT

We study the coupling of an Abelian Chern-Simons field to fermions in space-times of
the form R x M2, where M2 is a compact Riemannian manifold Upon integrating out the non-
zero modes of the Chern-Simons field, an effective AT-particle Hamiltonian is constructed, which
involves a term representing the effects of the zero modes. We also study the transformation to
the fractional statistics (anyon) basis. It is shown that unlike the case of the flat Euclidean M2 the
anyon wave equation involves some residual metric dependent interactions, and the wave function
is multivalued.
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Fractional Statistics and Chem-Simons Theory

The 2+1-dimensional Chem-Simons theories have been the subject of many recent stud-
ies ]K It is well known that the Abelian gauge field in 2+1 dimensions is without any dynamical
degrees of freedom 2). It can be solved for and eliminated, leaving only a characteristic instanta-
neous interaction between the charged particles to which it couples3). This is true at least when the
spacetime is topologically trivial. However, if there are nontrivial homotopies then it is possible for
the Chern Simons field to carry zero mode excitations which correspond to true dynamical degrees
of freedom: they give rise, in effect, to retarded interactions among the charged particles 4). In this
note we shall consider spacetime s of the form M2 x R where M2 is a compact Riemannian space
and R is the time. Since the Chem-Simons action functional does not depend on the metric, we
can regard M 2 as a Riemann surface and employ the machinery of conformal geometry to analyze
the theory. In such cases we can integrate out the Chem-Simons field, apart from the zero mode
variables, and express the resulting instantaneous interaction in terms of a scalar Green's function,
which is given in terms of well known Riemann surfce quantities such as the prime form. The
zero mode couplings, on the other hand, are expressed in terms of the holomorphic 1-forms of the
Riemann surface.

One of the motivations for studying Abelian Chern Simons theory in 2+1 dimensions
is the intimate association with fractional statistics 5). In particular, it is possible to construct a
(singular) gauge transformation which converts a system of ordinary fermions with Chern-Simons
interactions into a system of free particles which obey fractional statistics (anyons) 6). This is
true only if M2 has the topology of R 2 . Otherwise the anyons are not free. There is generally
a residual, metric dependent background and, in the case of higher genus, there is a coupling to
the zero modes and a residual interaction between the anyons which cannot be gauged away. The
purpose of this note is to give a formal description of these residual effects in the case of a simple
model in which the Chem-Simons field is coupled to non-relativistic fermions on a compact surface
without boundaries.

1. THE MODEL

The action functional describing a system of non-relativistic charged fermions, >̂, to a
Chem-Simons field, oM, is given by

where g^ is a time independent metric on M2 and Ex>ip is the 3-dimensional permutation symbol.

We shall not treat the metric as a dynamical variable. The fermions may carry spin in which case

the covariant derivative, V* would have to include the spin connection. For simplicity we shall here



treat the fermions as scalars. The covariant derivatives therefore contain only the Chem-Simons

connction

V ^ - O ^ - i o , ) * , V ^ + = (9M + i a , ) ^ + (2)

The action functional (1) is clearly invariant with respect to infinitesimal, or topologically trivial

gauge transformations. However, as is well known, it is not invariant with respect to the topologi-

cally non-trivial transformations: it is shifted by integer multiples of 2 7rfc. The coupling parameter,

k, is required to be an integer in order that exp iS, and hence the quantized theory, shall be invariant.

The equations of motion for the Chem—Simons field take the form

e^o, = -~Jx (3)

which imply that the field strength must vanish in empty space. It follows that the Chcrn-Simons
field can be gauged away from regions where no charged particles are located. The transformation
which achieves this is necessarily singular at the particle locations and it leads to the multivalued
wave functions characteristic of fractional statistics 5)*3>. One of our aims is to specify this trans-
formation in the case of compact manifolds of finite genus. The strategy is to integrate out the
Chern-Simons field to obtain the effective action for the charged fields >̂ and ^ + . From this we
can obtain the AT-fermion Hamiltonian with coupling effects included. The gauge transformation
which eliminates these couplings - up to residual effects - can then be found by inspection.

