
IC/86/115

INTERNATIONAL CENTRE FOR
THEORETICAL PHYSICS

GLOBAL ANOMALIES IN SIX DIMENSIONS

INTERNATIONAL
ATOMIC ENERGY

AGENCY

E. Bergshoeff

T.W. Kephart

Abdus Salam

and

E. Sezgin

UNITED NATIONS
EDUCATIONAL,

SCIENTIFIC
AND CULTURAL
ORGANIZATION

1986 MIRAMARE-TRIESTE



• • • : ,

' *

> m
• m

r



IC/86/115

International Atomic Energy Agency

and

United Nations Educational Scientific and Cultural Organization

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

GLOBAL ANOMALIES IN SIX DIMENSIONS

E. Bergshoeff

International Centre for Theoretical Physics, Trieste, Italy,

T.W. Kephart

Department of Physics and Astronomy, Vanderbilt University,
Nashville, TN 37275, USA,

Abdus Salam

International Centre for Theoretical Physics, Trieste, Italy,

and
Imperial College, London, England,

and

E. Sezgin

International Centre for Theoretical Physics, Trieste, Italy.

MIRAMARE - TRIESTE

June 1986

To be submitted for publication.

Abstract

Applying Witten's formula for global gauge and gravitational

anomalies to six dimensional supergravities, we find: (a) The

perturbatively anomaly free N=4 chiral supergrovity coupled to 21 tensor

multiptets is global anomaly free for any choice of space-time manifold

with vanishing third Betti number (b3). (b) The perturbatively anomaly

free matter coupled N=2 chiral supergravities with artitrary number of

tensor rnultiplets, whose Yang-Mills gauge groups do not include G2,

SU(2), or SUB) are free of global anomalies if the theory is formulated

on S . In the case of 9 tensor multiplets coupled to supergravity, this

result holds for any spacetime with vanishing b3. (c) The N=6 chiral

supergravity has perturbative gravitational anomalies, and therefore the

globol anomalies need not be considered in this case.



f. Introduction

Supergrevity theories are candidate low energy l im i ts of

superstring theories. Consistency of these theories in four or higher

dimensions requires absence of anomalies [ I ] . The chirol N=2, d= 10

supergravity !2] was shown by Alvarez-Gaume and Witten to be free of

perturbative gravitational anomalies [3| t. In the case of Veng-Mills

coupled N=1, d= 10 supergravity [6], as was shown by Green and Schwarz

17] .cancellations of perturbative gauge and Lorentz anomalies is possible

only for 50(32)17], E6xE8, EgXlK 1 )248 and U(t)4 9 6 [7][8].

The canceliation of perturbaUve anomalies is necessary but not

•:uf ftcient. to provide a consistent theory. One must also face the issue of

nonperUirbative (i.e. global ) anomalies. For example, as was pointed out

tig Witlen [91. an SU(2) gauge theory wi th an odd number of Weyl doublets

in four dimensions is perturbatively anomaly free, however, the theory is

mathematically inconsistent since i t suffers from a global geuge anomaly.

In addition to the global gauge anomalies, global gravitational anomalies

can arise [3![1O](t ! ] [ !2 ] .

Witten has shown that in ten dimensions global anomalies are

absent, both in the chiral N=1 and N=2 supergrevity theories [10]. In the

context of supergravity theories the only other global anomalies studied

so far are the world-sheet anomalies in two dimensions. They neve been

shown to cancel [1 1] in the two dimensional models corresponding to the

T A potentially dangerous U( l ) o-model anomaly [4] has also been shown

to cancel by Marcus [5].
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heterotic string in ten dimensions [13].

In this note we discuss the perturbattve as well as global geuge

and gravitational anomalies for N=2,4,6 and 8 , d=6 supergravittes. In

fact, although the N=8 supergravity of ( U ] is chiral with respect to the

automorphism group. SO(5)xS0(5), it is vectorlike with respect to the

gravitational interactions. Therefore this theory Is anomaly free, and will

not be discussed further.

