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ABSTRACT

A simple gauge theory discussed recently in the literature as a model of high temperature
superconductors is examined. The model contains a Maxwell field and a Chern-Simons field cou-
pled to fermions in 2+1-dimensional spacetime. This model has been shown to exhibit a kind of
Meissner effect at zero temperature which originates in the 1-loop mixing between the two gauge
fields. We use a Euclidean effective action formulation to show that the effect persists at all finite
temperatures. Although a long range magnetic type interation arises at non-zero temperatures, in
competition with the finite range forces which dominate the zero temperature interaction, the effect
varies smoothly with temperature. In our perturbation treatment, we find no indication of a critical
transition at which the Meissner effect is extinguished.
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1. INTRODUCTION

Gauge symmetries in 3+1-dimensional spacetime are normally associated with long range
forces such as electromagnerism. In the appropriate circumstances, however, the gauge symmetry
can be spontaneously broken, in which cases the associated force has a finite range. This mechanism
is invoked in the BCS theory of superconductivity where a weakly attractive force between elec-
trons gives rise to a condensate of Cooper pairs. The BCS ground state is not invariant with respect
to the electromagnetic gauge transformations and the photon, in effect, acquires a mass. Magnetic
fields are consequently expelled from the superconductor. This mechanism is non-perturbative in
the sense that the formation of quasi-bound states, the Cooper pairs, is an essential feature. On the
other hand, it has been known for some years that gauge symmetries in 2+1-dimensional space-
time are not necessarily associated with long range forces 1}. Here it is consistent with unbroken
gauge symmetry to have massive gauge quanta. In the Lagrangian formulation the mass term is
represented by a Chern-Simons density,

£ = ~ 47T V - ^ W ^ A > + fA, (1.1)

This density is invariant, up to a total derivative with respect to the U( 1) gauge transformations,
A^ -* A^ + dfih, provided the current is conserved, 9M;'J = 0. The coupling parameter, e2, has the
dimensions of mass (in natural units) while the second coupling parameter, u, is dimensionless. It
is an elementary exercise to show that the effective current-current interaction, due to the exchange
of a gauge quantum, is given by

^ ( f c ) ^ ( i ) ( L 2 )

This indicates that the force has both finite and long range components. Both of these forces have
a parity violating piece with strength TT/V. (The long range component in fact describes an instan-
taneous interaction of the currents. See Eq.(2.24).)

The parameter v is arbitrary if the 2-dimensional space has Euclidean topology. How-
ever, if the space is compactified then it becomes possible to consider topologically non-trivial
gauge transformations under which the Chern-Simons term in (1.1) is not invariant. Then, in or-
der to maintain invariance of the phase, e x p ( i / £ ) , it becomes necessary to restrict u to be an
integer 2).

The relevance of 2+1-dimensional gauge theory to the description of high temperature
superconductors3) is suggested by the possibility that the layered structure of Copper oxide crys-
tals causes the electron motion to be effectively 2-dimensional. One could then consider (1.1) as
an effective Lagrangian in which the coupling parameter, e2, is obtained by averaging over the
thickness of the layers,

e ~ a/6



where a ~ 1/137 is the usual fine structure constant and 5 ~ 10~7 cm is a measure of thickness.
The parameter, v, is not so easy to interpret - it would have to be generated by some parity violating
effect in the underlying crystal structure. In this paper we shall examine a simple model which has
been considered recently by a number of authors 4)i8). It contains a fundamental Chem-Simons
field, a^, which couples to the "electrons" exactly like the electomagnetic A^. This Chern Simons
field should be viewed as a kind of vector excitation of the underlying microscopic dynamics.
It can be shown that the introduction of a fundamental Chem-Simons gauge field coupled to 2-
diemnsional fermions is mathematically equivalent to modifying the statistics of these fermions ^ -
changing them into what are called "anyons" 6). It is known that such particles, although otherwise
free, can exhibit an effective interaction which is caused by their fractional statistics 7). This is
demonstrated by eliminating the Chern-Simons field as an independent dynamical variable4). Here
we shall adopt the point of view that it is more practical to keep the Chem-Simons field among the
independent variables and treat it as a gauge field on the same footing as the electromagnetic field.
The electrons will therefore obey normal Fermi statistics. It is then possible to carry out perturbative
calculations by expanding in powers of 7r/f, which is to be regarded as a small parameter. Using
this approach, the authors of Refs.4 and 8 were able to show that, at the level of 1-loop quantum
corrections, an effective Chem-Simons type of term involving the electromagnetic potential, AM, is
induced along with the usual ground state polarization effects. In other words, the photon develops
a mass in the lowest order of perturbation theory. Specifically, the effective Lagrangian includes
the term

along with other bilinear terms involving the electric and magnetic field strengths. This phenom-

enon can be interpreted as a kind of 2-dimensional superconductivity with a Meisener effect4)>8)

(finite penetration depth) and a supercurrent which is proportional to the Chern-Simons electric

type field strength.

In Sec. 2 we review the model and describe the 1-loop computation in terms of an ef-
fective action formulation. Although this simple model may be somewhat artificial, it is at least
arguable that it may be typical of a class of microscopic theories which incorporate P and T vi-
olation and which lead to an induced electromagnetic Chern-Simons term. We have studied the
effective interaction and shown that there are two independent short range forces, corresponding to
the exchange of massive quanta. In the static limit one of these ranges is identical to the penetration
depth found in Refs.4 and 8. The other is generally shorter.

To test this theory further, we have made a finite temperature computation which is de-
scribed in Sec.3 and Appendix C. The results are used in Sec.4 to obtain the effective current-
current interaction at finite temperature. We find that, generally there are three independent com-
ponents to the magnetic interaction, two of finite range, corresponding to the exchange of massive
quanta and, in addition a long range component which vanishes in the zero temperature limit. The
relative strengths of these interactions vary smoothly with temperature. In the low temperature
regime we obtain a formula for the temperature dependence of the parameter, X, identified as "pen-



etration depth" in Refs.4 and 8,

= LUL (1 _ 4y e"*) + -~- y e

where m and n^ denote the electron mass and number density, respectively, and y = it Tie/2 umT ~
104 KfvT > 1. Notice that 1 f\ grows with T. Further, we find that the long range component
dominates at high temperatures. The two finite penetration depths appear to vary smoothly with
temperature and, at least in the low and high regimes studied in Sec.4, cannot diverge to infinity.
There is no indication of critical behaviour.

The failure of the present model in perturbation theory to provide a realistic description
of high temperature superconductivity, notwithstanding, we believe that it may still be possible to
develop a more successful version based on the Chern Simons idea. We have therefore set out our
calcualtions in some detail in the Appendices.

