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ABSTRACT

The geometry of heterotic supermanifolds is discussed with particular reference
to patching conditions and gauge fixing. Superfield formalism is used and the associated
torsion constraints are solved explicitly in an arbitrary gauge, that is without imposing
gauge conditions. Finite gauge transformations are constructed. The structure group
associated with Wess-Zumino type gauges is obtained and is reduced by further refinements
of the gauge conditions up to the stage at which the standard description of the super
Riemann surface is recovered. It is shown that any invariant functional of the super 3-
bein can depend only on a finite number of parameters, i.e. the moduli and super moduli.
Chiral superBelds and the structure of action functional are discussed and, finally the
integration measure in supermoduli space is derived by an application of the Faddeev-
Popov prescription.



1. INTRODUCTION

The geometry of super Riemann surfaces L| is a topic of crucial importance for
the understanding of superstring dynamics. It has been studied intensively in recent years
but, in spite of this, there are still some points in need of clarification. The purpose of this
paper is to provide a careful examination of the gauge fixing procedure. This procedure
amounts to establishing a rule for selecting a representative member from each class of
equivalent geometries 2 ' and defining a measure with which to sum over the classes 3).
Since the discussions of this mechanism so far available in the literature do not, to our
knowledge, explicitly address the question of global consistency of ihe commonly used
Wess-Zumino class of gauges, we shall do this here. Our conclusion is that the Wess-
Zumino gauges are consistent and that no meaningful information is lost when they are
used. In particular, the classification of superconformal geometries by means of moduli,
3(7 — 1) even and 2(7 — 1) odd parameters for surfaces of genus 7 > 1, is complete. There
are no hidden noduli in the configurations of the several auxiliary fields that are set to
zero in the Wess-Zumino gauges. Although this result only confirms what was believed
on heuristic grounds, it is an important matter of principle whose justification requires a
study of finite supereonformal transformations and patching conditions.

We shall follow the approach of Howe *) as adapted to the heterotic case by Nel-
son and Moore s>. This involves establishing a conformal geometry on a supermanifold
whose coordinates (xm,B) comprise two commuting and one anti-commuting component.
The geometry is intended to be conformal in the sense that it reduces locally to flat su-
perspace. The interesting questions are concerned with the global characterization of the
supermanifold and its geometry. The geometry is expressed through frame and connec-
tion forms, the superdreibein dzME& and spin connection, dzMtlM, respectively. These
geometrical elements are globally defined.

The geometrical quantities are subject to a number of restrictions-the torsion
constraints. In order to express these elements in terms of independent fields it is necessary
to solve the constraints. Although this can be an extremely lengthy process, in the absence
of Wess-Zumino gauge *'• 5 ' simplifications, it is feasible in the case of heterotic geometry,
to which our considerations are restricted, where each superfield has only two components,
one bosonic and one fermionic. The solution is given in Sec. 3. With this it becomes
possible to show explicitly that the most general configuration of the geometrical fields
can be reduced to the Wess-Zumino form by a superconforma! transformation and that
the reduction is globally meaningful. The required transformation is exhibited in Sec. 5.

Although the question of the global characterization of a general configuration is
partially solved by the transformation constructed in Sec. 5, this succeeds only in reducing
the problem to that of treating Wess-Zumino gauge configurations. There remains the
problem of further reducing these to what might be called the "super conformal gauge".

This latter problem is in fact much simpler and can be treated most effectively by means
of Ward identities, which are the subject of Sec. 4. There it is shown, by examining
the response of invariant functionals to infinitesimal transformations and drawing on the
established theorems concerning holomorphic differentials on Riemann surfaces e ' , that
such functionals can depend only on a finite set of moduli a>, 3 (-7 — 1) even and 2(-j - 1)
odd (anticomrnuting) moduli for surfaces of genus 7 > 1.

Sees. 3, 4 and 5 comprise the main body of this paper. However, to establish
notation and define the probtem more precisely, the principles of heterotic geometry are
reviewed in Sec. 2. The frame and connection forms are introduced, together with the
torsion conditions by which they are restricted. Their response to the gauge group, i.e.
reparametrizationa, frame rotations and Weyl scalings is defined. It is to be emphasized
that the spin-connection transforms canonically with respect to frame rotations but not
with respect to Weyl scalings *'. This peculiar behaviour of the connection, which stems
from its origins in solving the torsion constraints, leads to some restrictions in the form
of conformal invariant action functionals. These are discussed in Sec. 6. An example of
an invariant action functional is the Faddeev-Popov ghost action which is derived in Sec.
7. Some consideration is given here to the role of ghost zero modes in determining the
structure of the Faddeev-Popov determinant. This discussion is included for the sake of
completeness although equivalent descriptions are available in the literature K

a. HETEROTIC GEOMETRY

To describe the geometry of a super Riemann surface it is possible to start
from a quasi Riemannian geometry on a supermanifold and proceed by imposing con-
straints s*. This procedure was developed by Howe *' and later adapted to the heterotic
case by Nelson and Moore B '. The underlying supermanifold is parametrized locally by the
bosonic (or even) coordinates xm, m = 1,2 and the fermionic (or odd) coordinates, S and
6. It is natural to think of 9 as a complex odd element of a Grassman algebra, and of $ as
its complex conjugate. Local superfields will be polynomials in 6 and 6. For the discussion
of heterotic geometry the coordinate 6 is irrelevant and we shall henceforth discard it *'.
All fields of interest will be independent of 6.

By this step we are precluding the operation of complex conjugation as applied to Euclidean
superfields. In a Lorentzian formulation the Grassman odd coordinates 6 and 0 would be
replaced by independent real variables S+ and fl_. Complex conjugation would there
remain a meaningful operation even after dropping 0_.



