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ABSTRACT

We quantiie the N—8 superaymmetric singleton Geld theory which is formulated
on the boundary of the four dimensional anti de Sitter spacetime {AdSt), The theory
has rigid OSp(8,4) symmetry which acts u a superconformal group on the boundary of
AdSt. We show that the generators of this tymmetry satisfy the full quantum OSp(S,4)
algebra. The spectrum of the theory contains massless states of all higher integer and
half-integer spin which fill the irreducible representations of O3p(8,4) with highest spin
«mu«=2,4,0,... Remarkably, these are in one to one correspondence with the generators
of Vasiliev's infinite dimensional extended higher spin superalgebra «fc«(8, 4) , suggesting
that we may have stumbled onto a field theoretic realisation of this algebra. We also
discuss the possibility of a connection between the N=8 supersingleton theory with the
eleven dimensional supermembrane in an AdS+ x 5 T background.
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1. INTRODUCTION

Superungktoni are the most fundamental representations of the super anti de
Sitter group* [l]|2|. They have remarkable properties which hire been discussed extensively
in the literature. For example, ^ingbtoa field theory can be described on the S* x S1

boundary of AdS^3 alone, as opposed to the whole of AdS^+j |Sj|4|. Moreover it is
known that treating the singletons as preoBi, one CM construct, on purely kinematlcal
grounds, infinitely many maulets states of all spins (maatUst in the anti de Sitter sense)
out of just two singletons |S][S].

The philosophy of this paper is to study the d-4, N»8 supersingleton theory
[6|[7] in Us own right, although we will touch upon certain issues concerning its possible
connection with the eleven dimensional supermembrane theory |8| formulated on AdSt xST

[9{[10|. In a previous letter [ll | , we already presented the results on the spectrum of the
N=8 supersingleton theory. In particular, it WM shown that the spectrum, in addition
to the N=8 supersingleton state*, contains massiess states of all higher integer and half-
integer spin, and that they fill the irreducible representations of OSp(8,4) [12j with highest
spin « „ „ = 2,4,0,....

In this paper, in addition to providing the necessary background material needed
for the derivation of the spectrum [11], we shall present new results. In Sees. 2 and 3,
we shall derive the (normal ordered) generators of the OSp(6,4) symmetry of the theory,
and show that they satisfy the quantum OSp(8,4) algebra (hence there are no anomalies).
Further, in Sec. 3, we shall present an unexpected connection between the spectrum at
massiess states and the work of Vasiliev flSj on higher spin superalgebras, which builds
on earlier work by Fradkin and Vasiliev [14]. More precisely, the massiess states of our
model are in one to one correspondence with the generators of the infinite dimensional
extended higher spin superalgebra, tht(t,4), of Vasiliev. This suggests that we may have
stumbled onto a field theoretic realisation of tk»(8,4). In Sec.4 , we shall discuss the issue
of the supersingleton-supermembrane connection and provide useful tools for its study.
In Sec. 5, we comment further on the possible implications of our results to the physics
of the d = l l supermembrane, and enumerate open problems. In particular, we suggest
that the infinitely many massiess states of all higher spin need not contradict cosmological
observations if an "inflation* scenario is taken into account. Some useful formulae, and
our conventions are collected in the Appendices.

2. THE ACTION A N D ITS SYMMETRIES

The N=8 singleton supennultiplet consists of 8 real scalars v!{I = l,—,8), in
the 8, of SO(8), and 8 four component spinors Xt[a = !,. . . ,«), in 8, of SO(8). These
fields live on the boundary of AdSt which is S3 x S \ and therefore depend on coordinates



{t,8,4>). In addition to the four dimensional Majorana condition A- = \ZC, the spinor
A- satisfies the following chiraiity condition

7»A_ - -A_, (2.1)

which, unlike the usual chiraiity condition, U compatible with the Majorana condition.