2. EFFECTIVE ACTION

The model to be considered in 2+1 dimensions involves a gas of non-relativistic elec-
trons coupled to two independent gauge fields. The latter are represented by the electromagnetic
potential, A^, and the Chern-Simons potential, o^. The Lagrangian for this system is

1 V \

! _ , . _ . ( 2 X)

where the electron field, \j>, is a two-component spinor whose covariant derivatives are given by

The Lagrangian of Hosotani and Chakravarty 8) includes a magnetic moment term
but we shall ignore this for the present. The system described by (2.1) can be quantized in the
standard way and Feynman rules given for the perturbative development in powers of the coupling
parameters e2 and ir/is. In principle one could construct an effective action functional to any given
order by evaluating irreducible graphs. However, since our main interest lies in finding effective
field equations for the two gauge fields which are accurate to 1-loop order, we shall simply integrate
out the electron field to obtain

rU.a) = -^rF^F^ - ^-e^axd^ap+^lndct G(A + a) (2.2)
4 e 2 ^ 2TT I

where G(A + a) denotes the electron Green's function in a specified background. The functional
determinant in (2.2) gives the complete 1-loop contribution to F . Higher loop contributions would



require the evaluation of graphs involving internal A— and o-lines and so would be proportional to

positive powers of the small parameters c2 and m\v. We shall therefore ignore them. Because of the
assumed minimal couplings, the 1-loop term is a functional of the sum, Ay. + a^. The introduction
of non-minimal terms in (2.1) would destroy this simplicity *J

The next simplification that we shall make is to assume that the fields AM and a' =
o^ — o° are small and we shall evaluate r up to second order in these small quantities. Here,
the "background" a° represents the ground state expectation value and corresponds to a uniform
Chern—Simons magnetic field. We shall take

at =4=0, a ? = - | (2.3)
where £2 is a constant to be determined. This background enters both the electron propagator
and the vertices. It causes the electron energy levels to be quantized in units of 1/mC2 (Landau
levels) and the resulting electron propagator <2(a°) is neither translation nor rotation invariant.
However, it should be recognized that the breaking of these continuous symmetries is only a gauge
artifact since the background field strength, /£ , = d^al — dva^, is invariant. Covariance with
respect to combined rotations, translations and suitable background gauge transformations will
be maintained (see Appendix A). Gauge invariant quantities such as the ground state polarization
tensors will turn out to have the correct spacetime covariance. On the other hand, with respect to
discrete symmetries, such as the reflection xi —* —x\, xz —» xj, the background magnetic field
is not invariant and these symmetries are broken.

The leading terms in the development of the 1-loop effective action can be expressed in

terms of ground state expectation values of the time ordered products of electron current operators,

= f

+ .. . (2.4)

where

j x ' ) > - < ; ^ ( x , x ' ) > (2.5)

with the current operators given by

JQli(x,x')=O

,*') = -SktSsix-x'W^ (2.6)
Ttl

*> At the end of this section we include the contribution due to an electron magnetic moment, see Eq.
(2.21).



in which V* indicates the covariant derivative with the background connection o°. (We are using

the Minkowskian metric for which ;'o = —j°, jk = /*)•

The electron Green's function,

is obtained by solving the equation

(ido + ~V2
k)G(x,x') = ~83(x - x') (2.8)

2m
subject to appropriate boundary conditions. It can be expressed by the integral

G(x,z') = -[ p - T
JCH

 2 "• J~<

^iitM (29)

where the functions vn, n = 0 , 1 , . . . are orthonormalized harmonic oscillator wave functions.

They satisfy the eigenvalue equations

1 !"/. X7\2 „•>]

2m [V &J "<J

1. 1

The choice of contour Cjv for the integration over frequencies is dictated by the boundary conditions

which define the ground state, viz.

where JV is an integer which counts the number of filled Landau levels. Hence the contour
must pass below the poles at w = £„ for n = 0 , 1 , . . . N — 1 and above all the rest, n > N. Using
this propagator it is straightforward to compute the quantities (2.5),

) ^
ZT71

r 0 0 = i

(2.12)



The linear components (2.11) are given by

Tk(x)=0 (2.13)

The polarization components (2.12), being gauge independent, must have translation and rotation
symmetry. Further, because of current conservation their Fourier components can be expressed in
terms of three independent invariants *',

= w2fi^Ilo + ie^wlli + (k26 i t - kjkt)U2 (2.14)

where UJ = k° = —ko. The general structure of the invariants ITo, Tli and 112 is considered in
Appendix B. They are functions of w2 and k2 but here we need only their threshold values,

n o = — mi2, III = —, n 2 = - — (2.15)
7T 7T 7TT7i

These are zeroth order terms in expansions in powers of (k£)2 and ( WTTÎ 2 ) 2 .

The results (2.13) and (2.15) define the behaviour of the 1-loop effective action for small
fluctuations of the gauge potentials around the ground state values A^ - 0, oM = a°. For a
consistent determination of the ground state it is necessary to satisfy the effective equations of
motion,

u;
(2.16)

where rig denotes an external uniform charge density representing an average density of compensat-

ing positive charge. (It is assumed that only the electromagnetic potential is coupled to this charge.)

The functional derivates in (2.16) are to be evaluated at A = 0 , a = o° where the non-vanishing

components are,

N

- - i + 4f=0 (2.17)
It il Tip

*> Where ei2 ~ -£21 = 1 • The three-dimensional permutation symbol is defined such that B012 =

1 = - e o n > etc.



respectively. The first term in the latter equation represents the classical contribution 8S/8ao eval-
uated at the point (2.3). It follows that the ground state parameters, N and £2 are fixed by the
consistency requirement,

N = u and I1 = — (2.18)

This means, in particular, that the coupling parameter, vt which was introduced in the classical
Lagrangian (2.1) must be an integer, positive or negative (In the above treatment we have assumed
that v is positive. Consistency for the case of negative v requires merely a change of sign in (2.3)
and subsequent formulae.)

Having dealt with the linear term in the effective action and its role in determining the

ground state parameters we can now combine the polarization terms (2.15) with the classical terms

to define an effective Lagrangian which is bilinear in the gauge potentials A^ and o^.

1

2 7T Tie 2 7T m

+ a'x)dliUl>+al
l) (2.19)

27T

where the electric and magnetic field strengths are defined by

j = 8QAJ — djAo, B = b\Az — d%A\

b =

In obtaining (2.19) we have discarded higher derivative terms. Hence this Lagrangian should be
used for the description of fields which are slowly varying in the sense

tdjE « E, me2doE«E, (2.20)

etc. At this point it may be remarked that the inclusion of an electron magnetic moment term
—HeBip+O2 V" in the original Lagrangian would give rise to a higher derivative term in (2.19),

7 < - > 2 - ^ ( 0 ; £ ) 2 (2.21)

With pt ~ j^j this term would become significant at longer wavelengths than those which are
excluded by (2.20) but we shall nevertheless discard it along with all the other higher derivative
terms.

