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ABSTRACT

We consider the superconformal extensicn of Rz-actions in 6 and 10

dimensions, We show that the flelds of the conformal multiplet alone admit a
-4 RS 4+ Rz)].
LY

2

+
u(Ruvab

ab

In d=6 we give the supersymmetric acticn for o = 0, while for a # 0 we

1. IKTRODUCTION

The original interest in Rzusupergravity theories was the fact that they
heve better guantum behaviour. However, it has also been widely recognized that
these theories are nonunitery. A class of boscnic R + R2 theories with
(torsion}E terms in d = 4 are known to be unitary; however they are non-

renormalizable [1].

Over the last year there has been & revival of interest in Rz-supergrawity
theories [2] due to the fact that they arise naturally in the lew energy limit of
superstring theories [3] and moreover they play an importent role im their
compaetification [L4], Since the superstring theories are presumebly finite, the
Rauactions they give rise to in the low energy effective action need nc longer
be renormalizable. On the other hand, given & low energy effective action from
which one computes the $-matrix elements, of course, it must be unitary on
physical grounds. Therefore,it is of considerable interest to search for ghost-
free R + R2 actions in d = 10, in the seme way it was done in Ref. [1]. One
such action hag been found so far, which is the Gauss-Bonnet combination of

R°-terns (5}: R LR° + R°. Whether the {unitary} superstring theory gives

rise to thisa co;;::ationuzs ap important issue which has not been resolved yet.

Concerning the loecal supersymmetry of the low energy limit of superstrings,
this is a property which must hold, sgain, on physical grounds. This is so
because the theory contains the gravitino field whose fleld equation is consistent
provided that loecal supersymmetry holds. We recall [6] that the supersymmetric
R-action is consistent because the divergence of the gravitino fleld equation is
proportional to the Einstein equation obtained from that action, and therefore
vanishes on-shell. Obviously the addition of Rz-terms alcene to this action will
destroy this property, thus making the theory inconsistent.

There have been & few attempts towards supersymmetrization of Ranactions
in a=6 and d=10. In particular, it has been shown that the
supersymmetrization of the Gauss-Bonnet invarient, Rﬁvab - hRﬁa + Ra, {7} as well
as Rﬁvab [8]1,[9] is compatible with the Lorentz Chern-Simons form occurring in

give partial results. We show that for o =0 and in a conformel gauge the the field strength of the 2-form field Bp“. In Ref. [10] the transformation
rules of the @& = 10 theory are considered in the dual thecry which contains a
gimilar results (except the torsion interpretation) up to variations containing 6-form field. B . In the dusl theory the connection between Ra-terms

1 0
; 100 Y6

=form trength. .
the T-fo fleld stre and the Lorentz Chern-Simons term is the same aa the one between the Yang-Mills

#*
Fo-terms and the Yang-Mills Chern-Simons term ) f11]. Teo see how this works
consider the following bosonic terms

3~form field Huvp has & natural torsion interpretation. In d = 10 we find

MIRAMARE - TRIESTE
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*) We thenk B. de Wit for pointing this out to us.
* To be submitted for publication.
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2
£ = Hiyy + FAFAB ¢y + RA RABg, {1.1)

where H(T) = dB(6) and F is the Yang-Mills field strength. To dualize (1.1},
one adds to it s total derivative term H,_\A( ,» wh G = 1B . Solvin

(1" "3y e B3y T Bra £
for H(T)’ and substituting the solution back into (1.1}, one finds the result

£ = (G(3) + gy + NBL)E 1 (1.2)

where w and are the Yang-Mills and Lorentz Chern-Simons 3-forms,

3Y 3L
respectively.

S0 far the attempts towards the supersymmetrization ef the Rz-action in
d = 10 or d = 6 have not led to complete results, One of the difficulties is the
mixing of the R and R2 actions, and the necessity of modifying the
transformation rules. Both of these features are due to the fact that the theory
is on-shell. In d = 4 +the off-shell formulation of N = 1 supergravity, of
course, is well known. This has facilitated the fully supersymmetric extension

2 2 2
vsb " hRua + R7) [12].

of the Gauss-Bonnet combination ¢ (R
In this note we give the first example of a supersymmetric (up to quartic
fermion terms) R2-action in a higher dimension by construeting the off-shell
superconformal extension of (Riemann tensor)2 in six dimensions. We have
considered d = 6 because (a) matter and Yang-Mills coupled N=2,4d = 6
supergravity [13] is kncwn off-shell [14]. Therefore, without changing the
supersymmetry transformation rules, we can construct the R and Ra—invariants
separately. (b) the theory resembles the N =1, d = 10 Yang-Mills coupled

supergravity a great deal [15] and (e} the N = 2, d = 6 theory may itself be
the low energy limit of & heterotic superstring theory [16].

The reascn for considering the conformal supersymmetry as opposed to the
Poincard supersymmetry is the following. The most general Re—action in d=6

which can admit a superconformal extension is

-+l

2 2 2 a, 2 2, B
&£ o ploBy o+ SR + e R) + ¢Mo R+ e R)L

L, + L, (1.3)

i

3=

where ¢ 1is the dilaton of the conformal muitiplet, L is the scalar of the
compensating linear multiplet [14] and o« is a real parasmeter different from 1.

Upon fixing the conformal gauge, L = 1, we see that {1.3} reduces to
a 2 2
+
£~ Xl 1; & (chRua o R Y, o #l (1.4)

This means that, if we want to supersymmetrize amn action of the form éfl then,
since a # 1, the second term in (1.4) should not be considered. On the other
hand, since éﬂl, contains only the fields of the conformal multiplet, and not
the fields of the compensating multiplet, it follows that the off-shell super-
Poincard extension of ;el’ even in the gauge L = 1, has still o residusl
superconformal invariance. Of course)the gauge conditicen 1 = 1 does change

the transformation rules of the fields of the conformal multiplet, However, these
changes are merely field-dependent dilatation, conformal supersymmetry and

conformal boest transformetions [17].

From the above argument we see that an off-shell supeeroincaré'action
of the form R + Sel is such that although the R term is not conformal invariant,
:x 1 is. In faet, if one assumes that the higher order K" terms arising in the
low energy limit of the superstring have a common factor @un then it seems to

follow that gll the corrections to the R-action will be conformally inveriant!