The next theory to consider is the chiral N=6 supergravity. Its

automorphism group is L)Sp(4)xUSp{2), and its field content is (15]:

Field XR

Irreps. (1,1) (1,2) (4,1) (1,1) (5,1) (5,2) (4,1) (4,2) (5,1)

It is easy to show that the d=6, N=b supergravity with this

field content suffers from perturbative gravitational anomalies incurable

by Green-Schwarz mechanism. Therefore we shall not consider this theory

any futher, We devote the rest of the paper to the N=4 and N=2

supergravities.

There exists only one perturbatively anomaly free chiral H-4

supergravity in six dimensions. It arises from the K3 compactificotion of

the chiral N=2, d= 10 supergravity [16]. The field equations and the

supersymmetry transformations, though not the lagrangian, of the d=6

theory have been constructed by Romans [17]. We will show that this

theory is free from global gravitational anomalies.
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The chirel dz6, N=2 supergravity theories hove a much richer

structure. They allow couplings of tensor, Yang-Mills and scalar multiplets

118). Examples of perturbatively anomaly free chirat matter coupled N=2

supergravities have been given in |19), [20] and 121]. Here we point out

that these examples are also free from global gravitational anomalies. We

also provide new examples of perturbatively as well as globally anomaly

free theories. In the following we shall discuss the anomaly cancellations

in the H-4 and N=2 theories, respectively

2. Petturhatlue anomalies in N=4, d=6 supetgrauity

There exist two basic N-4 chiral multiplets given by [16]

Supergravity multiple!

Tensor rnultiplet

q ¥ B
(I)

where the gravitino is left-handed and the spinor of the tensor multiple!

is right-handed (symplectic) Majorana-Wey! . The field strength of B *

is j.elfduat The automorphism group is Usp{4) The perturbative

anomalies ran be obtained by descent equations [22] from an 8-form

polynomial P The contributions of a complex left-handed spinor, a

complex left-handed Rarita-Schwinger (RS) spinor and a real self-dual

tensor field are respectively given by [3]

=1/5760 [ tr R4 + 5/4(tr R2 ) 2 ]

IJ/2= A(R) [ tr {cos R -1) +d-l ]

= A(R)(trcosR -1)-2A(R)

-1/5760 [245 trR*-215/4<trR2)2 ]

[28 tr

(2)

= 1/5760

Here A(R) is the Dirac genus, L(R) is the Hirzebruch polynomial, d is the

dimension of spacetime (d=6 in our case). Thus for 4 left-handed

symplectic Hajorona-Weyi gravitini, 4 k right-handed symplectic

Majorana-Weyl spinors % , and k tensor multiplets the total anomaly

polynomial is

= 2 18/2-210:,/*-(10.5)1,

=(k-2i)/ 5760 E -30 tr R4 +15/2(tr R2 ) 2 ] (3)

Therefore for k=21 the theory is perturbatively anomaly free [16] Note

that with this value of k, eq. (3) implies the relation

= - index (RS) + 23 index (D) (4)

which is valid for any closed 8 dimensional spin manifold. In (4) we have

used the standard definitions
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Index (D) - \ A(R)

Index (RS) = jA (R) ( t r cos R -1)

cr-JL(R)

(5)

3. Global anomalies in N=4, d=6 supergrauily

The global anomaly ts defined by the change in the effective

•action under the diffeornorphism v. of spacetime M, which is not

'"untinously connected to the identity [1O|:

(6)

Global anomaly freedom requires that A i = 0 mod 2ni

Following Witten [10], for a six dimensional supergravity

theory w i th net ND left-handed Majorana-Weyl spinors, net NR left-handed

gravHim and net NC; self-dual tens.or fields , for A I we use the formula

i i , v.M2 [ N D T,D* NR( nR_ n D ) - N S n s n ] (?)

whp?rG the r\ -invariant is defined by

ri - l im S (sign 1-. ) exp-c X (6)