The N=8 Bupeningleton action if given by [fl][7[

i J a - y V,-A« ). (2.2)

where h,, = diag(-l, 1, tint2) is the metric, and Vj is the covariant derivative on S3 X 5 l .
The action is invariant under the following N=8 aupersymmetry transformations

(2.3)

as well as the 50(3,2) x 50(8) transformations

The parameter

(2.4)

± 7s)e"(<* - 1> ••.»). "M** « in 8,. of 5 0 ( 8 ) , is denned by

(2-5)

where C"*'" are 4 x 8 = 32 arbitrary comtant coefficients, and *"'(a' = 1 , . . , 4 ) are AdS

Killing spinon which therefore satisfy

- fib)*"' - 0. (2.6)

Here Vu(a = 1,2) is the covariant derivative on S*. Explicit numerical indices will always
denote tangent space indices. Eq.(2.A) implies the J-covariant equations (suppressing the
a' index)

- £*«_ - 0, VVjt_ + | f + - 0. (2.7)

One can show that the general solution for (2.A) is given by

•-•<••••« - 7 ? { ( : ) •(•£)•(;) •(•£:)}•
with

•'-(%/)• -(";/:/)•

(2.9)

Here we have used the shorthand-notation Dmm. s D*,m,(L ') , where L ( J » is the
representative of the coset SO(3)/SO(2)=53 [15]. In general £ ^ m . ( i " 1 ) denotes the
unitary representation matrix of SU(2) for angular momentum j . Some basic properties of
these matrices [16] are given in Appendix B.

The matrices £ ' , and E't are the 50(8) ^-matrices in a chiral basis, and satisfy

i-I"J = 2S'J. (2.10)

The (conformal) Kiling vectors (C^UB - - ( f .tynA (A,B=0,1,2,3,5) are the 10 gener-

ators of 30(3,2) transformations, and E*j = EjfV,\. (The explicit form of (£*, 0) u given

in Appendix C). These, and the 50(8) transformation parameter A ,̂ satisfy the following

equations

(2.11)

(2.12)

(2.13)
-nAB,
0.

One can easily show that (2.12) is a consequence of (2.11). Furthermore, (from Appendix
C) we see that (loe - fl** = 0(r?i, ft - 1,2,3). Therefore foo, f*s are the Killing vectors
which generate the 50(3) X 5O(2) transformations, while Za^, £&,», are eonformal Killing
vectors which generate the remaining SO(3,2) transformations.

We close this section by giving the commutator algebra of the N=8 aupersymme-
try transformation rules (2.3). They are:

(2.14)

where

A " = - i (2.15)

The dependence on the ten parameters of SO(3,2) can be made explicit by using (2.5).
Using the Killing spinor equation (2.11), one can verify that the SO(3,2) and 50(8) pa-
rameters given above satisfy the relations (2.11-13).



». THE QUANTIZATION OF THE N = 8 S U P E R S I N G I B T O N

In thi* lection we will quantise the N=8 lapenymmetric singleton action (2.2).
We will first *olv» the field equation! which follow from thil action. Then, we will quantii*
the expansion coefficient* occurring in thete solutions. Next, we will compute the conferred
Norther charges corresponding to the OSp(8,4) transformations. Substituting the solutions
into these charges we will obtain an oscillator representation for them. We will then show
that these charges satisfy the fall quantum OSp(8,4) algebra. At the end of this section we
shall summariie the spectrum of massless states in the theory and point out an unexpected
relationship with the Ftadkin-Vuiliev super higher spin algebras,

We begin with the analysis of the field equations which follow from (2.2). They

0,

o.

(8.1)

(3.2)

Using the properties of the D-functions (see Appendix B) one can verify that a complete
solution to these field equations is given by [I7j[2]

<3S>

(8.4)

with

and

(3.5)

Note that the single valuedness of the scalar field requires that we work on double (more

generally even) covering of AdS*. The solutions are normalised such that

.,P«w> = if

m,Ayw) = f w - *>*»»••

(3-7)

(S.8)

We now proceed with the canonical quantisation of the model. We impose the

following (anti) commutation relations:

4™'I -«"»»«-«•. £ = 0,1,-.. ,-l<m<t, (3.9)

Other (anti)commutaton vanish. The oim and <(,-„ are now operators in a Fock space

whose vacuum |0) is defined by

O 6 » ) 0 ) - ^ m | 0 ) - 0 . (3.11)

We now turn to the calculation of the conserved OSp(8,4) Noether charges. They

are obtained from the conserved Noether currents denned by

'-s&^Sfe""-* (312J

where 3je denotes differentiation from the right, and A"' is defined by

It is clear that d<J' — 0 by virtue of the (Buler-Lagrange) equations of motion.

