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ABSTRACT

Mathematical induction is a useful tool. But it could be used to prove only the proposition
with form P(n) for the natural number n. Could the natural number n be replaced by a continuous
variable x? Yes, and then we have the continuous induction. The continuous induction is very easy
to grasp by the students who have learned mathematical induction. And it can be used to prove
many basical propositions in the elementary calculus.
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In the elementary calculus teaching, the theory concerning the real number system and

us continuity is very important. But, unionunately, it is a difficult point for most students in col-

leges or universities, especially for some students who do not want to become mathematicians but

have ;o learn more mathematics for other reasons. To overcome this difficult point, an interesting

proposition is proposed, the so-called continuous induction.

To explain what the continuous induction is let us make a comparison between continuous

induction and the well-known mathematical induction:

The continuous induction:
Assume P( :r) be a
proposition on the
real number x

If:
(1) There exists a real number

io such that P( x) is true
for any x < xa.

(2) If P( x) is true for any
x < y, then there exists
6y > 0 such that P(x) is

. true for any x < y + 6y.

Then P( x) is true for any
real number x.

The mathematical induction:
Assume P( n) be a
proposition on the
natural number n

If:
(1) There exists a natural number

no such that P(n) is true
for any n < no.

(2) If P(n) is true for any
n < TO, then P(n) is true
for any n< rn + 1.

Then P( n) is true for any
natural number n.

We see that the two are very much alike!

Some questions could arise immediately. Is the continous induction really true? How to

prove it? Where is its position in the theory of the real number? What is its use?

The answers to the first three questions will be given by the following theorem:

Theorem 1 The continuous induction (CI) is equivalent to the Didekind axiom (DA).

Let us recall the Didekind axiom first.

DA If the real number set R is divided into two non-empty sets, say L and H, such that x < y

for any z € L and y 6 H, then either L has a maximal element or H has a minimum element.

Proof of Theorem 1 We use the reduction to absurdity. Suppose CI is true but DA false, and

assume that R has been divided into L and H as in DA but neither L has a maximum not H has a

minimum. Make a proposition P ( x ) ="x £ L", then check the two conditions in CI:

(1) Since L is non-^mpty, there exists xo EL. So x G L for any x < x0 by the

definition of L and H.



(2) If x G L for any x < y, then y £ H because there is no minimum in ff. So y E L
and there must exist yi e L such that yi > y because L has no maximum. Then x £ L for any
£ < in = V + 5y. So i G L for every real number x by CI. This is a contradiction since H is
non-empty.

Now we are going to prove DA => CI.

Use the reduction to absurdity again. Suppose DA is true and CI false, and assume that
there is a proposition P(x') such that the conditions (1) and (2) in CI are satisfied but P(x) is false
for some real number x. Let

L - {t : P(x) is true for any x < t}

H = R\L

Obviously, both L and H are non-empty and x < y for any x £ L and y £ # , by our assumption.
Since DA is true, there exists y such that ( -co , y) C L and (y, +oo) C H, i.e. P(x) is true for
any x < y but false for some x £ (y, y + 8) for any 6 > 0. It is contrary to the condition (2) which
has been assumed by us.

•

Now we learned that CI is true, and that it could be set as an axiom in the theory of the

real number to replace the well-known axiom DA.

As applications of CI, we give below a series of examples.

Example 1 If M is a real number set which is non-empty and bounded from above, then M has

the least upper bound.

Proof Use the reduction to absurdity. Suppose M has no least upper bound and let U be the set
of all the upper bound of M. Make a proposition P( x) = " x£ U". Then

(1) Since M is non-empty, there exists xo £ M and so P(x) is true for any x < XQ.

(2) If P( x) is true for any x < y, then y must not be an upper bound of M (otherwise,
y will be the least upper bound.) i.e., there is yi e M such y\ > y so P{x) is true for any

x < v\ = y+ 6.

We have that P( x) is true for every real number x by CI. It is contrary to that M is bounded from

above.
D

Example 2 Suppose the number sequence {an} is increasing and bounded. Then there exists a

real number o such that lim an = a.
n—>oo •

Proof Use the reduction to absurdity. Suppose there does not exist the limit of {an} and make a

proposition P(x) = "{an} D (x, +oo) i cj>", then

(1) P(x) true for x < XQ = Qi.



(2) If P( x) true for any x < y, then {on} C\ (y ,+oo) ^ <f>, (otherwise, we have

Inn an = y) i.e., there exists some term am > y, such that P ( x ) true for any x < y + 8U, here
K- .oc:

t,, - am — JJ > 0.

By CI, P( x) is true for every real number x. It is contrary to that {an} are bounded.

U

Example 3 If there is a nest of closed intervals A\ ~) A2 ~D . . . 73 An D A^+i D . . . Then there

must exist at least one real number which belongs to every interval An.