In any event, it is clear that there are advantages in working direetly in a
conformal framework. We recall that in this framework the R-action is easily

obtained from L{C + R)L in the gauge L = 1 [18].

We have also considered the superconfeormal extension of the Rauactions in
d = 10. Our results for the superconformal R2-actions in d=46 and d =10
can be summerized as follows. In d = 6, we find thet the fields of the conformal
multiplet, containing Buv’ admit a one-parameter family of Ra—actions of the

form

2 2 2 2
¢[#uvab + “(Ruvab - hRua +R i] (1.5)

We point ocut that the alternative conformal multiplet containing en anti-self-dual
3-form field T;bc’ instesd of Buv’ [14] does not allow an R2-action. Our
results are presented in the gauge ¢ = 1, since in that gauge the construction
of the action is particularly simple. To undo this gauge condition one perferms

appropriate field redefinitions, which we give, at the end.

ke

i
Ir

[T A

ol



In d =6, we find that in the gauge ¢ = 1 the gravitino transformation
Tule reads

qu = Du(m+)a 3 (1.6)
where
ab _  ab . 1. ab
m}.l + = mu (Es¢) * 5 H]J > (1.7)
Huvp being the field strength of Buu' Evidently, this means that Huv can be

interpreted as bosonic %orsion. The remarkable simplicity of (1.6.) allbws us to
formulate the action in terms of curvatures defined with respect to the torsionful

connections wuab

defined in (1.7). For example, in the case o = O, the
action contsins the terms R(m_)f\ *R(m_) + R{w_JAR(w_)JAB. In the cese a # 0,
although one can still use w _, it turns out that it is not particularly
advantageous t6 do s0 here. Eor this reason, we have considered only the
variations of the action which are bilipear in the fields, and all the variations

containing the suxiliary rield Vuij'

In d =10, we find similar results as in d = 6. Again, the conformal
maltiplet admits a one parameter family of mctions as in (1.5). As the conformal
multiplet contains a 6-form field Bul"' g [11), instead of a 2-form field
Bw, there is no natu;al torsionful connection in this case. Consequently, the
censtruction of the R -action is much more invelved here, and we give the result

which is invariant up to veristione containing H”l'-- upe

This paper is organized as follows. In Sec.2, we show how in the presence
of a dilaton field ¢, any Ra--action ¢an be written in a conformelly invariant
way. In Sec.3, we discuss the conformel supermultiplet, containing Buv’ in
d = 6 and show that in the superconformal gauge ¢ =1 and X =0, (A is a
spinor in the multiplet), the transformetion rules take up e simple form
allowing a torsion :‘Ln"terpretation of Huv . In Sec.h, we construct the d =6
Rz-actions invari.ant under variatione which are bilinear in the fields. Already

at that level we show that Ro-terms in these actions must be of the form {1.5).
2

uvab
quartic fermion terms, The supersymmetrizetion of the Osuss-Bonnet combination

In Sec.5, we describe the construction of the R action in d =6 up to

of Ra-—tems ia discussed in See,6, while Sec.T contains our results for Rz—actions
in 4 = 10. Same of the open problems are pointed cut in the conelusions,

In App. A we collect some useful identities for eurvatures with torsion. The

result Tor the supersymmetric Rﬁ action is given in App. B, while App. C

vab

2 2 2 .,
contains our results cn the supersymmetrization of Ruva’b - hRua +R° in 4 = 6.

=5

2, CONFCRMAL INVARIANCE AND R2 ACTIONS IN & PIMENSIONS

Tt is well known that local conformel supersymmetry [19] is a very
convenient framework to study general matter couplings to supergravity theories,
The same superconformal techniques can be applied to construct general super-
symmetric R2 actions as well, At first sight one might think that the high
degree of gauge invariance of conformal gravity restricts the variety of R2
actions. However, this is not quite so since Ra terms do not only arise from
(Weyl tensor)2 but they cah also arise from higher derivative Brans-Dicke type
Lagrangians such as £ = (C1R12w * c2R2)¢2 + ..., where ¢ is a compensating

field.

An example of & conformally invariant R2 Lagrangian that contains a
compensating scalar field ¢ 1is the generalization of the d = 4 conformal

gravity action to 4 dimensions [11]:

g - (d-k) ab,. ab
e ¢ Cw Cuv

{a-b) ab. ab b ) 2 2 (2.1}
=e R R - — 2 '
¢ uy v a-2 Ru&Ru * id—l_s_f a-2) R
where
ab ab 3 [a _Bb] 2 a b
C =R - — +
uv Y -2 °lu Rv] l a-1)(d-2) e[1.| eu} R
is the Weyl tensor in d dimensions. We use the following definitions:
ab ab ac ch a
R =2 3 u + 2
uv [w "] U W] » e=dete
b u v
a ab v R=gr 3% V¥,
R " =R ?
u v e.b TLYs a b 2 (2.2)

8 :
where e, is the vielbein, e:a]1 its inverse and mua:b(e) the spin comnection

field. Under dilatation euaL and ¢ transform according to

-6



D (2.3)

Note that in d = b the dependence of the conformel gravity action on -]
disappears. The Lagrangian (2.1} can aiso be expressed in terms of a redefined
vielbein which is inert under dilatations

_ a
el-l = ¢ e'l.l . (2.’4)

In this case (2.1) no longer depends on ¢. Equivalently one can directly

impose the gauge condition
¢-1 (2.5)

that breaks D symmetry.

The Lagrangian (2.1} is not the only conformelly invariant R2 Legrangian
that one can write down. In fact any R2 Lagrangian in terms of the inert

- . a8
¥ielbein eu

fab tab Ap Mg AD
_~ c. R R + R
x =8 1 % By ey B Ru *+ ey R (2.6)

with f-"l, 32 and ¢ 3 arbitrary coefficients can be made conformsl invariant by
reintroducing the compensating scalar ¢ as in (2.4)}. Upon making the

A
redefinition (2.4) the Riemann tensor Ruvab can be expressed in terms of the

Weyl tensor Cuﬁ'b plus derivatives of the dilaton field ¢ according to

.

