
IC/88/6

INTERNATIONAL CENTRE FOR
THEORETICAL PHYSICS

SINGLETONS, HIGHER SPIN MASSLESS STATES

AND THE SUPERMEMBRANE

INTERNATIONAL
ATOMIC ENERGY

AGENCY

UNITED NATIONS
EDUCATIONAL.

SCIENTIFIC
AND CULTURAL
ORGANIZATION

Eric Bergshoeff

Abdus Salam

Ergin Sezgin

and

Yoshiaki Tanii





IC/88/6

International Atomic Energy Agency

and

United Nations Educational Scientific and Cultural Organisation

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

SINGLETONS, HIGHER SPIN MASSLESS STATES

AND THE SUPERMEMBRANE*

Eric Bergshoeff," Abdus Salam, Ergin Sezgin and Yoshiaki Tanti

International Centre for Theoretical Physics, Trieste, Italy.

ABSTRACT

We analyse the spectrum of the eleven dimensional supermembrane quantized in
AdS4 x S7 background. The classical membrane lives at the boundary of AdS^ which is
S2 x S1 , and has OSp(8,4) symmetry. We find that the spectrum contains, in addition
to the N=8 supersymmetric (massive) singletons (which may possibly be the ultimate
preons), also massless states of all higher integer and half-integer spin. These states fill
the irreducible representations of 3Sp(8,4) with highest spin 3mM=2,4,6,... The smal = 2
multiplet corresponds to the states of the de Wit-Nicolai's N=8 gauged supergravity in
four dimensions.
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1. INTRODUCTION

The quantum theory of the eleven dimensional aupeimembrane (1] in a. back-
ground which is the product of the four dimensional anti de Sitter spacetime [AdSi) with
the seven-sphere (S7) was studied recently [2]. In particular the four-index field strength
was taken to be proportional to the Levi-Civita tensor in AdSt [3|, and the membrane
world-volume was identified with the boundary of AdSt which is 5* x S1 [4|. This back-
ground has OSp(8,4) symmetry. One of the main results of ref. ;2] is that in a physical
gauge where all the bosonic excitations in the direction of the world-volume coordinates
(r, <?,/>), and half of the fennionic excitations are set equat to zero, the theory becomes
exactly solvable. The physical excitations which consist of eight bosons and eight fermions
are described by an N=8 super-symmetric free singleton* action defined on S2 x S1 [2].
The singletons described by such an action may in principle serve as preons [7] [8]. It has
been shown that [2j the normal ordered quantum OSp(8,4) generators of the theory (which
are the analogs of the super Poincare generators of the usual superstring theories) obey
the full OSp(8,4) algebra. Thus we have a candidate for a quantum consistent theory of
the supermembrane. The purpose of this letter is to analyse the spectrum of this theory.

Our main result is to construct all the massless states. By acting once with a
bosonic or fermionic creation operator on the Fork vacuum we generate the N=8 singleton
states, which are rather unusual objects with no Poincare analogs [9]. Acting twice with the
creation operators we obtain ajl the massless states. They are the OSp(8,4) supermultiptets
with highest spin s=2,4,6,... Thus, unlike in the string theory where the highest spin of the
massless states is two, here we find that the supermembrane produces massless states of all
integer and half integer spin. The action of three or higher number of creation operators
on the vacuum gives only massive states.

The massless higher spin states have been encountered before in the interesting
work of Flato and Fronsdal [10] in the context of a singleton field theory in AdS*,. However,
it is important to note that while their massless states are bound states of two singletons,
in our model they correspond to excitations of the supermembrane. We will comment
further on this in Sec. 4.

In the next section, we give some preliminaries . In Sec. 3 we analyse the
spectrum. In Sec. 4 we discuss the implications of our results, and point out open problems.

* The singletons are the most fundamental representations of the anti de Sitter
group SO(3,2), first discovered by Dirac [5|. He referrred to them as "A remarkable
representation ..,". The name singleton was coined later [6] due to the fact that their
weight space consists of a single Regge trajectory.