Proof Use the reduction to absurdity. Suppose that there is no such real number which belongs

to every interval An = \an,bn]. Make a proposition P(x) - " ( - c o , x) D {bn} = ^"\ then

(1) P{x) is true for any x < ZQ = a j .

(2) If P ( z ) is true for any x < y, then (j/,+oo) Pi {a,,} ^ 0, (otherwise, an < y and

y < bn for every A^ = [ c n , 6 n ] ) and so P(x) is true for any x < y + 5y = am, here am is a term

belonging to (y , + oo).

By CI, P ( x ) is true for every real number x. This is impossible.

D

Example 4 If a closed interval [ o, b] is covered by a set of open intervals U = {A t}, then there

is a finite set of intervals A^ EU,k = 1,2 , . . . , n, which still cover the interval [ a, b].

Proof Make a proposition. P(x) = " ( - o o , x ) n [a, b] could be covered by a finite set of

intervals in U". We have

(1) F( x) is true for any x < XQ = a.

(2) If P( x) is true for any x < y and y G [a, fe]. (If y > b, the conclusion we want is

obvious) then there is an interval A = (a , /?) G C7 such that y € (a,P)- Take 6V = j ( /? — y), it

is easy to know P( x) is true for any x < y + 8y by the inductive assumption. By CI, P( x) is true

for any real number i . Especially, take x = b + 1, our proposition is proved.

D

Example 5 If M is an infinite point set which is contained by [a, 6], there exists at least one

point in [ a, b], which is a limit point of M.

Proof Use the reduction to absurdity. Suppose that there is no limit point of M in [ o, fc]. Make

a proposition P( x) = " ( - o o , x) D M is a finite set", we have

(1) P( x) is true for any x < xo = o.



(2) If P{ i) is true for any x < y , then there is 5 > 0 such that (y - 6, y + 8) 0 M is a
finite set because y is not a limit point of M. So P( x) is true for any x < y + j6.

By CI, P( x) is true for every real number x. Take x > b, we have a contradiction.

•

Example 6 Suppose / ( i ) is a continuous function on [o .6] . If / ( a ) < 0 and / (b) > 0 , then

there exists c£(a,b) such that f(c) = 0 .

Proof Use the reduction to absurdity. Suppose/(x) =/0 for any x € [a,6]. Le t / ( a ) = / ( a )
when x < a and / ( x ) = f(b) when x > b. Make a proposition. P(x) = "/(*) < 0 f° r an>'
t < x". We have

(1) P(x) is true for any x < xo = a-

(2) If P(x) is true for any x < y, then f(y) < 0 since / ( x ) is continuous. By the
supposition of the reduction to absurdity, / (y) < 0. So there is 5 > 0 such that f(x) < 0 for any
x £ (y — 6, y + S) by continuity. Then P( x) is true for any x < y + 8.

By CI, P(x) is true for every real number x. It is contrary to the assumption /(&) > 0 when

x > b.

D

Example 7 Suppose / ( x ) is a continuous function on [a,b]. Then there exists M > 0 such

that | / ( i ) | < M for any x G [ a, b].

Proof Let f(x) = / ( a ) when x < a and f(x) = f(b) when x > b. Make a proposition
P(x) = " / is bound on ( -oo , x)". We have

(1) P( x) is true for any x < xo = a.

(2) Assume that P(x) is true for any x < y. There exists 8 > 0 such that | / ( z ) | <

| / ( y) J + 1 for any x G (y - 6, y + 6) by continuity. So P(x) is true for any x < y + 8.

By CI, P( x) is true for any real number x. This is we want.

D

Example 8 Suppose / ( x ) is a continous function on [ o, 6]. Then there exists x* e [a, b] such

that /(x) < /(x*) for any x €[a,b\.

Proof Use the reduction to absurdity. Suppose / has no maximum on [a,6], i.e., for any

given x € [a,fc] there exists some x\ G [a,6] such tha t / (x) < / O i ) . Le t / (x ) = / ( a )

when x < a and / ( x ) = /(&) when x > b. Make a proposition P(x) = "There exists c 6

[a,b] such that / ( t ) < / (c ) for any t < x". We have

(1) P( x) is true for any x < xo = a.

(2) Assume that P(x) is true for any x < y. By the supposition of the reduction to
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absurdity, there exists y\ 6 [a .b\ such that f(y) < f{y\). So there exists <5 > 0 such that

/ ( x) < / ( y\) for any x G (y — <5. y + 8) since / is continuous. By our inductive assumption,

ihere exists C] G [ a, b\ such that f(x) < f{c\) for any x < y — j . Let c is c\ or yi such that

fie) = m-A\{f(c\),f(y])} then fix) < f(c) for any x < y + 8, i.e., P( ; r ) is true for any

r <y-r 6.

