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Abstract
Applying Witten's formula for globsl gauge and gravitstional
anomalies to six® dimenstonal supergravities, we find: (a) The
perturbatively anomaly free N=4 chira! supergravity coupled to 21 tensor
multiptels is global anomaiy (ree for any choice of space-time manifold

with vanishing third Betti number {bz}. (b} The perturbatively anomaly

free matter coupled N=2 chiral supergravities with arbitrary number of

tensor multiplets, whose Yang-Mills geuge groups do not include G,

SU(Z), or SU(3) are free of global anomelies if the Lheory is formulated

on 2 n the case of 8 tensor muitiplets coupled to supergravity, this

result holds for any spacelime with vanishing bs  {c} The N=6 chiral

supergravity has perturbative gravitational anomalies, and therefore the

Jlobal anomalies need not be considered in this case.
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. Introduction

Supergravity theories are condidate low energy limits of
superstring theories.  Consistency of these theories in four or higher
dimensions requires absence of anomalies [1]. The chiral N=2, d=10
supergravity !2] was shown by Alvarez-Gaume and Witten to be free of
nerturbative gravitational anomalies [3} T. In the case of Yeng-Mills
coupled N=1, d=10 supergravity [6], as was shown by Green and Schwarz
{71 .cancelations of perturbative gauge and Lorentz anomalies is possible

anly for S0(32) (7], EgrEg, EgxU(1)2% and U(1)*% [7](8).

The canceliation of perturbative anomalies is necessary but not
sufficient to provide a consistent theory, One must also face the issue of
nonperturtative (i e global ) anomalies. For example, as was psinted out
tuy wiiten (9] an SLE2) gauge theory with an odd nuinber of Weyl doublets
tn four dimensions s perturbatively anomaly free; however, the theory is
rmathematically inconsistent since it suffers from a global gauge anomaly.
In sddition to the global gauge anomalies, global gravitational snomalies
can srise [ZI010HEH]E2]

#itten has shown that in ten dimensions global anomalies are
abizent, hoth in the chiral N=1 and M=2 supergravity theories [10] In the
context of supergravity theories the only other global anomalies studied
su far are the world-cheet anomslies in two dimensions. They have been

showen to cancel {11] in the twe dimensianal models corresponding 1o the

T A patentially dangerous U(1} o-mode) anomaly [4] has elso been shown

tocancel by Marcus [S).

heterotic string in ten dimensions [13].

In this note we discuss Lhe perturbative as well os global gauge
and gravitotional snomalies for N=2,4,6 and 8 , d=6 supergravities. In
fact, sithough the N=B supergravityof (14} is chiral with respect 1o the
sutomorphism group. SO(5)xSO(S), it is vectorlike with respect to the
grovitational interactions. Therefore this theory is snomaly free, and witl

not be discussed further.

The next theory to consider is Lhe chiral N=6 supergravity. Its
sutomorphism group is USp(4)xUSp{2), and its field content is {15]:

+

Field g, ¥y wr By By x X% A ¢

rreps.  €1,1) (1,2} (4,1) (1,1} (51) (52) (4,1) (4,2} (51}

It is easy to show thst the d=6, N=6 supergravity with this
field content suffers from periurbalive gravitational anomslies incurable
by Green-Schwarz mechanism. Therefore we shail notl consider this theory
any futher. We devote the resl of the paper to the N=4 and N=2

supergravities,

There exists only one perturbatively anomaly free chiral N=4

supergravity in six dimensions. It arises from the K3 compactification of

the chiral N=2, d=10 supergravily [16]. The field equations and Lhe
supersymmetry transformations, though not the tagrangian, of the d=6
theory have been constructed by Romans [17]. We will shaow thet this
theory is free from global gravilational anomalies.
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The chiral d=6, N=2 supergravity theories have a much richer
structure. They atlow couplings of tensor, Yang-Mills and sceler multiplets
(18} Examples of perturbatively anomaly free chiral matter coupled N=2
superqgravities have been given in [19], [20] snd {21] . Here we point sut
that these examples are also free from global gravitational anomaliies. we
also provide new examples of perturbatively as well as globally anomaly
free theories. In the following we shall discuss the anomaly canceliations

in the N=4 shd N=2 theories, respectively

2. Perturbative anomalies in N=4, d=6 supergravity

There exist two basic N=4 chiral multiplels givenby [16]