HHTP i} are Ihe eigenvalues el the Dirac, operator on the mapping cylinder

'•'!—''- '„. The latter is a closed manifold defined by multiplying M by the

unit interval i - |O,t ! and gluing together the top and bottom of Mxl by

identifying (x,0) with (tt(x),1) for any x e M * . The ^-Invariants

associated with a Majorana-Weyl spinor, a Majorana-Weyl grevitino and

a self-duel tensor field are respectively given by the

Atiyah-Patodt-Singer theorem [231 as follows

1/2 i | D - Index CD )- J B I l / 2

1/2 T)R = index (RS) -index(D)-} ( i j / 2
+ hn ) ( 9 J

Although the indices, the Hirzebruch signature a and the integrals are

defined on a manifold B with boundary (MxS ! )n , the r|-invoriants depend

only on the boundary db of B. Note that r\ vanishes on a manifold with no

boundary . !n that case from (9) one recovers the standard formulae for

the index theorems and the Hirzebruch signature for a closed manifold.

Substituting (9) into (7) and recalling that in the N=4, d=6

supergravity coupled to 21 tensor multiplets we have NQ—4X2!, NR=4

and Ns= (5 -21 ) , we find the result

t To avoid subtleties associated with the zero modes of the self-duel

tensor fields, we take M to be any six dimensional spacetime with

vanishing third Bettf number [ f 01.



Al= 2ni [-46 index (D) +2 index (RS) +2 c]

-16 (10)

The integral term contains precisely the combination of terms which

arise in the perturbative anomaly I see (3) 1, and therefore it vanishes.

Moreover, the terms in the f i rst bracket in (10) are evidently multiples of

integers Therefore the action is invariant mod 2ni, so we conclude that

the N=4, d=6 chiral supergravity is free from global gravitational

anomalies. We emphasize that this result is valid for any 6-dimensionai

space-time M with vanishing third Betti number. This is in contrast with

the case of global anomalies in 10-dimensional N = 2 chiral supergavity

where n is taken to be S !0. There Al is proportional to a/8, and so far,

only for M= S10 i t has been shown that o = 6 mod 16, and hence Al =0 mod

2ai f 101.

4. Perturbatiue anomalies in N=2, d=6 supergrauity theories

In six dimensions the following N=:2 supermultiplets exist [16 J:

ASupergravity

Tensor

Yang-Mills

, y p
A ,

V'
(11)

Hypermatter <r8 , • *

The scalars • * parametrize a quaternionic manifold |24] of the form

G/[HxSp(I)l. The possible G and H are listed in Table I. All spinors are

and are left-handed,symplectic Najorena-Weyl. Specifically, y

while ye and xA a r e right-handec! The index A= 1,2 labels Spd), and the

index a labels one of the representations of H listed in Table 1.

Consider the coupling of k tensor multiplets, n hypermultiplets

and a Yang-Hills multiplet with the gauge group fi = G,x 62x x Gr to

supergravity. & may contain the automorphism group Sp(1) or its U(l)

subgroup Using (2)T, the vanishing of the leading perturbative

gravitational anomaly ( proportional to trR4 ) requires the condition [20|

dim & - n - 2 9 k + 2 7 3 - 0 (12)

Upon the use of this constraint the gravitational anomaly becomes

(k-9)/!28 (trR2)2 (13)

This means that if k * 9, then the anomaly can be cancelled only by the

Green-Schwarz mechanism.

Next we consider the pure gauge anomaly which is given by

tr r*/4! ( d-1 = 5 times this for the gravitino contribution), where F is the

Vang-Fiitls curvature corresponding to ft, and the trace is over all the

T In (2) the expressions for l 1 / 2 and I3 / f t now must be multiplied by tr e r



Table 1

\

G/iHxSpd)]

Sp(n,l)/Sp(n)xSp(l)

SIJ(n,2)/SU(n}xU(l)xSp(l)

S0(n.4)/S0fn)xSO(3)xSp(1)

Eg/ E?XSp(. I)

E7 / S0(12)X Sp(1)

E6/SU(6i>;Sp(l)

F4/Sp(3)xSp(1)

G2 /S!J<2)xSp(l)

H- Representation of ya

2n

nq + n_q

(n,2)