By CI, P(x) is true for any real number x. But this is impossible when x > b.
D

E x a m p l e 9 I f / ( x ) is a c o n t i n u o u s f u n c t i o n o n [ a , 6 ] , t h e n fix) is u n i f o r m l y c o n t i n u o u s o n

Proof Let f(x) = / ( a ) when x < o and f(x) = f(b) when x > b. Given any e > 0 , we are

going to prove that there exists 5 > 0 such that ! / ( x i ) — f{xz) \ < e when \x\ — X2I < 6. Make

a proposition P(x) = "There exists 8X > 0 such that | / ( i i ) - / ( * 2 ) | < e when \t\ - ti\ < 5X,

for any t\ < x and ti < 1". We have

(1) P( x) is true for any x < XQ = a.

(2) Assume that P( x) is true for any x < y. Since / ( x ) is continuous at point y, there

exists 81 > 0 such that | / ( t ) - f(y)\ < f whent € ( y - 61,1/ + 6i ) , and so | / ( t , ) - / ( t 2 ) | < £

for any ti,*2 £ (j/— 61, J/ + Si) . By our inductive assumption, Pf y — |f-J is true, i.e., there exists

62 > 0 such that \f(t\) - f(t2)\ < £ when [i, - i 2 | < S2, for any t : , t 2 G ( - 0 0 , y - | - V

Let 6 = mini ^ ,£2 [• It is easy to know | / U i ) — / ( t 2 ) | < e when \t\ — tz\ < 5 for any

t\, ti G (—00, y + 6). Then P( x) is true for any x < y + 5.

By CI, P(x) is true for any real number x. We have the conclusion we want when x > b.

D

Example 10 Suppose / ( x ) is a continuous function on [ a, b]. If / is differentiable in (a, b) and

f(x) = 0 for any x G (a, b), then / ( a ) - /<&).

Proof It is enough to prove that / ( x ) is a constant in (a, 6) by continuity.

Take any two points 11,12, o < x\ < xi < b, and let
f(x) (i

/(ar2) (z

then/'(x) = 0 for every x e (-00,+00).

Use the reduction to absurdity. Suppose

\f(xl)-f(x2)\ =

Make a proposition

2 Xi -



We have

(1) P ( i ) is true for any i < i j .

(2) Assume that P(x) is true for any x < y. Since f'(y) = 0, there exists 5 > 0 such
that

\ f { x ) - f ( y ) \ < ~ - ] x y ! , f o r a n y a: G (y - 6 , y + 8 ) .
2 \X] - X2\

By our inductive assumption, we have

l / U ' ) - 7 ( a i ) l < ^ l z ' ^ X l l for any x' < y
2 | l i - X2\

and so

"~ 2

Then for x € [ y, y + 8) we have

i / ( x ) - / ( I 1 ) i < ^ . 7 7 ^ - ] i ^ ^ i
2 F i - X21 2 |xj — X2I

so P ( i ) is true for any x < y + 8.

By CI, F( x) is true for any real number 1. It is contrary to the supposition of the reduction
to absurdity when x = X2.

D
We have now seen that one can prove a series of important propositions using the con-

tinuous induction in a similar way. This is interesting and easy to grasp for the students who have
learned the mathematical induction.

We can build a more general induction which includes the mathematical induction, the

continuous induction and the transfinite induction.

Definition Suppose H = {M^} is a family of sets, and D = {£} is the set of its index. If

( U M^) e H (for any D\ C D)

then we call H an inductive family of sets.

We give some examples of inductive family of sets as follows:

(1) H\ ={Mn:Mn = {l,2,'",n}> n = l , 2 , . . . } .

(2) H2 = {My: Mj, = ( -oo ,y) , y 6 ( -oo,+oo)}.

(3) Let M be a normal set. We have the inductive family of sets

Hz = {Ma : Ma = {/3 : /? < a}, « G M}.

7



(4) Let S be a simply ordered set. A subset P C S will be called a passage of 5, if for
any three elements i < y < z in S, we have y €-_ P when x, z € P• Then for a given fixed c 6 S,

Ih = {P : P is a passage of 5 and c e P}

i> also an inductive family of sets.

The following theorem is, obvious.

Theorem 2 Suppose // = {Me} is an inductive family of sets, and M is the maximal set in II.

It p{ a) is a proposition on a £ M, such that

(1) There exists McB G H such that P(ot) is true for any a £ M^o.

(2) If P(a) is true for any a € M^ ^ M, then there exists M^ £ i l , M^ D A/f and
Me, ^ M^, such that P(a) is true for any a £ M&.

Then P(a) is true for any a £ Af.

In the above theorem, we will have the mathematical induction when H - H\, the con-
tinuous induction when H - Hi, and the transfinite induction when H = H$, Therefore, three
inductions are integrated in the same form.

By the way, we do not know of any use of the general inductive principle other than the

three.
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