From the effective Lagrangian (2.19) we can obtain expressions for the gauge field Green's
functions. The procedure for doing this is straightforward in principle but the computations are
somewhat lengthy because of the mixing and they are not very illuminating. Some of the details

8

j



are given in Appendix D. The main result is that the energy spectrum has two branches given by

the zeroes of the function

(2.22)

which is quadratic in w2. The roots are real and positive if e2ITo > 0. In the limit k —» 0 they
define the rest energies,

(It may be remarked that in the special situation, II2 = — IIo, the Lagrangian (2.19) becomes
Lorentz invariant as does the function (2.22). In this case the rest energies (2.23) can be interpreted
as rest masses. In practice, as we shall see, U2 C Ilo, and the system is far from relativistic.)

The static interaction, mediated by the exchange of zero frequency gauge quanta, is gov-
erned by the zeroes of the function A(0 ,£2) which is quadratic in &2. There are two roots, k\,

which are both negative, corresponding to forces of finite range. In the relativistic case these ranges
are given by the compton wavelengths /J± ! , but in general they are given by quite complicated ex-
pressions. The finite range s of the static interaction are a manifestation of the Meissner effect in this
system. They define two independent "penetration depths". Since our main concern in this paper is
to study the temperature dependence of this effect, we postpone further discussion to Sec.4, where
the finite temperature version of the function A (0 , /c2) is obtained.

3. THERMODYNAMIC POTENTIAL

To obtain a description of the system at finite temperature we shall apply the methods of

Euclidean field theory and the grand canonical ensemble 9). That is, we shall make the substitution

t —* —ir and regard the real parameter T as a coordinate on a circle of circumference /? = 1 jT.

Bosonic fields are required to be single-valued (periodic) on this circle while fermions are double-

valued (antiperiodic). The time components of vectors such as AM and J^ are likewise redefined,

Ao — » i A T , Jo —»iJT

and the conjugate electron field ^ + is replaced by $. We obtain the Euclidean action,

SB = J dr Id2x\jg F,* + ;—



where eTn = 1. and the covariant derivatives are defined in the natural way,

Fftu = d^Ay - duAp, fj,, v - T, 1,2

It is important to keep in mind that the components AT and aT are imaginary and that ij> is not
the hermitian conjugate of y>. Note that the coefficient of the Chem-Simons term is now pure
imaginary.

The Euclidean action (3.1) contains a new parameter, fx, the chemical potential. It will

be determined as a function of temperature and the other parameters in (3.1) by the conditions of

thermal equilibrium to be described,

A Euclidean effective action can be defined in close analogy to the Minkowskian case
discussed in Sec. 2. One proceeds by introducing external sources I,, and J^ for the gauge potentials
A, and a^ respectively. Define the functional W( I, J) bypath integration over periodic boson and
antiperiodic fermion fields,

e-W(I,J) _

The averaged fields are defined by functional differentiation,

A - — - —

and are to be treated as independent variables. The Euclidean effective action, TE, is then given

by the Legendre transform of W,

rE(A,a) =

It can be expressed as a loop expansion in which the zeroth term is the classical Euclidean action,

TB(A,a) = SE(A,a) + r^M.a) + . . . (3.2)

The successive terms are represented by irreducible graphs. In the following we shall obtain the
leading 1-loop terms in a weak field expansion around the constant Chem-Simons background
(2.3),

+ . . . (3.3)

10



The coefficient functions in this case are expressed in terms of r-ordered correlation functions,

i,z') >, (3.4)

where the Euclidean current components are given by

Mx) = iinl>

2m
0

1
uM (3.5)

m

To evaluate the correlators (3.4) we need the electron thermal Green's function 9 ),

g{x,x')=-<TTiP(x)i>(x') > (3.6)

This Green's function is obtained by solving the equation

( ^ l ^ ' ~x') (3.7)

subject to the requirement of antiperiodicity under the translation T —» r + 0. It can be expanded

in normal modes,

G(x x') = I V f *le"««-*0-UT-* I V - ^f + WXCJ + M

where the functions vn are the same harmonic oscillator eigenfunctions that appeared in Sec. 2.
The discrete frequencies, <^3, are half-integer multiples of 2 7r//3,

In terms of the thermal Green's function (3.8) the correlators (3.4) are given by

Tk
B(x) = ^ ( V * - Vk)Trg(x,x')\^xf=T+o (3.10)

r£{xtx') = -Tr{g{x,x')g(x',x))

Tk
E

T(x,x') = ^ - ' ' ' '

—

11



where all covariant derivatives refer to the background Chem-Simons field (2.3).

Some details of the computation are discussed in Appendix C. The result for the compo-

nents (3.10) is given by

/ 0 (3.12)

The polarization components (3.11) can be represented by Fourier expansions,

) = \ T. f 7^-e^-'>--'^>f^(^tJfc) (3.13)

where, since the currents are periodic under T —• r + /3, the frequencies are integer multiples of

wa = ̂ ~ , s£7Z (3.14)

Again, because of current conservation and rotation symmetry, there are three independent invari-

ants,

rE _ p.2nE

The invariants 11^, 11^ and Tl£ are functions of w2 and k2 and we shall be interested in their
behaviour near u)a = k = 0. It turns out that Tlf,Tlf are regular there but IT̂ f has a simple pole
at ^2 = 0 in the amplitude with UJ9 = 0. The results, for wa = 0, are

n

•nm
= — V(2n+ I)(ew'--")+ I)'

'•r(eu-t*) (3.16)

The results (3.12) and (3.16) define the behaviour of the 1-loop contribution to the Eu-

clidean effective action for weak long wave fluctuations of the gauge potentials around the equi-

librium values A^ = 0, o^ = o®. For a consistent determination of the equilibrium configuration

12



it is necessary to satisfy the Euclidean equations of motion,

6TE

— = 0 (3.17)

where, as before, rig represents an external uniform charge density. The functional derivatives are
to be evaluated at A? = 0 , oM = o°. According to (3.15) the non-vanishing components are

.««.-*!) + i)-» = o (3.18)

where the first term in the latter equation represents the 0-loop contribution. The equilibrium value

of the magnetic length, I, is therefore given by

Z2 = — (3.19)
TTTV

independently of the temperature. On the other hand, the chemical potential, /i, is determined by

the equation
*«.-<*>+ l ) - i (3.20)

which indicates that the Chern-Simons parameter v is to be identified with the thermal average of
the electron occupation numbers. (At zero temperature the right hand side of (3.20) reduces to the*
number of occupied Landau levels in the ground state.)