Applying the formula (3.12) to the Lagrangtan (2.2), we obtain the following

result:

J'AB + 2

+ iv-AA.

where the energy-momentum tensor is given by

(3.14)

(3.15)

(3.16)

(3.17)

The conserved charges corresponding to these currents are given by

0.<* (3.18)

We now substitute the solutions (3.3), (3.4) for f>1 and Xt into the expressions (3.18)

for the Noether charges. Using several properties of the D-functtons we thus obtain after

a tedious but straightforward calculation the following oscillator representations. The

SO(3,2) charges are given by



- + E »*]:<?-.. <s-20>

m +

m)(; + m +

+ Eif^ ~ m + I ) ( J + m +

)+*(»Afoa+«sa)-

m +

<3-2S)

{iM0 6 l ) - i(iM03+MM)

The constant c in eq. (3.19) U » conM<ttt*nc« of normal ordering unbiguity in th« definition
of Mac,. It i* the turn of xro point «n«rgi«t of the OKillaton, and b given by

Tb«M •«m» su-e divergent, and need regolariiation. Howev* it is more latisfactory to
determine c by demanding closure of the quantum algebra, which we will do below. Note
that then if no normal ordering ambiguity in the definition of M u . This i» because
EX'=-< m " ° identically. The other operator! are well defined line* they consiit of
oscillators which commute with each other. For the supenymmetry chargef we find

where <?"" and <3^' are given by the following combination of supercharges;

(US)

Finally we find for the SO(8) charges the following oscillator representation:

<3-3°)
We are now able to calculate the quantum algebra. We find that for c = 0 the charges

defined above satisfy the following algebra:

\MAB,MCD\ = -i{itBcMAD - VACMBD - "IBDMAC + t)AoMBC), (3.31)

[T/j, TKLI - iihuTti - SIKTJL - fjLTiK + SILTJK), (3.32)

{Q",Q*} = s"hABMAO + i ( s , j ) ^ r " , (3.33)

(3.35)

Here f5 - I ' . T ' -= i"(r ,* - 0,1,2,3), where we have used the following f-matrix

notation

(! ) (i f ) * <"•>
This r»pre«ntation is chosen so that the Majorana spinor Q* has the simple form

(3.37)

The above results show that there are no local anomalies in any of the symmetries of the
N - 8 supersingleton modeL

In the case of string theories the seta-function regularif ation gives the same value
of c u that determined by the closure of the Lorenti algebra. It is interesting to see whether
this if also the case in our modeL The seta-function regulariiation gives

- {~1 ~ l ) f M ) i (3.38)

where - J and - 1 are bosonic and fermionlc contributioos respectively. Since f ( -2) - 0
we obtain cr,, - 0 [1S|, which coincides with the value determined by the closure of the
Osp(S,4) algebra. It is remarkable that the lero point energies sum up to sero for bosons
and fermkus separately.



Using the retultt of Sec. 2 and S, el»twher« [11] we have studied »h« spectrum of
the d=4, N«8 supersingleton theory. The singleton state* are rather unconventional. Ai
Dirae noted first |1|, their wave function has a fixed dependence on the radial coordinate
of AdS*. Thui there ii no principal quantum number associated with this radial direction.
The two singleton states (obtained by the action of two singleton creation operators on
the vacuum) yield infinitely many matslets state* whoee quantum numbers are exhibited
in the following Table.

L\S 0 1 1 | 2 | S I

- 1 TO 50 28 8 1
0 2 8 28 58 70 50 28 8
1 1 8 28 SO

2* 2* + l

s-2 1
70
1

50
8

28
28

8
50

In this t able S denote* the spin of the massless state, and L is the label of the supennultiplet
in which a given massles* state occurs. The table clearly shows that there is a regular
pattern which repeats itself modulo unit* of spin 2 (except for spin 0 states which are
special); i.e. the SO(8) content of spin t states is the same as that of spin (« + 2) states.