2. PRELIMINARIES

The fields which occur in the supermembrane action are the coordinates of the
eleven dimensional super space; i.e. eleven bosonic coordinates, and thirty two compo-
nent Majorana spinors. After fixing the world-volume reparametrizations and the Siegel
symmetry, we are left with 8 bosonic degrees of freedom, ips', and 8 fermionic degrees of
freedom, A". The bosons are in the 8», and the fermions in the 8, of SO(8). In ref. [2] it
was shown that the supermembrane action in the background described above reduces to
the following N=8 supersymmetric singleton action

(1)

The N=8 supersymmetry transformation rules are

SXt = -iiidi<f>'T.'a6tc^. - -Y,'ail<pIet, (2)

The action is also invariant under the following bosonic symmetry transformations

Z + ±A"(£,,) V^. (3)

where AIJ is constant, (C,{1)AB = -(C,n) f l ,4 (A,B=0,l,2,3,5) are the 10 generators of
SO(3,2) transformations, and E/j = E[/Ej,. The explicit form of the (conformal) Killing
vectors (£\fl) can be found in [2]. These vectors satisfy the following equation

Since fJ05 = tlmn = 0(m,n = 1,2,3), it follows that £0s, £„* are the Killing vectors which
generate the SO[3) x SO(2) transformations, while fOm> £sm are conformal Killing vectors
which generate the remaining SO(3,2) transformations.

The field equations which follow from (l) have the solutions [ll][2]

+e
(5)

(6)

with

and

Xjm = (8)

L(0,4>) is the representative of the coset SO(3)/SO(2)=S2 [12], and !>£,„,.(£"') denotes
the unitary representation matrix of SU(2) for angular momentum j . The single valuedness
of the scalar field requires that we work on double (more generally even) covering of AdSt.

The model is quantized with the following (anti) commutation relations:

1 3
(10)

Other (anti)commutators vanish. The ajm and dJm are now operators in a Fock space
whose vacuum |0) is denned by

««™|o) = d,-m\o) = o. (11)

In ref. [2] an oscillator representation was found for the Noether charges corre-
sponding to the 50(3,2) x SO(8) symmetries (3), and N=8 supersymmetries (2). These
charges form the basis of our calculation of the mass spectrum. Therefore we reproduce
them here. In a self-explanatory notation, the result is [2]*

(12)

(13)

iM3l =
t,m

(14)

iM0 - m +

(15)

* A normal ordering ambiguity occurring in Mos, which is the sum of the zero point
energies of the fermi and bose oscillators, vanishes. This has been shown by using the zcta
function regularization [2]}13]. In fact, the fermi and bose contributions vanish separately.



+ Mai) + »(iA/OT+AfM) =

t,m

+• m + 2)0- (16)

7 - 2i j 2- V

(17)

(18)

/,Trt

It has been shown [2] that these charges obey the following OSp(8,4) algebra:

(20)

IADMBC), (21)

r). (22)

(23)

(24)

Here frS = *? ,V - ^"(r.s = 0,1,2,3), where we have used the following 7-matrix
notation

\ 0 —i / ' \ iff* 0 /

This representation is chosen so that the Majorana spinor Q" has the simple form

(27)

We are now ready to compute the spectrum of the theory.
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3. THE SPECTRUM

The physical states are obtained by the repeated action of the creation operators
i*m,rft on the vacuum |0) of the Fock space which has been defined in (II). All these
states should arrange themselves into irreducible representations of OSp(8,4). For each
such representation there must exist a unique highest weight multiplet in a given 50(3) ®
5O(8) representation with degeneracy (Is + \) ® D, where s denotes the total angular
momentum of the lowest energy state of a given SO(3,2) representation and D is the
dimension of the SO(8) representation of that lowest energy state. This vacuum multiplet
has the property that

As a consequence of this, from (23) it follows that

M~ |0) = (iM0i - Msi) |0) =0 . i"=l, 2,3. (29)

Furthermore, the operators Mot,Jk &nd TIJ leave the vacuum multiplet invariant, while
the operators M* = — (A/r)* act as SO(3,2) energy boosts. They are the raising opera-
tors which build up a given SO(3,2) representation with the vacuum multiplet as highest
weight. The action of (Q™1)* and (<?*")* and appropriate combinations of these operators
transforms the va uum multiplet to a SO(3) ® 50(8) Bta,',e b.!onging to another SO(3,2)
representation which IB part of the same supenmtltiplet[l4][l5]. The following observation
is useful. Since all generators are of the form a^a,d*d, a*d or ad* a given sunermulttplet
can only consist of states which are obtained by the action of a fixed numbe. of creation
operators a',d' on the Fock space vacuum.