56

32

20

14

4

irreducible representations of the fermions in the theory For anomaly

i_ ancellatiofi either t r f 4 must, vanish or it must factorize as

to allow the Green-Schwarz mechanism |7] This factorization occurs for

all the irreps of E8 ,E? ,E6 ,F4 ,G2 . SU(3), SU(2), U(1), and for the 28 of

Sp(4), the 28 of SU(S) and all the irreps of S0(2n) with the highest

weight, (f,, f-., i , - ^ .0,0, ,0) in the GeTfand-Zetlin basis. Assuming that

(14) is. ;.ati;.iieij, and noting that the mi:-:ed anomaly is given by

10

(1 /96 ) t rR 2 t rP 2 (15)

(19 times this for the grevitino contribution), the total anomaly

polynomial, which is the sum of (13), (14), end (15) reeds i19]

(16)

where p^ is en (r+1)x(r+f) symmetric matrix, and F(D) is the Lorentz

algebra valued Riemann curvature 2-form. In (16) the traces are in the

fundamental representations of the gouge group. The criteria for anomaly

cancellation s !a Green-Schwarz are that the p-matrix has o_niy two

non-zero eigenvalues, and moreover the product of these two eigenvalues

must he negative or zero 120]. In that case pfj con be written as

(17)

This fixes the two (r+l)-dimensional constant vectors ct, andy^ In order

to cancel the anomaly one adds the counter term ! *

trF2(0B - 1/2 31 0 ' (18 )

where the oô  are the Chem-Simons forms, and B is the combination of

t Note that for k * 1, though very complicated, end not manifestly Lorentz

invariant (modulo total derivative), a lagrangian L to which this counter

term can be added, in principle, does exist.
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B + and any one of the k B tensor fields. We then take the

remaining (k-1) B " tensor fields to be inert under Yang-Mills gauge trans

formations, while we modify those of B as [ 19]

SB = - 2 a, a, (19)

The 2-forrns * , ' are defined Cy & o>,rj =dto j
l. From (19) we are led to the

r
definition of the gauge invariant field strength H = dB + 2 c^w,0. This H

satisfies

F2(i), trF2
(20)

We now present several examples of theories which obey the

cr i ter ia stated above. Some of these examples are new.

(a) k r 1, G : E , xE6x U ( t ) , n = 456 [191. Here U(l) is the subgroup

of the s p n ) automorphism group The 456 complex hgpennos f i t nicely

into the p-seudoreal 912 irrep of E?.

(b) k - 1 , G - E6 x E6 xE6x SU(3), n = 486. The hyperinos are in

(lie [(27,1,1,3) + (1,27.1,3) + (S, 1,27,3) + (3*5)! Of G.

(c) k = 5 , G = E 7 x U(1)5 , n = 266 The hyperinos f i t into 2

(d) k =9 , U(1) x Any G , n=13 * d im G [20]

(e) k =17 , G = E8 , n = 28. The hyperinos are in the pseudoreal 56

of E7.ln this case one can take the hyperscalar manifold to be Eg /E?xSp(1).

5. Global anomalies in N-2, d=6 supergrauity theories

We now turn to the global anomalies in the matter coupled d=6,

N = 2 supergravities . Here , as Witten has shown [10], the global anomaly

receives two more contributions in addition to the right hand side of (7).

Denoting the contributions given In (7) by ( A l ) ^ , with ND=2(dim G-n-k),

NR=2 and Ns=( 1 - k ) , from (2), (7), (9), (12) ond (16) one obtains

(A I ) M = 2ni [ index (R) + (28k - 274) index (D) + (k-1) a /B ]

-2m (21)

The variation of the Green-Schwarz counterterm (16) under n , and the

contribution of the Peuli-Villars regulator fields [10) yield the total

result

H (22)

The global a transformation in this case refers to coordinate and/or gauge

transformation The total anomaly is given by

= 2ni [ (k-1) ff/8 • >i (B,3B) ] mod 2ni

where the topological invariant n is defined by

13
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(6,aB) = | B 2 pi j tr F2( i ) tr F2( i ) (24)

• t

i
f

: • *

t 1

i i

it is worth noting that A I is independent of the choice of 8. This can be

teen by considering another choice B' and evaluating AI over B-B1 which

is tluied

Global gauge anomalies can arise only whenn6(&)* 0 [9] . The

utity iuch ':cues are, n&(SU(2)) = n6CSp{l}) = Z,2 ; n&(SU(3)) = Z6; n6(G2)

