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ABSTRACT

We quantise the Nw=8 supersymmetric singleton field theory which is formulated
on the boundary of the four dimensional anti de Sitter spacetime (AdS,). The theory
has rigid OSp(8,4) symmetry which acts as a superconformal group on the boundary of
AdS,. We show that the generators of this symmetry satisfy the full quantum OSp(8,4}
algebra. The spectrum of the theory contains massless states of all higher integer and
half-integer epin which fill the irreducible representations of OSp(8,4} with highest spin
Smux=2,4,6,... Remarkably, these are in one to one correspondence with the generators
of Vasiliev's infinite dimensional extended higher spin superalgebra shs(8, 4) , suggesting
that we may have stumbled onto a field theoretic realisstion of thia algebrs. We also
discuss the poesibility of a connection between the N=8 supersingleton theory with the
eleven dimensional supermembrane in an A4S, x S7 background.

MIRAMARE-TRIESTE
June 1968

* To be submitted for publication

** Supported in part by INFN, Sesione di Trieste, Trieste, Italy.

1. INTRODUCTION

Supersingletons are the most fundamental representations of the super anti de
Sitter groups (1)[2]. They have remarkable properties which have baen discussed extensively
in the literature. For example, singleton field theory can be described on the SF x 5!
boundary of AdS,.a alons, ss opposed to the whole of AdS,.; [3][4]. Moreover it is
known that treating the singletons ss preons, one can construct, on purely kinematical
grounds, infinitely many massless states of all spins (massless in the anti de Sitter sense}
out of just two singletons |5][3].

The philosophy of this paper is to study the d=4, N=8 supersingleton theory
{6][7] in its own right, although we will touch upon certain issues concerning its possible
connection with the eleven dimensional supermembrane theory [8] formulated on AdS,xS7
(9§[10]. In  previous letter [11], we already preseated the results on the spectrum of the
N=8 supersingleton theory. In particular, it was shown that the spectrum, in addition
to the N=8 supersingleton states, contains massiess states of all higher integer and half-
integer spin, and that they fill the irreducible repressntations of OSp(8,4) [12} with highest
pin Sy = 2,4,9,....

In this paper, in addition to providing the neceasary background material needed
for the derivation of the spectrum [11], we shall present new results. In Secs. 2 and §,
we shall derive the (normal ordered) generators of the OSp(8,4) symmetry of the theory,
and show that they satisfy the quantum OSp(8,4) algebra (hence there are no anomalies).
Further, in Sec. 3, we shall present an unexpected connection between the spectrum of
massless states and the work of Vailiev [13] on higher spin superalgebras, which builde
on earlier work by Fradkin and Vasiliev [14]. More precisely, the massless states of our
model are in oite to one correspondence with the generators of the infinite dimensional
extended higher spin superalgebra, shs(8, 4], of Vasiliev. This suggests that we may have
stumbled onto a field theoretic realisation of shs(8,4). In Sec.d , we shall discuss the issue
of the supersingleton-supermembrane connection and provide useful tools for its study.
In Sec. 5, we comment further on the possible implications of our results to the physics
of the d=11 supermembrane, and enumerate open problems. In particular, we suggest
that the infinitely many massless states of sl higher apin need not contradict cosmological
observations if an “inflation” scenario is taken into account. Some useful formulae, and
our conventions are collected in the Appendices.

2. THE ACTION AND ITS SYMMETRIES

The N=8 singleton supermultiplet consists of 8 real scalars (I =1,...8),in
the 8, of SO(8), and 8 four component spinors A (a = 1,...,8), in 8, of SO(8). These
fields live on the boundary of AdS, which is §7 x S, and therefore depend on coordinates
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(t,8,¢). In addition to the four dimensional Majorana condition 3_ = AT C, the spinor
A_ satisfies the following chirality condition

Pho ==, (21)
which, unlike the usual chirality condition, is compatible with the Majorana condition.