A ébz -2 , ab [a -1, bl -1 b] -1,2
L ¢ Cuv +e[u(h¢' £ 3¢ —2eu](ax¢ )] (2.7)

- -1 .
with the second conformal covariant derivative ‘auavq, 1 of ¢ defined by

ﬁa—l=aa—l_rpa-—l+£ 2 a8 1 00 & -1 .
u \;¢ m v¢ v p¢ 2 } a2 Ru {a-1){a-2) eu RI¢ e
{2.8)
-T-
S TTT T IR B R R AL e

Using (2.7) one cen easily show that the Lagrangian {(2.6) can be rewritten in the

following conformally covariant way:

e-lx = e ¢d—h o abc ab
1 1Y) uy

El + dhi _c;_r(_dé) +2% (D uaﬁ'l)(ﬁuaudb'l)

.
N [h e) + (3a-k) e, + b(a-1) c3] 42 (@M 0 hH?

-k (a-1){2 ey + (a-1) e, + a(a-1) c;‘ ey J"314"1)(23“:#'1)2
+

d{d—l)E o) + (a3) o, + ala~1) cg(av(l)z(av{l)e . .00

Note that if we had started in (2.6) from the Weyl tensor Suvared, i.e.
~
g éclcwabﬁu vﬂb, then all the 84 terms in {(2.9) would venish. This

reflects the fact that the Weyl tenscor is scale covariant. OF course we can

always obtain the original Lsgrangian {2.6) from (2.9) by meking the inverse

redefinition emEL = ¢-13 8 or, equivalently, by imposing the gauge condition
¢ = 1.

Comparing formulse (2.6) and (2.9) it is clear that the Rg aetions in
terms of the inert vielbein é‘ua are much simpler. This is why in this

: a8
paper we will construct supersymmetric Rg gctions in tems of eu . Once we
have obtained this result we can always perform the redefinition (2.4} and
thus obtain the supersymmetric generslization of (2.9).

As hes been explained in the introduction we will restrict ourselves in
this paper to R2 actions which are constructed out of the fields of the
aonformal  multiplet  alone. Furthermore we will only consider R2
actions of the form {2.6) with ¢, ¥ 0, since it turns out that orly
supersymmetric R;2 actions with o % 0 contain the Iorentz Chern-Simons related

term RARAB.

8-
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3. SUPERCONFORMAL INVARIANCE IN SIX DIMENSICNS AND TORSTON

GB\,='¢€Y[ w\)]-EY\J
The W = 2 conformal supergravity theory in six dlmensions has been H ¥ H
M
constructed in [14] ). In this reference it was shown that there exist two i1 {1 i i s 1
different formulations of the N =2, 4 = § Weyl muitiplet, both with BT =FFe e gy HE —om + S A
40 (bosonic) + L0 (fermionic) components. Their field content is given by
5¢=E_A+2AD¢ ) (3.2)
formulation I: (e, o}, Vl‘j, T;bc’ x . D) N i
L where A,, the positive chiral e and the negative chiral 0 are the parameters
of a dilatation, a supersymmetry and & specisl supersymmetry,respectively. The
; N $ A a .
- formulation II: (ea, lpi, vtj’ B . Ai, ¢) P (3.1) derivatives Du €, Du). and Du¢ and the field strength temsor pr of BW
uov ¥ are defined as follows:
i i 1 i 1l ab i 1 i J
i + L _L
. : Dve =3ue 2b“5 +a‘tﬂu Yap € 2V\\J~E
where &, is the sechsbein, wu (i = 1,2) & positive chiral gravitino
{iier v = +vyh), v = v an 5U(2) gauge flela, O, an enti-selfdual -
y T " u abe Du¢=(au-2bu)¢-—wul
: : - - i —-def : :
tensor field (i.e. Ta’bc =-F EabcdefT Y, Buv :n antls?:met.;lc ‘Lensor
gauge field, ¥~ a positive chiral spirer (i.e. x = +Y_rx Ys @ a negative N i 5 1 ab i 1 i 1
chiral spinor {i.e. lJJi = —YTIpl) snd D, ¢ real scalars. The spinors 'P:, xl ,/LP Du o= (Bu - Ebu * T mp Yab) A - :?—vuj A
and ¢ are BSU(2)-Majorana. We use the same notation and conventions as in [1h] '
(the scalar ¢ and the spinor A were called o and ¥, respectively in {1k]). 1 i1 ,a i i
. —EEY-Hun-F(ﬁM‘bu*'cﬁd’u
In the next section we will show that one cannot construct R actions
- 3 -
for formulation I of the d = 6 Weyl multiplet, Therefore we cnly give here H].wp = 33[p BVDI +3 lb[u Tp] A+ z¢ ¢[u Y, !l'p] {3.3)

the transformation rulea of the second Tormulation:

Here bu is the gauge field for dilatations. The geauge fleld ¢1i.l of special

a_l- a a i
& eu =TEY 'Iau - A‘D eu supersymuetry is not an independent field but given in terms of \pu and li
(see Eq. (2.25) of [1L4]).
2
3 i n As has been stressed in the previous section, the construetion of R
& =D + + K + - = s : N s
"bu il ¢ 58 ¢ Y Y1.1 € Yu 1 2 % ¢ actions for a conformal multiplet with a compensating scalar ¢ is enormously
simplified by working with redefined fields that are inert under the conformal
2
i (1 1 {1 - transformations. Onge one has constructed and R~ action for these redefined
6V13=—he(1¢‘])-2¢le(lyﬁl‘j)+l¢2e(lyy-ﬂkj)- ) )
u u u 12 H fields one can slways reintroduce the compensating fields by making the Inverse

redefinition and hence obtain an 32 action for the full conformai multiplet.

*) For earlier related work see [20].