To convey the geometry it is necessary to introduce a set of frames

(2.1)

where the index A takes the bosonic values +, — and the fermionic value, a. It is necessary,
further, to adopt a group of frame rotations with respect to which the geometry is required
to be invariant. One might have considered the supergroup, OSp(l,2), for this role. This
would correspond to super Riemannian geometry but it is not conformal. The appropriate
choice for the frame group is a combination of the U(l) rotations,

E±tIfiH

(2.2)

and a somewhat more complicated Weyl scaling to be described below. To implement the
invariance with respect to frame rotations it is necessary to introduce a connection form

which transforms according to

- EAnA

n -> n +

(2.3)

(2.4)

with the help of this connection it is possible to construct the torsion 2-forms, TA. They
are given by

T* = dE± ± iUE±

T' = dE' + -C1E'
2

(2.5)

which are invariant with respect to coordinate reparametrizations as wetl as frame rota-
tions.

To arrive at a conformal geometry it ia necessary to impose some restrictions
on the components of E and fl. Such restrictions are given covariant form by requiring
that certain parts of the torsion should vanish. The basic idea is that the remaining
independent components should be pure gauge degrees of freedom, i.e. removable by gauge
transformations. The available gauge transformations comprise three reparametrizations
SzM, the frame rotations, H and the yet to be defined Weyl scalings, W, a total of five
superfields. The geometric variables Ej^ and D^ comprise twelve superfields. It is therefore
necessary to impose seven constraints. They should be chosen so that the supermanifold
is locally conformal to flat superspa.ee. The following set was found by Nelson and
Moore s ) ,

r + = 2, Tt, = o
T-=0 TZ,=0 • (2.6)
T', = 0 TL, = 0 T^ = 0

These constraints axe manifestly compatible with coordinate reparametrizations and frame
rotations but it remains to be proved that they are also compatible with the Weyl scalings.
This problem was solved by Howe 4) who defined the action of Weyl transformations on
the frames by

E> -» (£ ' - E+d,W)e-w!'z, (2.7)

where the operator d, is defined in terms of the inverse components, E^d\{ = dA. These
transform according to

ew(

d. (2.8)

This means that the action of the Weyl group on the frame components is not linear.
However, it is straightforward to prove that (2.7) is a valid non-linear realization of the
Weyl group. The action of this group on the connection, fi, is obtained by requiring that
the constraints (2.6) be covariant. One finds that, with respect to the combined frame
rotation and Weyl groups,

n + -> ew+iH{tt+ - id+(W + iH) -f 2idJ\V - d.Hd.W)

fl_ -» ew~iH(U- - »3_(W + iH))

or, more succinctly,
fl —> fl + d{H -i-iW) — 2iE~d-W. (2.9')

The components i\A are of course related to the frame components E^ by means of the
constraints (2.6). Indeed, all components must be expressed in terms of five independent
"superpotentials", V™, when the constraints are solved 9 ' .

There remains the question as to whether these superpotentials can be gauged
away. At the local level this must certainly be possible. It would necessitate integrating
the infinitesimal transformations,

SV = R% (2.10)

where 6£" represents the collection of infinitesimal variations, izu, 6H and 6W. The
coefficients BJJ are differential operators in superspace. The integration of a set of equations



such as (2.10), however, involves global considerations, and the interesting part of the
question concerns the possible existence of global obstructions. It is well—known from
the classical theory of Riemann surfaces that there is an obstruction represented by the
existence of holomorphic quadratic differentials 3 ' . In this case it is known that an arbitrary
deformation of the metric tensor cannot be represented by a combination of coordinate
reparametrizations and Weyl scalings,

Rather, these latter variations are subject to the compatibility condition,

mnBgmn = 0,
/ •

(2-11)

(2.12)

whert the integration extends over the entire Riemann surface and the coefficient, u m n , is
any symmetric tensor density which satisfies the equations

numn = 0 and gmnumn = 0. (2.13)

On a compact Riemann surface of genus f > 1 (say) there are 6(T - 1) linearly inde-
pendent (real) solutions to the system (2.13). This is guaranteed by the Rietnann-Roch
theorem 6>. It follows that, in the neighbourhood of any given metric, ffm", there is a
6(7 - l)-dimensional family of inequivalent metrics, gmn + Sgmn with Sgmn given by 10>

Sgmn = Eim ;t;p", (2.14)

where the tensors Vi are chosen to be dual to some basis of solutions to (2.13),

^ = 6), •,j = l 1 2 1 . . . , e ( i f - l ) . (2.15)

It is straightforward in principle to extend this logic to the supermanifold. To
discover globally inequivalent geometries on the supermanifold it is necessary to solve the
variational problem,

0= f

IP?- (2-16)

One expects to find a finite number of linearly independent solutions, some even and some
odd. At present, however, the super Riemann-Roch theorem does not have the same status
as its classical parent. We shall therefore proceed in a somewhat piecemeal fashion.

There is a technical deficiency in that we do not possess a useful representation
of the superpotentials. On the other hand, since there is only a single anticommuting

coordinate each superfield has only two components, one fermionic and one bosonic. It is
therefore quite feasible to work with these components directly. The torsion constraints
are algebraic in the component fields and can be solved explicitly. All fields can then be
expressed in terms of five fermionic and five bosonic fields drawn from among the compo-
nents of the superdreibein, E^. Their response to an infinitesimal gauge transformation
can be evaluated and then used to formulate the variational problem (2.12). This will be
undertaken in Sec. 4.

Up to this point the discussion has been general in that no particular choice of
gauge has been made. Although it will turn out that the Wess-Zumino gauge is the most
useful one, we do not want to prejudice the outcome by eliminating any components which
might be capable of harbouring moduli or supermoduli, i.e. which cannot be set to zero in a
globally meaningful way. In the next section we shall therefore consider the transformation
properties of the component fields and the structure of the torsion constraints, without
regard to choice of gauge.

3. COMPONENT FIELDS

The components of the superdreibein, E£j, can be expressed in terms of ordinary
two-dimensional Fermi and Bose fields as follows,

E$ = t)a + 6wa, El = u + 6(, (3.1)

where m = 1,2 and a = +, —. Bose and Fermi component fields are represented by Latin
and Greek letters, respectively. The inverse dreibein, E%, can be expressed in the same
fashion,

E7 = Xm + *«"*, E° = u + B£. (3.2)

The components entering here are to be expressed in terms of those in (3.1),

«••».'•• - ~ '



Xa ~ —k

= - ( • * - 17 •

= -at

where the factor k is defined by

1 1
k= - + -stt • \.

u uJ

(3.3)

(3.4)

In these formulae the two-dimensional frame and world indices are related by means of
the zweibein, e^, and its inverse , e™, i.e. rjm = t}ac™, TJ° = rjme£,, etc.