The N=8 supersingleton action is given by [8][7]
L= -%y/—_h(h""a.'rpfajdp! + %p' p! — k=47, 2%). (2.2)
where hi; = diag(~1,1,sinf?) is the metric, and V, is the covariant derivative on 3 x 85,
The action is invariant under the following N=8 supersymmetry transformations
bp! = !";Sﬂl':.
EAS = —if' 8 p Bl 0¥ — %s{,,.,pfsi , {2.9)

as well as the SO(3,2) x $0O(8}) transformations

fp! = & g die’ + apo’ + Lo,
i 3 1

5AC = £ 5Vid" + %1-:(v,.5“,),\‘: +20480° + EA”(E”)",AE. {2.4)

The parameter g3 = 3(1 % vs)e¥(@ = 1,...,8), which is in 8, of SO(8), is defined by
64 (t.0,4) =207 (1.6, 9), (2.5)

where C*'% are 4 x 8 = 32 arbitrary constant coefficients, and £*'(of = 1,...,4) are AdS
Killing spinors which therefore satisfy
8
2

Here V,(a = 1,2) is the covariant derivative on 57, Explicit numerical indices will always
denote tangent space indices. Eq.(2.8) implies the 3-covariant equations (suppressing the
o index)

(Va+ 2wm)e =0, (8- ;‘fo)t" = 0. (2.6)

Ve, — -;-1.1_ =0, +Vie + %q =9, (2.7)

One can show that the general solution for {2.6) is given by

“wnn=e{(2). () (2)- ()} oo

1D WD
= -$+4 - -$-¢
“ (Dﬂﬂ)' “ (Dﬂ—} )'

with

T T I T T T w s waeeis S B RN s wmes,

D_ 4 4 ~D 44
ug = (iDj;,;)' u, = (_‘D:i:,é). {2.9)

Here we have used the shorthand-notation Dy = D,tm.(L‘l), where L(9,4) is the
representative of the coset SO(3)/S0(2)=5% [15]. In general Di_(L7') denotes the
unitary representation matrix of SU(2) for angular momentum j. Some basic properties of
these matrices [18] are given in Appendix B.

The matrices T/, and E'T are the SO(8) v-matrices in a chiral basis, and satisfy

o't 41 g =26,
el 1 g =260 (2.10)

The (conformal) Kiling vectors (§*,0)as = —(£,0) 5. {A,B=0,1,2,3,5) are the 10 gener-
ators of 30(3,2) transformations, and L;; = SJUEBI. (The explicit form of (£*, (1) is given
in Appendix C). These, and the SQ(8) transformation parameter A”, satisfy the following
squations

Vikiap + Vikas = 4lanh;, (2.11)
V'3:04p = -Q4s, (2.12)
8% = 0. (2.13)

Onte can easily show that {2.12) is a consequence of {2.11). Furthermore, (from Appendix
C) we see that Dog = [lys = O(th, A = 1,2,3). Therefore {5, £ are the Killing vectors
which generats the $O(3) x §0(2) transformations, while £, {5 are conformal Killing
vectors which generate the remaining SO{3,2) transformations.

We close this ssction by giving the commutator algebra of the N=8 supersymme-
try transformation rales (2.3). They are:

[6g(#1), 8 (#2)] = bs0(s,2){£, D) + Es0(s) (4), (2.14)
whers
f‘. = ‘2"‘?+‘1"‘f+a
0= -5(ed e~ 1002},
AV = -§(¢,+El’fn’|c._ —1e12). (2.15)

The dependence on the ten parameters of SO(3,2) can be made explicit by using (2.5).
Using the Killing spinor equation (2.11), one can verify that the S0O(3,2} and SO(8) ps-
rameters given above satisfy the relations (2.11-13).
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3. THE QUANTIZATION OF THE N = 8 SUPERSINGLETON

In this section we will quantize the N=8 supersymmetric singleton action (2.2).
We will first solve the field equations which follow from this action. Then, we will quantise
the expansion coefficients occurring in these solutions. Next, we will compute the conserved
Noether charges corresponding to the OSp(8,4) transformations. Substituting the solutions
into these charges we will obtain an oscillator representation for them. We will ther show
that these charges satisfy the full quantum OSp(8,4) algebra. At the end of this section we
shall summarise the spectrum of massless states in the theory and point out sn unexpected
relationship with the Fradkin-Vasiliev super higher spin algebras.