The coefficients (3.16) determine the bilinear part of the Euclidean effective action for
slowly varying fields,

\k\ « i , 2*\s\«^ (3.21)

If we restrict our considerations to fields which are independent of r then the Euclidean action can

be interpreted as a therm odynamic potenital,

T £ = /3Q (3.22)

with

= fd2x[-^r(Ej + B2)+~ aTb
J 2el ] it

b)2

(3.23)

13



where, because of its pole at k2 = 0, E^f is to be understood as an integral operator. The func-
tional (3.23) can be used to evaluate the thermal averages of interaction energies associated with
static current distributions. For example, the thermal averaged fields A^ and o^ associated with an
external electromagnetic current distribution, I^ix), are obtained by solving the equations,

' 6aM(x)

The value of the thermodynamic potential is then given by the integral,

which is a bilinear functional of the currents. Some aspects of this computation will be examined
in Sec. 4.

Next we give the leading terms in the low temperature expansions of the expressions
(3.12) and (3.16). The characterization "low" is taken here to mean that the tempeature is small in
comparison with the level spacing, or

P>>me = L™ (3.25)
7T Tie

The first step is to obtain an approximate expression for the chemical potential by solving (3.20).

To this end, write
ePU«-n) = WP-{~* (3,26)

where
M* 2 (3.27)

For small w it is possible to expand the right hand side of (3.21) in fractional powers of w,

where [p + £] denotes the positive integer defined by

1 ,
= [p+^] + S, 0<8<l (3.29)

If w is sufficiently small then (3.20) takes the form

lH 2

and is solved in leading order by

14

'' .'̂ fc- ;*(le ? W "-*"1*:



_ 1 ,

2
The chemical potential is therefore given by

On substituting this result into (3.26) we obtain

It is now a simple exercise to find the leading terms in the expressions (3.16),

(
7T

n--Ji[1 + 4 . -* _ i | ( 1 + »„-*]. (3.32,
These results will be applied in Sec. 4 to find the tempeature dependence of the penetration depth.

For completeness we now give the high temperature approximations for these amplitudes.
When the temperature is large in comparison with the level splitting, /3 « m£2, it is possible to
approximate the sums (3.16) by integrals and so to evaluate the leading terms in expansions in
powers otfijml2. The details of this computation are given in Appendix C. The results are,

2

(3 I i&ll lip

^-L.f-V^r-^y^^^,...) (3.33)
2 12 ^ 1 + ^" 160 \ £ 2 / 2 2 J160 \77i£2/ 2

where the chemical potential p is determined by the formula

The approximations are valid if fifmZ1 « pp. If we impose the stronger condition that /3fi » 1

then equation (3.34) can be solved by iteration to give

This expression can be used to eliminate /i from (3.33), leading to series expansions in powers of

the small quantity txp(-0v/m£2). The steps arc justified if v » 1, in which case the high

temperature approximations (3.33) can be looked upon as expansions in powers of 1/v.

15



4. STATIC COUPLINGS OF ELECTROMAGNETIC CURRENTS

The Euclidean action functional obtained in the last section can be used to evaluate the
thermal averages of interaction energies associated with static current distributions. Here we shall
consider only the simplest case, computation of the functional W(I, J) with J^- 0 and /M small.
With the understanding that the background equations which determine the equilibrium are sat-
isfied, we can treat IM as a weak perturbation and determine the response by solving the linear
equations,

- - / , and ~ = 0 (4.1)

where TE comprises the bilinear parts of the classical and 1-Ioop terms,

gF^ + ~

j J (4.2)

On substituting the solution of the inhomogeneous equations (4.1) into (4.2) and taking the Legen-

dre transform as discussed in Sec. 3 we obtain the functional

W(I,0) =TE(A,a) + fdPxIpAp

= — I d^xIfiAfi ,

an expression which is bilinear in the external current distribution, IM,

1 f , , ,
1 1 1 ^ ^ ^^^ # i ^ O^ ft ^P I I 1 " t i l t O^ _^^ rt* I J r r P •

— r H2]r ~ ~ ~
wa,i) (4.3)

Since we are interested here only in static current distributions we shall take

in which case (4.3) reduces to the form

tf-k -

(4.4)

where F(I) represents the free energy of the given current distribution. The matrix D^ix - x')

can of course be interpreted as the thermal Green's function for the electromagnetic field, and the

functional F( I) represents the interaction energy due to 1-photon exchange, including the effects

16



due to mixing between electromagnetic and Chern-Simons fields. We shall show that this mixture
simulates the exchange of two distinct massive states. One of these states may be interpreted as
a massive "photon" and its presence is indicative of a kind of MeissneT effect. The other state,
which is generally much heavier, probably plays the role of the Higgs state, familiar in Landau
Gizburg theory, although here it is a vector rather than a scalar. In addition, the functional F( I)

will be found to contain a long range static magnetic interaction <— —Ijlj/k} which vanishes at
zero temperature.

The equations of motion (4.1) take the form,

1 ~ ~ _

e '

" +K)=0 (4.5)

where the components of T^v are given by (3.15) and (3.16). In addition to the static condition,
kT - 0 , we shall impose the gauge conditions k^A^ = k^Z'^ = 0. It is then a simple algebraic
exercise to construct the solution,

A* = DtJu •

The components of the propagator can be expressed in terms of three independent invariants,

DTT = Do

Drj = -DjT =

(4.6)

The expressions for D o . D\ and Di are not very transparent and we shall simplify their appearance

by introducing a number of parameters to characterize the low momentum behaviour of the tensor

redefined in (3.15),

nf = d (4.7)

These temperature dependent parameters are defined by the sums (3.16). A lengthy but straight-

forward computation gives

k2d}\ (4,8)

17



where A is quadratic in k2,

A = - I + c2 + ad + ~[(l - -c)2 + e2b+e2d + e4bd+(-)2ad]
ez er v vv

Hf(-)2bd (4.9)
e* v

To gain some understanding of these quantities it is essential to make approximations.
We shall therefore assume firstly, that we are in the low temperature regime, /3 » m£2, and,
secondly, that the Chern-Simons parameter is large, v » 1. The formulae (3.32) then give

a = ye v

17

c=-(l
7T

d= ~ ( 1 ~Aye~v) (4.10)
7T771

where y = /3/2m£2, Higher powers of e"" and n/u are neglected in (4.10) *\ Among the dimen-
sionful parameters e2, r^ and m there are two dimensionless ratios for which we shall adopt the
estimates used by Hosotani and Chakravany S). There authors regard the Maxwell Lagrangian as
a 3-dimensional remnant of the standard 4-dimensional theory, obtained by integrating over the
thickness, 5 ~ 10 ~7 cm, of some crystal layer. This suggests the value

e2 ^ ^ - ^ ( l O ^ c m ) - 1

o

They also assume that the density of charge carriers is similar to the density of ions in the lattice,

n ^ U O - 7 cm)'2

Finally, they assume that the "electron" mass is the usual one,

m ~ 1010cm-'

with these estimates we have

— ~ lO"5 and - ^ - ~ 1 0 " 6 (4.11)
m mi

and it becomes feasible to make significant simplifications.