The frame components of the torsion 2 forms (2.5) are given by

) - nSa + H ^ n g * . (3.5)

where the signature factors are defined in the usual way,

_ /
~ \

The connection components

li for B even (odd) and N even (odd)
-1 , for B even (odd) and N odd (even) '

l J B are given by

= fU diag (i, - i , - ) (3.6)

in accordance with (2.5). From (3.5) and (3.6) it is easy to see that among the seven
torsion constraints (2.6) there are four which do not involve the connection,

T+ = 2 and T~ = T*. = I"/. - TZ, = 0. (3.7)

These can be used to eliminate four Bose and four Fermi fields from the set (3,1). The
remaining three torsion constraints,

T' —T* = T' = 0 (3.8)

then define the connection components t l + , O - and fl,, respectively. The constraints
(3.7) are solved by strictly algebraic manipulations so that there can be no question of
global obstructions at this stage. For example, they can be used to eliminate 0^,11^ and
ui°, leaving eJ5i,u, r)a,Xm and £ as independent variables. A lengthy but straighforward
treatment of the constraints (3.7) yields the result,

ct% = V+^ + + ~£ + 2uX+ - 4r?

at = V _ J J + + 2uX- - 2i} • XX-

a+ = V+17"
2

- - £ • xx+ - - f

• X ) 3

^ ) (V_x+ -

(v_x+ -

v+ = V + u + ^ x + + —f) +

. (3.9)

In these formulae the covariant derivatives are with respect to the ordinary frame rotations.
The component Bose and Fermi fields to E%I,EM and E'M carry the respective weights
—1,+1 and — \ with respect to this group. Hence,

V±t)+ = (d± + iw±)r)+,

V±x- = (d± + -»w±)x- ,

etc., where *' d± = t™dm and UJ. is the usual two-dimensional spin connection,

The existence of the solution (3.9) indicates that the choice of the set

(3.10)

(3-11)

as independent variables is an acceptable one. If, alternatively, we had chosen the four
fermionic variables o£ (say) as independent then the dependent rj° would have to satisfy

*' We use the notation d± to represent the two-dimensional frame components when this
operator is applied to a component Bose or Fermi field. The same symbol indicates dreibein
components when applied to a superfield.

10



differential equations, and this would have global implications. On the other hand, we
could choose to eliminate f and X- ' i favour of a\ and at without any difficulty. There
are several alternatives of this kind. It should be noted that we have made free use of the
zweibein and its inverse, as well as u and l/u, in these formulae. This implies that det(e)
and u should be non-vanishing in any acceptable gauge.

The infinitesimal gauge transformations are comprised in the rules,

<S£ = -

SE'M = ~

:NE% - [SW ± i ,

dM6zNE'N - -{SW + iSH)E'M - E^d.SW. (3.12)

We adopt the following expressions for the component field of — 6zM,SW and SH,

-Sxm - pm + 6um

-SB = c + 6q

SW = T + 9$

SH = t + 8T. (3.13)

It is straightforward to substitute these expressions into (3.12) and extrat.; the component
field transformation rules. The result is

1) Reparametrizations

<5u = p"

6vm = p"dnv

+ dmqr,a

8mqu

(3.14)

11

2) Frame rotations and Weyl scalings

Sri* = Titt)* -

Su = - Uu \TU -

- (rw±

) [

+ ^+(v"anr-xnan<*+e*), (3.15)

where x" ." . e t c- a r e given by (3.3).

To conclude the section we give the finite transformation formulae. Consider an
open superdomain U, and let the finite reparametrizations be expressed in the form

$ = e(i') + S'g[x').

The component fields e^ and tja then transform according to

(3.16)

where e' and T)' are functions of a:' as are also the parameters f"-,g,i/n,E,r and (. The
unprimed components e, r), a, etc., are functions of the variable

= fm{x') (3.18)

i.e. the ^'-independent part of i m . Explicit formulae like (3.17) for the components x'm
antl u' would be very complicated and we therefore give only an implicit version,

(3-20)

where 3^ = e^*c>^ and u = (u' - q' • x ')"1- F'na"y. we have an equation for £'

12



- ff

- I/"(l/fcafcX» + fff n. -

(3.21)

where

The formulae (3.17)-(3.21) although not fully explicit, can be used to deduce the
form qf gauge transformation needed to reduce a general configuration to the Wess-Zumino
form. This will be the subject of Sec. 5. These formulae can also be read as transition
elements on the overlap U n V of two open superdomains U and V. In this case the
parameter functions r,t,e, etc. are defined up to gauge equivalences.

4. WARD IDENTITIES

The world sheet, seen as a supermanifold with heterotic geometry imposed, is not
globally equivalent to flat superspace. It is now well-known that these geometries fall into
equivalence classes characterized by a finite set of moduli, the number of which depends
on the topology. To gain some understanding of these global distinctions it is helpful to
examine the structure of a functional, r(.E,n), which depends on the geometry but which
is invariant with respect to the superconfonnal transformations, i.e. the coordinate super-
reparametraations, frame rotations and Weyl scalings. Such a functional, which might, for
example, be the vacuum amplitude of a matter supermultiplet "propagating" on the world
sheet, can depend only on the conformal class of the world sheet geometry. It must take the
same value for any two geometries related by a superconformal transformation. In other
words, it can depend only on the moduli. The natural place to begin the investigation of
such functionals is with their Ward identities.

The Ward identities are obtained by considering the response of T(E, fl) to an
infinitesimal change in the supergeometry. The most convenient way to achieve this seems
to be by choosing a set of independent Bose and Fermi component fields to represent the
supergeometry. When the torsion constraints are solved there remain five each of Bose and

13

Fermi components from among the fields appearing in (3.1). For the reasons indicated in
Sec. 3 we choose the components

,« and (4.1)

as independent variables. The other components, oj , ,»m and w", as well as all components
of ft are given in terms of the set (4.1) by the formulae (3.9). An infinitesimal variation of
F therefore takes the form

6T = (4.2)

where the coefficients T™, etc. are variational derivatives of T. If T is invariant then (4.2)
must vanish when the variations Se^, etc, are induced by infinitesimal super conformal
transformations, i.e. when they take the form (3.14) or (3.15). On substituting from
(3.14) and (3.15) into the genera! variation (4.2) and requiring ST to vanish, one obtains
the various Ward identities. Here it is advisable to proceed in steps.