We begin with the analyais of the field equations which follow from (2.2). They

a(V-hh'1ay0") - ~\/_ he! =0, (3.1)
T2 =0. {3.2)

Using the properties of the D-functions {see Appendix B) one can verify that a complete
solution to these field equatione is given by [17][2]

oo 4¢
P =3 Y (shnpenm +alrpin), (33)
=0 ma= ¢
oo +5 f
3=37 3 (Fmdim +dim i), (3.4)
,‘_—_* m=—y3
ik 1 ~i(e+4)t nt ~1
Pom = e Do (L77), (3.5)
e Vgen P TRty TN _4...(17‘)
’\jm = (":’m) y Uim = ¢ (_s._;.._) ) i+d +*M(L"") (3.6)

Note that the single valuedness of the scalar field requires that we work on double {more
generally even) covering of AdS,. The solutions are normalised such that

(Pem Pem:) = "[d“d'll'ﬂﬂ PemBoPemt = b bmm, (3.7

{Ajms Ajrmt} = / dfdpaind din1®Ajtmt = &igt bmme. (3.8)

We now proceed with the canonical quantisation of the model. We impose the
following (anti) commutation relations:

.. ~l<m<y (3.9)
s H—FSm<y. {(3.10)

[adms “e'...-] =6 bt b, L=0

{ m1 dIfn'} = 5"’5’-’-.5”.“,’ i=

b3 | =
|
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Other (anti)commutators vanish. The ai and d;,, are now operators in a Fock space
whose vacuum [0) is defined by

atmf0) = dim[0) = 0. (s.11)
We now turn to the calculation of the conserved OSp(8,4) Noether charges. They
are obtained from the conserved Noether currents defined by

; aL anl «_ g
J‘--a—v;}-i +88.-A"“ K, _ (3.12)

where 3z denotes differentiation from the right, and K° is defined by

5L = 3K, (3.18)

It is cloar that 3;J° = 0 by virtae of the (Euler-Lagrange) equations of motion.
Applying the formula (3.12) to the Lagrangisn {2.2), we obtain the following

result:
Tip = VRN (Teha + 39°0;0a8), (3.14)
Jis = V=hh o rdspn + {-\/-_hx_q‘B”A_, (3.15)
Ty = iV=RAE A EL, (B0t tues + %pn.r_], (3.16)

whiere the energy-momentum tensor is given by
Ty = -0 Byor + S BuplPtpr + 407) = FLr Vo (17)
The conserved charges corresponding to these currents are given by
Mag = [ dIdpTLE
Tir= f dddeJ}3°,

dura = [ 04770, (3.18)

We now substitute the solutions (3.3), (3.4) for ' and A2 into the expressions (3.18)
for the Noether charges. Using several properties of the D-functions we thus obtain after

s tedious but straightforward calculation the following oacillator representations. The
S0(8,2) charges are given by
My = E(e + -—)a,,,,a,,.. + E(J += )df:, R (3.19)



My = E ma,mam E mdj: it {3.20)

Mas +iMyy = Z[(c —m)(e+m+ kel ol +

tm
+ Yl = m)G +m+ Dtdle, az, (s.21)
im
Moy + Mys = Y [(¢— m + 1)(+m+ [tal] ol +
iLm
+ Y1 = m+ )G +m+ )bl e, (3:22)
R

(l‘Mm + Mu) + ‘(l.MurFMu) =
~ Sl +m+ 2+ ma)ball, ok

&m

- E{(; +m+2)(5+m+1)jt ,+m+1d}‘-.. (3.23)