The occurrence of infinitely many massless higher spin particles in our model im-
plies the existence of infinitely many (local) gauge symmetries whkh are analogous to the
Maxwell, general coordinate and local tupersymmetries, associated with spin 1,2 and 3/2
respectively. In that case one would expect that the massless state* tabulated above gauge
an infinite dimensional superalgebra. In fact, we have found a remarkable relationship be-
tween these massles* states and the extended higher spin superalgebra *h*% 4) of Vasiliev
[13) which supports this expectation. More specifically, Vasiliev's *ht(t, 4) algebra has the
genarators which carry spin t, and are the Jt'th rank antisymmetric tensor* of SO(8) as
follows:

< = 2,4,0,... fc = O,4,8
« = 1,3,5,... * = 2,0

Remarkably, both the spin and the SO(8) content of then generator* agree precisely with
those of the massless states given in the Table. (The comparison i* to be made for gauge
fields, of course, Le. fields with s > 1 ). This suggests that the N=8 supersingleton

model provides a field theoretic realisation of $kt(tt4), whkh in turn has an application
in a consistent description of higher spin gauge fields interactions. In fact, Fridkin and
Vuiliev (19| have already shown that consistent cubic Interaction* of higher spin fields
which gauge **«(>,4) do « w t in AdS^ It would be interesting to see whether th*(S,A)

can b« realised as the algebra of the itess-tentor of the d-4, N»8 supersingleton theory.
Some progress is made in this direction in |20|.

4. SINGLETONS AND MEMBRANES

So far we have discussed the N«8 supertiagleton theory in its own right. We
devote this section to a discussion of posibble connections between the N=8 supersingleton
theory [0]|7| and the d-11 supermembrane [8|. It has been conjectured [21||9|[10|[ll]
that the N~8 supersingleton theory may arise from the d « l i supermembrane action in a
physical gauge. One consequence of this would be that the two singleton states could be
interpreted as the massles* excitations of a membrane [11].

The d-11 supermembran* in AdS* X S7 background, where the 4-form field
strength of d « l l supergravity assumes the value of the AdSt volume form, was considered
in [9|, In an attempt to solve the membrane field equation* the membrane world-volume
was identified with the S2 x S1 boundary of AdSt. Below, we will see however, that
in a background field expansion around this candidate solution, the term linear in the
fluctuations (Le. the tadpole term) actually diverges on the boundary of AdSt. A modified
version of this candidate lolution whkh avoids this problem has been recently found,
although it doe* not seem to give rise to the full N»8 supersingleton theory [10]. Therefore,
a rigorous connection between the N»$ supersingletons and the d = l l supermembrane has
not been established yet t. However, recent work |0][7] suggests that such connection
may exist. This is mainly because there is a natural way in which the supersingletons
(described by a field theory of scalars and spinors on the boundary of an AdS space)
can be associated |«][7| with super p-branes [8][22|[10][23]. Firstly, the super AdS groups
exist only in dimensions d < 7 [24]. In this case the boundary of the AdS space is
S? x S ' , p - 1,..., 5. These are precisely the values of p for which super p-branes exist [23].
Secondly, the internal symmetry groups occurring in the super AdS groups are the isometry
groups of Sl,S3 and S7. Adding up the dimension of the AdS space with the dimension
of the appropriate internal space, remarkably, one obtains the critical dimensions for super
p-branes [7].

t In a previous letter [11], the relation between the i=4, N=8 supersingleton theory and
the d = l l supermembrane theory was incorrectly asserted to have been established. (Since
|l lj dealt with the N«8 supersingleton theory in its own right, none of the results in that
letter were affected by this assertion).
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Given the motivation above, in the remainder at this tection we ihall firstly di*-
CUM the supersymmetry of a membrane propagating in a given d = l l supergravity back-
ground, and Mcondly provide an action formula for unall Buctuatioiu around an arbitrary
background.

The d = l l lupermembrane action ii given by [8[

S _ - - L

n? = di

0,1,2,

zk

L),

= 0,1 10,

M = 0,1, ...,10, <S=1,2,...,S2, (4.1)

where {r,a,p) are the coordinate! on the world-volume with metric fcv,, £ £ ( X W , 6 ) U
the supervielbein and Bazi{Xu, 9 ) ii the super three-form potential appropriate to the
eleven-dimensional (upenpace. XM{r,ff, p){M - 0 , 1 , . . . , 10) are the boeonic coordinate!
and 6(r, cr, p) are the fermionk coordinate! of eleven-dimensional superspace. Thai 8 to
a 32-component Majorana tpinor. The parameter a' ii related to the membrane tension
T « r » = l / a * t . x hat dimension three, Le. T ~ M3 where M ii • « < man unit. Note
that the world-volume coordinate! are dimenfionUtt, while Xu ~ M~l, and 6 ~ it'1**.
(For further convention! see Appendix A. For superapace convention! lee [25]).