Observe firstly that the infinitesimal parameter, T, appears only in i5f. The
invariance of T with respect to this particular transformation therefore implies

ST
(4.3)

If we require that u[x) shall not vanish in any admissible gauge, it follows that V must be
independent of £{x).

We can therefore discard the contribution , S£0, to the remaining identities. Next
consider the contributions of r,t and 4> to ST. These give

o = J
- (r - it){TZ + * n 5

- 4(f+fi - hr,+u) ]

The requirement u ^ 0 implies also that u is non—vanishing. Hence

0 = f+ - hr,*

0 = TZ + rj--r_

0 = T+ + V+-1+ + \xmr + \hu.

Two more identities result from a consideration of the contributions of the super-
reparametmation components «/" and q. These are,

0 = 7™ + Xn/i

0 = rn« + hu.

(4.4)

(4.5)

14



Taken together, the identities (4.5) imply h(u + t?"ifn) = 0, which can be satisfied only if
/i = 0.

The identities (4.3), (4.4) and (4.5) lead directly to the conclusion that P must be
independent of £, u and r)a. The most general eonformal invariant functional can depend
only on e'^ and Xm> and this dependence is constrained to satisfy

TI = 0

(4.6)

Finally, the contributions of pn and e to 6T give rise to the respective identities,

o = (4.8)

The latter identity involves the dependent variables, vm and a^, as well as the independent
variables, t;a and it. But we now know that ij", ti, x+ and £ are absent from the functional
F. These absent variables must of course disappear from (4.8) when the dependent variables
are eliminated by substituting from (3.9), It will therefore be sufficient to evaluate (4.8)
on the subspace,

u = 1, t = „• = x + = 0, (4.9)

where the relevant dependent variables given in general by (3.9), take the simple form

When the values (4.9) and (4.10) are substituted into (4.8) it reduces to

0 = 3 m ( r« - ) - ^_f" - 2X-T+.

(4.10)

(4.11)

The total content of the requirement that T be invariant with respect to infinites-
imal superconformal transformations is now expressed in the Ward identities (4.6), (4.7)
and (4.11). The generality of this conclusion is limited only by our particular choice of
independent variables (4.1) and the requirements that u[x) and dete(i) should have no
zeros in any admissible gauge.

The structure of the Ward identities can be simplified by expressing them in a
conformal frame. By this we mean choosing complex coordinates z and z such that two of
the zweibein components vanish,

ej = 0 = e±. (4-12)

15

These coordinate conditions are compatible with holomorphic coordinate reparametriza-
tions as well as frame rotations and Weyl scalings,

** ~~* ~e=

In the frames (4.12) it is usual to redefine the independent variables so as to make them
neutral with respect to Weyl scalings and frame rotations, viz.

With respect to the holomorphic reparametrizationB the new quantities TMM, IV T. X and
f transform as (2,0), (0,2), (-5,1) and (| ,0) forms, respectively. In terms of the new
variables the general infinitesimal variation (4.2) takes the form

6T = I (4.14)

The only surviving variational derivatives, TMM1Tj 1 and f are subject to the Ward identi-
ties,

0 = djT,, - d.xf - -d.{xc)

0 = d.T, -,

0 = 3rf

(4.15a)

(4.156)

(4.15c)

to which the identities (4.7) and (4.11) reduce in the conformal frames. These identities
reflect the invariance of r(e, x) with respect to the infinitesimal transformations

Se'_ ^-c*_

and it is possible to make a further simplification by exploiting this invariance. In analogy
with the selection of a conformal frame wherein t~ = ei = 0, it is possible to choose
X = 0 as well. This can be effected in every open set of the covering of the Riemann
surface *'. In consequence, the Ward identities (4,15) reduce to the statement that Tzz is

The global validity of this remark is justified by the discussion in Sec. 5.

16



a holotnorphic (2,0) form, T» » is an antiholomorphic (0,2) form and f is an holomorphic
(| ,0) form. As such, these variattonal derivatives of the invariant functional F can be
regaided as belonging to finite dimensions.! vector spaces

T., = A

(4.17)f = E?.«-(«).

For a Riemann surface of genus -/ > 1, the space of holomorphic (2,0) forms has complex
dimension 3(f — 1) and » spanned by the basis u*(z). The space of antiholomorphic (0,2)
forms is spanned by their complex conjugates, u'(z), and the space of holomorphic ( | ,0)
forma is spanned by the basis v"{z), a = 1, . . . 2{i - 1). The coefficients T*,TV and fa are
related to derivates of T with respect to the moduli. To make the relation precise it is
necessary to define Beltrami differentials, which we now consider briefly.

The expressions (4.17) for the variational derivatives indicate that T(e, x) depends
on a finite set of parameters, the moduli,

where i,i = 1,...,3(7 - 1} and a = 1,...,2(-> - 1). These parameters must distinguish
the inequivalent superconformal geometries. If we suppose the classes are represented by
the zweibein, ej(m) and gravitino x( m ) . specified functions of the moduli, then we can
define the Beltrami differentials,

VA{Z) = - e f dAt'_

VA{z) = &A X- (4.18)

where dA — d/dmA, The variation ST due to an infinitesimal change in the moduli is then
given by

ST = 6mA J d?z(vAT,r + 1ATW?

where ,**) = f
(4.19)

(4.20)

etc. The linear form (4.19) thus serves to define the modular derivatives of T in terms
of the components 7i,2V and fa- A more refined discussion would yield more detailed
properties of the differentials (4.18). For instance, one should be alble to prove u> that
e\ and x depend holomorphically, on m* and n" while et depends only on m*, i.e.

