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ABSTRACT

A general method for constructing interesting topological gauge theories in arbitrary di-

1 Introduction

The construction of arbitrary dimensional topological quantum field theo-
ries has recently received much attention [1,2,3]. At present a useful way of
classifying these theories is to distinguish between the Schwarz and Witten
classes [4]. In the case of a Schwarz type theory [5], one beging with a
metric independent classical action 5,4(®), where ® denotes the collective
field content. We stress that by Schwarz type we mean that the classical
action is non-trivial, excluding for example total derivative actions. Upon
gauge fixing the total quantum action takes the form

5.(®,9) = Sa(®) + {Q.V{®.0)} ,

where g is the metric, @ is the (metric independent) BRST operator, and
V is some functional of the fields, The metric independence of @ can easily
be seen by writing the BRST transformations in terms of differential forms,
without reference to the Hodge duality operator. The distinguishing feature
of the Witten type theories [6,7] is that the complete quantum action can
be written as a BRST commutator, i.e.

S5, ={Q.V{®.,9)} .

We should note that the @ is generally not the same in the two cases. For
the Schwarz case the § corresponds to the usual gauge symmetry, albeit,

mensions is presented. The basic framework upon which these models are built is given by the
geometrical data of the ‘universal bundle with connection® of Atiyah and Singer. The models con- in general, of the reducible type. In the Witten case the  is obtained by
sidered include theories which represent the moduli spaces of flat connections and solutions to the combining a ‘topological’ shift symmetry with conventional gauge symrme-
Yang-Mills equations. The former thearies correspond 10 supersymmetric versions of the recently bry.-
introduced BF systems. In all cases we show explicitly that the quantization can be carried out
through the construction of an off-shell nilpotent BRST operator, thus guaranteeing the metric energy tensor is a BRST commutator,
independence of these models. 1 &V
Tap ={Q =7} -
‘/'j bgos
MIRAMARE - TRIESTE The topological nature of the theory lies in this fact since, assuming that
August 1989 the vacuum is B.RS'T invariant ', one can easily show that the partition
function is metric independent. One can then go on to construct other

The common feature which both classes share is the fact that the stress

In a recent work [30] it ia shown that in the four dimensional topological Yang-Mills
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metric independent observables, 8,{0} = 0, from BRST invariant operators
{@, 0} = 0 which appear in the theory [6].

Given a Witten type model, the metric independence is guaranteed by
the above observations. However, the analysis for the case of Schwarz type
theories is not completely straightforward. We noted above that, since the
ghost and gauge fixing terms are expressible as a BRST commutator, the
stress energy tensor can also be written in this way. To prove that this is
the case for a general Schwarz type theory is not entirely obvicus, It is cer-
tainly true for the three dimensional Chern-Simons theory, (the prototype
of a Schwarz type theory), as in this case one is simply quantizing the usual
Yang-Mills gauge symmetry [8]. For more complicated systems, such as ar-
bitrary dimensional non-abelian BF systems, it has not yet been shown
that these models maintain their metric independence upon quantization.
By more complicated systems, we simply mean those which suffer from re-
ducibility, and or closure, problems in their gauge algebra, However, there
are examples, such as the abelian BF systems in arbitrary dimernsions, and
the lower dimensional non-abelian models, for which the complete gauge
fixing and ghost terms are indeed expressible as a BRST commutator [1].
In general, when quantizing an (on-shell) reducible system, one uses the
Batalin-Vilkovisky procedure [9]. The problem is that, within this proce-
dure, there is certainly no guarantee that the classical and quantum actions
differ soley by a BRST commutator. Futhermore, one also finds a quantum
action which is invariant with respect to only an on-shell nilpotent BRST
operator.

There is a class of models, the so-called super BF models, which can
be shown to be topological in nature, in any dimension. At first sight one
would be tempted to classify these models as being of the Schwarz type, as
the classical action is metric independent. For example, in three dimensions
[10,3b] the classical takes the form

[BFA_ xda¥

theory the Yang-Mills ghost field ¢ acquires a non-sero vacuum expectation value, and
that in general the BRST invariance of the vacuum is broken. This symmetry breaking is
achieved in such a way as not to effect tha naual metric independence arguments. However,
it does allow one to establish the non-triviality of the appropriate cbservablea in the theory.

where A, B and x, ¥ are respectively even and odd 1-forms. The extra
structure which this system has over a usual BF model is the presence
of superaymmetry relating the superpartners A, B and x, ¥. The theory
serves to model the moduli space of flat connections and, as shown by
Witten, has a partition function which is the Casson invariant.

It is easy to see that the above classical action can be written as {@Q, X},
for some functional X and symmetry operator (). Thus at least at the
classical level we know that this theory is of Witten class. However, it is not
a priori obvious that this property can be maintained upon quantization.
In this paper we shall show that indeed this theory is of Witten class.
That is, we will explicitly construct an off-shell nilpotent BRST operator
@, and show that the complete quantum action is expressible as §, =
{@,V}. This in turn makes explicit the observation by Witten that this
theory is equivalent to the one obtained upon dimensional reduction of
the four dimensional topological Yang-Mills theory. This dimensionally
reduced Witten type theory corresponds to a 3d Yang-Mills Higgs model
and was constructed in [11,12]. As such, on a manifold without boundary,
its partition function is indeed the Casson invariant, as shown in section 4.

Obviously, since it is so straightforward to write down arbitrary dimen-
sional topological field theories, one needs some way of establishing whether
they will possess interesting topological properties. One way of doing this
is to construct field theories based upon a certain set of geometric data, for
instance that used by Atiyah and Singer in their study of anomalies [13].
In this way we are guaranteed that the resulting theories will encode valu-
able topological information. We shall adopt this geometrical framework to
construct topological field theories which model the moduli spaces of flat
connections and solutions to the Yang-Mills equations, in any dimension.
All the theories we consider will be shown to be of Witten class.

To do this, as in the 34 case, we show that it is possible to construct an
off-shell nilpotent BRST operator with the quantum action expressed as a
BRST commutator. The basis for constructing such a @ is to combine the
supersymmetry and standard BRST operator. This is already suggested
by the Atiyah-Singer construction, where a natural transformation for the
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gauge potential, (see (8) below),
A= !ﬁ - dAc y

arises, The procedure we adopt here is to be contrasted with that of Horne
[14], who keeps the ‘topological’ supersymmetry (64 = ) and BRST sym-
metry (64 = —d4c) split, in hia analysis of the 4d topological Yang-Mills
theory,

As a final remark we should note that constructing a topological field
theory to model the space of Yang-Mills solutions is not without content.
We know that the moduli spaces satisfy the inclusive relations

M7 C Myn My C Myn ,

where 7, I and Y M denote flat, instanton and Yang-Mills connections,
respectively. One may wonder then why it is not sufficient to simply model
the flat and instanton moduli spaces. The question is whether there is
any futher structure beyond this which needs to be explored. In fact some
recent work has shown that indeed there are new finite action solutions to
the Yang-Mills equations which do not correspond to instantons [15]. As
such it is useful to have at hand a topological theory which probes this
extra gtructure,

The plan of this paper is as follows. In the next section we begin by
setting up the geometrical framework upon which our models are built.
Section 3 contains the basic construction of the models. In Section 4 we go
on to discuss the Langevin approach to these theories; this establishes, a
priori, that they are of Witten class. Section 5 provides explicit details of
the quantization while in section 6 we treat the important issue of which
metric independent observables are available. We conclude in section 7
with a discussion of the general renormalization properties of topological
field theaories, treating in particular the four dimensional theory of self-dua!
connections and the three dimensional super BF system to one loop order,

2 Geometrical Framework

Before diving into the construction of the models in the next section it
will be helpful to gain a geometrical understanding of the fields and their
transformations used in the construction of topological field theories, As
has been noticed independently by the authors of [11,16,17] the appropriate
setting is the ‘universal bundle with connection’ used by Atiyah and Singer
in their discussion of anomalies in quantum field theory [13|. We shall here
expand slightly on these previous discussions and show how all the BRST
transformations of the fundamental fields involved emerge naturally in this
setting, and how interesting topological field theeries can be constructed
by imposing appropriate geometrical constraints.