The supermembrane action (4.1) ii invariant under ie-iymmetry provided that the
background fields (Le. the supervielbein and the super S-form) satisfy certain constraints
which are equivalent to the equations of motion of eleven-dimensional supergravity. Thus,
in order to find a classical solution to the eleven-dimensional lupermembrane theory, one
must first find a background which solves the d-11 supergravity equation* of motion.
Next, one mutt solve the tupennembrane equations of motion which follow from (4.1) in
that background.

In a background in which all the fsntkttfc fields are tero, the local K and local e
tupertymmetry transformation rales of the fermioak fields read

In d = l l , the Hilbert-Einstein term in the effective LagrangUa must be proportional to
a'-* on dimensional grounds. Thus, in an AdSt x bf background where WT is a seven
dimensional Einstein manifold at characteristk tiw a"1, the product of a'~9 with the
volume of M7, which is proportional to <TT, should be identified with the invert* square
of the usual four-dimensional gravitational coupling constant«. Hence we have the relation

11

where # is the d = l l gravitino, HPQRS{x) = 4d\PBQR$\(x), xu is the background value
of Xu, and f is the background value of the projection operator T:

(4.4)

Thus, the criteria for supersymmetry of a tolution in which all the fennionic Gelds vanish

Stu " 0 =»• = 0.

(4.5)

(4.6)

In order to make contact with the Killing spinors on the S3xSl boundary of AdSt

satisfying (2.0), we must choose a background such that (4.S) implies the AdSt Killing
spinor equation. One way of achieving this is to choose the d = l l background ipacetime
to be a product of an AdSt of inverte radius a with a 7-dimensional Einstein manifold
of inverse radius a/2, and choose Hltvfr = \a\f-gtwptt, where g is the determinant of
the AdSt metric #,«,(*) [2'f[27l- W* u n * coordinate system in which the AdSt metric is
given by:

* )-*[ - di* + d02 + tirSftdg* + tin2id?)]. (4.7)

The angular variables 9 and ^ satisfy the usual constraints, while 0 < fi < £, and f) - *
corresponds to spatial infinity. In this background, in order to solve (4.6) it is appropriate
to make the following ansati

- 1 . 2 , ...4, (4.8)

where *"'* are tpinors of eleven dimensions. The index a' labels a spinor of S 0(3,2), and
a labels the appropriate representation(s) of the isometry group of the internalmanifold
(e.g. the tc of S0(8) for 7-sphere). ( We omit the SO(10,1) spinor index of t"'", the
S0(3,l) spinor Index of <*"' and the SO(7) spinor index of t,")- From this ansati, and (4.6)
it follows that t"' are Killing spinors on Ad$t satisfying [27|

(V^-JiJ^'-O, (4.9)

where VM is the usual Lorents covariant derivative on AdSt. One can show that the general
solution for c"' is given by |28[[8]

\t" (t,i,4), (4.10)

where *"'((, S, 4) are precisely the Killing spinors on the 5 3 x S1 boundary of AdS* which
satisfy (2.6), and whose solutions are given in (2.8). One must still solve (4.7), which
certainty depends on the specific details of the solution to the membrane equations of

12



motion, u well u (4.0) in tiu internet directions. If on« chooses the infernal manifold to
be a 7-sphere, then (4.6) implie* ]2T]

where V m it the standard Loreats eovariant derivative on the 7-sphere.

We now examine the small fluctuations around an arbitrary classical solution. To
this end, we define a normal coordinate expansion for the coordinate! Xu in the standard
way [29]

where xu b the background value for Xu and (" u the normal coordinate. Uling (4.12)
one obtaim the following useful expansion formulae (in this formula we suppress a'):

where Vi£u is the usual corariant derivative. For the induced metric which U denned by
hij = d,X"djXNtuN(X) we obtain the following expansion

with Si, = dixudjxsguit(x). Applying these formulae to the expansion of the superme-
mbrane action (4.1) we obtain