~10-



the
scalar ¢ (compensator for the dilatations) and the spinor 1 {compensstor for

The conformal multiplet (3.2) contains two compensating fields:

the special supersymmetry transformations). These two fields can be eliminated

from the conformal multiplet by making the following redefinitions, which are the

supersymmetric analog of the redefinition (2.4) (note that the ¢ in {2.4)
has scale weight 1 whereas the ¢ here has scale weight 2):
aa - ¢.'|./2 ea
H u
et ifh i -3/k i
= + A
wu ¢ LR/ Yy
A : o (1 iy
vid-.Vlj-h¢lk(lwd)—h¢21{lyA‘j)
1 H u
A
B =3B
uv uv
al 1/4 i
e =4¢"" ¢ (3.4}

In terms of these redefined fields (8 %, § %, § 14
wr Ve Yy

A
. Bu\a) the transformation
rules (3.2) are given by (for simplicity we omit from now on the hats}:

a_1l-a
[ eu =ZEY wl-l

1_ i 1 =b 1 1.4 3,1 s8b i
ﬁwu (aue +Kmu Yap € _Evuj5)+-a-ﬁu Tap ©

1 _=(1 a3} 1 =(i 3
th =g "y wlu - [ Yy*H wu
5Buv = - E Y[I.I lbv] (3-5)

where the supercovariant curvatures wu“ and H are defined by
uy

i _ i 1 ab i
Yo TP N PR Yay W)
E =393 B . +2% v ¥ (3.6)
uvp [w "wpl "2 F[u v "l S

-11-

R LT R S SR

Of course an alternative way to derive the transformation rule (3.5) from {3.2)

is to impose the gauge conditions ¢ =1 and A = 0 instead of making the

redefinitions (3.4). To preserve the gauge X = ¢ one must perform a

compensating S transformation with parameter:

ni=T];-@~(-HEi—%J{ei (3.7}
In order to simplify the construction of the R2 actions even further it
is now crucial to make the following observation. We see that in the
transformation rule for the gravitino in {3.5) the field strength Huab ocecurs
a3 a fully antisymmetric bosonic torsion part of a spin connection field
u.u:'b(l-l). More explicitly, we can write the gravitino transformation rule in the

following suggestive way:

vy = B (e) <t (3.8)
with
i_ i,1 &b t 1.1 )
oﬁus Bus +I&_m+u Yabe-2vuj€
ab ab 1 ab
w sw o (e) 23 H
wer o 2w (3.9)

where H ab
u

From the sechsbein postulste

is the bosonic torsion and Buv the corresponding torsion potential,

(3.10)

a _ a
= + -
o@u (u:+,P) e, Bu e, w9, e, I'w e,

it followa that the antisymmetric part of the Christoffel symbol is given by

A

A
Tl

o (3.11)

1
=-3 H
In the next sections we will see that the construction of BE actions can sometimes
be dramatically simplified by working immediately with the torsionful curvature
tensor. For cur purposes it appears to be convenient to inmtroduce both a
curvature tensor Ruzb(m*') with positive torsion and a curvature tensor

R vab( w ) with

y negative torsion:

“12-
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sb ac ch

ab _
Rup lug) =2 Ay 9y M P DR (3.12)

The eurvatures Ruvab(m+) and Ru“ab{m_) are related to each other by the

interchange of pair indices:

(a ) = (w,) + bil, ferm. (3.13)

R
UV &b Rab,uv +

This relation turns out to be verj useful in actual calculations. Under
ab ab

supersymetry the connection fields mu . and mu transform as follows:
dw ab _ z Y[a Wb] . }_E by v 4
+ w2 ¥ u A
Su ab - _ %—E ¥ wab .
- H (3.1k)

Curvature tensors with torsion satisfy different identities than ones
without torsion. We have listed all relevant identities which we will need in
the following in Appendix A..

We finally mention that with the torsion interpretstion of Huab one

can write the gravitino curvature w;v defined in (3.6) as follows:

i i .
vyt 2R o) ey - (3.15)

This curvature satisfies the following Bianchi identity:

: i 1 ab
D uru) Ypl T E Ry (8] Yap %]

- %.V[uvi‘ wp]J + H[uul wip} + tril, ferm. , (3.16)
where Vig is the curvature tensor of Vid:
v;i =20 viJv] + VEuk(i Vv]"j)k (3.17)
13-

Under supersymmetry w:v transforms agcording to

t_1_ = 1.1
6wpu =5 T ) Y e - 3 Vv g & *pil. femm (3.18)
L, R2 ACTIONS FOR THE d = & CONFORMAL MULTTPLET INVARIANT UNDER VARIATIONS

BILINEAR IN FIELDS

in order tc investigate what kind of RE actions we can construct for the
d = 6 conformal multiplet (3.5) we first make the following most genersl
ansatz for the part of the action which is bilinear in the fields.

& (bitinear) = c.R 2R 2P+ o R %R % 4+ o B
1uv v 2y T 3
v, By u v T He
b Tpw PRNRE 5 v Tpv
iJ wp
* o Y Tvig T op g Bl »

(4.1)

where cl,..,cT are arbitrary coefficients and Ruvab is the torsicnless

curvature, The requirement that in the variation of (L.1) uhder the

transformations (3.5) with constant e all terms bilinear in the fields cancel
leads to relations between the coefficients cl""cT' We give these relations
below, where we have &lsc indicated which type of terms wvanish in the variation

of x if the corresponding reletion is imposed:

3 R
woou v

Ml
=
h=4

i e te,te -2¢c =0

5

L}
©
m

€ 3 R
Y wap o

=1h-



=i ura J

¢, =0
" Y % ¥y Vivig
1 i A ]
5 Cc *te. =290
275 6 €Y Yy au vuui,j
=0 o uve

Y "’uk DHupA

(4,.2)

ol

1 = o vp
gcs"-c,r Q Y ¥ Dﬁuvp .