Vy = Vj• = VJ = Va = 0 (4.21)

17

The analysis of Ward identities given here has shown that the invariant functional
, fl) can depend only on the moduli. The same result could have been obtained by

finding a finite gauge transformation, globally defined, which reduces an arbitrary
configuration, e*,Xrn I11!11 a n d £ *° the specific form,

<£ = <£("•). X» = X » H , »?o = 0, u = l , f =

The transformation which effects part of this reduction, viz.

X + = 0 , rf = 0, u = l, i = 0

(4.22)

(4.23)

is given in Sec. 5. This transformation can be used quite generally to "gauge away" the
variables (4.23) in functional which involve supermultiplets of matter fields as well as the
geometrical fields. For example, the action functional which governs the propagation of a
neutral scalar superfield,

X = y(x)

(4.24)

can be shown to be a functional of e^, x->V an(J ^ ' . where iji' is given by

In effect, the auxiliary geometrical fields x+ i i a n ( ' u a r e elinimated by a redefinition of ^.

5 . WESS-ZUMINO GAUGES

In Sec. 4 it was argued on the basis of Ward identities that an invariant functional
of the supergeometry, T[E,n), must be independent of the components, x+,'?°,ti and £.
It can depend only on the zweibein, e£,, and gravitino, X-- This observation can be
generalized to include invariant functionals which contain matter fields as well. That
is, by means of a gauge transformation it must be possible to explicitly eliminate these
redundant components. The appropriate transformation will be given in the following.

The Wess-Zumino class of gauges is defined by the conditions

X+ = na = 6 = 0 and u = 1. (5.1)

If these conditions are imposed in every neighbourhood of a coordinate covering of the
supermanifold then a number of restrictions on the transition elements are indicated. These
transition elements, which are maps from the overlaps of coordinate neighbourhoods into
the gauge group, define the global structure of the geometry. Our first problem is to show
that the restrictions implied by (5.1) can be satisfied, i.e. that it is indeed possible to
impose the gauge conditions (S.I) in overlapping neighbourhoods. We shall verify that

18



the transition elements which are reduced versions of the transformations (3.17)—(3.21)

are well defined. They take their values in a subgroup of the full structure group. This

subgroup, given by (5.14), can be identified as the stability group of the WZ section defined

by (5.1). The choice of a WZ gauge implies a partial fixing of the original five superfield

degrees of freedom. Still allowed are the two-dimensional repar&metrization and tangent

space transformations and a local supersymmetry. These transformations constitute what

we call the stability group of the WZ configurations.

There is a technical peculiarity concerning the non-canonical response of the

connection form to super Weyl transformations that is worth remarking. The connection

is determined by the torsion conditions (2.6) and its transformation rule is given by (2.9)

or

fl -+ fl + d(H + iW) - 2iE~d-W. (5.2)

where H and W are superfield parameters of the frame rotations and Weyl scalings, respec-

tively. It is clear that f) does not transform like a connection unless d-W = 0. Because

of this, it is possible to construct invariant action functional only for a restricted class of

matter superfields, those which are neutral with respect to one or other (or both) of the

tangent space subgroups generated by H + iW and H — iW. This effect will be discussed

in Sec. 6. Here we wish only to remark on the global structure of the Weyl group. To this

end, let the collection {E£} represent the superdreibein in a covering of the manifold by

neighbourhoods, {Ua}, In the overlap Ua n Up we have the transition rules

etc., where A.+ap is a superfield defined over Ua n Up. In each Ua the frames can be
modified by a tangent space operation.

Et -+ E'+ = e~k+'E+, (5.4)

etc. where A+ a is defined in Ua. The transition elements are modified accordingly,

A'+olJ, = - A
+ a

(5-5)

and similarly for h-ag. The Grassman even part of the transition element, exp(—A+o^),

takes its values in d *, the set of non-zero complex numbers, which is not simply connected.

The implied topological non-triviality of these elements, however, can be confined to the

imaginary part 2iHap = A.+ap — A-ap. In other words, it should always be possible to

choose the frames such that the transition elements are mere phase factors,

e-A±.o = eTa»«. (5.6)

This would amount to nothing more than a particular choice of gauge. The WZ gauges,

however, are not of this type. Their associated transition elements are rather more compli-

cated, as we shall see. Something of their nature can be seen by considering the analogous
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but simpler choice of gauge in the case of ordinary Riemann surfaces. Here the frames are

represented by collections of 1-forms {ej} relative to the coordinate covering, {Ua}. In

the overlap, Ua n Ve we have

e+ and «; = 4>aftt- (5.7)

where the transition element <j>ap takes its values in <E *. By means of conformal transfor-

mations in each Ua it is possible to bring the frame representatives into the simple

form *)

tt = dza and e~ = dza (5.8)

in which case the transition elements must be given by

(5.9)

As a result, the tangent space transition elements are determined by the coordinate tran-

sition functions and they are holomorphic.

Consider now the heterotic supergeometry. The problem is to find a gauge trans-

formation which, in a given neighbourhood, reduces a general configuration to the WZ

form. The resulting frames and connection should be

E~ = t

E' = i

(5.10)

corresponding, in our choice of independent variables to (5.1). The available gauge trans-

formations are, as described in Sec. 2,

E'U') = e-*i+(*''£*(*) - t~k+('')E+(s)d',W{z'), (5.11)

In this gauge the torsionless connection (3.10) must vanish along with its associated cur-

vature form. However, it does not follow that the Euler characteristic must vanish as well.

This is because the torsionless connection fails to transform canonically with respect to the

Weyl group and therefore cannot be used to compute the Euler characteristic in gauges

such as (5.8), where the transition elements (5.9) involve Weyl transformations. Instead

one should use a connection which responds canonically to the structure group which is

IE*.
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where, in compact notation,

xm = fm(x')

A± = (5.12)

The components transform according to the rules given implicitly in the formulae (3.16)-
(3.21). Using these, a lengthy but straightforward analysis gives the result,

Kn = - ( u - ») • x)~ V

9 - (ti - r) • X) l

ir = x+ + 2(u - tj • • v - tj • du. - (5.13)

together with r = t = E = 0 and fm[x') — xm. This transformation will serve to reduce a
general configuration to the form (5.1). It is not unique, of course. The most general such
transformation is obtained by combining (5.13) with an element of the stability group of
the WZ configuration. The elements of the latter group are given by

g{x') = «*<-+*>

(5.14)

where xm = / m ( i ' ) , r = r[x'},t - t(i ') and r(z') are unrestricted. In effect, the elements
of the stability group axe defined by the ^-independent parts of the various superfield

parameters.