{iMm + Mgy) - l'(t'MurFMsa) =
Zue —m42){t-m+ )ball, al+

+}:[(;——m+ 2)(G - m+ )4l A i1 ®im.  (3:29)
,m
The constant ¢ in eq. (3.19) is a consequence of normal ordering ambiguity in the definition
of Mps. It is the sum of sero point energies of the oscillators, and is given by

¢m —E(H N3G+ (5:25)
,hm
These sums are divergent, and need regularisation. However it is more satisfactory to
determine ¢ by demanding closure of the quantum algebra, which we will do below. Note
that there is no normal ordering ambiguity in the definition of AMy;. This is because
¢ _,m = 0 identically. The other operators are well defined since they consist of
oscillators which commute with each other. For the supersymmetry charges we find

Q* = 2[(¢+ mafafldl L+ (eempbalt, el ](E03,  (s29)
- E[(z m+ )4l &, gm-g Tl mytal? e pt 4 S (B0, (3:27)

where Q4! and Q" are given by the following combination of supercharges:

Hm (60 4 047 - 030 — g, (3.28)
QU m L(IH + 097 4 0% 4 0%) (3.29)
7

Finally we find for the SO(8) charges the following oscillator representation:
= 2;2:; frgn 42 Zdt" Bl (3.30)

We are now able to calculate the quantum algebra. We find that for ¢ = 0 the charges
defined above satisfy the foliowing algebra:

[Map, Mcp| = —=i(nacMap — nacMsp — n8pMac + napMpc),  (3.31)

[Trs Tz | = $(8unTee — S1x T = 6y Tix + 61 Tyke ), (3.32)
(@%@} = 64447 My p + 3(B0)TH, (3.33)
[Map, Q%] = %tuQ"'. (3.34)
" ' a
[T7,Q% = —5(2”);0‘9- (3.35)
Here % = 47, 0* = 4"(r,s = 0,1,2,8), where we have used the following ~-matrix
notation - o i
Fo = (:] _;) : = (iu“ —loa )s € = Fo%a. (3.36)
This representation it chosen so that the Majorana spinor Q* has the simple form
Q#
. Q3
Q= (@t (3.37)
(-t

The sbove results show that there are no local anomalies in any of the symmetries of the
N = 8 supersingleton model.

In the case of string theories the seta-function regularisation gives the same value
of ¢ as that determined by the closure of the Lorents algebra. It is interesting to see whether
this is also the case in our model. The seta-function regularisation gives

(1 1, 1. 1.,
Creg E.E’?:{EE(‘+§) _EZ(’+§) }.
Lm J,m
3
- (-3 - 1), (5.39)
where — 1 and ~1 are bosonic sad fermionic contributions respectively. Since ¢(—2) = 0

we obtain c,,, = 0 [18], which coincides with the value determined by the closure of the
Osp(8,4) algebra. It is remarkable that the sero point energies sum up to sero for bosons

and fermions separately.



Using the results of Sec. 2 and 3, elsowhere [11] we have studied the spectrum of
the d=4, N=8 supersingleton theory. The singleton states are rather unconventional As
Dirac noted first |1, their wave function has a fixed dependence on the radial coordinate
of AdS,. Thua there is no principal quantum number associated with this radial direction.
The two singleton states (obtained by the action of two singleton creation operators on
the vacuum) yield infinitely many massless states whose quantum numbers are exhibited
in the following Table.

s o 4 1 32 2 & s I 2¢ 2e+} 2041 2643
-1 70 66 28 3 1

0 2 8 28 56 70 56 28 8 ...

1 1 8 28 86

s~ 2 e 1

81 ... 70 56 28 ]

s 1 3 28 56 .

In this table § denotes the apin of the massless state, and L is the label of the supermultiplet
in which a given massless state cccurs. The table clearly shows that there is a regular
pattern which repeats itself modulo units of spin 2 (except for spin O states which are
special); i.e. the SO(8) content of spin s states is the same as that of spin (¢ + 2) states.