At zero temperature, y ~* oo, we have o = 0 while the coefficients b,c and d reduce to Th,U\

and —II2, respectively, given by (2.15). Also in this limit the expression (4.9) reduces to (2.22)

evaluated at w = 0.
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Firstly, in order to justify the low temperature expansions, we should require y > 5 (say).
This implies

* * » « S - ! [ I < * x l 0 3 t f (4.12)
p 2 mi.1 y 2 m v y ~ u

Secondly, the dominant parts of A are given by

^ )

l\ +Ml) (4.13)

where the masses are given approximately by

= (I - 4 y e y) + —=— ye v

m v2

~ 7T d
2

= LJH(l + 4ye-v) (4.14)

Here we have discarded terms of order

is comparison with unity. The value of M2 at zero temperature coincides with the formulae for
penetration depth given by others 4)<8). Our result gives the low temperature corrections and we
see that M+ increases with temperature.

Although, regrettably, this model does not appear to undergo a phase transition at finite
temperature *J, we can define a pseudo-critical temperature at which the thermal contribution to the
Meissner effect overtakes the zero temperature contribution. The two contibutions to M 2 , accord-
ing to the approximate formula (4.14) become comparable at a temperature dependent coupling,
i/c( y) given by

v\ = ——ye~"(l + 4j/e~") (4.15)

The expression for Af+ then takes the form

171

One should bear in mind that this is a perturbative result. It is conceivable that non-perturbative

effects might lead to a qualitatively different conclusion particularly in the case of small v where

our methods cannot be applied.
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and we see that the thermal contribution dominates for u < uc. The pseudocritical coupling vc is
plotted in Fig.2 for a range of temeperatures.

The invariant components (4.8) reduce, in the low temperature regime and with the ne-
glect of higher powers of the ratios (4.11), to the following form.

D + ye

1 = ~¥TIQ TMW L1 " 4 y e (2 ~
2 TV

e
,2 -Y

In order to have a rough idea of the relative strengths of the various forces involved here,
we give the energy functional at zero temperature with the Chem-Simons parameter assigned to
an intermediate range such that

(4.18)
me" IT e"

which means 1 « v « 103. At the same rime we restore the real charge density To = HT< The
result is

1

.k + Ml k -

(4.19)

This indicates that the static force between currents is of intermediate range and attractive. There
is a two component force, one of which is longer ranged, between charge and current.

To complete the discussion, we now consider the high temperature regime, ft « mi2

If v » 1 then we have, according to (3.35)

= 7T— (4.20)
m

and the limiting forms of the expressions (3.33) give
m

a en —
7T

6 ~ 0 ~ c
(4.21)

T771
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which can be substituted into (4.8) and (4.9). We obtain

C o s -
i- me2/7r

D _ l € V 1 * ^
1 ~ 24 j/m \fc2 ^2 + me2 /7r/

The pole at fc2 = 0 in D2 indicates the presence of a long range magnetic interaction.
This does not imply a phase transition, however. Indeed, the long range effect, which derives from
the pole in TT^, is present at any finite temperature. Its coupling strength depends on the tempera-
ture and, as can be seen from the low temperature expression for D% given by (4.17), this coupling
goes smoothly to zero at zero temperature. The pure Meissner effect which is observed at zero
temperature, for example in the formula (4.19) is certainly compromised by the apppearance of
this pole in the finite temperature amplitude. We must conclude that the magnetic field does in fact
develop a long range component along with the finite range (~ M~l) component which dominates
at low temperature. What we have found is that the relative strengths of these components varies
smoothly with temperature and that the long range part comes to dominate at very high tempera-
tures. We have also found that one of the ranges drops to zero (M+ —> 00) as the temperature goes
to infinity.

5. CONCLUSIONS

In this paper we have applied standard field theoretic perturbation theory to calculate
thermal corrections to the Messner effect recently demonstrated in a simple model of Chern-Simons
superconductivity4)>8). The calculation is expressed in the language of effective action functionals,
Minkowskian for the zero temperature case and Euclidean for the finite temperature case. Our main
approximations are the restriction to weak and slowly varying fields, and the neglect of 2-loop
contributions. The model involves two coupling parameters, e2 , with the dimensions of mass, and
K/V, which is dimensionless. Both of these parameters must be small in order to justify the 1-loop
approximation. It may eventually become possible to improve on this, extending the range to small
values of the Chern-Simons parameter, 1/, by applying the methods of fractional statistics, but we
have not attempted such a calculation. In this paper the (2+l)-dimensional "electrons" are treated
as ordinary fermions.

The mechanism which gives rise to a kind of Meissner effect in this model is the in-
duction, at 1-loop level, of a Chern-Simons term for the electromagnetic potential. As we have
pointed out in Sec. 1, the presence of such a term along with the standard Maxwell kinetic term
leads to a massive photon. Since there are two independent gauge fields in this model it is necessary
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to take account of their mixing, which is substantial. There are in fact two massive states repre-
senting the independent mixtures. Because of the assumed values of the parameters, Tie, *n and
e2, one of the states is considerably lighter than the other and it is reasonable to consider it as the
massive "photon". However, it should be kept in mind that there are two independent states which
mediate the interaction between currents. The Meissner effect in this model is kinematically more
complicated than in the classic Ginzburg-Landau description. At finite temperatures, the situation
is further complicated by the appearance of a long range component in the static interactions. We
have shown that the relative strengths of the long and finite range components varies continuously
with temperature and that, in the limit of very high temperatures, only the long-range component
persists.

It is a great virtue of this model that the electon energies are quantized. The level splitting
is inversely proportional to the Chern-Simons parameter, v. Relative to this splitting it is possible
to define low and high temperature regimes where the sums which define the thermal averages
can be evaluated approximately. For the values assumed in this paper, the level splitting is given
by (m£2)~l = ^r^jmv ~ 104Kjv and this means that the physically interesting temperatures,
~ 10 2 K, may lie in either the low or high regime, depending on the value of v. If v is very large
then we can view the high temperature approximation as an expansion in powers of 1 /v .

It was of course a disappointment to find no indication of a phase transition in the tem-
perature dependence of the penetration depth. However, this conclusion seems to be inescapable.
The general criterion for the existence of a critical temperature, manifested as a divergence in the
penetration depth, would be the vanishing at k1 = 0 of the determinant, A (A;2), given by (4.9).
But the value,

A(0) = ~ + c2 + ad
el

where a, c and d are defined by (4.7) and (3.16), seems to be inevitably positive. The coefficient
a is given as a sum of positive terms and e2d is relatively small. In the high and low temperature
approximations we have shown that e2 d is in fact positive. Although we have not been able to show
that this is always the case it is hard too see how it could become sufficiently large and negative to
make A (0) vanish. However, our conclusion is based on the 1-loop approximation which makes
sense only if ir/v is small.A more sophisticated approach would be necessary if v is small, and the
result could well be different*).