Supergravity multiplet v \’rui, B}w*["jl
(N

Tensor multiplet - i i
P By %, ol

where the graviting 3§ lefl-hended and the spinor of the tensor multiplet

1= Fight-handed (symplectic) Majorana-Wey! = The field strength of B]”*

iz telfdual  The autornorphism group iz Usp{4)  The perturbative
anornaies can be obtained by descenl eguatiens [22) fram an 8-form
polgnormgl P The contributions of a complex left-handed  spinor, &
complex  tefi-handed Rarita-Schwinger (RS) spinor and a real self-dusl

tensor field are respectively given by [3]

L= AR)
=1/5760 [ 1r R*+ sraltr R2) 2 ]
Iy, AR [ tr(cosR -1) +a-1] )
=A(R) {trcos R -1) - 2A(R)

=1/5760 [ 245 tr R® -21574(tr R2) 2 ]
T=- L(R)/8

- 1/5760 {28 tr R* - 10(tr R2)2 ]
Here A(R) is Lhe Dirac genus, L(R) is the Hirzebruch polynomial, d is the
dimensian of spacetime (d=6 in our case). Thus for 4 left-handed
sympiectic Majorana-weyl gravitini, 4 k right-handed symplectic
Majorana-Weyl spinors ¢ , end k lensor multiplets the tolal anomaly
polynomial is
P total =2 1312- 2k11 12 “(k"S) I|
=(k-21)/ 5760 [ -30 tr R* +15/2(tr R2) 2 ] (3

Therefore for k=21 the theory is perturbatively anomaly free [16]. Note
that with this value of k, eq. (3) implies the relation

& = - index (RS) + 23 index (D) {4

which is valid for any clesed & dimensional spin manifold. In (4} we have
used the slandard definitions
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Index {0 = | A(R)
[Pddex (RS) = JA(R) {trcos® -1) {3)

o = JLR)
3. Glabal anomalies in N=4, d=6 supergravity

The glabsl anomaly s defined by the change in the effective
actian under the diffesomarphism o of spacetime M, which is not

Tontinausly connected to the identity (10}

W T - L

aT=10g, M- g_uv:' (6)
Giobal anornaly freedam requires that A T = O mod 2ni.

Following witten [10], for & six dimensioral supergravity

theory with riet N Teft-harded Majorana-Weyl spinors, net Np left-handed

gravitin and net He self-dual tencor fields | for AT we use the formule

Al < ﬂ]‘r“lz [ ND Y]["" Np( TIP" f][] ) - NE' QS ."!2 ] (?}
where the v -invariant 15 defined by

n= o hm X (sign iy ) expoe (8)
i-a0 ?{l*o

Here by are the ergenvelues of the Dirac operator on the mapping cylinder
it b Thelatter vz g Closed manifeld defined by multiplying M by the
umt mteryal 1=(0,1) and gluing tageiher the top and boltom of MxI by

£

identifying (%,0) with {a(x),1} for any x ¢ M Y . The n-invariants
associated with a Majorana-weyl spinor, a Majorana-weyl grevitino and
s self-dual  tensor field are respeclively given by the
Atiyah-Patodi-Singer theorem [23] s follows

172 np = index (D )- -[B Iy 49
1/2 ng = index (RS) -index{D)- IB (Tzsat Iy ) (9

ng :G’IB L(R)

Although the indices, the Hirzebruch signature o and Lhe integrals are
defined on a manifeld B with boundary (Hxsi) , the n-invariants depend
only on the boundary 3B of B. Note that n vanishes on a manifold with no

boundary . In that case from (9) one recovers the standerd formulse for

the index theorems and the Hirzebruch signature for a closed manifold.