2. THE EFFECTIVE ACTION

Elimination of the Chern-Simons field is a canonical exercise which can be carried out
most conveniently in the temporal gauge, ao = 0. However, owing to the compact and homo-

jjtopically non-trivial features of the space, it is necessary to exercise some care, and we therefore
sketch the procedure *J.

Since the Abelian Chern-Simons theory is Gaussian we have

(4)(da)6(a0) exp i / drx \--r—Etifia\dtiap-J"aJ = exp -— / drxj^a^i
J L 47r J L 2 J J

where a** is a particular solution of the classical equations (3). The result (4) should be independent

of the gauge choice if the current, J1*, is conserved. This will be the case if the effective action

is used for the computation of on-shell quantities. In temporal gauge the appropriate classical

solution is quite easily expressed,

(5)= 0 , at — / dtJt

"} Details will be presented elsewhere.



Here, and in the following we use conformal coordinates on M2. The line element is given by
ds2 = Ipdzdz where p{z) is real and positive. Although the effective interaction (4), bilinear in
the current when od is given by (5), is independent of the metric, we find it is necessary to use a
metric-containing Green's function in order to separate the instantaneous (non-<iynamical) effects
from the zero-mode (retarded) contributions. To describe this Green's function we must recall
some notions from conformal geometry7).

On a Riemann surface of finite genus, 7, we can define the multivalued Abelian integrals

i = l , . . . , 7 (6)= /

where the Wi are holomorphic 1-forms. We also have the prime form, E( z, w), which is holomor-
phic and multi-valued. It is antisymmetric and, near z = u>, E(z, w) = z — w+ ... Out of these
we can make the quantity

F(z,w) = \E(z,w)\2exp [ - 21 (^ (2 ) - <p2(w))r^\ip2{z) - <p2(

which is real, symmetric and single-valued. Here <p2<{ z) denotes the imaginary pan of tpd z) and
(71 )ij denotes the imaginary part of the period matrix, r^. The quantities <p, E and F arc conformal
in the sense that they depend on the conformal class of the metric but not on the scale factor, p( z).

This is in contrast with the Green's function defined by ^

G(z,w) = -inF(z,w)+ f d2x^^i£nF(z,x)+inF(x,w))- f d2xd2y^^
(7)

which depends explicitly on p (and the area A = / d2zp) and is therefore not conformal. How-
ever, the Green's function is real, symmetric and single-valued, and it transforms as a scalar with
respect to analytic reparametrizations. Most important for our purposes, it satisfies the differential
equations,

^ - (80)

.w) - 2-nS2(z,w) -

Using these, the effective interaction can be expressed as follows,

= j f d2zdtdt'( J-t6(t - t')J'z - Jt6(t -

= — I d2zd2
I d2zd2wdtdtlJie(t-tl)82(z,w)J'v,



where 6(t — t') is the step function, etc. We have used (8b) to introduce G(z, w) into the inte-
grand. With the imposition of current conservation together with suitable assumptions, about the
asymptotic current configurations, it is possible to express the right-hand side of (9) in the form

~ j d2zd2wdtJo(z,t)G(z,w)(dwJiij-dc>J1l!) + ~ Jdtdt'Q(t)r^e(t-t')Q(t') (10)

where Qi(t) denotes the source component that couples to the zero modes.

2zUK^)Jz (ID

By introducing a set of dynamical variables mit), u»(t), i = 1 . . . 7 with the 2-point function,

{TUi(t)Uj(t')) = —(T2l)ij£(t - t') ( 12)

we can simulate the zero mode exchange,

exp \-j- Idtdt'Q(i)T^£(t-i')Q{t')\ = (exp 4 f dt(uQ + Qu)) (13)

The other term in (10) describes an instantaneous interaction between the currents. Taken together
these terms define the Chern-Simons induced interactions between the fermions. It can be shown *'
that they are governed by the effective action functional

f \ k - • f 2 J +• 1 + + 1 ]

J I* J \ 2m z J j

.where the covariant derivatives arc of the form (2) but with the connection

az = uj(z) -u+ j - f d2wdzG(z,w)Jo(,w) (15)

where the charge density is given by

Jo = f»lt+1> (16)

3. THE N-PARTICLE HAMILTONIAN

From the action integral (14) it is straightforward to extract the ./V-particle Hamiltonian.