Let us start off by considering a principal G-bundle P on a compact
smooth manifoid M. The affine space 4 of all connections on P {modelled
on (1'(M,adP)) is acted upor by the group § = AutyP of pointed gauge
transformations. G acts freely on the base space @ of the principal §-bundle
(PxA,G,Q= (P x A){g)) and defines the ‘universal’ G-bundle

Q:((PXA)/Q»GanG=MXA/g) ] (1)

over the base space M x A/g. Differential forms on M x A/§ carry a
natural bigrading (for our conventions regarding these graded algebras see
the appendix), a (p, ¢)-form referring to a p-form on M and a g-form on
A/G. Thus locally the universal connection on @ can be written as

A=A+ec, (2)

where ¢ refers to ita (0,1)-part. Likewise the exterior derivative splits nat-
urally into d + §. With this in mind the universal curvature - a horizontal
form on @ - is

F=(d+8)A+ {4 4] . (3)
Upon expanding ¥ as

7 = Fao)+ Fan + Foa
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one finds that its (2,0), (1,1), and (0,2)-components are respectively given
by

Fu = dA+%[A,A] (5)
¥ = de+6A+ A ¢ ()
$ = betlad . (1)

From this we see that we can identify & precisely with the fully gauge fixed
BRST operator used previously [11,17-21] for the construction of Witten
type topological field theories in any dimension, once we rewrite (6) and

(7) as
A = $—dye (8)
bc - %[C.Ci . (9)

I

Since by construction 6% = 0, (8) and (9) imply the BRST transformations
of ¢» and ¢:
&y —[e, 9] — dad {10)
56 = —led] - (1)

Since ¢ - as a (1,1)-form on M x A/§ - should vanish on tangent vectors
X € M(M,adP) tangent to the orbits of §, we impose the condition

It

doeyp=0 . {12)

When implemented as a constraint in the path integral in the usual way
(12) has the additional virtue of completing the analogy with the universal
bundle Q by realizing the curvature formula [13]

#{rma} = (dyda) 7 (¥, 3m) (13)
(with ; € (M, adP) satisfying d 7 = 0} in the form [6]
(@) = [ (dada) " (v8,48) (1)

where ¢° is the ‘zero-mode part’ of 4.

6
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At this point we have pinned our theory down to the space A/ {and
can in fact recover precisely the BRST structure of ordinary Yang-Mills
theory by setting ¢ and  to zero}. We are however free to impose further
conditons on F4 (and hence on 4) to reduce our configuration space to
interesting moduli spaces which are subvarieties of A/ g for specific choices
of P. Precisely how this can be done in practice will be explained in the
following section. Let us just note here that the three conditions promising
to be most interesting are those characterized by the constraints

Fs = 0 (15)
Ff =0 (16)
dA-‘FA = 0 s (17)

which will lead to topological field theories describing the moduli spaces
My, M; and Myy of flat, instanton, and Yang-Mills connections respec-
tively. The BRST transformations of these conditions will be the ¢ zero
modes, which are thus restricted from (co-Jtangents to A/ § to (co-)tangents
to M. Since (16) has already been discussed in great detail in the literature
(and is only possible in 4 dimensions), we shall mainly restrict our attention
to the other two possibilities.

Finally let us mention that the Bianchi identity for ¥ implies
(d+é)rFt =0 , (18)

which - when expanded out in terms of ghost numbers - gives rise [11,16,17)
to the hierarchy of observables discussed in [6].

3 Construction of Topological Actions

As discussed in the introduction, we are interested in constructing topo-
logical field theories which serve as models for the moduli spaces of flat
connections , (F, = 0), and Yang-Mills connections, (d. * F4 = 0). Be-
fore presenting the construction of these theories in arbitrary dimensions
it is useful to consider first the special case of flat connections in three
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dimensions. As shown by Witten [10}, the partition function of the result-
ing theory is the Casson invariant. We begin by postulating an N =2
supersymmetry algebra ? with transformation rules given by

éA=¢ ,6p=0 , §x=8B ,0B=0,
FA=x 6p=-B , x=0 ,6B=0 . (19)

Here A is the G-valued gauge connection 1-form, ¢ , x , and B being
fermionic and bosonic 1-forms in the adjoint representation of G , with
ghost numbers (0,1,—1,0) , respectively. This set of fields can be neatly

combined into a single superfield as
A=A+my+mx—mmB . {20)

The superfield 4 then serves as the superconnection and it is a form with
overall degree 1, since 1, and 7 have ghost numbers —1 and 1, respectively.
We now see that the supersymmetries (19) are simply

J - a
§=— ,6=—, 21
am nz ( )

with the property that
62=35 =66+86=0. (22)
It is straightforward to compute the supercurvature and we find
F o= dA+ 4
= Fa-mdab—mdax—mm(daB+pod) - (29)

In three dimensions a natural action to consider is the super Chern-
Simons action [10]

- 3 [ dmdni(4aa + 3 = [(BFA - xda) (24)

where a trace over group indices and a wedge product between differential
forms will always be understood. At this point we see that the role played

9By N = 2 supersymmetry we simply mean that we extend our space to include two
fermionic coorinates n; , B3 , with corresponing supersymmetry generators § and £.
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by the B field is that of a Lagrange multiplier enforcing the constraint
F, = 0 while the superpartners ¢ and x ensure a balance of bosonic and
fermionic degrees of freedom. In addition, as we have discussed in the
introduction, the y field is also part of the geometrical data upon which we
are building these models. It is easy to check that the auper Chern-Simons
action is invariant under both the & and & symmetries and in fact we have
the result 2 2
f dmndna(Add + S4°) = 86 [ (4dA+Z4%) . (25)

Given the above symmetries we can ask the question: What other types
of topological actions can we write down? Again a natural object to consider
is the super Yang-Mills action given by

1
-3 / dmdmF + F = [ Bda# Fu+ x(da s datp ~ [+Fa 0]} . (26)

It is worth noting that the above action is not of the Schwarz class, as the
Hodge star operator appears explicitly. In order to provide a basis for a
topological field theory we must therefore show that it ia of Witten class,
and this means that we must explicitly construct the operator @ which
allows us to write the complete quantum action as & BRST commutator.
The construction of such & Q will be presented in section 5.

In this case we are modelling the moduli space of Yang-Mills connec-
tions , i.e., ds * F4 = 0. The action (26) is again invariant under both
supersymmetries (19) and can be written as

[dman 7«7 =56 [ Fas Fa . (27)

We see that the classical actions (25) and (27) are both of the form
84 = {@Q,X). That is, one can classify them as being of the Witten
type. However, one must ensure that this assertion is maintained upon
quantization, where the § operator is extended to the full set of fields and
the total quantum action action is expressed as a Q-commutator.

An important point to notice here is that the Yang-Mills action, as given
in (26), can be written down in an arbitrary dimension. That is, given the
é and & transformations together with the superconnection A, eqn. (26)

9




makes sense in any dimension. Thus we can use this action to model the
Yang-Mills moduli space in any dimension. This is to be contrasted with
the super Chern-Simons action which is specific to three dimensions. While
one can certainly consider the higher dimensional analogues of the Chern-
Simons form, these contain higher derivatives and as such are generally
ignored. However, it is still possible to write down an action which will
serve as 8 model for the moduli space of flat connections in any dimension.
Before presenting these actions, we pause to make some general remarks.