- ?fc Assuming that 6-does not contain SU(2), SU(3) orG2 , the topological

invariant. j.i given in (24) becomes

( t rR 2 )2 ) 2 - (25)

Recall that dB = <MxS')rt. We observe that if k=9, then the totd!enomaly

,':" J7-- 0mod2m suiomattceHu Therefore in this case the theory has no

global gravitational anornaiy for any 6-manifold M with bjzO. To

facil i tate the computation of hi for k *9 , we choose M to be S6 MO]. In

that rase dB _ {S6xs') r t = (S6xS1) # (S7),,., where (S7)n is any one of the

21 exotic 7-spheres 125], and the # refers to connected sum [IO| i.e. cut

O!.il and discani a 7-fjisk from both S6xS' and (S7)n , then paste the

manifolds together along these boundaries. To calculate AI we choose

# S6x02 , (26)
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where D2 denotes the 2-disk, and according to Milnor's theorem 125),

Bt-tiinor1s a Parallalizoble 8 dimensions) spin manifold whicn Is bounded by

(S 7 ) n On one can choose 8 connection such that R=0. Therefore

with the choice (26) for B, we see that JI(B,*B)-O. InAI there remains a

term proportional to

(27)

One can show that a( S6xD2)=0. Moreover, due to Milnor's theorem {251

a( BMjlnor) is divisible by 8. Therefore we conclude that for any choice of

k , Al-0 mod2n.i , and hence there are no global anomalies in any

perturbatively anomaly free matter coupled d=6, N=2 supergravity with s

Vang-liills group other then Sp(1), SU(3) and l^ . In particular, of the

examples we have listed below (20), the theories (a), (c), (d) and (e) are

anomaly free, while the theory (b) is anomaly free for global SU(3). The

case of local SU(3) requires further investigation.

6. Comments

It is important to note that the total global anomaly A I , which

is defined to be the sum of (21) and (22), does not depend on the choice

of B, and if the index terms are discarded, i t changes only by a multiple of

2n.i For example, consider an 8-manifoid B", with the same boundary as

15



B, wtiich is a connected sum of B and p copies of HP2 each of which has

signature I. One can show that the signature of B' is (8+p) . For p * 0

mod 6, this signature is not divisible by 8. However, on B' the topoiogical

invariant >i is no longer zero, and is such that Al is again 0 mod 2ni.

If the gauge group G contains Sp(1), SU(3) or G2, a very elegant

r
way to cancel the global anomaly is to show that an H obeying dH= 2 "jf, tr

F^ i ; tan be defined not just on aB but also on B [12]- (In thet case, using

Stokes' theorem one easily shows that ji(B,6B)=O ). Alternatively, since

the nonvanishing of rc6 for G= SpCD, SU(3) or G2 implies the existence of a

G instanton over (MxS1)^, one may then evaluate the integrals in AI for

these Yeng- Mills configurations [ 101.

For groups with nonvanishing a5, such as SU(2) or SU(3),

another way of analyzing the global gauge anomaly in d=6 is to study the

?ero modes of ferrnions in the presence of instantons in spacetime M [10].

We have not been able to rule out any of the perturbatively

anomaly free d=6, N=2 theories An interesting problem is to see whether

the global anomalies In d-6, N=2 theories cornpactified on Minkowski^xS2

|26] can cfo so. or whether conditions for their absence can lead to

Dirac-Hke quantization of the field strength of the antisymmetric tensor

field (10).

16

RcknoiuledmenU

We have greotly benefitled from discussions with J. Seede, J.

Strathdee, and A. Verjovsky to whom we express our appreciation. One of

us (T.W.K.) thanks the members of the particle theory group ot the I.CT.P.

for generous hospitality while this work was In progress, and the

Vanderbilt URC for support.