The Chem Simons parameter must be an integer. This restriction on the allowed values
of v is based on two independent considerations. Firstly, as discussed in Sec. 2, the consistency
of the assumed ground state configuration, with a uniform Chem-Simons magnetic background,
requires that v should equal the number of filled Landau levels and therefore be a positive integer
4)>8). Secondly, the Lagrangian density (2.1) is invariant with respect to gauge transformation only

*) For example, such a difference might come about because of higher order effects. These could be
estimated by a renormalization group approach which would make the coupling parameters, e2 and
v into functions of the temperature.
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up to a total derivative. If the theory is formulated on a compact space then it becomes possible to

consider gauge transformations which are topologically non-trivial and for which the integral of the
total derivative does not vanish. Invariance of the phase, etS, with respect to such transformations
is ensured only if v is an integer8)>2). On the other hand, we should point out that the temperture
dependent radiative correction to u, represented by the coefficient c, are not integral. This seems
to indicate a breakdown of the topologically non-trivial parts of the gauge symmetry.

It would be interesting to see if any modifications of the present simple model are able
to exhibit critical behaviour at finite temperature. Even more interesting would be the discovery
of some explanation, in terms of a more fundamental microscopic theory, for the appearance of a
Chern-Simons field and its associated parameter, v.
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APPENDIX A

Kinematics of Landau states

Because of the presence of a uniform magnetic field, the 1-electron Hamiltonian is not
invariant with respect to rotations and translations. However, because the field is uniform it should
be possible to compensate for the action of these space transformations by means of gauge trans-
formations. In this appendix we shall construct the appropriate gauge action and show that the
Hamiltonian is indeed invariant with respect to the combined group.

The background Chern-Simons field, used in Sec. 2, is given by

0 (A.I)

Here, in order to streamline the notation we shall adopt a system of units in which the magnetic
length, £, is equal to unity. The action on the Chern-Simons vector of an arbitrary space transfor-
mation,

x\ —> x'j = x\ cos 8 + X2 sin 6 + ei

%2 —* 2*2 = —X\ Sin 6 + X2 COS 6 + E2

followed by a gauge transformation, is given by

a\(x) -+ a\(x') = a\(x) cos 8 + 02(1) sin 6 + d\A

Q2(x) -* a'2(x') = -ai(x) sin 8 + a2(oc) cos 8 + <92A (A.2)

In order to have a'^x) = adx) or, more specifically,

a\(x') = -x2, a'2(x')=0

for arbitrary 8 and £,, it is necessary to choose

1 , ,
A(x) = j(x]-xi)$in6-x1£2 (A.3)

This is the compensating gauge transformation. The action of the combined transformation on the

electron field is given by *̂

^(x) -^ V'U') = eiA(x)ij>(x) (AA)

We can define the generators of infinitesimal transformations in the 1-electron Hilbert space by
expanding (A.4),

6^(x) = ^'(x)-^(x)

+ \9J$(x)

We treat the electron field as a space scalar.
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This gives

(? lW (A.5)

It is of course true that the space group does not commute with the gauge group and, in deriving
(A.5) we have required the compensating gauge transformation to follow the space transformation.
The non commutativity of these groups gives rise to a modification of the Lie algebra of the effective
invariance group in comparison with that of the pure space group. Indeed, from (A.5) it follows
that

Notice that the "translation" generators do not commute. Instead, they behave like canonically
conjugate variables.

It is instructive and useful to replace the original canonical variables xj and 7iy = — idj
by the linear combinations,

Q = 7T] + X2, Q = 7T2 + X\

F = 7T2, P=7T] ( A 7 )

which define two independent canonical pairs (q,p) and (Q,P). It is a simple exercise to express the
generators (A.5) in terms of the new variables,

J = 2-<92+p2)-2.(Q2 + P2) (A8)

Moreover, the 1—electron Hamiltonian becomes

J f f = J _ ( Q 2 + p 2 ) U 9 )

which clearly commutes with the generators (A.8).

Since the angular momentum is now expressed as the difference of two independent
oscillator Hamiltonians (one the true Hamiltonian and the other a kind of shadow Hamiltonian
that makes no contribution to the energy) it will be relatively easy to perform rotation invariant
computations by using a basis of oscillator eigenstates,
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where the ground state is defined by

( Q + i P ) | 0 > = ( g + »p) |0>=0 ( A l l )

With respect to the coordiante basis \Q, q > the wave functions factorize

<Q,d\n,r>=vn(Q)vr(q) (AM)

where the v'$ are expressed in the familiar way in terms of Hermite polynomials,

< Q\n>= vn(Q) = (^2nn\

We shall have occasion to employ a momentum basis \P > as well. These states are normalized
according to the convention,

<P|P'>=2TT6(P-P') (A.U)

and the transition amplitudes are given by

<Q\P>=eiQP U.15)
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APPENDIX B

The zero temperature loop integral

The 1-electron Green's function of Sec. 2 satisfies the differential equation,

(ido - H)G(x,x!) = -83(x - x')

and it can be expressed in the form of an integral over frequencies,

G(x,xr) = f p.e-*<t-t) < a|G(w)|i' > (B.I)

where the operator G(w) is defined by

u)-1 (B.2)

provided w does not coincide with any of the eigenvalues of H. The arrangement of the integration

contour CM is described in Sec. 2. Here we shall be concerned mainly with the matrix elements

of G{w). We shall also need expressions for the derivatives ViG( x, x') , VJ-G( x, x'), etc. In the

notation of Appendix A we have

Vi = d\ + 1x2 = i( 7ri + X2) = iQ

V2 = d2 = MT2 = iP (B.3)

and it is useful to define the 2-vector II, according to

In terms of this operator the covariant derivatives of V> and $* are expressed by

and V^ = -iip+Th (B.5)

It follows that the covariant derivatives V^G( x, x') and V[G( x, x') can be represented by contour
integrals like (B.I) with the operator G(w) replaced by in,G(w) and — iG(u)Tli, respectively.
Higher order covariant derivatives of G(x, x') arc given by obvious generalizations of this rule.

Let us now consider the structure of the 1-loop ground state polarization tensor. In the
typical 1-loop computation we arrive at the integral

/*

= Tr( e"**G( wi) e^^Gi w2)) (B .6)
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However, because the operator G(w) involves only the canonical pair (Q,P) and not the pair (q,p)
we can affect an immediate simplification. Substituting from (A.7),

= k\q- k2p- kiP

k-R (B.7)

where II, denotes the dual of H defined above,

n, = -n 2 )

The trace (B.6) factorizes,

The first factor can be evaluated explicitly,

i') (5.9)

Thus, the integral (B.6) reduces to the form,

Generalization to integrals which involve covariant derivatives of the Green's function is immedi-
ate. One has only to make the appropriate modifications, G(u>i) —» iTUGiui), etc. The rotation
and translation invariance of the polarization tensor is manifest in these expressions.