Let S(A) be a general classical action and consider the following object

- 58 58
653(44.) = BEZ + x-a-'P'tll . (28)

If we now take 585 as our topological action we see that B enforces the
classical equation of motion ££ = 0, while the ¢ and x fields enforce the
linearized equation of motion g% = 0, This is precisely the atructure
we require of a topological action. That is, if we take eqn. (24) as an
example, the B equation of motion restricts ue to flat connections, while
the ¥ equation of motion ensures that the ¢'s are tangents to the solution
space.

Together with the § and & symmetries, the above actions also possess
the usual super gauge symmetriea given by

64 = —dsC . {29)

In terms of compenents we can rewrite (29) as

A = —due

S = ~dad - [c,¥]

§x = —dapo— [e,x]

6B = —d Lo+ [l}l), ﬂo] + I¢, x] - [G, B] . (30)

Here the gauge symmetries have already been written in ghost form via the
ghost superfield which has degree 1. It is given explicitly by

C=ct+tme+mpo—~mmIo - (31)
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At this point we can, if we wish, proceed with the quantization of the 3d
super Chern-Simons theory and arbitrary dimensional super Yang- Mills
theory, This is done , in the usual way, by simply adding the corresponding
gauge-fixing and ghost terms to the classical actions. Since these terms
are added via the Lagrange multiplier and ghost superfields it is clear that
the resulting quantum action will be invariant under all three symmetries,
i.e., Qprsr, 6 and 8. The important point here, however, is that in this
approach the BRST and supersymmetries are split. This is precisely analo-
gous to the treatment of Horne [14] for the four dimensional Witten theory
of self-dual connections. In this case there are two symmetry generators,
a supersymmetry @ analogous to {19), and a BRST operator for the usual
Yang-Mills gauge fixing, The complete quantum action is then expressed
as a Q-commutator. However, our aim is to carry out the quantization
by introducing a single BRST operator @ and writing the total quantum
action as §; = {@,V}. In doing this we can then classify these theories as
being of the Witten type; as such metric independence is guaranteed. A
futher advantage of this approach is that the field content is reduced.

For the sake of completeness, however, and to allow us to raise an im-
portant issue with regard to the gauge fixing of these theories, we present
the full quantum action in the usual superfield approach:

1
~5 [ dmdn(Ada + gﬁ +Udy # A+ Tdg + dyC)
= [BF+Bsdauot - (32)

For definiteness we are considering the super Chern-Simons theory which
is being used as a model for the moduli space of flat connections. However,
we see immediately from (32} that the B equation of motion no longer
enforces the desired constraint F, = 0. Rather, due to the necessity of
gauge fixing the theory, we find the consiraint Fx = — * dyug. Thus it is
not a priori clear how the presence of the ug field will affect the evaluation
of the partition function, which in this case is supposed to yield the Casson
invariant. We discuss this issue and its resolution in more detail in section
3.

Our discussion so far has concentrated on the construction of topological
actions for flat connections in three dimensions and Yang-Mills connections

11
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in arbitrary dimensions. In the construction of these actions we made use
of the presence of the N = 2 supersymmetry (19). In order to construct
Witten type topological field theories for flat connections in more than three
dimensions we have to be content though with an N = 1 supersymmetry.
This is already indicated by the fact that the higher dimensional analogues
of the N = 2 Super Chern-Simons functional do not give rise to the desired
equations of motion Fyx = 0. To see more clearly the need for abandoning
N = 2 recall that as in three dimensions we want to arrive at actions of
the form § = [ BF4 + ---. For this to make sense however B needs to be
(in n dimensions) an (n — 2)-form, and while this certainly allows us to
keep the first aet of supersymmetries (19), the second can not possibly be
realized any more since  is always a one-form. This should be contrasted
with the case of Yang-Mills, where the required action (26) of the form
§ = [ Bds % F4 + «-+ permits B to be a 1-form in any dimension.

We can however construct a supersymmetric extension of the BF sys-
tems [1,2] mentioned in the introduction in terms of N = 1 superfields
incorporating the supersymmetry

sA=vy , 6x=B,
ép=0 , 6B=0 . (33)
We introduce two superfields A and B8, with degree 1 and (n — 3) ,respec-
tively,
A=A+8p B=x+48B, (34)
where x and B are now (n — 2)-forms. The action is given by

§= jmr f(BFA +(=)"xda¥)
5 [ xFa (35)

which is of the desired form and the chvious extension of (24) to higher
dimensions. Just as for the 3d super Chern-Simong and arbitrary dimen-
sional super Yang-Mills theories, we can now proceed with the superfield
quantization of these systems. The important point to notice here is the
on-shell reducibility of the theory. That is, since B is an (n — 2, —1)-form
the super gauge symmetries are given by

04 = _dlca 88,z = dd-cn—.! . (36)
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Letting L£n_s = d4Ln-4, we see immediately that this corresponds to an
on-shell symmetry, until the degree of £ reaches zero. To see that the sym-
metry is on-shell reducible one simple expands out the supergauge trans-
formations (36). As such the quantization of this reducible system requires
several stages of gauge fixing. However, there is no obstruction to carrying
out this procedure, using for example the Batalin-Vilkovisky algorithm. As
mentioned previously, the resulting action is one in which the BRST and
supersymmetry are split. In addition, there is no guarantee ,within the
Batalin-Vilkovisky procedure, that the complete gauge fixing and ghost
terms can be written as a BRST commutator. This is a problem already
encountered in the quantization of the usual BF systems in dimensions
greater then four [1]. Ae a result the metric independence of the theory is
not guaranteed. In section 5 we will show, however, that indeed a complete
off-sheli nilpotent BRST operator @ can be constructed such that the total
quantum action can be written as {@,V}.

At this point it may be worthwile making a remark on the (frequently to
be found) statement that topological gauge theories of the Witten type con-
sidered here may be obtained by starting with a vanishing classical action
and gauge fixing some ‘topological symmetry’. To understand the difficul-
ties one faces by adopting this point of view consider the case of gauge
theories in four dimensions. As a starting point one demands invariance
under arbitrary shifts of the gauge field A. Then the equation §4 = ¢ is
to be read as the corresponding BRST transformation, ¢ being the ghost
for this ‘topological’ symmetry.

In order to proceed one picks some ‘gauge fixing’ condition, usually -
80 as not to interfere with the Yang-Mills gauge symmetry - chosen to be
of the form §(F4) = 0, where § is some functional. To implement this
gauge choice one introduces an antighost x and a multiplier field B (with
§x = B) and postulates the action

5 [ x5(Fa)
fB.G(FA) + x6G(Fa) , (37)

where the relative sign depends on the the theory we are dealing with.
A look at the actions (24),(26),(35) reveals that they are precisely of this

S
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form, where § is respectively chosen to be

g(FA) = F: » (38)
= FA 4 (39)
= dy*Fy . (40}

This however makes the problem apparent: these various conditions are
certainly not equally ‘strong’, since both (38) and (39) imply {40). This is
in sharp constrast with the case of ordinary gauge symimetries, where all
acceptable gauge choices are required to be equally strong in the sense that
they eliminate precisely one (the longitudinal) mode.

Thus even if the topological symmetry is given, the resulting theory
depends crucially (again in marked contrast to more familiar theories) on
the choice of ‘gauge’.

Moreover none of the conditions (38-40) completely fixes the topological
symmetry. Indeed the only conditions satisfying this requirement are of
the type A = A, for some choice of A, thus leading to trivial theories.
Furthermore variations of A orthogonal ta gauge directions leaving G(F,) =
0 invariant, correspond precisely to tangent vectors of the respective moduli
spaces and equivalently to zero modes of y.