In the derivation of the first two equations in (4.2) we have used the Bianchi

tdentity for anab and "its consequences

ab ba a a 1
R = =2 - =
D iu Bog) 0 s by Ry Prufop 2 Da By =3 AR (h.3)
From (4.2) we see that ch = 0 and that all other coefficients can be expressed
in terms of ey and eyt

Cg=-f & s C =-2c6=—6c7=—;—(hc

5 Y (3.4)

1

Substituting (k.4) into (L,1) we ¢an vewrite the Lagrangian in the
following way

;{ . X _ al ab ij 1l _pup
bilinear) = R %Py + 24 v -+5
¢ ar) = a { w Ry lpwpﬁpw v Vi 173 B s{uvp}

+B{R 8k 5 ab-haana+nz}
uv uv (TR J
{L,5)

, - 1 _ UL : )
where a = SR L and B = - e Fram (4.5) we see that the Lagrangian

‘can be written as the sum of the Riemann tensor squared together with kinetic

terms for w“, V:J and Buv plus the Ganss-Bonnet combination

-15-

o e vt e S W B W 5 o
R e ARl - etz el FAE 38 - T EER - BN

ab b 2 . s P .
(Rwez Rwa - hHuaRua + R ) each with independent.coefficients o and §

respectively. HNote that the variation of the Gausa~Bonnet combination does not
contain terms bilinear in the fields. This is easily seen by writing it in the

form

;f'(Gauss—Bonnet) =8 (R 8b R ab _ YR®*R®*+ RE)
WV Hv u u
- ab cd
68 R[ab Rcd]
(4.6}
and in its variation to use the Bianchi identity D[cHa.b]ab =0,

In the next two sectlons, without loss of generality, we will separately
consider the supersymmetrization of the Riemann tensor squared and the Gauss-
Bonnet combination by applying a Noether procedure. For the supersymmetrization
of such actions a torsion interpretation of H turns out to he very useful.
Note that the o and B terms in (4.5) can be written in the following
suggestive way

: - ab ab = . 1
¥ (Riemann-tensor} = {RW (w,) R (w,) + 20, ﬁ"l’w - Vo Viuig }

cd

i(Gauss—Bon.net) = 6B R[abab(mi) Rcd] {w,)

+ (.7

where Ruvab(w+) is the torsionful curvature defined in {3.12). The sign of
H in Ruvab(m +) in the final nonlinear answer should folloew from the Noether

procedure.,

ab, ab

5. SUPERSYMMETRIZATIOR OF R R IN d=6
w v

We will now supersymmetrize the Riemann tensor squsred by applying a
Noether procedure, The reader who is not interested in the technieal details
given in this section can find our final results in Appendixz B, It turns out
that the construction of the setion is dramatically simplified by using a torsion
interpretation for HLNp' Such a torsion interpretation has been proposed
earlier in the low energy limit of the & = 10 superstring [7],[21]1,[22). The

usefulness of this torsion interpretation is only Justified after having proven

=16-
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the invariance of the action. A prieri it is not clear whether this torsion
interpretation will be useful for the construction of other ac:iions as well.
Whether ar not a torsion interpretation is useful depends on the following.,

In a torsion Interpretation of Hu\)p one makes the assumption that in the
ar
actmn all R Y terms and nﬁ'uﬁvab terms occur in the combination

RI-N (m ), i.e. the R and HH terms are on equal footing. This is only

true if in showing the invariance of the action one does not use ldentities

which are valid for Rwab but not for R uab(

w,}. A typical example of such
identities are the first three relaticns in (A.3). For iastance,

but R

Ru[\:,oc]
ulv,es] (r{a))=- = ﬁuuvpu' If in showing the invariance of the action one
hag t0 use many iden‘tltles 1ike this, then it Just means that the R ol terms
and & H ab terms in the acticn ha.ve to be treated differently and will net
always occur in the combination R (m ). Clearly, when this happens a

torsion interpretation of Huup 15 not 50 useful anymore.

It turns out that the torsicon interpretation of Hu\:p used in this
section does not only predict all £H terms in the sction, but slsc all H

terms! This enormously simplifies the calculation, For instence, a priori we

2

can have in the Lagrangian terms of the form

_ ab ab 2 L
L= a Ru\) Ruv + a2 BH 8H + ay RH™ + o) H (5.1)

in arbitrary combinations and with different possible contractions. However all
these terms turn ocut to occur in the combination

ab

- ab -
X =a m ) r ) (5.2)

The fact that we have taken in (5.2) Rwab(m ) and not Ruuab(mi_) will be
explained by the Noether procedure which we will discuss now.
We gtart from the ansatz given in (L4,7):
b4 Riemann-tensor) = &b ab e _ yid
( ) v (w,) L (w,) + 2%, z’wuv Viv Vivig (5.3)

Note that the sign of H in Rwa'b(mi) is not yet fixed. In the varlation of
(5.3) with constant ¢ all terms bilinear in the fields cancel, For local e
the same cancellations occur if weladd to the Lagrangian (5.3} the following
Noether terms.

-17-

({h=0

N ah — ab X iy = A
¥ (Noether) = - o @0 Y Y u r WV (5.4)

Since we will determine the full action only up to quartic fermion terms we will
from now on neglect terms bilinear in the fermions in the
variation of the action, -+ Furthermore -we will aliways remove the
derivative from e by partisl differentiaticn, For instance when we vary
¥, in (5.4) as 6;];;1 = uﬂu(w+) ¢ we will move the derivative to R(mi), Vw
and q;w. The type of terms bilinear in the fields which eancel in the

variation of (5.3) and (5.4) are given in the first column of Table 1.

The choice of the sign in the R “b{m ) terms in (5.3) and {(5.4) is
motivated by the cancellation of trllinear terms of the type w R . They arise
from varying the sechsbein in the R2 and 'puv in the R¢uwu“ term and are

given by

i

- A b ab -y W ab _ ab
ey, RHVE () B o) =287 ¥ B, () RG T (w,) (5.5)

and

) ab ab, - - uk v
€y ¥ Ruu (w!) Ruv ("’4-') t2ey wv Ra‘b (wt) 1:la.‘n

(uw,)

=

s £ R ) BP0, By v (5.6)

pvpdT T

respectively. Note that the sign of H in one of the R's in (5.6} is fixed
since we have 61; a.R(m ) €. We now see that the 'r(l) ~terms in {5.5) and (5.6)
cancel in a natural way if we take for the kinetic term R{w_ ) {i.e. = sign
in {5.5)}} and for the Noether term n(m+)¢u¢u“ {i.e, + gign in (5.6)) and then

use the identity Ruv,ab(m-) = R pu(”+) + bil. rerm,{see {3.13)).
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The v '~ '—term in (5.6) can be cancelled by adding a term ¥ (chern-Simons)
r4R A RAB which is related to the Lorentz Chern-Simons form as discussed in the
introduction. For this cancellation to occur it is essential that the conformal
supergravity multiplet contains an antisymmetric tensor gauge field Buv' It is
at this point that we would have falled to write down an Re— action for formulation
T of conformal supergravity (see Eg. (3,1)} which contains the tensor T;bc
instead of B v The cancellation occurs in a natural way if we take the R in