The oscillator matrix elements in (B.10) can be evaluated to any desired accuracy by

employing the wave functions (A. 13). In this paper we are interested only in the leading terms in

an expansion in powers of k. For this it is sufficient to use algebraic methods. To illustrate, define

the irreducible components,

k± = ~(kl±ik2) (B.ll)
V2

and write

ik-U^- -iJfciP+ ik2Q

= k+a+ - k-a (£.12)
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where o+ and a are the raising and lowering operators,

l 1
- iP) (£.13)a ^ i Q + iP), a = J-

V2 V2

The oscillator eigenstates are defined by

and it is straightforward to evaluate the first few terms of the expansion

r

\n>

2 > -fc+fc_(n+ ^-)jn> + :U?YT»(T»- *) l n ~ 2

(B.15)

etc. It is clear that the matrix element < m\eikn \n > has the threshold behaviour fc1"*""1 and
it follows that, in evaluating the sum (B.IO) to order k2* we need to keep only the terms with
\m — n| < 5.

It remains to consider the integration over frequencies. The most direct way to deal with
these integrals is to displace the eigenvalues of H by infinitesimal imaginary parts and then take
the contour CJV along the real axis. Specifically, we make the displacements

£n -> £n + *6, 0 < n < JV

en-*En-i&, n>N (5.16)

where 8 is real and positive. The computation then proceeds in a straightforward way. To illus-

trate, we consider the polarization component Too defined in (2.12). The 3-dimensional Fourier

transform is given by

foo(M') = /*d3a;ci3x'e-ai+lfcViTrC?(a;,i')G(x',a;)

r
J 2TT

= 2t .
J 27T

In the first line of this development there is a trace over the spin degree of freedom which yields
the factor 2 in the succeeding lines. Substitute the expression (B.IO) and extract the momentum
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conservation delta functions to obtain,

foo(w,Jfc) = L / ~ -
7T J X7T7T

-

- w ) )

m,n

— -
Z7T

(B.17)

With the energies displaced off the real axis according to the rule (B.16) the integral over u>\ is
well defined and easy to evaluate. It is non-vanishing only if the two poles arc situated on opposite
sides of the real axis. Using Cauchy's theorem,

(En-Em + u) , m>N,n<N
—(£„ — £m + u ) " 1 , m < N, n> N
0, otherwise

Hence the result,

IT -EE+EE
. m>N

W
(S.19)

The other components of the polarization tensor are obtained in the same way

1
27717T Z^ JU ' Z^

m>N n<N m<N
E

(B.20)

(B.21)
where the symbol { , } denotes the anticommutator. On expanding in powers of k;- and w, using
the formula (B.I5) for the oscillator matrix elements, the results (2.15) are obtained.

30



APPENDIX C

Finite temperature computations

The 1-electron thermal Green function of Sec. 3 satisfies the differential equation

and it can be expanded in the form of a sum over discrete frequencies,

G(x,x') = - ^ 5 > ~ * < M l ) <x\G{iC + M > (C.I)

where G(LO) is the operator (B.2) defined in Appendix B and

1. 2TT _

The chemical potential, /i, is determined by the equilibrium conditions (3.17) as discussed in the
main text. This detennination depends on the formula (3.12) for the tadpole amplitude Tf

which we now derive.

The component Tf(x) is defined by the first of equations (3.10).

where 6 is an infinitesimal positive quantity. For fixed i = %, the diagonal matrix element in (C.2)

can be expressed as a trace in the 1-electron Hilbert space,

= fJ
where we have used (B.7) to separate the trace into indpendent factors. The first factor is purely

kinematical,

according to (B.9). Hence we have

< x\G( i<< + n) \x > = ^
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and, on substituting into (C.2),

The sum over s does not converge very well but it can be defined in a plausible way. Thus, by taking
a derivative with respect to p. the convergence is unproved and we can set S = 0. The resulting
sum can be evaluated by contour methods,

dz ,2iti
(

L - 2

where the contour C encircles all the zeroes of cot irz.i.e. z = s+ f,s € Z£, in the positive sense.

This contour can be replaced by a pair of straight lines, one running to the right just below the real
axis and one running to the left just above the real axis. These two segments can be closed by means
of large semicircles in the lower and upper half planes, respectively (see Fig.3). Their evaluation
is then trivial since one or other of these contours will contain the dipole at z = (/?/2 iri) (£n — /j,),
depending on whether cn — /j, is positive or negative. The result is

| ( e n - n) (C.5)

This can be integrated to give, up to a constant,

The constant of integration is fixed by requiring appropriate behaviour in the zero temperature limit,

/? —• oo. Thus, we obtain the formula,

rT
B(x) = - y ^ e * * - ^ + I)"1 (C.I)

n

It is easy to see that the space components Tj3 must vanish since, according to (3.10), they must

contain the factor Tr(TljG) which clearly vanishes.

Now consider the components of the polarization tensor,
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where we have substituted the expansion (C.I) and taken the trace over the spin degree of freedom.

As in Appendix B we take the Fourier transform and remove the delta functions associated with
energy and momentum conservation to obtain

(C8)

where ut = 2 TIS/0, S £ TL. The trace refers to the Hilbert space of the oscillator variables P and
Q. (This formula could have been obtained directly from the zero temperature expression (B.17)
by making the replacements w —• iut, w\ —• i(i + /i and

J 2TT ( 3 ^ J

On expressing the trace in (C.8) in terms of oscillator matrix elements we arrive at the sum

(C9)

which can be evaluated by the contour method discussed above. For the case m = nand s = 0 the
result is given by (C.5). Otherwise, the sum (C.9) reduces to

(eB - £m + iw,)-1 [ (e* ' - - " ' + I)" 1 - (e« f i--^ + I)"1] (CIO)

On substituting into (C.8) we obtain firstly for 5 =/ 0,

:E(OJ £) = -

and, for s = 0,

ffi,n LX _ 1 V^ < n\e~ikn\Tn >< m^ \n> f 1 1 I

7T </"—' 4 2
n

Expressions for the other components, T? and F;f are obtained by making the replacements

e ^ {
2m

as in the zero temperature case.
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The leading terms in the expansion around k = 0 are obtained by restricting the sum
over m to the values m = n, n± 1, etc. and using the formula (B.15). The results are expressed
through the formulae (3.16).

The low temperature approximation is discussed in Sec.3. Here we give some of the
background for computations in the high temperature regime 0 « mi2. When the temperature
is large in comparison with the level spacing it becomes feasible to approximate the sums over
discrete energy levels by integrals. For the sums appearing in (3.15) it is possible to evaluate the
resulting integrals in terms of elementary functions and so obtain the leading terms in expansions
in powers of the small quantity j3/m£2• The coefficients in these expansions will turn out to be
functions of /?/i, where fj, is the chemical potential, and we need not assume that this quantity is
small.