The occurrence of infinitely many massless higher spin particies in our model im-
plies the existence of infinitely many (local) gauge symmetries which ars analogous to the
Maxwell, general coordinate and local supersymmetries, associated with apin 1,2 and 3/2
respectively, In that case one would expect that the massless states tabuluted above gauge
an infinite dimensional superalgebra. In fact, we have found & remarkable relationship be-
tween these massless states and the extended higher spin superalgebra sha(8, 4) of Vasiliev
[13] which supports this expectation. More specifically, Vasiliev's shs(8, 4} algebra has the
genarators which carry spin s, and are the k’th rank antisymmetric tensors of SO(8) as
foliows:

#=24,6... k=048
e=1,8,5. k=26
k4 =

s=21.. k=15

s=b8.. k=37

Remarkably, both the spin and the SC(8) content of these generators agree precisely with
those of the massless states given in the Table. (The comparison is to be made for gauge
fields, of course, i.e. fields with s > 1 ). This suggeste that the N=8 supersingleton
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model provides a field theoretic realisation of #hs(8, 4), which in turn has an application
in & consistent description of higher spin gauge fields interactions. In fact, Fradkin and
Vasiliev {19] have aiready shown that consistent cubic interactions of higher spin Selds
which gauge shs(8,4) do exist in AdS,. It would be interesting to see whether sha(8, 1)
can be realized as the algebrs of the stess-tensor of the d=4, N=d supersingleton theory.
Some progress is made in this direction in [20].

4. SINGLETONS AND MEMBRANES

So far we have discussed the N=8 supersingleton theory in its own right. We
devots this section to s discussion of posibble connections between the N=8 supersingleton
theory [6){7} and the d=11 supermembrane [8]. It has been conjectured [21](9][10]{11]
that the N=8 supersingleton theory may arise from the d=11 supermembrane action in a
physical gauge. One consequence of this would be that the two singleton states could be
interpreted as the massloss excitations of a membrane [11].

The d=11 supermembrane in AdS, x 57 background, where the 4-form field
strength of d=11 supergravity assumes the value of the AdS, volume form, was considered
in [9]. In an attempt to solve the membrane field equations the membrane world-volume
was identified with the 53 x §' boundary of AdS,. Below, we will see however, that
in a background field expansion around this candidate solution, the term linear in the
fluctuations {i.e. the tadpole term) actually diverges on the boundary of AdS,. A modified
vertion of this candidate solution which svoids this problem has been recently found,
although it does not seem to give rise to the full N=3 supersingleton theory [10]. Therefore,
a rigorous connection between the N=8 supersingletons and the d=11 supermembrane has
not been established yet T. However, recent work [6][7] suggests that such connection
may exist, This is mainly because there is a natural way in which the supersingletons
{described by a field theory of scalars and spinors on the boundary of an AdS space]
can be associated [6][7) with super p-branes [8][22](10][23]. Firatly, the super AdS groups
exist only in dimensions d < 7 {24]. In this case the boundary of the AdS space i
§Px §',p = 1,..., 5. Thess are precisely the values of p for which super p-branes exist [28].
Secondly, the internal symmetry groups occurting in the super AdS groups are the isometry
groups of 51,5 and 57, Adding up the dimension of the AdS space with the dimension
of the appropriate internal space, remarkably, one obtains the critical dimensions for super

p-branes [7].

In & previous letter [11], the relation between the d=4, N=8 supersingleton theory and
the d=11 supermetabrane theory was incorrectly asserted to have been established. (Since
[11] dealt with the N=38 supersingleton theory in its own right, none of the results in that
letter were affected by this assertion).
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Given the motivation above, in the remainder of this section we shall firstly dis-
cuss the supersymmetry of a membrane propagating in a given d=11 supergravity back-
ground, and secondly provide an action formula for small fluctuations around an arbitrary
background.