Substituting (9} into (7) and recalling that in the N=4, d=6

supergravity coupled to 21 tensor multiplets we have Np=-4x21, Np=4

and Ng= (5-21), we find the result

T To avoid subtleties associated with the zero modes of the self-dual
tensor fields, we take M to be any six dimensional spacetime with

vanishing third Betti number [ 10}
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a1 = 2ni [-46 index (D) +2 index (RS) +2 0 ]

- 2ni ]B[ 421, ;42 1y, -16 1, ) (10)

The integral term contains precisely lhe combination of terms which
arise in the perturbative snomaly [ see {3) ], and therefore il vanishes.
Morenver, the terms in the Tirst bracket in (10} are evidently multiples of
integers. Therefore the action is inveriant mod 2ni, so we conclude that
the N=4, d=f chiral supergravity is free from giobal gravitationai
anormalies. We emphasize that this result is valid for any 6-dimensional
space-time M with venishing third Betti number. This is in conlrast with
the case of global enomelies in 10-dimensional N = 2 chiral supergavity
where M ic taken to be $'°. There AI is proportional Lo o/8, and so far,
onty for M= 5" i1 has been shown thet o = 8 mod 16, and hence AT =0 mod

2ai {10].
4. Perturbative ansmalies in N=2, d=6 supergravity thearies

In six dimensions the following N=2 supermultiplets exist [16 }

Supergravity v ,va, B}l"+
Tensor pr—= XA’ '
(1)
Yang-HMills Ap . RA
Hypermatter LA

The scalars ¢ parametrize a quaternionic manifold [24] of the form

G/IHxSp(1)). The possible G and H are listed in Table 1. Al spinors are

sympleclic Majorsna-Weyl. Specificaily, "PA and AP are left-handed,

while ¢2 and 1A are righl-handed. The index A=1,2 labels Sp(1)}, and the

index a labels one of the represeniations of H tisted in Table 1.

Consider the coupling of k tensor multipiels, n hypermultiplets

supergravity. @ may contain the automorphism group Sp(1) or its U(1)
subgroup.  Using  (2)T, the vanishing of the leading perturbative
gravitational anomaly ( proportional to trRt) requires the condition [20]

dimG -n -29k +27% = 0 {12)
Upon the use of this constraint the gravitationsl anomaly becomes

fk-9)/128 (trR2) (13

This means that if k =9, then the anomaly can be cancelled only by the

Green-Schwarz mechanism.

Next we consider the pure gauge anomaly which 15 given by
tr ¥4/41 ( d-1=5 times this for the gravitino contribution), where Fis the

Yang-Hilis curvature corresponding 10 &, and the trace is over all the

T In (2) the expressions for I, and I, now must be multiplied by tr e¥.
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Table 1

GAH v 5pl 1] H- Representation of y®
Spin, 11/SpinxSpl 1) 2n

Siin, 224SUEnsUC1) ¥5pi1) g * Mg

SU(n )/ S0{nixS0(3)xSpl 1) {n,2)

Eg / Eox Spll) 56

E- /500120 Spl ) 32

EE: UGS ) 20

Fq/Spld)x Spold 14

G, /S Sp( 1) 4

irreducitle representations of the fermieng in the theory. for anomaly

cancellation either tr ¥ must vanish or it must factorize as

T
IS AFDRTS TN ZAY (1a)
1

ta allaw the Green-Schwarz mechanism 7] Ths factorizalion occurs for
all the irreps of Eo £ Fo Fy By . SUY SU(2), (1), and for the 28 of
Spidy, the 286 of SU(BY end al) the irreps of SO{Zn} with the highest
weight {1, T2 11,00, [0} in the Gel'fand-Zetlin basiz. Assuming Lhat