If the WZ gauge conditions (5.1) are imposed in all neighbourhoods of the cov-
ering then, the structure group must coincide with the stability group. All transition
elements must satisfy (5.14), where [xm,8) and (x'm,6') are now to be interpreted as
alternative coordinates in the overlap of two neighbourhoods, U and V. With such tran-
sition elements the collection of WZ gauge representatives {e*,x~; ej^,x'-\ • • •} will patch
together consistently to provide a global description of the supergeometry. In the overlap
U n W patchings are given by

(5.15)
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where the primed fields together with the group parameters are evaluated at x' and the
unprimed fields are evaluated at x = / ( s ' ) .

One can proceed further with the gauge fixing to arrive at what might be called
the "superisothermal" gauge,

X- = 0- (5.16)

In a given neighbourhood, this configuration is obtained by means of a gauge transforma-
tion in the stability group (5.15). It must satisfy the conditions

These equations are to be solved for fn(z',a*) and e[z',~z'). The stability group of the
superisothermal gauge is easily discovered by imposing the conditions (5.16) on both sides
of (5.15). One finds

B'-g}' = d'J" - 0 and 3^((e+)~1/2e) = 0. (5.18)

The tangent space elements r and t are as yet unrestricted. On going one step further and
imposing the gauge conditions

*t = eF = 1 (5-19)
the stability group will be determined entirely in terms of f*,f* and e. The tangent space
elements are now given by

er+it = d'J' + ed,.E

('-<• = 3 L / \ (5.20)

In this "superconformal" gauge the frames are represented in each neighbourhood, Va, by
the simple forms

E+ = dza - dSa$a

El, = d$a (5.21)

and the connection vanishes everywhere. The transition elements appropriate to this gauge
are obtained by substituting from (5.16), (5.19) and (5.20) into (5.14),

+ 29d,e) = d,,f

(5.22)
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where &sf* = d*f* = dje = 0. Notice, in particular, that the reparametrization part of

the transition element takes the form

(5.23)

in the overlap U n U'. This agrees with the standard definitions of the super Riemann
surface 1 ' .

6. LAGRANGIANS

To describe the behaviour of matter fields on a supermanifold with heterotic

geometry one can use the superdreibein and connection defined in Sec. 2 to set up invariant

action functionate. Since a density factor is available in the superdeterminant of Efa, we

can assume without loss of generality that all matter fields transform as scalaxs with respect

to the super reparametrizations. This leaves only their classification with respect to the

tangent space group to be considered. The representations of this group rre characterized

by a pair of weights (A+, A_) which may be integers or half-integers. In general then, we

have

$^.e*+A ++*-A-$ (6.1)

for a superfield of type (A+, A_). However, most of these cannot be used in the construction

of conformal field theories. This is because the tangent space group is not fully gauged.

Heterotic geometry as described in Sec. 2 involves only a single connection form fl, defined

by the torsion constraints (2.6). Its transformations under the action of the tangent space

group are given by (2.9) and these are clearly not canonical. With respect to pure frame

rotations, A± = ±iH, it does indeed behave like a (7(1) connection. With respect to the

Weyl scalings, however, it is not a. connection. The frame components fl_ and 0, do

transform in a fashion very like that of connection components, viz.

n. (6.2)

but ! 1 + does not. Because of the transformations (6.2) it follows that we can define a

covariant derivative V_ acting on fields of type (A+,0), and V, acting on fields of type

(0,A_). These are

and

(6-3)
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where *+ and * _ are fields of type (A+10) and (0, A_), respectively. It is also clear

from (6.2) that these covariant derivatives transform at fields of type (A+, 1) and (^, A_)

respectively.

In the case of a field X of type (0,0), the two components, d-X and 8,X, are

covariant. They transform as fields of type (0,1) and (£,0), respectively.

There are no other possibilities. The most general heterotic conformal field theory

must be constructed out of fields which are either neutral, type (0,0), or chiral, typeB (A, 0)

or (0, A). In addition to these fields, which comprise the dynamical variables of the theory,

there is of course the superdreibein E^ which characterizes the geometrical background

in which the other fields propagate. It is involved implicitly in the covariant derivatives of

these fields and also in the density factor, sdet£, which must appear as a factor in every

term in the Lagrangian. This factor, which transforms as a. reparametrization density, also

carries weights with respect to the tangent space group,

sdetE -> «"* A+~A-sdet£.

This is obtained from the transformation rules for the frames,

(6.4)

r - . r A - r , £•->«-**+(£• -E+d,w). (6.5)

It follows that the action functional for a. heterotic conformal field theory takes the form

5= f <PzsdetE£(X,d-X,d.X,*+,V-*+,i-;V,<i-), (6.6)

where L is a scalar of type (^,1). At the classical level the Lagrangian is otherwise

unconstrained. When quantum effects are taken into account there will arise, of course,

the usual considerations about anomaly cancellation and modular invariance.

The archetypal theory is the original heterotic superstring model 1 2 ' for which

the Lagrangian is given by

£ = d.X^d.X" + ¥™V,*a + B+V-C+ + B-V.C-, (6.7)

where fj = 1 , . . . , 10 and a = 1, . . . 32. The fields in (6.7) are assigned the following weights,

supercoordinates X** ~ (0,0)

"internal" coordinates * " ~ (0, - )

Faddeev - Popov ghosts B+ ~+ (-,0)

c+ ~ (-1,0)
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The Lagrangians (6.6) and (6.7) can be reduced to the component notation discussed in
Sec. 3. Generally it ia necessary to have expressions for the components of the connection
as well as the dreibein in terms of a set of independent Bose and Fermi components, e.g.
«m; u> Xm, v" and £. However, these are all gauge fields and they can be largely eliminated
by means of gauge transformations. It was shown in Sec. 4 that any invariant functional
must in fact be independent of u,x+i 7° and {. In the case of the invariant action functional
(6.6) which involves a set of matter fields as well as the dreibein components, this argument
can be generalized to show that the latter fields can be absorbed in redefinitions of the
former. It is therefore possible to express a functional such as (6.6) in terms of « „ , * -
and the redefined (i.e. gauge transformed) matter field components (such as (4.24)). The
results are obtained most directly by employing the Wess-Zumino gauge description of the
dreibein and connection *',

(6.8)

(6.9)

(6.10)

(6.11)

The superdeterminant of (6.8) is given by

adetE = det C = e

In the expressions (6.8)-(6.10) the notation is two-dimensional: frame components are

defined with respect to the zweibein, e^ and its inverse e"; the spin connection is denned

by the vanishing of two-dimensional torsion, i.e.