Thus regarding topological field theories as arising from gauge fixing
zero may be misleading since

a) the resulting theory depends crucially on the gauge fixing, and

b} the topological symmetry is not fixed completely (and must not be
fixed completely in order to arrive at a non-trivial theory)

4 The Langevin Approach

As stated in the previous section, we would like to carry out the quantiza-
tion of these theories by introducing a single BRST charge and expressing
the total quantum action as S, = {@,V'}. A first approach in this direction
is to make use of the Langevin formulation of topological field theories ,
as introduced in [18,22]. Let us, for definiteness, consider the case of flat

14
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connections. We begin by introducing an auxiliary, random Gaussian, 2-
form field G and choose as our starting classical action the square of the

Langevin equation
Ky =Gy —Fy—#duns=0, (41)
where t is an {n - 3)-form, whose significance will be explained shortly.

The action is given by
S:fK,:K;. (42)

Now in the Langevin approach to F4 = 0 one would naively begin with
the equation 73 — F4 = 0. One would then hope that the corresponding
action had enough symmetry to allow us to set the G field to zero, thereby
recovering the Rat connection condition. In order to achieve this , however,
we must ensure that we have a complete Hodge decomposition for G. It
is for this reason that we have introduced the u field. We note that to
ensure covariance the decomposition given in (41) involves the covariant
derivative d, rather than simply d. We should also remark here that we are
ignoring the harmonic part of the Hodge decomposition. In other words we
have encugh symmetry to gauge away all of G modulo a finite dimensional
harmonic piece. However, it is the very presence of this ungauged piece that
allows us to construct nontrivial topological observables for these theories.
Another way to see this is from the fact that the Langevin equation defines
a complete Nicolai map for the theory [22] over all but a finite dimensional
space corresponding to the kernel of the map, this kernel is nothing other
than the moduli space of flat connections. Again we should note that
the presence of the u field affects this result and we shall now discuss the
significance of this field.

By introducing an antighost field x¥ and a multiplier field B we can
rewrite (42) in the form

(G1— Fu — #dattn-s) * (G1— Fa— =dattn_s) (43}
a
= {Qyxn-2(Gz~ Fa— ¥dattn_g — 7" B._;)}

&
e Bn-z(G: - FA s tdAu,.H;) - EBn_g * B,._g 4+ -

where we are using the symmetry rule {@,x} = B and « is a gauge fixing
parameter. If we now choose the a = 1 gauge and integrate out the mul-
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tiplier field we recover the square of the Langevin equation. On the other
hand we now see that we can interpret the u field as enforcing the gauge
fixing condition on B. So apart from the previous requirement of having
a complete Hodge decomposition, we have the additional observation that
the u field must be present to perform the necessary gauge fixing on the B
field. We should also point out that in three dimensions the Langevin equa-
tion given above corresponds to the Yang-Mills Higgs model introduced in
[11,12]. There the u field, as a O-form, is nothing other than the Higgs field.

One may wonder if it is possible to choose the gauge Gy = *d u..3,
thereby eliminating the dependence on the Higgs field. However, as shawn
in [11] for the case of supersymmetric quantum mechanics, one must ex-
ercise caution when choosing such a gauge, which is in a sense singular.
In the latter case, it is still possible to evaluate the index of the theory in
this gauge, although the limits of integration must then be treated care-
fully. The discussion in [11] can be extended to the present case of flat
connections.

In more than three dimensions the u-transformations will, of course, be
reducible, This will lead to the, now familiar, ghost for ghost phenomenon,
This is to be contrasted with the Langevin formulation of Witten's 4d
Yang-Mills theory which has the structure [18]

s=[flet-Fi)r . (49)

Since this is an algebraic equation we do not need to introduce a v field; in
other words, the self-duality constraint on the fields is sufficient to guarantee
enough symmetry to gauge G to zero. Also, for the case of super Yang-Mills
in any dimension, the Langevin equation has the form

§= [(G1~ dus Fa— wdguo)? . (45)

Here u is a zero form in any dimension; this should come as no surprise
in view of (26), where we found that the required multiplier field B was
always a 1-form, and as such required only one stage of gauge fixing.

Having discussed the formal structure of the Langevin equations for the
models of interest we can now proceed with the quantization. Again, as an
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example, let us consider the case of flat connections in arbitrary dimensions.
From the action [42) we can determine the symmetries (already written in

ghost form) as

A = Y —due

Sty = ""[C. ﬂn—s] + Op-3 + dp0n_y + [FA,UH*E]
+ [FAquon—Gl + IFAs[FA)aﬂ-T]] +e
SGg = —‘[C, Gg] - ‘dAan—s —da + *['p! un—&]

*([FA,Un—4] + [FA'dA"ﬂ_E] + IFM[FA’U"—B” + - ) . (46)

At first sight these transformation rules seem rather complicated. This is
due to the fact that the reducibility in the u field has been built in from the
start. The point to notice here is the presence of zero modes in the gauge
algebra. That is, if we [et

Y = due
On-3 = [c'l un—-’-] - dAan—4 - [FA1 06—5] - [FAI dAan—G] + - (47)

we find that this corresponds to an on-shell zero mode, upon using the &
equation of motion {41). For the case of n > 3 we also see that we have
reducibility problems in the u field, due to the fact that it is an (n—3)-form.
The ensuing zero modes can easily be read off from (47} by taking ¢ = 0
and solving for o,_, giving

Tnyq = _dtlan-ﬁ - [FAyan—G} + - (48)

and so on. A convenient way to carry out the quantization, in these cases,
ia to use the Batalin-Vilkovisky procedure. However, the resulting quantum
action would then necessarily have the property of being BRST invariant
with respect to a charge Qsgsr which is only nilpotent on-shell, using the
quantum G equation of motion.

As we shall show in the following section we can, in actual fact, com-
pletely gauge fix the super BF models in any dimension with an off-shell
nilpotent BRST charge. This situation differs sharply from that encoun-
tered in the quantization of the ordinary (in the sense of non-supersymmetric)
BF systems. In the latter case the construction of an off-shell nilpotent
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BRST charge is, in general, not possible [1]. Futhermore, it is neither to be
expected, nor true, that the classical and quantum actions differ solely by a
BRST-commutator in more than three dimensions. The crucial difference
between the BF and super-BF systems is the greater flexibility one has
due to the presence of superpartners for the fields in the theory.

At this point we have to address the question, of whether the gauge
fixed action of the Super BF system really describes flat connections (as
we originally set out for) despite the fact that the multiplier field B enforces
(as we have seen at several places above) the constraint

FA = — % dAun~S . (49)

This issue is particularly crucial in three dimensions for the following two
reasons: On the one hand Witten [10] - using formal path integral ar-
guments with the non-gauge-fixed action - has argued that the partition
function of the Super BF system in three dimensions yields the Casson
invariant, which is a topological invariant of homology three spheres that
can be computed by counting flat connections with appropriate signs,

On the other hand in three dimensions (49) is precisely what is known as
the Bogomoln'y equation describing monopoles, which in [11,12] was used
as a starting point for constructing topological Yang-Mills Higgs theories.

We might therefore suspect that not only flat connections but also
monopole solutions may make significant contributions to the partition
function. The answer to the above question depends crucially on the bound-
ary conditions imposed on u. Indeed it is easy to see (as we shall show
below) that on a compact closed manifold (49) necessarily implies Fy = 0,
thus supporting the claim that under those circumstances we do indeed get
(in three dimensions) the Casson invariant. It may be instructive however
to first see heuristically why there are no non-trivial sclutions to (49) on
the three-sphere S* a8 opposed to R* where monopoles are of course known
to exist.