Let us firat consider the Fock space vacuum |0). Since there are no zero modes
the vacuum must be in the singlet representation of OSp(8,4). Such a vacuum has no
particle interpretation. We next consider the l-oscillator states:

alL\°)> d]™\°)- (30)
In order to find all supennultiplets which are described by these states it is necessary and
sufficient to find the most general solution of (28). Using the explicit oscillator represen-
tation of the supercharges given in (19), (20) one can easily verify that the only solution
of (28) is given by

This vacuum multiplet is a singlet of SO(3) and forms a %v representation of SO(8).
Acting with the raising operators {Q"1)1 and (Q"2)1 on it one obtains the N=8 Dirac
supermultiptet [16[, which consists of a N=8 singleton Rac in the 8V representation and a
N=8 singleton Di in the 8, representation:

• 1 M B , , [ JZ1



where D(En, JJ) denotes an irreducible unitary representation of SO(3,2) for which Eo is the

minimum eigenvalue of the energy operator A/DS, and a is the maximum eigenvalue of the

spin operator M u (the total angular momentum) in the lowest energy state. As pointed

out in the work of Flato and Fronsdal [9|, all these singletons are not locally observable.

by:
Let us now consider the 2-oscillator states. A general 2-oscillator state is given

(33)

which corresponds to taking the tensor product of two singletons. According to Flato
and Fronsdal [10] such a product contains only massless representations of SO(3,2). Such
representations are characterized by the relation £ 0 = a + 1 [17], Flato and Fronsdal give
three reasons for this [9]. For reader's convenience we reproduce them here: (1) Each
0(a + 1 , a) is the restriction to 5O(3,2) of a masslesa UIR of the conformal group SO(4,2)
for 2s = 1,2,3... [POT a = 0, the restriction is 0(1,0) ©0(2,0)]. (2) Each of them (for a > 0,
and 0(1,0) ©0(2,0) for s = 0) is smoothly contractable to a massless UIR of the Poincare
group in the flat space limit. (3) Each of them (for a > 1) is closely associated with gauge
fields, just as the representations the Poincare group with zero mass and discrete helicity
[18]. Thus the representations D(s + l,a) are massless for all a, though the cases a = 0, j
are somewhat exceptional.

Our aim is now to find the most general solution of (28) involving only 2-oscillator
states. It is clear that we can consider the a W states independently from the d*a^ and dfd'
states. It is sufficient to consider the 2-oscillator states with maximum angular momentum.
Only such states can be the highest weight states of a massless SO(3,2) representation of
the form D(s+1, s)[l7j. The exceptional masBless representation D(2,0) deserves (special
care. The highest weight state of that representation is given by the state dt _, <fW|0).

To simplify the calculation we will not consider the whole vacuum multiplet but
instead only the part with lowest eigenvalue of Mia. In other words instead of taking
-m < t < m in (33) we will only consider states with m = — I. Similarly we will restrict
the indices m',n and n' in (33) to be m' = -l',n = —j and n' = — j ' . Of course this
does not apply to the special state d\_ \dfl\O). An advantage of these restrictions is that
Q"L acting on these states gives zero automatically. This is not true for the special state
"1 i^/1 I ° >- Consequently this state can not be the highest weight of a supermultiplet
and hence need not be considered further.