17



References

[11 S. Adler,Phys. Rev 1 77( I 969)2426;

J. Bell and R. Jackiw, Nuovo Cimento, 60A (1969)47;

W. A Bardeen,Phys. Rev. 184(1969)5 646,

P H. Frampton and T.W.Kephart, Phys. Rev. Lett. 50( 1983) 1343; 1347;

P.K Townsend snd 6 Sierra, Nucl.Phys B222 (1963) 493;

for reviews see L Alvarez-Gaume and P. Ginsparg, Ann. Phys.

10 1(1965)423, and L. Alvarez-Gaume," An introduction to anomalies".

Lectures given at Erice and The Ecole Normale Summer Workshop

U985)

!:•! M.B Green and J.H. Schwarz, Phys. Lett. S22B (1983) 143;

J H. Sen war: and P.C. West, Phys, Lett. 126B (1983) 301;

P Howe and PC West, Nuci. Phys 6238 (1984) 181;

J H Schwarz, Nud. Phys. B226 (1963) 269.

[71 L Alvarez-Gaume and E. WUten, NucS.Phgs. B234 (1963)269.

(41 G. Moore and P Nelson, Phys. Rev Lett. 53 (1984) 1519.

(5j N Marcus, Phys Lett 1576(1985)363.

[61 AH . Chamseddine, Nucl Phys. B185 (1981) 403;

E Bergslioeff, M de Ron, 6. de Wit and P. van Nieuwenhuizen, Nuc!. Phys,

BI95 (1982) 97,

0 Chapline and N.5. Manton,Phys. Lett. S20B (1983) 105

!7| MB. Green and J. Schwarz, Phys. Lett 1496(1984)117.

18] J Thierry-Mi eg, Phys. Lett 156B (1985) 199.

L piMun. J. Harvey and E. Witt en., unpublished.

191 C Witter., Phys, Lett. 117B (1982) 324.

1101 E Wit ten, Ccmmun. Math Phys. 100 (1985} 197.

16

Ml ] E. Witten, "Anomalies, Geometry and Topology", World Scientific ,eds.

W.A. Berdeen & A.R. White.

[12] E. Witten, Int. J. Mod. Phys. At (1986)39.

[13] D.J. Gross, J. Harvey, E. Martinet and R. Rohm, Phys. Rev. Lett. 54

(1984) 502.

[14] Y. Tonii, Phys. Lett. I45B(I964) 197.

115] J. Btrathdee, 'Extended Poincare Supersymnnetnes", to appear in Int.

Joum Mod. Phys. A.

116] P.K. Townsend, Phys. Lett. I39B (1984) 283.

i 17] L.J. Romans/Seif-duality for interacting fields: Covariant field

equations for six dimensional chiral supergrovities", Santa Barbara

Preprint (19B6).

(IB) H. Nishino ond E. Sezgin, Phys. Lett. 144B (1984) 187; "The complete

N=2, d=6 Supergrevity with matter and Vang-Mills couplings".

University of Maryland preprint.

[19] S. Randjbar-Daemi, Abdus Salem, E. Sezgin end J.Strathdee, Phys. Lett.

151B (1985) 351.

[20] Abdus Salem and E. Sezgin, Physics Scripta 32 (1965) 283

[21] MB Green, J.H. Schwarz end P.C. West, Nucl. Phys. B254(1985) 327.

[221 R. Stora, Lecture at the 1983 Cergese Summer School, in Progress it.

Gouge theory Ed. G. 't Hooft et»/. (Plenum Press, N.V., 1984);

B.Zumino, Lectures at the 19B3 Les Houches Summer School,

Refddvity, Groups end topology n, Eds. B.S. DeWitt and R. Store (North

Holland, 19B4);

L. Baulieu, Nucl. Phys. B241, 557 (1984).

[23! M.F. Atiyeh, v.K. Patodi end l i t Singer, Proc. Camb. Phiios. Soc, 77

(1975)43, 78(1975)405; J79 (1976) 71.

19



[24] J. Bagger end E Witten, Nuct. Phys. B222 (1983) 1

[25] See for instance. J. Milnor in Lectures

ed. T. L. Saaty/Wney.(NV)1964

[26| Abdus Sal am and E, Sezgm, Phys. Lett. 147B (1964)