{14} 4= =atisfied, and noting that the mized anomaly is given by

(1/96) tr RZ {r ¥¢ (15)

(19 times this for the gravitino contribution), the total anomaly

polynomial, which is the sum of {13), {14}, end (15) reads {19]

r
§ 26) g p200)
Proter = 2 By tr P ar ¢20 (16)

where 5ij is sn {r+1)x(r+1) symmetric matrix, and FO) is the Lorentz

algebra valued Riemann curvature 2-form. In (16} the traces are in the
fundamental representstions of the gauge group. The criteria for anomaly
concellation ¢ /g Gresn-Schwarz are thet the B-matrix has only two
non-zeroe eigenvslues, and mereover the product of these two eigenvatues

must be negative or zero [20]. In that case Bjj con be written as
Bij = 1720y +oy ) (17}

This fizes the two (r+t)-dimensional constant veclors o andy,  In order

to cancel the anornaly one adds the counter term [ 19t

r r
- 2y g .
L= Ty wFEYB - 172X o vy 0P w? (18)

where the ‘“10 are the Chern-Simons forms, and B is the combination of

t Note that for k = 1, though very complicated, and not manifestly Lorentz

invariant {medulo total derivative), a tagrangisn L to which this counter

term can be added, in principle, does exist.

il




B, and any one of the k B

v tensor fields. We then take Lhe

IW_
remainiag (k-11 pr' tensor fields (o be inert under Yang-Mills gauge trans

formations, while we modify those of B as [19]

88:-20(193.' (19}

The 2-forms w, ! are defined by & w® =dw,!. From (19) we are led to the

-
definition of the gauge invariant field strength H = dB +Zlf o ThisH

satizfies

r .
aH= Yo, trpl) (20)

e now present seversl examples of theories which obey the

criteria stated above. Some of these examples are new.

fadk =1, 6 =Ey xEgx U(T}, n= 456 {19} Here U(1) is the subgroup
af the Spd1) automorphism group. The 456 complex hyperinos fit nicely
mntc the pzeudoreal 312 irrep of E?‘

iblk =1, 6 =Eg x Eg xEgx SU(3), n = 486. The hyperinos are in
the (270,17 +(1,27.1,3) + (1,1,27,3) + (3ed)} 07 6.

ek =5, 6 = E;xU1)?, n= 266. The hyperings fit iato 2

eyl 122 0T By

idik =9, U(1)x Any 6, n=13 + dim G [20] .

etk =17 ,6 = Ea . = 28 The hyperinos are in the pseudoreal 56

of E,.In this case one can take the hyperscalar manifold 1o be Eg /E,xSp(1).

5. Global anomalies in N=2, d=6 supergravity theories

we now turn to the global anomalies in the matler coupled d=6,
N = 2 supergravities . Here , as Witten has shown [10], the globs) snomaly

receives two more contributions in addition to the right hand side of (7).
Denoting the contributions given in (7) by {Al)y, , with Np=2(dim G-n-k}

Np=2 and Ng=(1-k) , from (2), (7}, {9}, (12) end (16) one obtains

(A1) 4oy = 20i | index (R) + (28K - 274) index (D) + (k- 1) 5 /8 ]

~2ai IB X gy tr P2 4 p20) @1

The varialion of the Green-Schwarz counterterm (18) under n , and the
contribution of the Peuli-Yillars regulator fields [10} yield the totsl

result

r )
(AT :'G.S + (AT )reg = =2ni ] H IE Y'i ir F2(l) (22

a8

The global = transformation in this case refers to coordinate and/or gauge

transformation The fotal anomaly is given by

B1)= (Al) gyt @1)gg+ (B1)pgg

= 2ai { (k-1)5/8 + (B,98) ] mod 2ni (23)

where the topological invariant p is defined by

13
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J {B,3B) = IB gy tr F2UD 4 p20) _[aBH Ty tr F20 (24)