RARAB to be R(w_):

. = _ 1 uwpert ab ab (5.7)
.\,\P (Chern-Simons) = - e Ru\: (w ) . (w ) Boe
To show the gauge inva.ria.nce of this term under GBA = B[RAT] we use the Bianchi
identity for R (m which can be written as
i) ab = (5.8}
[u(w_) Bl {w)=0

and the fact that no explicit sechsbein occur in g(Chern-Simons). This allows
e )A ; snd to partial differentiste with &,(w ).
Note that the Bimnchi-identity (5.8) is an exact identity (i.e, not modulo bii,

us to write 8B, = &£
AT

ferms): Our result up to now can be summarized as follows. All bilinear
terms and all trilinear terms of the form ¢UR2 vanish in the variation of the

Lagrangian

£ =r )

uv

ab yid
Ry () +2f #y  —vov

11\-‘ wvij

ab ab A i} X
(o) By Y ¥, Y BV T Y

i cHvp OAT

2 1R Pz (5.9)

nv =" pw - At
In (5.9) it is understood that the covariamt derivative o

w, end T (for the definition of «BAw

is with respect to

for instance, see (B.3)).

Qur strategy is now as follows., First we determine the full wvariation
of (5.9). Whenever we have to partisl differentiste in this variation we do

this with respect to the tersionful connection w, and T, Because of the
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sechsbein postulate (3.10) we can slways move the derivative aﬁu(w+, I') through
a sechsbein. The variation of (5.9} leads %o the terms merked with y indicated
in Table 2, 1In this table we have not indicated the bilinear terms and the

quE terms since they where already cancelled in the varlation of {5.3}, (5.4)
and (5.7}. The same coancellations occur in the variation of (5.9}, but only

up to higher order terms, A typicel example is the cancellation of the V.Qwuv

terms apming from the kinetic term Ve and the Noether term V§ v

The two contribitions cancel upon using the Bianchi identity of lp (see (3.16)).

This then leads to trilinear terms of the form tpuvHV gbuHV Vzlp .
Also the terms arising from such manipulations have been indicated in Table 2
(these are the terms marked with 0).

We now first consider all trilinear terms in the variation which contain

V. The terms of the type \b V2 and q; RY cancel. The term of the form ‘i’ H V

coming from varying the Va kinetic term is cancelled by adding to the Lagrangla.n

the following form:

Comd) = -2 gy emyy, - (5.10)
This term gives new contributions to the variation of the type w V3H lp HV
and \b H2V (see Table 2). The vJvuV.ﬂH term cancels against a term whlch did
arise m the cancellation of the ;puRV tems (see Table 2). The \bWHV terms
which do arise from the variation of {5.9) and (5.10) and from the cancellstion
of the V& up terms are cancelled by adding to the Lagrangiasn the following
terms of the type IIJ

:f{wﬁvn)h%?ﬁ Yy o HY

" - v B g FRANEE {5.11)

This concludes the cancellation of all trilinear terms in the variation that

contain V..

The remarkable thing is that the result up to now, i.e. the Lagrangian
given by the sum of (5.9), (5.10) and (5.11) turns out to be the final answer
for the RuuabRuv L action {up te quartic fermions of course)l In cther
words Just loocking to variations proportional to V gives us the whole

ab. ab

answer, We have given an explicit expression for the R R

- - - action in

Appendix B.
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It is pow straightforward to check that all the remaining variations,

i.,e. ipuvHR, “’wH’DH= d)uHaV and IPHHB cancel. We have indicated the different

contribvutions to these varietions in Tsble 2. Note that the ¢ﬁvﬁ3 terms only

arise from cancelling the wuvHR terms and they turn out to cancel by

themselves,

It is amazing to see that a whole set of structures vhich could arise
in the variation of the Lagrangian (i.e. the terms of the type @muvﬁH,
2 2 L
L] H i
\pw.e q, ‘bu HR, qu.ﬁH, ﬂau-ﬁHﬂH, \puH R, wuH-BH and wuH in Table 1)

simply do not explicitly arise once we use a torsion interpretation for H
. . ; . . HVp
everywhere. Without this toreion interpretation the construction of a

s b, &b .
supersymmetric RWa Rw action would be significantly more difficult,

6. THE SUPERSYMMETRIZATICN OF (Rwabﬂwab - hRua'Rua +R) IN a=6

Tn this section we will diecuss the supersymmetrization of the Gauss-

Bonnet combination (Rwa'bfiwah - hRua‘Rua + R2) in six dimensions. In
particular we will investigate whether a torsion interpretation for Hu\?ﬂ can
simplify the construction of the action.
We start from the ansatz given in (4.7):
Y ab cd .
¥ (Gauss-Bonnet) = R[ab (wi) Rcd] (wi) (6.1}

Note that in (6.1) the (31-1)2 terms cancel. The sign of H in (6.1) is not
yet fixed. Since the variation of (6.1) does not give rise to terms bilinear
in the fields {the Gause-Bonnet combination is a topological invariant) we are
only allowed to add Noether like terms to {6.1) whose variation under Swu = ﬁus
does not give rise to bilinear terms. The most general such terms one can write

down are given hy:

ab(“n ) 3 cds

e il = abede
ab ) Vo Y IJ’de] *C va‘o v (6.2)

£ {Noether) = ¢ e ¥ "'dej ’

1 R

with cl,c2 arbitrary.
We first consider in the variation of (6,1) and (6.2) the trilinear
i 3 2
terms of the type quE. They arise from varying the sechsbein in the R~ and

w\-l’ q’uv in the Rtbuljzuv term and are given by

21~

w,) Ryor 20, (6.3)

and

ab gh = _cdegh
(w,) R (w,) v i
* el (6.4)

respectively. Note that the sign of H in one of the R's in (6,4) is fixed
(1)