*'*<»-*) r , (4.15)

where

r)V,8,

13

In deriving the 6-dependent terms in (4.10) we have assumed that the background values
of all fermion* we lero. (In view of this we denote the fluctuation of 6 by the same
symbol). Furthermore, we have used

nf + 0(9% (4.17)

where

The ansati for x" suggested in jOj In order to solve th« hrane-wave equation
which follows from (4.1) w«»: t - r, t - <r, «V - p, fi - J, o \ sr - 0. However, an
appropriate reselling of the fluctuations to render £ 3 independent of ft, unfortunately has
also the effect of making the tadpole term £} diverge M (ca*0)~*. This is unacceptable.
Recently, an alternative ansati has been found [10] in which £l vanishes identically for all
values of fi. In this case, indeed, one does find the correct singleton action but only for the
8 fermionic fluctuations. This is essentially due to the fact that the newly found solution
breaks all N - 8 supersymmetries. The details of this theory will be given in [10].

5. COMMENTS

If the conjectured eupersingleton-supennembrane connection actually exists, then
we should interpret the states obtained by repeated action of an arbitrary number of sin-
gleton creation operators on the vacuum to be corresponding to excitations of a luperme-
mbrane. In the N=8 supersingleton theory, although interactions on the world-volume are
not possible [7j, we may itill speak about interactions of spacetime (AiSt) fields. ( One
constructs the membrane propagator and vertex operators. Using these, one can build
spacetime amplitudes in an operator formalism in much the same way as it done for string
theories in a light-eon* operator formalism). It is not known at present, what kind of
interactions (of spacetime fields), if any, would be obtained in this way '• Moreover, it is
not clear how to incorporate the membrane interactions via a change in the topology of
the world-volume, since in our model the world-volume has a fixed topology (i.e. S2xSl).
In any event, it would be interesting to see if the consistent cubic interactions of fradktn
and Vasiliev [19] could be obtained from membrane amplitudes.

Note that the spectrum of massless states, in addition to the usual SO(S) gauge
fields, gravitini and the graviton, contains 28 new gauge fields, 50 new gravitini and

An alternative view has been advocated by Flato and Fronsdal [30). They consider the
massless states to be the singleton bound states, and argue that in order to obtain mean-
ingful interactions of these states in the whole of AdS space, one should quantise the
singletons with an unusual spin-statistics,

14



35+36+1 new graviton fields, at well aa higher spin massless states. Before deciding
whether the new atatea are physically acceptable, one should first analyse their couplings
(if any) to the usual matsles* particles of spin < 2. Using the result of this paper, as-
suming that the conjectured supeningleton-supermembrane connection exists, one could
contemplate computing the vertex operators in our model, in an attempt to understand
the nature of the higher spin massless fields. One might expect that the couplings among
particles which will survive in a limit in which the membrane tension goe* to sero while
keeping the gravitational coupling fixed, would be those described in the de Wit-Nicolai's
N=8 aupergravity [31].

Concerning the cosmotogkai implications of the infinitely many massless higher
spin particles, one can envisage an inflationary scenario in which alt these atatea are diluted
sufficiently enough not to violate any cosmological observations. For a discussion of how
this works in the case of the graviton, see for example [32], and for other masstess particles
with gravitational coupling, see [33]. Although inflation scenarios; usually favor de Sitter
space, there does exist a mechanism for triggering inflation in anti de Sitter space. In fact,
one such mechanism has been suggested [34] for de Wit-Nicolai'a N=8 supergravity.

APPENDIX A : CONVENTIONS

tign hi, = ( - , + , + ) , sign t?ut, = ( - , + , + , + , + , + , + , + , + , + , + )

•7; = C =

*b =

.5 s •>*-» = (-•«, •>;, - .
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APPENDIX B : SOME PROPERTIES OF ££m ,

V±D>mm.(L~l) = - . [ { / T m)0" ± m + I)]*D>m±^(L"1), V± = 7 , ± tV3

m')

. (L)Z>J! _ (i-)D»,nj (L) = 4ir ( J l * * I f J l

Ji k k \ _ f
mi ma ms / v

(mj + ma + mj = 0)

yt+a+i, / Ji Js J» \
\ —mi —irtj —m3 J

mi

m - m -

17

APPENDIX Ci (CONFORMAL) KILLING VECTORS ON S3 x S1

(it + >-&» = • - ( - «»
m* a

( a a

no» = o, tiia = 0, = o

1
= - - , - •

«« "«n<*»n

- « " * '
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