In view of the above for our purposes the most general i

eigenvalue of M|2 to consider is given by:

state with minimum

(34)

where summation over t,j,I and a is understood. One can verify that the equation
Qa2\^i) = 0 has no solution. We next consider the a W and Sd* states. The most
general such state with minimum eigenvalue of Mia is given by:

l^)= £ Ct/,a\'_^_t,\0) + £ C$d]',*]?_,.„ , = 0,1 (35)

where the constant coefficients have the symmetries C'J, = Cf,'t and C*?, = - C £ " which

follow from the fact that the a>'s commute, while the d*'a anticommute. The action of

Q^ on \<jii) gives rise to the following linear combination of states:

x a j l n -,+nd
T

n" . n \0). (36)

From this we deduce that for a > 1 the moat general solution of the equation Q"7]^) — 0

is given by:

j f 2a 2n + 1^ tJ
,,-n — ~\ 2 J ^-n. t -n , S = 2 , 4 , t > , . . . ,

Cf-V*,.-^'""^.— - = 2,4,6,... (37)

It is important to realize that only the even values of s are allowed. From (37) and the

symmetry properties given below (35) one finds that all the Cn,,-n are related to each

other by the following Tecurrency relations:

Cn,,-n — — (?,_„+ W - n,n • (38)
2n(2n + 1)

For s = 0 the r.h.s. of (36) vanishes identically wh: h means that all states aJoaJ0 ' |0) are
highest weight states. These states correspond to the representation 0(1,0) S> (35 + 1).

To summarize, we have found that the highest weight states of all superroultiplcts
arc given by the highest weight of the SO(3,2) ® 5O(8) representations 0(1,0) ® 35 and
the series 0(a + 1,«) ® l(a = 0,2,4,...). They are the highest weights of the following
masslesB supermultiplets:

[0(1,0) ® 35] © [0(2,0) ® 35] 9 [ 0 ( - , -) ® 56] © [0(2,1) ® 28]
2 2 '

) ® 1] S [0 ( - , -) ® 8) © [0(2,1) ® 28]

- , - ) ® 56] © [0(3,2) ® (35 + 35)] © \D(7-, | ) ® 56]
2 2 * *

(39)

) [0(4,3)® 281 ®[0(-,-)
C if

(40)

*

i



D\(s
C O

- , JS + - ) ® 56] 9

28]

1 f\

3,s + 2) ® (35 + 35)] © (D(a + - , s + - ) ® 56]

© \D{s + 4,s + 3 )® 28] ®\D(s + - , - ) ® 8] ©[£?(«+ 5, a + 4)

a = 2,4,6,... (41)

This concludes our description of the massless supermultipletB that arise in the
2-oscillator sector. We have not worked out the representation content of the n-oscillator
states for n > 3. In all these sectors only massive supermultiplets arise. This is so because
of the following. Consider a general n-oscillator state «J in,, • • • "J.m . |0)- (Replacing a's by
d's does not change the argument). On the one hand side the total energy E of such a state
is given by E = ( £ " = l A) + ^, while the maximum value of the total angular momentum
s,n«x is given by <smax = (£"_ , £) . On the other hand side the condition that a state is
the highest weight of a massless representation is that such a state satisfies E = * + 1.
Given the values of E and am o l above it is clear that this condition can only be satisfied
for n - 2. Hence only the 2-oscillator sector contains massless supermultiplets. All thi
next ri-oscillator sectors (n > 3) only contain massive supermultiplets.

4. DISCUSSION

The singleton states which occur in the spectrum of our model are rather un-
conventional. As Dirac noted first [5], their wave function has a fixed ^-dependence (the
radial coordinate of AdS\). Thus there is no principal quantum number associated with
this radial direction. For a recent review of singletons, see ref. [6] and further references
therein.

The massless states occuring in our model, like ail the other states, correspond
to excitations of the supermembrane. This is to be contrasted with the interpretation of
similar states as bound states of singletons, by Halo and Fronsdal [8] . In that case uie
interactions between ordinary particles are induced by elementary interactions of singletons
|8j, and this is possible only for the N=l supersymmetric singleton theory |11][19]. In the
N=8 supersymmetric singleton theory, although interactions on the world-volume are not
possible, we can still talk about interactions of spacetime fields. To this end one constructs
the membrane propagator and vertex operators. Using them, one can build spacetime
amplitudes in an operator formalism in much the same way it is done for string theories.