Define the JV-fermion basis vectors (uji/'ff1) . . . i K ^ ) where (u|i/'+(O = 0. The vacua are

There is a technical complication arising from the a2i/>+^ interaction in (1). To avoid this it is
necessary to introduce auxiliary fermionic variables n ~ V$ so thai the currents do not depend
explicitly on a. The auxiliary variables can be eliminated after a itself has been eliminated.



chosen to diagonalize the "holomorphic" zero mode operators u,, the conjugate operators are given
by

The action of the Hamiltonian on the JV-fermion states is given by

o r - l

where the covariant derivative in TV* complex dimensions is defined by

V* = — - iAa( 0, V 5 = ^ - i i l a( 0

with

and likewise for the components J4& = (Aa)*- The Hamiltonian is thereby reduced to a kind of
JV-dimensional Laplace operator. It is covariant with respect to the analytic reparametrizations
£a —• /(C a)) & - 1,...JV arid also with respect to JV-dimensional gauge transformations,
Ac —* Aa + daA. (It should be pointed out that the result (18), (19) is exact. There is no need
to regularize the shon distance behaviour of G( z, w) because the sum (19) automatically excludes
terms with /? = a.) It remains to consider how much of the interaction can be gauged away.

4. FRACTIONAL STATISTICS

The transition to a new (anyonic) basis in which the ^/-particle wave functions exhibit
fractional statistics is effected by means of a singular gauge transformation. In the original basis the
interactions are described by the complex JV-vector, Aa, which has singularities on the complex
lines, £l = £2, etc., and we can expect the gauge transformation to have these singularities. Away
from these singular lines the components of the field strength corresponding to (19) are given by

where we have used (8). This structure is to be contrasted with the planar case (genus 7 = 0, area
A = oo) where all components vanish. Here we shall not be able to gauge away the interaction so
as to arrive ' t a system of f xe anyons. The best that can be achieved is to write

Aa = Aa+daQ (21)



where Q, is real, defined so as to remove the singular parts of the connection (19). We choose

• g ] (22)? V g
where T\ ~ Rer and TJ = rf * Imp. The corresponding residual connection takes the form,

(23)

in which b is a metric-dependent background given by

'' l f 2 p(f) a

2> K J A

The expressions (22)-(24) are somewhat complicated. In fact Aa is a Jt-valued vector potential on
M2. For example, on taking the coordinate (& around the cycle m • o + n • /3 the change in Aa is
given by a gauge transformation,

where

«? ^ ^ £ -n (25)

In these formula the real functions, jx(z) are defined like TJ(Z), in terms of the Abelian integrals
(6),

ip=fi + rr), tp = n + T-q (26)

They have simple periods,

6m»/i, = mi, SmnVi = ni (27)

It follows that 6<fB» A ^ = ^ (A^6a^ - 1) n • m' and hence exp ifcA,$# e C/( 1). Thus the wave
functions are A:-valued.

The wave functions in the new basis are obtained from the original ones by multiplication
with the phase factor,

exp
IC • ' K.

(M<$

(28)
which is clearly multivalued with respect to particle interchange. For example, with £] — £2 —•

e"f(£» —(1) we obtain

e - « n ^ e - l Q e - | y / * (29)

on using the antisymmetry of E( £ l , f 2 ) . This is the usual anyon phase factor 5)>6) now generalized

to the finite genu. cases. The ne v feature here is that the anyon Hamiltonian is not free, but includes

interactions in the form of a residual connection, Aa specified by (23) and (24).
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