The d=11 supermembrane action is given by [8]

§= -% drdodo(v—h + %s""'a.-z*a,-z”a,,z“anm),

hi;' = H:ln;fﬂabu %,5=0,12 a,b=0,1,..10,
M8 =8,2°E, 2*=(X¥,0%), M=01,.,10 &=12.,32 (&)

where (r,, ) are the coordinates on the world-volume with metric h;;, Ef (XM,0)
the supervielbein and Byp, (X™,0) is the super three-form potential appropriate to the
eleven-dimensional superspace. X (r, 0, 5)(M = 0,1,...,10) are the bosonic coordinates
and 8(r, o, p) are the fermionic coordinates of eleven-dimensional superspace. Thus 8 i
a 32-component Majorana spinor. The parameter o' is related to the membrane tension
T as T = 1/a®!. T has dimension ¢hree, i.e. T ~ A® where M is some mass unit. Note
that the world-volume coordinates are dimensioniess, while X* ~ M~%, and @ ~ M~1/2,
(For further conventions ses Appendix A. For superspace conventions see [25]}.

The supermembrans action (4.1) is invariant under x-symmetry provided that the
background fields (Le. the supervielbein and the super $-form) satisfy certain constraints
which are squivalent to the squations of motion of eleven-dimensional supergravity. Thus,
in order to find & classical solution to the eleven-dimensional supermembrane theory, one
must first find a background which soives the d=11 supsrgravity equations of motion.
Next, one must solve the supermembrane equations of motion which follow from (4.1) in
that background.

In » background in which all the fermionic fields are sero, the local £ and local ¢
supersymmetry transformation rules of the fermionic fields resd

$¥sc = Dase = (Vag + 5gal7M Lar = STul " Hpars(sl)e,  (42)

0 = {1+ +g (4.3)

In d=11, the Hilbert-Einstein term in the effective Lagrangian must be proportional to
o'~% on dimensional grounds. Thus, in an AdS, x M7 background where M" is a seven
dimensional Einstein manifold of characteristic sise a1, the product of a'~® with the
volume of Af7, which is proportional to a~7, should be identified with the inverse square
of the usual four-dimensional gravitational coupling constant 5. Hence we have the relation

K? ~ a®a7,
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where ¥ is the d=11 gravitino, Hpgrs () = 43|p Bgrs|(z), 2™ is the background value
of XM and I’ is the background value of the projection operator I':

r= a_\/1_=h¢‘f*n;'n;en;r.,.,,. (1.4)
Thus, the criteria for supersymmetry of & solution in which all the fermionic felds vanish
is [9]

0=0a (1-Te=0, (4.5)
§Wp = 0= Dpre=0. {4.6)

In order to make contact with the Killing spinors on the $3x 5% boundary of AdS,
satisfying (2.6), we muat choose a background such that (4.8} implies the A4S, Killing
spinor equation. One way of achieving this is to choose the d=11 background spacetime
to be a product of an AdS, of inverse radius a with » 7-dimensional Einstein manifold
of inverse radius a/2, and choose H,, .0 = $64/=0€,p0, Where g is the determinant of
the AdS, metric g, (z) [26][27). We use a coordinate system in which the AdS, metric is

given by:
de® = (acosf)™2( = de® + dF* + sin® B(d8° + sin®0d4?)]. (4.7

The angular variables § and ¢ satisfy the usual conatraints, while 0 < £ < L andf=1
corresponds to spatial infinity. In this background, in order to solve (4.8) it is appropriate

to make the following ansats
(D) @ni(y), o =124, &=1,2,.8 (4.8)

whers ¢*'“ are spinors of eleven dimensions. The index a’ labels a spinor of 50(3,2), and
4 labels the appropriste representation(s) of the isometry group of the internalmanifold
(0.8, the 8. of SO(8) for T-sphere). ( We omit the SO(10,1) spinor index of ¢4, the
S0(3,1) spinor index of ¢ and the SO(7) spinor index of n). From this ansats, and (4.6)
it follows that ¢* are Killing spinors on AdS; satisfying [27]

a 4
(V= gm)e =0, (4.9)
where V,, is the usual Lorents covariant derivative on AdS,. One can show that the general
solution for =’ is given by {28][9]