Recall that on R® monopoles may be characterized according to the
behaviour of the Higgs field v on the sphere $? ‘at infinity'. More precisely
they may be classified according to their monopole charge(s) labelling the
second homotopy group of a2 homogeneous space G'/H of the gauge group
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¢'. Moreover S* may be obtained from R® by identifying the sphere at
infinity to a point, Therefore the only configurations on R* which give
rise to configurations on S* are those which are constant on the sphere 5%,
hence have monopole number zerc and correspond to flat connections.

More formally the argument is the following: Let M, be an orientable
closed compact manifold. By the Bianchi identity (49) implies

dA * dAu,‘_s =0 . (50)
Multiplying by u and integrating by parts gives
[ daurdgu=0, (51)
M

which implies d4u = 0 and therefore F4 = 0. Note that on a manifold with
boundary the boundary term one would have picked up is the analogue of
the R® (anti)-monopole charge:

/ widiw==[ Fu=-[ Fidau. (52)
M amM M

It is worth noting that the anti-BRST symmetry in the Yang-Mills Higgs
system of {11] is only present when the Higgs field changes sign. That is,
the monopole charge becomes the anti-monopole charge.

5 Quantization

As a warm-up exercise and a first step towards quantization of the super-
BF systems in any dimension let us derive the fully gauge-fixed action of the
original three-dimensional model (24). The method we use in this section
could be called the inductive method, since it is possible (although we shall
not proceed in that way here) to arrive at the final BRST-transformations
by starting with the transformations for the highest ghost number/zero
form degree ghosts and demanding nilpotency at every level.

The BRST-transformations of the (4,4, #, c}-system derived in section
1 (8-11) already display the desired feature of combining the ‘topological’
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supersymmetry (19) and the gauge symmetry into a single nilpotent BRST-
operator § = {@, }. Our goal will be to extend these transformaticns to
the other fields in the same way. We will then see that this allows us to
indeed write the whole quantum action as a BRST-commutator, with all
its pleasant consequences.

Writing down the required set of fields is (almost] straightforward.
Apart from A, ¢, ¢ and ¢ we need an antighost T and a multiplier b for the
gauge condition on A, and likewise (due to the reducibility of 64 = ¢ —dae)
a Grassmann even antighost ¢ and ite multiplier 5. x and B as one-forms
contribute one ghost/antighost pair each, and these are denoted by po, Py
and By, g, respectively. In addition we need multiplier fields o and Tl to
enforce the gauge fixing conditions on x and B.

In summary we now have arrived at the following set of fields with their
form-rank and ghost-numbers as indicated:

A L4 ¢ ¢ € b ¢ n
(1!0) (1=1) (0’2) (0;1) (0-"1) (010) (0’“‘2) (0!_1)

X B I B L, % I,
(11_1) (1’0) (0!0) (0| 1) (Dvﬂ) (01_1) (Obl) (01 0)

Asg can be checked immediately the following set of BRST transformations
is then off-shell nilpotent on all the fields:

A = lﬁ - dAc
5y = —[C, ‘b] —dad
6¢ = —[C, ¢]
se = —%[c,c] +é
8 = b
6 = 0
6p = 7
én = 0
20

§x = —[e,x]—dapp+ B

6B = —[e,B]—daZo+ [ x] + [¥, 0]

bps = —[e,po] + Zo

58y = —[e,Xa] + {év 20

&y = —le,Bol + 0

5T, = [, + I

b0y = —le,o0] + [4, 70|

8y = —[c,Tg} + [¢, Zq] . (53)

Only two kinds of terms in the above transformations may require some
explanation: Those of the form §X = [¢, X]+- - - are required for nilpotency
of the [¢, |-gauge rotations because of the shift by ¢ in fc. And the
additional y-term in 6 B is there to compensate the A-variation in d Xq.

Choosing the action to be
Sy=1Q [ xFu+Pda s x + Toda s B+3das p+2dr 4},  (54)

we find that indeed all the invariances of the action are completely fixed,
the action being (some terms having cancelled)

So=[ ( BFa-xdup)+
( ooda*x —Poda* B+Tlada s B +bds A+ (n—[B,c])dat ) +
( Poda * dapo — Toda * daDo + fda » dagp — Td + dac) +
( Zdx o+ B[, vx] + B, +¢]
+ To(—[w,«B] +da* [d,x| + da * [¥100]) - {55)

Here we have indicated the split of the action into its classical part, the
gauge fixing terms, the ghost kinetic and interaction terms. Note that
again - as expected - integration over B enforces the constraint Fy = — %
du(p, — Il;) discuased in the previous section. As such (B, — Ilo) is the
Higgs field we had previously called u or u,. We have thus arrived at our
goal of constructing an off-shell nilpotent BRST-operator @ such that the
full quantum action can be written as a BRST-commutator, by combining
the super- and gauge-symmetries. Incidentally we have on the way also
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achieved this for the super Yang-Mills gystem, since the non-classical part
of the above action coincides precisely with the one of the super Yang-Mills
system in any dimension, as B and x will always be one-forms in this case.

Note that the terms @(da * dad + ¢, #]) originating from the gauge
fixing for 4 will - aa in [6] - lead to the relation {14}, thus completing the
identification of ¢ with the (0, 2)-component of the universal curvature of
[13].

For the sake of completeness we note that the second supersymmetry
(19) present in the three-dimensional super-BF system can be extended to
an off-shell nilpotent anti-BRST operator % anticommuting with § and d. In
fact it turns out that & is uniquely determined by these requirements once
one postulates 84 = x —d 4% (expressing the  « x symmetry), augmented

by 6& = —1/2[¢,%]. The resulting transformations are then
§A = x—d,E
by = ~[&¢¥|— B +damo
3¢ = —[E, ¢]
c = —[g¢]~b
b = —[¢b
- 1_ _
8 = —E[C, c]
33 _[E:E]
3’? = _[E- '7] - [a: b}
Ex = (2, x]
§B = —[&, Bl +[x,p0
&po = —I[&p0]
8L, = -5, 5y
3‘50 = _[Er Fﬂ]
5T, = —[5 L]
Soy = —[2, 00
My, = —[&,1) . {56)

After having discussed this three-dimensional example the extension to
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higher dimensions turns out to be, somewhat surprisingly, fairly straightfor-
ward, Normally one would have expected considerable complications aris-
ing fror the fact that in more than three dimensions the ghosts and ghosts
for ghosts for x and B will have their own (on-shell) gauge invariances.
Looking at the B-trensformation (53) it is obvious that they will give rise
to a term proportional te F4 in addition to those already present involving
' and ¢. Mainly as a consequence of the Bianchi identity (d4.. + §)F =0
for the universal curvature ¥ {3} this is however basically the only modi-
fication required to obtain an off-shell nilpotent operator and a quantum
action of the form S, = {§, } in any dimension.

While the structure of the transformations in higher dimensions is sim-
ilar to (53), there is the necessity of introducing extraghosts and their
corresponding antighosts and Lagrange multipliers. In other words, one
must ensure that the full field content as specified by, for example, the
Batalin-Vilkovisky triangles is represented. In order to see this procedure
at work, it is instructive to consider a specific example in detail, namely,
the five dimensional super BF system.