To begin with the general problem, suppose we are to approximate the sum, J^n / «» w n e r e

the quantities /„ are interpolated by a smooth function,

U = /(/?£„)

a =-4. (C.14)
mi2

Let us further suppose that the function <f>(z) is slowly varing on the scale of a ,

a2<f>"(z) «<t>(z),

etc. In order to convert the sum into an integral, it is necessary to construct a function F( z, a) such
that

With such a function we can write

~ r dzF(z,a) (C16)

It is a simple exercise to find the first few terms in the expansion of F( z, a) in powers of a,

F(z,a) = —<f>(z) - -rr<i>"{z) + a 4>""(z) + . . . (CM)

One can easily verify that this function satisfies (C.I5) by expanding in powers of 2 — (n+ %)at.

On substituting (C.17) into (C.16) we obtain the formula

~
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which is valid under the assumptions that the integral converges and that the interpolating function

vanishes with sufficient Tapidity at z —• oo. These assumptions are justified in the cases to be

considered.

Now, to treat the sum (3.20) which defines the chemical potential,

we must choose the interpolating function

and evaluate the quantities

r

which are to be substituted into (C.I8). This gives

v = 1 fa + ML 1 + «-'")) - £aech£ h 2

where a - (if mi2. If we make the further assumption that /S/x is large, then (C.19) can be solved
by iteration to give

1/ 1 _
M = ; ^ F ~ T PV/™ [ l ~ u [ ^ & ) + 5 7 6 0 t : : ^ } + - - - I +

The assumption that (3p is large while /3/mi2 is small requires that v is large *}. We are, in effect,
obtaining an expansion in powers of 1 jv. On substituting for C2 from the formula (3.19) we obtain

. (l ( ) \ . . ) + ... (C.20)

m / 3 \ 24 \ / J

*> The convergence of the expansion (C.17) necessitates that <j>(z) should vary slowly on the scale of

a. This implies 0/mi2 « fiy. which is consistent with v » 1.
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Turning next to the sums which define the low momentum behaviour of the polarization

tensor, consider firstly the quantity

Here we choose

(f>(z) = seek

dz
To obtain the first correction term we need

On substituting into (C.I8) we obtain

m
a = —

IT 96 sinh^fsech3 ^ +

Next, for the quantity

c = ~ ~7T 8 7T 2

choose
"1I)"1 - j

7T t £

2 7T 2 2?T 2

In this case the integral of tf>(z) vanishes and we are left with the correction term,

(C22)

(C.23)

Since, according to the definitions (3.16) and (4.7) we have b = —m£2c, there remains only the

quantity

d = — V f(2n
L

I) '1 - 2

•nm
I)-1 - i8 (C.25)
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Here we choose

77771 /5

Again the integral of <£( z) vanishes and we therefore obtain

127TT71

^ 3 ^
2 2

(C.26)
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APPENDIX D

The effective interaction at zero temperature

To gain a better understanding of the dynamics of the two gauge fields, A^ and a^, with
their various mixing terms, it is instructive to derive the effective current-current interaction. Part
of the result of this computation is exhibited in Sec.2. Here we provide some of the details.

The bilinear part of the effective action is given by

r=ld 'A~h ^^ - £ ***&A
f 3 3 ') + al/{x')) {D.I)j f

where the Fourier components of rMJ/ are expressed in terms of the three invariants, Ilo, Hi and
II2, which are constants in the long wavelength, low frequency approximation. See Eqs.(2.14) and
(2.15).

To obtain the effective interaction between a pair of conserved electromagnetic currents
we must solve the field equations,

= -I»(x), 6r/6a»(x)=0 (D.2)

and evaluate the amplitudes

= r{A,a) + fd3xl"(x)Alt(x)

= ~ J d?x I»{x) A»{x)

= ~ fd3xd3x'P{x)Dtil/(x-x')r{x') (D.3)

In Fourier space the field Eqs.(D.2) are

k{kvA(1kv{kA ~ kPA) + f (Jfc)(X + au) » -7"
e2

- - e^kx ap + f ""(*)(lp + o j = 0 {DA)
it

where Jf J^ = w Jo + kjl, ~ 0. Since we do not generally have Lorentz invariance (which obtains
only for Fl2 = —Ilo) we cannot choose any particularly advantageous frame. However, it is helpful
to employ a complex basis, writing

— 1 — ~
= -j= {A\ ±iA2) ,

2
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etc. Since Eq.(D.5) are gauge invariant we can look for the solution with

^ 0 = 0 0 = 0 . (D.5)

With this restriction the equations reduce to the form

— [(w2 - k+k.)A± + k%A\] + n ^ c X t + a±) + r ± ± ( l T + okp) = ~J±

T - w o ± + r ± T ( I ± + a±) + r ± ± ( l T + oT) = 0 . (D.6)
7T

On eliminating a± they reduce to

a+X- + fi+A- = - ;+

0-A++ a-A-=-j- (D.7)

where

- - n , - - w no ) J + + - n 2 fc+ f0

- - n , + - w n^ v
and the coefficients a± , /3± are given by

= T JL w(w
2rio - - e2n,

e2n0) - ^ ( i - - n, - e 2 n 2 )O: + e2n0) -

The solution is

A.=

where the denominator is given by

A = —K

2/c+Jfc_(n0 + n 2 ){ (w 2 -

n2) + 4 ( 1 - " Hi - e2n2) . (0.9)

This expression is quadratic in w2 which implies that there are two branches to the dispersion
relation. Their values at k = 0 define the "masses" /i^, referred to in the text. They are real and
positive if e2ITo is positive,

{DM)
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The solutions (D.IO) are singular at w = 0 and one might suspect that this is merely
a gauge artifact. However, this may not be the case, at least in higher orders. A careful evalu-
ation of the functional (D.3) shows that the singularity may persist and give rise to a long range
instantaneous interaction between the currents. The final result is

- {(1 - ~ -e2u2 + (^

v

+ (-)2no(Ilo + U2)k
2}— - ei; It If] . (D.13)

The combination of currents that appears in the last term is in fact Lorentz invariant. On using

current conservation it can be expressed in the Chem-Simons form,

- i £„(;;*.•/>-/; Wo). (27.14)

Indeed, the entire functional (D.13) becomes Lorentz invariant, as it should, when Hi = —ITo-
If we substitute the 1-loop value for 11] as given in Eq.(2.15) the residue of the pole at w = 0
vanishes. However, this may not be the case in higher orders.
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Fig. 1 One loop ground state polarization tensor.

15 g

Fig.2 Plot of pseudocritical coupling, i/c(y). For u < vc the penetration depth is dominated

by the thermal contribution. The curve is reliable provided v and y = 1/2 ml2T are not

small.
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Fig.3 The contour used in evaluating thermal sums. Poles on the real axis are given by the

zeroes of cot -nz (Appendix C).
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