€ = ﬁ(acosﬁ)_ H (con-'g— + 15:1':4%)3"‘(!, 4,4}, (4.10)

where ¢*'(t,9, 4} are precisely the Killing spinors on the 53 x 5! boundary of AdS, which
satisfy (2.6), and whose solutions are given in (2.8). One muast still solve (4.7), which
certainly depends on the specific details of the solution to the membrane equations of
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motion, as well as (4.6) in the internal directions. If one chooses the internal manifold to
be a 7-sphere, then (4.6} implies |27
ta ;
(vm + T'fm)n‘ =0, (4'11)
where V,, is the standard Lorents covariant derivative on the 7-sphere.

We now axamine the small fluctustions around an arbitrary classical solution. To
this end, we define & normal coordinate axpansion for the coordinates X™ in the standard
way [29]

XM w M (o) eM 4 0(8%), {4.12)

where 2 is the background value for X and ¢M is the normal coordinate. Using (4.12)
one obtains the following useful expansion formulae {in this formula we suppress o'):

B XM g, oM 4 7, eM %a‘z” RM, 4o EF €9 + 0(€),

1
Iaen(X) =gup(z) — sﬂumofpfq +0(€*%),
Bune =Bune(z) + 9V Bune(z)+
1

+ Efafn (Yo VrBunriz) + qumuﬂxr]s("» +0(&%), (413)
where V&M is the usual covariant derivative. For the induced metric which is defined by

hij = 3, XM 8, XN gasw (X) we obtain the following expansion

iy =hi; +28:zMV 1 ¥ gug e (2)+

+ VMV, 6N g (2) - 8™ 0,2N Rupngt €9 + 0(8), (4.14)

with hy; = 8,23,z gpr v (). Applying these formulae to the expansion of the superme-
mbrane action {4.1) we obtain

L i a'dn-2 pn {4.15)
where "zo
22 =-v_h+ %Gij*aifuaj&’"athBMNP(x)s
Ot == VERREaM Ve g (3) + ‘;'s"f"f”a.-z” ;2" 3uz Hyrypq(zh

1 } .
L% = EV —-RV;E"V‘GNQMN + %V —ﬁa;t“ajZNﬁ"Rupyqf'Pfq—'
= VRV Vg (0™ 8,05 — B By — Rz O )+
+ %““E“V-'Enajzrattqﬂuxpa = %"’.*EMEN3-'1’3:'30'9*"“7"1{?‘33“*
+ 1V —LL"B;G“E&GF;,(I - P)?,-G, (4.16)
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In deriving the ©-dependent terms in (4.16) we have assumed that the background values
of all fermions are sero. {In view of this we denote the Huctuation of © by the same
symbeol). Furthermore, we have used

If = (¥.8)* + 0(0%), (4.17)

where

6.‘ =8 + a.-:“[%w,,,"’(sjl‘,.. + %(P’“"ru - sl‘yl“"“”)ﬁpqgg(z)]. (4.18}

The ansats for 32 suggested in [9] in order to solve the brane-wave equation
which follows from (4.1} was: ¢t =, f = o, ¢ = p, § = I, &y™ = 0. However, an
appropriate rescaling of the fluctuations to render [? independent of 8, unfortunately has
also the effect of making the tadpols term £ diverge as (casf) . This is unacceptable.
Recently, an alternative ansats has been found [10] in which £! vanishes identically for all
values of 5. In this case, indeed, one does find the correct singleton action but only for the
8 fermionic Suctuations. This is sesentially due to the fact that the newly found solution
breaks all N=8 supersymmetries. The details of this theory will be given in [10].