In five dimensions x and B are 3-forms with ghost numbers -1 and 0,
respectively. Let us denote by p; and E; (s = 0,1,2,3;p5 = x,L; = B)
collectively x and B and their hierarchy of ghosts, the subseript ‘s’ always
indicating the form rank of the field. The ghost triangle for the I system
takes the form

0) (-2
/ﬁl‘ ’ Vi \/:&”
-1 - =[-8
f:)( ) E{,‘ 1) E((, ) E‘(,’}
The structure of this triangle and its field content deserve some expla-
nation. The superscripts in brackets indicate the ghost numbers of the

various fields. The horizontal lines contain all the ghosts which first arise
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at each stage of reducibility of the system. The right hand ledge (i.e. the
diagonal connecting T3 to Dy) contains the original gauge field Iy together
with its ghosts and ghosts for ghosts. The next ledge connecting ¥; to 5p
contains the antighosts for the ghosts on the right hand ledge. To each ar-
row connecting the two ledges there corresponds a gauge fixing condition.
The fields on the third ledge are called extraghosts, they are simply the
antighosts for the second ledge, and so on. Thus in total we need six gauge
fixing conditions. To enforce these conditions we must introduce six mul-
tiplier fields which we denote by IL (i = 0,1,2), IT({ = 0,1} and Iij, with
ghost numbers (-2, —1,0,0,1,0), respectively. Since ps is also a 3-form the
structure of the g triangle is identical to the above, except for some obvi-
ous modifications with respect to the ghost numbers of the various fields.
Having obtained the desired field content we must now specify the BRST

transformations. For the L system we have

5T = —[e,Ti| ~ daLicy + (¢, o} + [¥. pi—a] + [Fas pival

5T = ~[e, L+

8T, = —[c,T0] + [4, 5]

5T = e D] +IL

6T = ~[e,T]+ (¢, T}]

Ef:‘ = “["12‘:‘] +1

S = —e,I7}+ (8, EY] (57)

The transformation rules for the p system are similar to those in (57),
except for the fields on the right hand ledge:

8pi = —[e,p;] ~ dapi-z + 5 . {58)

We must now supplement (58) with the transformations of the the re-
maining fields on the p triangle, as well as those of the multipliers. These
are obtained by replacing (Z,TT) by {s,0) in (57). In addition, of course,
we have the unaltered transformations of the other flelds in (53). It is
straightforward to verify that the above rules define an off-shell nilpotent
BRST operator. The fully gauge fixed quantum action can be chosen to be

S, = {Q [xFa+3danyp+2ds A
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2 1
+ Y By T+ Y Elda * Tiyy + Tyda + T}

=0 =0
2 1
o Fdarpi + D plda B+ Bhda i) (59)
i=0 =0

Here the second and third lines correspond to the relevant gauge fixing
terms for the I and p systems, respectively.

Having presented the five dimensional example in some detail, the gen-
eralization to arbitrary dimensional systems is now straightforward. The
only extra structure which arises is an expansion of the & and p ghost tri-
angles. In n dimensions x and B are (n — 2) forms, and we denote by p;
and ,,{i =0,...,n—2;pp_3 = X, En_3 = B) collectively y and B and their
hierarchy of ghosts. Their corresponding ghost numbers are p; : {n — 3 — 1)
and E; : (n —~ 2 —1). Let us again illustrate the procedure with a study of
the X ghost triangle. It has the following structure

0
) g

Lios Tns
J Y
LUV L /E?H

E:—S 23 E:I—S Eg— ]

VARARVARY/

I . e i %3

_ In order to simplify the notation we have introduced the collective label
Zi, (4,5 =0,1,...,n — 2) to denote all the fields in the triangle. The lower
index indicates the form rank of the field while the upper index labels the
various NW-SE diagonal ledges. Given the jth ledge, the corresponding
range of 1 is given by i = 0,1,...,n — 2 — j. Similarly, the p triangle can be
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expressed via the symbo] pf. Once the ghost numbers of both zeroth ledges
are given, the ghost numbers of the remaining ledges and multiplier fields
are fixed. The BRST transformations of both triangles can now be written
compactly in the following way: For j = 0 we have

52? = —[e E?] - dAE?—l + [évﬁ?l + [‘ﬁ:f’?wl} + [Fa f’?—:}
60 = —[e,0f] —dapl + I}, {60}
while for 7 = L,...,n — 2 we have
6L = —le,Ti|+ T
Jnﬂ, = —[c,II{} + [¢1 Ef]
pr = —[‘v"{] +‘7{
bo] = —le,ol]+id4l . (61)

Note the the multiplier triangles Hf and cr“-" exist only for 7 = 1,...,n — 2.
Again the off-shell nilpotency of the above transformations is easily verified.
All that remains is to write down the complete quantum action:

Se = 4@ [XFu+Fdasw+2d+ A
noin=3-j , _ .
+ 3 X (EldaxBL+eldaxplll)} - (62)

s=1 i=0

6 Observables

We now turn to a brief discussion of observables in the models we have
introduced in the previous sections. Let us start by recalling the con-
sequences of the the main requirement imposed on expectation values of
observables (beyond gauge invariance) in topological field theories: their
metric independence [8]. The condition

bmatric{0) =0, (63)

is (recalling that the whole quantum action is a BRST commutator in our
approach) obviously satisfied if the vacuum is BRST invariant and

{Q;O} =0 !6nu¢rl'co =0, (64)
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(the latter condition could be relaxed slightly). Since ({Q,X}) is zero for
any X we learn that we are interested in @-cohomology classes of metric
independent functionals of the fields. A first obvious candidate that comes
to mind is the partition function Z = {1} itself, and this brings us directly
to yet another requirement a functiona) has to satisfy if it is to qualify as
an observable:

As is well known Z is non-zero only if there are no fermionic {or here:
odd ghost number) zero modes. Assuming for the moment that the number
of y-zero modes (which are (co-}tangents to moduli space] is equal to the
dimension m of the relevant moduli space M this implies in particular that
the partition function is zero whenever m = dim(M) > 0. The requirement
of ‘soaking up the y-zero modes’ then translates more transparently into
the geometric statement that only volume forms on M can be integrated
over M.

More generally there can be obstructions to integrating the infinitesimal
deformations of M described the ¢’s, and under favourable circumstances
these will be determined by an index theorem, as happens e.g. in Witten’s
four-dimensional model [6], where the dimension of M turns out to be
determined by the index of the operator acting on .

A little thought shows though that this will not be the case in general.
To see thiz most clearly let us look at our favourite model, the three di-
mensional super BF gystem (55). The part of the action relevant for our
purposes is

I=‘/.dilfi+l7dA*d)+0dA*Xs (65)

and - denoting by
Ter:'00° - 0'aen° (66)
the operator mapping (¥, 0) to (vday + dyo, ¥dy * ¢) - we can write J as
I=<(X.'J‘),TBF('/:’,0)) 3 (67)

where {,} denotes the usual scalar product on elements of ' = (M, adP),
this is defined in the appendix. Since T is clearly self-adjoint however, its
index is zero. In particular there are always an equal number of 1 and X
{and n and o) zero modes. Thus the net ghost number violation - which
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correctly determined dim(M) in [6] - will always be zero, whereas of course
the dimension of the moduli space of flat connections may readily be non-
zero, But despite the fact that cur models differ in that respect from [6] we
can neveriheless define observables and topological invariants along those
lines by the following procedure:

Assume that there are M ¢ and x zero modes ¢y, ..., ¥ and x1,.- ., Xa4»
N n and o zero modes 14,...,nx and oy,...,0x, and that we have in some
way - by counting representations of the fundamental group, say - deter-
mined the dimension of moduli space to be m < M. The zero mode measure

fd¢1...daN

has ghost number zero, but in order to reduce it to an integral over M
we have to saturate all the x,n,0 zero modes and M — m of the ¥;'s by

inserting the factor
U=thmsr.- - ¥MX1-- Xp1 - OINOL. . ON (88)

into the path integral. I has ghost number {—m), which means that we
still have to insert an operator { with ghost number m = dim(M). We
thus recover the prescription given in |6]. This argument also shows why it
was just the net-ghost number violation which was relevant for the analysis.
It is therefore this operator O which has to satisfy §0 = fperic0 = 0, and
not the composite object OU, since fdyy...¢,, is the correct invariant
measure. The fact that the observable {OU} is metric independent, even
though U involves the metric follows from the fact that since the zero
modes never appear in the action, when one contracts U with its associated
measure one gets the result 1, see also [30]. ‘

The same reasoning as above applies - mutatis mutandis - to the other
models described in this paper. And in particular the super Yang-Mills
system (28) (in any dimension) has the feature in common with the three
dimensijonal super BF system, that the relevant {Jacobi) operator

Tram : {Wyn) = (xda % daty — 2[vFo, ! + dan, *da + ) (69)

is self-adjoint. The dimension of the kernel of Ty ¢ is what Atiyah and Bott
[28] call the nullity of A. This quantity - being essentially unstable under
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variations of A - ia not directly related to the dimension of moduli space,
which will moreover in general consist of several connected components
corresponding to self-dual and non-self-dual solutions to the Yang-Mills
equations. Indeed, ag shown in [24], if A is a self-dual connection and A+a
is a amall {not necessarily infinitesimal)} deformation satisfying the Yang-
Mills equations, then 4 + ¢ is also self~dual. Similar statements hold for
flat connections A.