Our model contains extra gravitons (1+35+35 of them, to be precise) as well as
higher spin massless states. Before deciding whether this is physically acceptable, we must
iirst analyse the coupling of these states to the usual massless particles of spin < 2 that we
"observe" in nature. Strictly speaking, this should be done in a version of the theory in

which the energy scale is extrapolated from the Planck scale to the usual low energy scale
(lOOGeV). Such an extrapolation ideally would have to give masses to the extra gravitons
and all the higher spin massless particles. To see whether a Higgs mechanism is feasable
at least kinematicalty, we observe that the spectrum of massless states has the following
pattern:

L\S 3 I

- 1 70 56 28 8 1
0 2 8 28 56 70 56 28 8
1 1 8 28 56

: - 1
S

1
70
1

56
8

28
28

8
56

In this table S denotes the spin of the massless state, and L is the label of the supermuttiplet
in which a given massless state occurs. The representations (39) and (40) have labels -1
and 0, respectively, while the ones given in (41) have label 1,2,3,... The table clearly shows
that there is a regular pattern which repeats itself modulo units of spin 2 (except for spin
0 states which are special); i.e. the SO(8) content of spin s states is the same as that of
spin (s + 2) states. In particular, the even spin states are in (1 + 70 + 1) of SO(8) coming
from three adjacent supermultiplets, while the odd spin states are in (28 + 28) and the
half integer spin states are in (56 + 8) of SO(8), both of which come from two adjacent
supermultiplets. We believe that this periodicity of the SO(8) content of the spectrum is
rather suggestive of a Higgs mechanism (appropriately generalized to anti de Sitter space)
in which spin a and spin (s + 2) states are involved for all s, and which leaves the usual
graviton masslesa.

The occurence of infinitely many massless higher spin particles in our model
implies the existence of infinitely many (local) gauge symmetries which are analogous
to the Maxwell, general coordinate and local supersymmetries, associated with spin 1,2
and 3/2 respectively. It may be a relatively easy matter to analyse these symmetries
at the linearized level. An interesting possibility is that these linearized transformations
correspond to an infinite dimensional Buper Lie algebra which contains the OSp(8,4) as
a finite subalgebra, in a fashion suggested by the work of Fradkin and Vasiliev [20] and
Vasiliev [21]. If that were the case, our model would provide a field theoretic realization
of their superalgebras. The nonlinear extension of the infinitely many linearized gauge
transformations mentioned above is an interesting open problem which would probably
require the analysis of membrane amplitudes.

10



Another interesting open problem is to find the analog of the super-Virasoro
algebra for the supermembrane. Since we are working in a physical gauge, the generators
of such an algebra will act on the physical states and transform them into each other,
i.e. they will belong to a spectrum generating algebra. In the gauge unfixed version of
our theory, a "covariant" super Virasoro-like algebra is expected to arise. However, the
relation of such an algebra to the higher spin superalgebras of Fradkin and Vasiliev [20] is
not clear.

Using the result of this paper one could contemplate computing the vertex op-
erators in our model, in an attempt to understand the nature of the higher spin massless
fields, e.g. the coupling of massless spin 5/2 or 3, to the usual graviton. The study of
the vertex operators is also important for the purpose of computing certain tree diagrams,
or one loop diagrams in an operator formalism, the way it was done several years ago for
strings. This could possibly shed some light on the divergence structure of the theory (e.g.
the role of the higher spin masstess states). One might expect that the couplings among
particles which will survive in a limit in which a' goes to zero while keeping K constant,
would be those described in the de Wit-Nicolai's N=8 supergravity [22|. The question of
how the higher spin massless states couple to the membrane is an interesting open problem.
If one keeps any higher spin state in the theory, it is believed that consistency of its cou-
plings will require the presence of all higher spin states [20][2l|. Furthermore, it is believed
that the couplings of the higher spin states wilt involve higher derivatives [20][23][24|. An
i'.lustration of these properties in our model remains to be investigated.
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