(6.4) occurs only in & natural way if one takes for the Gauss-Bonnet combination

since we have ﬁwuvatR(m+)E. The cancellation of the y'~ '~terms in (6.3) and

and the Noether term .R{m_'_)R(w*_) and R{w+)¢ulpuv (i.e. + gigns in (6.3) ana
(6.1)) or R(m+)R(m_)')‘emd R{uw_J¢

¥
[PORIAY
{6.4)) respectively. The ys—term in (6.4) can be rewritten in the following

(i.e. + and - sign in (6.3) and - sign in

form {we have substituted the value of el):

5

I cdegh
12 “[ab

la,) R Sw,) T ylE

1 h h - sbeode
EERa'bg (m+) Rv::dg (m+) e v

e

+ RHH wu, RH2 Q)u terms (6.5}

The trilinear term of the type qu2 in (6.5) can be cancelled by adding to

the Lagrangien the following Chern-Simons related term:

lh_suvpchn ab(

(Chern~Simons) = - 5 w. ) Rpoah(w+) BM’ (6.86)

uv +

We will not discuss the cancellation of the R Hlpu and RHzllJu terms in {6.5)
here, WNote that such terms did not occur in the cancellation of the v >

2
terms of the type ¢HR in the previous section (see the text after (5.6}).

*) In [£1] it has been shown that the combination R{m+) R{w } should arise

in the low energy limit of strings.
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The variation of the Gauss-Bonnet combination {6.1) does give rise to one
other trilinesr varistion which is of the type ¢ uRH' For the combinations
u
R(m+)R(w+) and R{w_JR{w_ )} these variations are given by

a‘o( ¢c - _d e

- 10 R[a. m+) Hcd EY ¥ el (6.7)

b
and

cd

-5R,_ *lu) H (6.8)

- B ;
[ab . ey lpde] + tril, ferm.

respectively, whereas the combination R(m+)R(m ) leads to a more complicated
expression, which we shall not give here. It turns out that we are only able
to cancel the R}Iwuu terms in (6.8) in & natural way. They are cancelled by

adding the following 'J’IE_,\,H term to the action:

&9(‘4,2 ) =+%$ abe de (6.9)

H
uv tan’ Yea el

Unfortunately we have seen above that it was exactly this R(w )R(w }
combination which did give rise to a zppRQ variation which could not be

cancelled in a natural way.

We have thus come to the formulation of cur main problem with the
supersymmetrization of the Gauss-Bonnet combination. Unlike to the super—
symmetrization of the Riemann-tensor squared in the previous section we here
cahnot find a magic combination for the signs of the bosonic torsion in the
curvatures R(m+) such that we do find natural cancellations everyvhere. This
does not mean o} course that such a supersymmetric Gauss-Bennet action does not
exist. It only indicates that a torsion interpretation for Huvp seems to be
less natural in this case. This would mean that the actual construction of such
a Gauss-Bonnet action probably will require much more work than was the case in

the previous section. .

Of course one can restrict oneseif to first try to cancel all terms
arising in the variation of (6.1) and (6.2) containing V. Remember that

in the previous section this sector did give us the final expression for the
ab

Te THE SUPERSYMMETRIZATION OF R2 ACTIONS IN 4 = 10

In this section we investigate what kind of R2 actions one can write down
d = 10 conformal multiplet.

ten dimensions with 128 (bosonic) + 128 (fermionie) components has been

for the The conformel supergravity theory in

constructed in Ref. [11]. 1Its field content is given by

a (7.1)
® . B .
( u’? q"u “1:--'“5’ )‘: ¢) 3
where ei iz the zehnbein, zpu a positive chiral gravitino (i.e. b, = +yllxpu},
Bu u 5 OG-index antisymmetric tensor gauge field, A a negative chiral spinor
1777 )
(iiec A= -ylla) and ¢ & resl scalar. In the gauge ¢ =1, A = 0 the
transformation rules are given by
a_l-_=a
Geu 5 EY wu
1 (7 {n
§ = Deg+ = - H
v w6 (YuY 3vw) e K
5B = E—-g—? - € 0 ¥ ) .
ul....us 4 ‘;11-.. u5 116] {7-2)
where the covariant derivative D“e and the supercovariant curvature H(T) is
given by
1 ab
De= -
IJE aua N uu]'l Yap €
H =3 B {7.3)

[ “8::’! ﬁ{ ¥ ¥
bysee Mg M Hpeee Moy Hy THgees B “T]

We use the same notation and conventions as in [11]. An unusual feature is that

the zehnbein and the gravitino both satisfy a differentisl constraint:

Ru;J RW action. The cancellations occur in a natursl way if we take + signs )
- . v
in both (6.1} and (6.2). In that case we are indeed able to cancel all Ro= = berr BT Higy g v, *rvw”
variations containing V by adding appropriaste terms to the action. We have
. KV _
given the result in Appendix C. Unfortunately the result given in (C.1) is not Yov,=0 {T:l)
the final answer. Starting from this expression the main problem would be to
cancel the RH\buv veriation given in (6.7). We hope to give the final result
in a future publication.
-2h-
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Here R is the Ricci scalar and wuv the supercovariant gravitine -urvatiyre

ab ac cb) p v

R = (B[U uyp T e,y e, ey

1. (1) (7
LA PR Eh(w[u YOS ) vy ey (7.5

In order to investigate what kind of R2 sctions one can construet for
the d = 10 conformal multiplet (7.2) we first make the follawing most general
ansatz for the part of the action which is bilinear in the fields:

ab ab a8 _a

X=Q_LRW Ruu +c2R R

+c3’\l’ Py +CuH(T)

uv uv o B ’

{7.6)

where cl,..., Ch are arbitrary coefficients. Note that we have not written down
2 2

an R~ term since R™ = 0 up to terms quadrilinear in the rields. Also we have

not written down: a Euvyurlalev term since this term can be rewritten as

- P . : uv
wuv ﬁwuu by using the Bianchl identity for wuu and the constraint vy wuv = 0,

The requirement that in the variation of (7.6) under the transformstion
rules {7.2) with constant & all terms bilinear in the fields cancel leads to

the following relations between Clarees et

he #¢ -2c,=0 T
c1 5 c3 E Y wu“ u Rv

(1.7}

In (7.7) we have indicsted which type of terms venish in the veriation of &
in the corresponding relation is imposed. In the derivation of the second

equation of (7.7) we have used the identity
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D Y¥ =0 (7.8}

0 and the Bianchi identity

28

~riiich follows from the comstraint Y“un
1

D = 0, . i = - = + .