To construct a set of observables O satisfying §0 = Spun0 = 0 we
recall the Bianchi identity (d4.. + 6)F = 0 from section 1. (That the hi-
erarchy of observables of (6] representing the Donaldson peolynomials could
be derived in this way has been observed in [11,16,17].) Expanding the
equation

(d+8trFt =0 (70)
in terms of ghost number and form rank one gets a set of equations
d¥, = 0
dWo = W,
dw,,_g = 6WH_1

0 = 6W0 ) (71)
where n = dim{M) and W, is a (i,2k — ¢{)-form. Integrating W; over a
non-trivial homology-cycle +; of M one then gets a (2% — 1}-form fy—; ()
on M by integrating out the non-zero modes in the path integral 6], which
is closed and metric independent. By taking products of the W, for appro-
priate choices of ¢ and k one may then construct volume forms on M whose
correlation functions lead to topological invariants of M.

Since the issue of ‘triviality’ of these observables has aroused some in-
terest in the more recent literature on the subject [16,25,26,27] let us pause
to make a remark on this point. Since tr 7# may locally be written as

7= (d+ S)r(AT - 1 4) (72)
this means in particular that
1
Wy = tr¢” = Str{cd — Ec’) (73)
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is S-exact, implying that it and its descendents W; should have trivial cor-
relation functions. However we have interpreted ¢ as the (0,1}-part of &
connection on the principal bundle @, which will in general not be trivial
over 4/G. This means that although its curvature ¢ = &e¢ + 1/2[c,¢] is
globally defined, ¢ will in general not be (this has been confirmed recently
by Kanno |28] by explicit calculation of {¢)). Thus exactly like the equation
tr(F3) = d(tr(AFa—~1/3A4%)) is only valid locally, {71) by no means implies
triviality of W, in the de Rham - cohomology of M. Alternatively, as shown
in [30}, the fact that ¢ acquires a non-zero vacuum expectation value can
be used to show that the BRST invariance of the vacuum is broken. This
in turn establishes the non-triviality of the observables.

We have attempted to construct other hierarchies of observables as well,
but the possibilities are severely limited by the fact that the transformations
{53,56,60,61) seem to allow for no non-trivial Wo's (satisfying §W, = Q)
apart from tr¢*, Indeed the §-cohomology is on general grounds expected
to be trivial on the remaining fields [29].

In the Yang-Mills-Higgs system [11,12] or (equivalently) the three-dimensional

super BF system on a manifold with boundary however we have neverthe-
less been able to derive the monopole charge in that way. Indeed on man-
ifolds with boundary (or alternatively, say, in flat space with non-trivial
boundary conditions) the whole question of observables has 2 somewhat
different flavour. In that case it may very well be possible to start with
a W, which is é-exact but nevertheless arrive at a non-trivial W, (and
conversely).

Starting for instance from W, = tr(go,) = §(tr(dug)) one derives

0 = W,
dW, = —8(trog + ddup) = W,
dW, = &(trF 00 + dug) = W,
dW, = —ﬁ(trFAdAuo] = §W,
aWy = D, (74)

and ends up with the monopole charge (52} [ Fadatio = faps Fauo which
may not vanish although W is é-exact. Note that here no use was made of
the anti-BRST symmetry (56) which was invoked in [11] to arrive at this
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quantity, The decent equations (74) have also been derived in [12].

7 Renormalization

Having constructed several new interesting topological field theories, an
important issue to be addressed is one of renormalization. We shall begin
by discussing several of the pertinent features of renormalization of topo-
logical field theories, in general. Following this we treat more explicitly
the four dimensional Witten theory of self-dual connections and the three
dimensional super-BF system at 1-loop order.

Let us start by recalling the 1-loop renormalization properties of the
four dimensional Witten theory [4]. One finds that the 1-loop effective
action is given by
det(D?6,5 + 2F,5)

where F* refer to the self-dual and anti self-dual parts of the curvature.
Upon regularization the ratio of determinants in (75) leads to a divergence
of the form 1(F*)?. The important point to note here is that it is (F*)?
which is renormalized, rather than (F)? as in the case of ordinary Yang-
Mills theory. This is essential in preserving the topological nature of the
model, as it is the former quantity which appears in the tree level action.
Thus the 1-loop effective action remains a BRST commutator, guaranteeing
metric independence .

T(A,) = S(A.) — Slog{ }, (75)

2

A natural question to ask at this point is: Since a topological quantum
field theory is a theory with no local excitations, l.e., its phase space is
finite dimensional, why is there a divergence at 1-loop? The answer to
this question is in fact quite simple and is as follows: We first note that
the infinity mentioned above is an off-shell divergence; on-shell, however,
i.e., F* = 0, we find that the theory is finite. In fact there is no 1-loop
correction to the effective action since the ratio of determinants cancel on-
shell, This is exactly as we would have expected, since on-shell in this case
means we are restricting the theory to the instanton moduli space which is
certainly finite dimensional.

31

-



A nice way to see this result immediately, without generating the off-
shell infinity, is to gauge fix the theory by going to the so-called é-function
gauge. Since the action contains a term of the form B*F*, cf. (43} and
(44) with @ = 0, we can integrate over the B field to enforce a delta
function constraint in the path integral. This ensures that only anti self-
dual configurations are counted and hence no divergence will appear.

More explicitly, let us examine this theory to l-loop order within the
background field method. For simplicity we assume that the instanton is
isolated, 50 that we do not have to take zero modes into account. The full

quantum action is given by
- o

Se={Q [ X*(Ff - 5B*) + Bday e ¥ +T(day s A= 58} (76)
where the BRST transformations of the fields are as given by the first eight
rows of (53), together with §x* = B*,§B* = 0. Here x* and B* are
self-dual 2-forms, i.e. (1+ *)x* = x*, and similarly for B*, with ghost
numbers ~1 and 0, respectively. The self-dual and anti self-dual parts of
the curvature 2-form are denoted by Fi = {1+ %)F, and a and o are the

gauge fixing parameters.
Expanding (76) and using §F] = —[c, F§] — 4(1 + *)dat we find

Se = [ BHEL - 2B +x* (e B+ 1+ dav) + nday 0
+ &4“ * ([c.f/l] + dA¢) + b(d,“l *A— %6) +Cdy, * (lf) - dACX'TT)

Since we are interested in working in the delta function gauge we choose
the parameters o and o' to be zero, We now decompose the gauge field

into a classical plus a quantum piece as
Ay = A:.‘ + 4%, (78}

and all other fields are taken to be purely quantum. For the purposes of
a 1-loop calculation we insert the decomposition {78) into {77) and retain
those terms which are second order in the quantum flelds. The resulting

action takes the form
SI"’) = jB+dA-rA¢ + bdll.t * “41 - i:.“'!A.r * dAdc
X+d4.|¢' + (7 +8da, v ¥+ szci *da,d . {79}

+
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One loop corrections to the effective action can be represented as de-
terminants of operators. We can see immediately that the determinants of
the Zc and $¢ systems cancel against each other, (upon making a simple
field redefinition n' = 5 + 7). The remaining terms require a little more
care. Following [4] we notice that both the BY — & — A, and x* — 5 — ¢
systems define a linear map:

T:0-len, (80)

from the space of 1-forms (f2!) to the space of self-dual 2-forms (03} ten-
sored with the space of zero forms (11°). The difficulty here is that the
operator T is not a map from a space into itself, so the determinant is not
simply defined. However, irrespective of how we choose to define the deter-
minant we see that, since the Bt and x* systems are of opposite Grassmann
character, the corresponding ratio is equal to 1. We thus cbtain the result
that the entire one-loop correction to the effective action vanishes.