L is warth noling that A1 is independent of the choice of B. This can be

feen by considering another choice B and evaluating &1 over B-B which

1% Cinsed

Global gauge anaralies can arise only whenng(8) = 0 (9] . The
unty cuch rases e ngiSUCRN = mgloplil) = 20, n(SUE) = 2, ne(Gy)

- 2y Assuming that G does not contain SWIK2), SU(3) or G,, the topologice)

invariant p given in (24) becomes

p{B,ABY = {k - 9)/128 [JB {tr %) - Iae Hir RC | (2%)

Pecall that 4B = irﬁxsl)ﬂ_, We observe thal j7 &=8 1hen the 1ats/ anomaly

15 A= (tmod Pelosutomaticety. Therefore in this cage the theary has no
dlebal grevitational anornaly for any €-manifeld M with bz=0. To

facilitate the computstion of AI for k29 |, we choose I to be gb 10l In
that rase 4B = (5%x51) = (3%%5') ¢ (37), where (87 is any one of the
27 pxotic 7-epheres 125), and the # refers Lo connected sum [10} ie. cut
oul and discard & 7-disk from doth 5PxS! eng (ST) | then paste the
manmfolds together along these boundaries. Ta calculate Al we choose

B-B # SE‘XD:, , (26)

HMilnor

14

where D, denoles the 2-disk, and according to Milnor's theorem [25),
Briinor 15 @ parallalizable 8 dimensions} spin manifold which is bounded by
(S?)fL On Br'ﬁlmr one can choose & connection such thet R=0. Therefore

with the choice (26) for B, we see that p(B,38)=0. In Al there remains a

term proportional 1o
o Bytinor # S%4D2)= o(Bygyger) * o S5%D3) @)

One can show that of 56x02)=0. Moreover, due to Milnor's theorem [25]
0{ Byjypor? 18 divisible by 8 Therefore we conciude that for any choice of

k Al=0 mod2ni , and hence there are no global snomalies in any

perturbatively anomaly free matler coupled d=6, N=2 supergravity with &
Yang-Mills group other then Sp(1), SUW(3) and G, In particuler, of the
examples we have listed below (20}, the theories (a}, (c), (d) and (&) are
anomaty free, while the theory (b) is anomaly free for giobal SU{3). The

case of local SU(3) requires further investigation.
6. Comments

1L is important to note that the total global anomaly AI, which
is defined to be the sum of (21) and (22), does not depend on the choice
of B, and if the index terms are discarded, it changes only by & multiple of

2ni. For example, consider an 8-manifold B, with the same beundsry as

15




B, which is a8 connected sum of B and p copies of HP 5 eath of which has

signalure | One can show that the signature of B' is (8+p) . For p=20
mod 5, Lhis signature is not divisible by 8. However, on B’ the topological

wnvariant p s no longer zero, and is such thet Al is again O mod 2ni.

i1 the qeuge group G conising Sp(1), SU(3) or G, @ very elegant

r
way to cancel the global anomaly is 1o show that an H obeying dH:? Yi tr

petil can be defined not just on aB but atso on B [12] {In lhat case, using
Stokes' theorem one easily shows thet p(B,9B)=0 ). Alternatively, since

the nonvanishing of . for 6= 5pi1), SW3) or G, implies the existence of a

G instanton over (MxS'), one may then evaluate the integrals in I for

these Yang- Mills canfigurations [10].

For groups with nonvanishing ng, such as SU(2) or SU(3),

another way of analyzing the global gauge anomsly in d=6 is to study the

zero modes of fermions in the presence of instantons in spacetime M [10]).

wWe nhave not been able to rulé oul any of the perturbatively
anorraly free d=6, M=2 theornes. An interesting problem is to see whether
the glakal anomalies in d=6, N=2 theories compactified on ﬂinkuwsk14x82
[26] can dn w0, or whether conditions for their absence can lead to

Dirac-hke guantization of the field strength of the antisymmetric tensor

field [ 10] -
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