5. COMMENTS

If the conjectured supersingleton-supermembrane connection actually exists, then
we should interpret the states obtained by repeated action of an arbitrary number of sin-
gleton creation operators on the vacuum to be corresponding to excitations of a superme-
mbrane. In the N=8 supersingleton theory, although interactions on the world-volums are
not possible |7}, we may still speak about interactions of spacetime (AdS,) fields. ( One
constructs the membrane propagator and vertex operstors. Using these, one can build
spacetime amplitudes in an operator formalism in much the same way as is done for string
theories in a light-cone operator formalism). It is not known at present, what kind of
interactions (of spacetime felds), if any, would be obtained in this way t, Moreover, it iz
not clear how to incorporate the membrane interactions via s change in the topology of
the world-volume, since in our model the world-volume has a fixed topology (i.e. §7x 1),
In any event, it would be interesting to see if the consistent cubic interactions of Fradkin
and Vasiliev [19] could be obtained from membrane amplitudes.

Note that the spectrum of massless states, in addition to the usual SO(8) gauge
fields, gravitini and the graviton, contains 28 new gauge fields, 56 new gravitini and

An alternative view has been advocated by Flato and Fronsdal [30]. They consider the
massless states to be the singleton bound states, and argue that in order to obtain mean-
ingful interactions of these states in the whole of AdS space, one should quantise the
singletons with an unusual spin-statistics.
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35+35+1 new graviton fields, as well as higher spin massless states. Before deciding
whether the new states are physically acceptable, one should first analyse their couplings
(if any) to the usual mamless particles of spin < 2. Using the result of this paper, as-
suming that the conjectured supergingleton-supermembrane connection exists, one could
contemplate computing the vertex operators in our model, in an attempt to understand
the nature of the higher spin massless fields. One might expect that the couplings among
particles which will survive in & limit in which the membrane tension goes 1o zero while
keeping the gravitational coupling fixed, would be those described in the de Wit-Nicolai's
N=8 sypergravity (31].

Concerning the coamological implications of the infinitely many massless higher
spin particles, one can envisage an inflationary scenario in which all these states are diluted
sufficiently enough not to violate any cosmological observations. For a discussion of how
this works in the case of the graviton, see for example [32], and for other massieas particles
with gravitatianal coupling, see [33]. Although inflation scenarioe usually favor de Sitter
space, there does exist & mechanism for triggering inflation in anti de Sitter space. In fact,
one such mechanism has been suggested [34] for de Wit-Nicolai's N=8 supergravity.
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APPENDIX A :

CONVENTIONS

sign hiy=(—,+,4), #on qu = (=, +,+,+, ++ +. )

fo = 03,

‘;:

h%=—0p @1, =001, C=7381

Y1
¥
¥s
Y

=03, T =01, &ua=4Lw =1

¥ =vlw = (—iwg, Wl -, W)
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APPENDIX B: SOME PROPERTIES OF 1Y,

l m'(L)] = mm(L’ l)

mm'(L 1) =t [(J ¥ m}(J Tm+ 1)] .tlm'(L )! Vi =V iV,

/ 4048508 D (D) Dl (L) = 57

/ dodgaind D3, (LYDA . (L)DE, . (L) = 4x (::; rJ:: ::o) (i:

(m1 +mg + mg =0)
h R 5 ) = (~1)+ats ( A B A
my mMma Mg =my ~m3 —Thy
= (__1).1'A+J'=+.|'n ( B h B )

m3 m Mg

(Prd iy 1)y [(‘z,‘tT"ZHT)] #
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1 bijbmms  (no sum over m’')

A A
Ry hy

)

APPENDIX C: (CONFORMAL) KILLING VECTORS ON §% x §!
, i .. a 3 +siné d
b tibp=e™ ( - mn‘méa + codm¢‘—3—i - F"ni'a?)
: a  cosd 8
b + 1€z = e"‘( mnlsmé-— + eoaoam¢ + = amj 34‘)
i a .. @8
Eap + 1830 = c‘“( - ..w“b—t - Jln“a—‘)
flgs =0, Mz =0, flgs+illy =0
Ny + 1o = -%e‘“aa’n‘ooadv
. 1 g
Qs + iz = —2e€ sindsing

1 .
lag +¢flgg = -—EC—.'M‘
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