The notation B± is intended to indicate zweibein components of dm when applied to

two-dimensional Bose or Fermi fields. There should be no confusion with the operators

d± — E^du which are applied to superfields.

The generic fields and their covariant derivatives in WZ gauge are given by the

following list, with the corresponding weights at the left,

*) Our notation differs from that of Nelson and Moore 5> but we should point out that their

equation fl, = 0 seems to be in error.
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(0,0) X =

(0,1) d-X =<3_sf-x-

(£,0) d,X =xt> + 6d+y

(A,0) C+ =e + 0f

(A,l) V_C+ = V _ e - x -

(0,A) C_ =e + 9F

(|,A) V.C.. = F + *V+c (6.12)

The covariant derivatives which appear among the components on the right-hand sides

of these equations are defined by

V±c = (d± — i\w±)c

^+X- = (#+ + i^w + )x-

V_c = ( 5 + + i A w + ) c (6.13)

With the exception of V + e and V + x - they are covariant with respect to the two-
dimensional reparametrizations, frame rotations and Weyl scalings. Although V + c and
V + X- **e not separately covariant with respect to Weyl scalings, the combination
X-V + c + 2AV+x-c which appears in V_C + , is covariant. The action of the two-
dimensional gauge transformations on the various WZ gauge component fields is derived
from the ^-independent parts of the transformations discussed in Sec.3 together with a
supplementary rule, t —» ffei<r+"), needed to maintain the WZ gauge. The WZ gauge also
admits a local supersymmetry associated with the infinitesimal parameter E(X) as in Sec.5.
The derivatives (<J.13) are of course not covariant with respect to these transormations
although the action functional will be invariant. In the case of the heterotic string (6.7),
the action reduces in component notation to the form
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- /

- 2V+X-c)

(6.14)

where the components of X'i,C+ and C_ are as indicated in (6.12) and, in addition, we
write

B+ = p + 6b

B- = (6.15)

The conformal gauge version of the action (6.14) is obtained by setting e+ = ef = 1,
e~ = c+ = 0, x - = 0, and w± = 0, so that 6>+ = a , and 6^ = dr. The ghost field terms
in this action can be obtained by the Faddeev-Popov construction which will be examined
in Sec. 7.

7. FADDEEV-POPOV FACTOR

Although the construction of the Fadeev-Popov determinant is well known, we
give here, for the sake of completeness, a brief treatment of its main features as they
apply in the case of heterotic geometry. The problem is to define a sensible prescription
for integrating over the space of equivalence classes of geometries on the world sheet.
The integrand generally includes an invariant functional, e"1"'"1*', which stands for some
amplitude of the underlying superconformal field theroy. It must also include a factor,
A(e,x), the Faddeev-Popov determinant, which can be thought of as the "volume" of a
class of equivalent geometries. The argument goes as follows.

Within each class it should be possible to single out a representative element
(e(m), x("i))> where m = (rnA) stands for a set of moduli. A general configuration in the
class can be represented in the form

where the superstript, U, denotes the action of an element of the supergroup. The general
transformation involves the entire collection of independent gauge fields, e, Xif ,<* and f,
but we have seen that T depends only on e and x, so we can ignore the others. This means
that, without loss of generality, we can restrict fi to the subgroup of gauge transformations
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that act only on e and x (E<1- (5.15)). As we saw in Sec. 5, it is the transition elements
belonging to this subgroup which completely determine the global structure of the world
sheet. In the neighbourhood of the identity the transformations are parametrized by pn,r,t
and e,

SX- =

t+ - (r

e- - (r - *

3it)X- + ( (7.1)

The central feature of the Faddeev-Popov construction is the change of integra-
tion variables from e and x to (1 and m. This is effected by the formal insertion,

(7.2)

where the pair (e,x) represents a general configuration and the invariant functional A(e, x)
is supposed to be determined by (7.2). By means of a formal interchange of the orders of
integration one writes,

If F is invariant then the integrand is independent of fl and it becomes meaningful to
discard the volume factor, /(dH)- The quantity of interest is the remaining (modular)
integral,

/dmA(e(m),x(m))exp(-r(«(m),x(m)))./

Although the modular integration is not well understood for world sheets of genus > 2,
the first problem is to compute the Faddeev Popov factor,

which is given, according to (7.2) by

f dmS(e - (7.3)

This representation is meaningful to the extent that for any configuration (e,x) there
must exist an fl and m in the integration domain for which the delta functionals are non-
vanishing. Indeed, it is only the infinitesimal neighbourhood of this point which needs to
be considered. In effect the integral (7.3) can be replaced by an integral over the tangent
space at the points in question,

ndf!) fdm-> I (d2pdrdtde) j dm.

28



To facilitate the evaluation one can choose e = e(m0), x = x(mo) and expand the argu-
ments, e(m)n - e(m0) and x ("0" - x{m0) to first order in jft.p", etc.