It is important to study for a moment the dependence of this result
on the gauge chosen. We have just found that in the Landau gauge (i.e.
a = o/ = 0} there is no one-loop renormalization. This agrees with our
arguments concerning the fact that the delta function gauge restricts us
immediately to the appropriate finite dimensional moduli space, thereby
ensuring the absence of divergences. However, if we choose the Feynman
gauge (i.e. @ = o’ = 1} then we obtain the result given in (75). In this case
there is a divergence at one-loop, of the form }(F*)2. If we now go back to
{77) and integrate out the B* field we obtain a term in the action of the
form 1(F*)*. Choosing & = 1 means that the kinetic term for the A field
is the usual Yang-Miils action plue the instanton number. Thus when we
use the background field method we will be expanding about a solution of
the Yang-Mills equations. It is thus not surprising that in this case we do
generate a divergence, as it is only when this background is futher restricted
to be an instanton that the divergence cancels. We can interpret the above
results as affecting the renormalization of the gauge parameter e as follows.
In the Landau gauge, i.e. o = 0, there is no renormaiization of a. However,
in an arbitrary a # 0 gauge we have that seen that the L(F*)? term gets
renormalized by 1(F*)? ihis corresponds to a renormalization of &. This
situation is analogous to the one which aries in QCD for the conventional
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Yang-Mills gauge fixing parameter, which here we have denoted by ¢'. In
the latter case one finds that only in the Landau gauge does the parameter
a' receive no renormalization.

In the case of flat connections we can again apply the same arguments.
Here, however, the §-function constraint takes the form §{Fy+*d un_s). As
shown in section 4, for the case of compact closed manifolds the argument
of this delta function can just as well be taken to be F,. Thus our path
integral is constrained to lie on the moduli space of flat connections. As
such we are dealing with a finite dimensional system and no divergences
will appear. Obviously similar conasiderations apply for the super Yang-
Mills theories,

We can, of course, explicitly check this result by again performing a
one-loop computation within the background field method. In this case the
analysis is somewhat simplier than for self-dual connections, due to the fact
that the operators which appear are linear maps from a space into itself.
Proceeding as before, we take the quantum action in the background to be

o f—
Sy = {@ [ x(Fa—SB)+ o, ¢+ x+Tdpy B

+ EdA., * l,l:’ +E(d)|w * A — %'b)} . (81)

Using (78} and the transformations in (53] we find that in the Landau
gauge the part of the action which is quadratic in the quantum fields is
given by
s = [ Bdy, Ay — xda, ¥ +00da, ¥ X — (B — Tho)da, * B +bda, # A,
+ {1+ E)da, * ¥+ Foda, % dayp — Toda, * da, Do + 6da, * da, ¢
- EdA.,. * dA.,c . (82)
Looking at (82) we see immediately that the determinants arising from the

(%os o0}, (To.Ta), {4, ¢) and (, ¢) systems cancel against each other. The
remaining terms define a linear map

T: a0 —-0an', (83)
where N%® N ia represented by (b, B), (7, — o, 4,), (7 +7, x) 2nd (00, ¥).

The determinants arising from these two systems again cancel, thus con-
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firming our claim that there is no renormalization when one chooses the
delta function gauge (i.e. @ = 0j.

To conclude we make some remarks on the structure of BRST Ward
identities in topological field theories. The 1-loop renormalization of the
Yang-Mills Higgs system (i.e. the 3d super BF system} was treated in
detail in [4], in which the BRST Ward identities for all 2-point functions
were explicitly verified. For completeness, and to reiterate some of the
salient features of topological BRST Ward identities, we present the Ward
identity for the model in the form

6T 6T 4T6C 6 6T 6T 6T

— 3 — —— T

0 = fd A 55 " 5uss T 5. 575 55T
6T . 6T 6T &0, 6T 6L  &T

o ey Tt

(84)

The point we would like to remark on here is the strength of this identity
and the constraints which it puts on the theory. In particular, ones notes
that upon differentiation with respect to (As,¢) the usual transversality
constraint on the inverse A propagator is recovered. Futhermore, however,
if we differentiate with respect to {Ag, ¢,), we obtain the condition that the
inverse A propagator in fact vanishes. The reason for the strength of this
constraint can be seen as due to the fact that the 4 transformation rule
is § A = ¢ — d,c rather than the more familiar Yang-Mills version without
the ¢ field. Indeed, as shown in (4], this result does hold to 1-loop order.
This simple example serves to illustrate the fact that, because we are deal-
ing with a topological symmetry, the structure of the corresponding BRST
Ward identities is greatly enhanced.
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Appendix

In this appendix we state our conventions regarding graded forms and
present the properties which are necessary for our calculations. We intro-
duce Lie algebra valued differential forms (€ ' (M x4/ G,adQ)on Mx A/ G
which carry a natural bigrading. A (p:, p;)-form referring to a p;-form on
M and a py-form on A/§. The p, label therefore refers to the usual ex-
terior form degree, while the p; label is the ghoat number of the form. A
{p1, p2)-form is then called a graded form of degree p; + p; and is denoted by
X,, where p = p; + py. The following are the general properties of graded

forms.

XY, = (1Y%, . (85)
The usual graded commutator is defined as
[Xp Y] = XYy = (-1)7Y,X, . (86)

Thus if p or g is even we obtain the commutator, while if p and g are odd we
get the anticommutator. We next note that the usual exterior derivative d
and the BRST operator § are graded derivations, with bigradings (1,0) and
(0,1) , respectively. The standard result for the exterior derivative acting
on a product of forms also helds in this case for both derivations d and §,
e.g.

5X,, = (6X,)Y, + (17 X,6%, . (87)
Given a pure ghost form X, i.e. where p = (0,p), together with an arbi-
trary g-form Y,, we have the following important resuit

(XY) =X+ Y, . (88)

From this we can derive the properties
« (Yo X,) = (F1)¥(+Yy) X, (89)
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and
*[e,Yg] = (e, Y] o (90)

where ¢ is the (0,1)-ghost form, and « is the Hodge star operator. (88) also
tells us that the BRST operator commutes with the Hodge star operator:

(V) =6xY, , (91)

since 6 is a pure ghost 1-form. Other properties to note are the trace
formulae and Jacobi identity:

TrX,Y, = (~1)"T*Y, X, (92)

TrX,|Y,, Z,] = Tr|X,, Y;|Z, , (93)

(X5, Yo Z0]] = [[ X, Yo, 2] + (-1)7(Y4, [ X, 2] (94}

where X, Y, Z are arbitrary degree forms. The integration by parts formula
) [ Xpa¥ = (-l [yax, (95)

If either p or ¢ is odd we get a + sign, while if both p and ¢ are even
we get a — sign. Qur final result refers to the inner product rule between
superforms Xy, »,) and ¥, p,) defined by

(X, ¥ = [ er(X,27,) (96)
which satisfies
(X, Yp) = (-1)7*(Y,, X} . (97)
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