= PndneZ + <W«+ - (r + «)«+

(7.4)

where m = m - m0 and the fields on the right-hand sides are evaluated at

The integrand of (7.3) comprises four even delta functionals corresponding to the

four components, eJJ,, and one odd one corresponding to x~- Their arguments can be

simplified by choosing a conformal frame,

— r -\ *+fm ^ n (7 •O

However, it is necessary to retain the modular derivatives, dAe~, dAe2 which need not

vanish in the frame (7.5). Derivatives of the diagonal components, dAe+ and dAc^, on the

other hand, can be absorbed by Weyl scalings and frame rotations. Th^se can therefore

be set equal to zero. The integral representation for A (mo) then takes the form,

-y = J(fpdrdtdc) J dm6[d,{p'*l) + p T ^+ - (r

Z) + p'd.ei - (r - it)t=] 6[d,pYt= +

7X- + \{r - Zit)X- (7.6)

The values of r and t, whose derivatives make no appearance here, are fixed by the first
two delta functionals. These give, in particular, the combination

which is to be substituted in the argument of the last delta functional. Having eliminated
two of the delta functionals by integrating over r and t, one can represent the remaining
three by Fourier integrals. The result is

exp /

(7-7)
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when q, q and £ are Lagrange multipliers. The zweibein components can be largely elimi-
nated from this expression by converting to field variables which are neutral with respect
to r and t transformations. These are

b = e+q,

c=p',
and

(7.8)

Finally, in order to have an integral expression for A(m) rather than l/A(m), it is necessary
to reverse the Grassman type of all integration variables including the quantities mA. This
gives

dmA(m) = f (cPtKpcdpdt) f

(7.9)

where 6,6, c and c are odd and /9,if are even. If the components mA , tangent to the space
of moduli, are integrated one obtains the final result *',

A(m) = f
J

exp / J?z [bdjbdjc + bdrc

(7.10)

where v ^ , ^ and vA are the Beltrami differentials defined in Sec. 4. The inner products
appearing in the arguments of the delta functions are defined by

(b,vA) = J (7.11)

etc., as in (4.20).

We do not have expressions for the representatives e(m),x(m) or their deriva-
tives, the Beltrami differentials. Since the moduli space of the classical Riemann surface

The ghost action (7.10) agrees with the conformal gauge version of the ghost part of the
invariant action (6.14) if we make the redefinitions 0 —» — 20, -7 —* — -y/2 and discard the
irrelevant term 0&s(cx)-
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has a complex structure, one expects that something analogous is true for the heterotic

geometries discussed here l 1 ' . More specifically, one would like to have a natural partition

of the modular coordinates,

where m> = m1', j , j = 1,...,3(i — 1) and a = 1,...,2(-f - 1) such that, in a local system

of coordinates on the world sheet with t~ = c£ — x = 0, the Beltrami differentials are

restricted by

^ = ^ = ^ = ^ = 0. (7.13)

The product of delta functions in the integrands of (7.10) would then assume the form

«) + (0,f<.))- (7-14)

It is then possible to effect a formal evaluation in terms of the determinants det dj and

det 83/2 denned by

J {dbdc)b[zi) ... b(z3l_3)J
 d*'bt*! = det d3 det u'fo)

r l det «•( (7.15)

where u'(z) and va(z) denote bases for the hoiomorphic 2 forms and 3/2 forms, respec-

tively. The quantities det da and detd a /3 are sensitive to the choice of basis but the

products which appear on the right-hand sides of (7.15) must be independent of this

choice. The integral (7.10) with x = 0 and with the assumptions (7.13) then reduces to

A(m) = f
J

exp j 0d,

| de t3 2 | , . , _ < _ , , .
= '•• det(u*,v,)sdet

det d'3/2

(7.16)

In this formula the 2 forms, u*,u" and the 3/2 form v" are all even in the Grassman sense.

So also are the Beltrami differentials i?-,v,- and Up. The remaining Beltrami differentials,

Vfl and Vj, are odd.

In conclusion it should be remarked that the Faddeev-Popov fields 0 and 7 have

a wider role in superstring theory. They, or rather one of their bosonized components, is

involved also in the stucture of emission vertices l3>, More complicated multiple corre-

lators of the 0i system than indicated in (7.15) are therefore needed. According to the

VerSindes 1 4 ' such correlations can develop "unphysical" singularities on the world sheet.

We have nothing to add to that discussion 1 6 ' .
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8. SUMMARY AND CONCLUSIONS

We have analyzed the question of gauge fixing in heterotic super conformal field

theories and shown that the various auxiliary components, describing the geometry, can

be chosen in a globally well denned way. To do this we realize the geometry in terms of

a set of independent Bose and Fermi fields defined relative to a covering of the superman-

ifold by coordinate neighbourhoods. The transition functions which define the patching

are given as elements of a structure group which is generally a subgroup of the super-

reparametrizations, frame rotations and Weyl dealings. The subgroup is defined relative

to a choice of gauge since it can be interpreted as the stability group of a gauge slice - a

space of configurations restricted by gauge conditions. We give explicit formulae for the

action of this group on the Wess-Zumino class of configurations and also for the more

restricted "superconformal" configurations. In the latter case we recover the transition

elements employed in the standard definition of super Riemann surfaces.

We find that superfield notation is useful to the extend that it makes clear the

group property of the various finite transformations. It is also useful in the treatment of

superconformal matter multiplets, particularly in the construction of action functional.

However, because of the torsion constraints, which take the form of differential equations in

superspace, but which can be solved algebraically in component notation, it is advisable to

adopt the latter in order to be able to deal with independent variables. We have solved these

constraints in component notation. This has enabled us to express the transformations, at

least implicitly, through their action on sets of independent variables, and in particular to

give explicit form to the finite transformations of the WZ stability group. We have further

been able to show that the more stringent gauge conditions which define the superconformal

gauge (wherein the geometrical elements are reduced to flat superspace form) define a

"holomorphic" stability group. Transition elements drawn from this group define the

standard super Riemann surface.

In general the various geometrical fields can be absorbed by redefining the matter

fields. Such redefinitions are effected by means of finite gauge transofrmations. For the

particularly simple case in which no matter fields are present, we have used the Ward

identities to argue, on the basis of infinitesimal gauge transformations, that the dependence

on geometrical fields is expressed entirely through a finite set of moduli.

In addition to the generalized discussion of heterotic conformal field theories

involving chiral (and neutral) matter superfields, in which we give the superspace rules

together with the WZ gauge expressions for the various covariant derivatives, we have

included a treatment of the Faddeev-Popov procedure. This leads to an expression for the

integration measure in super moduli space.
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