[uva] 0. From (7.7) it follows that e HE c3 Eﬁhcl c2)

Substituting this into (7.6) we can rewrite the lagranglan in the following way:

) ab ab _ 1h 'l-ll. .s ].l.r
éf = “(Ruv Ry * 2 *uv ¢ Yoo < BT i E]Hul... uT)

+8(R %" R P _LR®*R®
uv

- SR, (7.9)

where a = e, + %—cz and B = - %-cz. From (7.9} ve see that the Lagrangian
can be written as the sum of the Riemann tensor squared together with kinetic

terms for Y and B ,..., plus the combinaetion (R abp ab _ Lr %R 8y
H Hl P6 HY uv MR
each with independent coefficlents o and g respectively. HNote that in the
full action (RwabRwab - hRuaRua) may be extended to the Gauss-Bonnet

combination (RuvabR vab - hRHaRua + Ra) since in that case R° ~ quartie terms

7
(see (7.1)).

It is not easy to extend the result (7.9) to the nonlinear case by .
applying a Noether procedure. This is meinly due to the following two reasons,
First of all it is clear that unlike in d = & we cannot give the six-index
antisymmetric tensor gauge field of the d = 10 conformal multiplet the
interpretation of a torsion potential. This means that one has to conaider
separately variations containing Ruvab and H(T)’ vhich complicates the
calculation enormcusly. Secondly one must apply the Noether procedure in the
presence of the constraints (T.4). The effect of these constraints is that a
pricri independent variations become dependent which is again a complicating
factor in the calculation., Consequently it could well be that in 4 = 10 it is
easier toc immediately construct R2 actions for the 4 = 10 Poincard supergravity
theory. O©n the other hand,a disadvantage of that strategy is of course that one
then has to deal with an additicnal spinor A and dilaton ¢, Giving the two
index gauge potential Buv of the Poincard theory the interpretation of a
torsion potential does not seem to lead to dramstic simplicifactions aince by
doing this one cannot avoid the explieit torsion dependent varilations of the

type &% = He.
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It is not difficult to extend the result {7.9} tc actions iu whose
variation all H-independent terms cancel. ¥For completeness we have given this

result below,

-lg\f . ab ab - M Y1
e (Riemann-tensor) = R R +29% pYv -F=H """ 'Ou
v Y v 6! e
n v ne Uy Mo
ab - ab A
+
wo Y T Y (7.10)
it Eul' "o ab ab .
2 e ULU Hiasens "
ul o U31-|-h 115 Ulo
-1
e x(Gauss-Bonnet) = R[ab&b Rcd]Cd
ak cde
*8 R[a’o Yo ¥ ujde]
{7.11)
1 -1 Uowes U
P, 1 10 o ab R ab B
3 U Uy Ughy, gere Wyg ¥ oaes

Note in both (7.10) and (T7.1l) the presence of the Lorentz Chern—-Simons related
term RARAB. The dilaton ¢ and the spinor A of the conformal multiplet
are easily reintroduced into the R2 actions by performing the field redefinitions

LI ¢1/2 o2
u U

—

L
L (‘l’u + vul}

(1.12)

thereby undoing the gauge conditions ¢ =1 and X = C.
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8. CONCLUSIONS

In this paper we have supersymmetrized varicus Rz-actions in 6 and 10
dimensions which are closely related to the Lorentz Chern-Simons 3-form, and we
have emphasized the importance of the superconformal invariance. In addition to
their conformal invariance, the R2—actions constructed here, differ in two more

respects from the ones discussed in the literature [7],[81,[9].

Firstly, our theories are off-shell. Moreover the auxiliary fields are
propagating and therefore cannot be eliminated to go on-shell, unless one allows
infinitely many terms arising in an iterative solution. This prompts us to
conjecture that the supersymmetrization of the on-shell Ra-action may require

infinitely many corrections in the mcticn as well as in the transformaticn rules.

Secondly, the duwality transformation in the presence of Ra—actions does
not seem to be possible due to the fact that the action containg derivatives of
H and/or its higher powers. This is in accordance with the fact that the usual

on-shell Poincard actions containing the BIN field cannct be made off-shell.

In order to obtain a Poincard Einstein/Yang-Mills plus Rz-action in d = 6,

we add a Separately superconformal invariant asction containing L{D+ R)L .+ ¢F2u‘v,
where L is the scelar of the compensating linesr multiplet [14]. Hence the total

action becomes

6 -2 2 ’
I= Id xe L Roap * 0" LEHR)L+a ¢ Flot ;' (8.1)

where o 1is an arbitrary constant. Imposing the conformal gauge L =1 one

finds the off-shell Poincare’ action

_ [ 2 2 e

Since the F° sand R° part of the action (8.1) 4id not contain the fields of the
compensating multiplet, it follows that the F° and R° parts of the action (8.2)

are still superconformal invariant!

It has been observed in Ref. [13] (see also (23]) that the (R + ¢Fl2N)
action has the following global scale covariance

ea + CEB 2
- + -
u u > [ c ¢

edf *-beeyd
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(8.3}
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with ¢ constant. This must he compared with the local ac¢dle invarianee of the

F2 part of the same action given by
$ -

ei + - c(x)e: s ¢ o+ + 2 clx) ¢

(8.4)
ed(F) + ed(®
Assuming that it ia this local scale invariance which will hold in the higher
order terms of the low energy 1limit of the string theory, we conjecture that the
Lagrangian in that limit will take the form

-
uvab nouv

ldn ke 3 ST a T4 eed) (8.5)
n=p

where un are arbitrary coefficients not determined by supersymmetry, ... refers
to a1l poasible contractions asllowed by supersymmetry, and the action of (8.5),

excluding the R-term, is leocally superconformal invariant.
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APPENDTX A
IDENTITIES FOR CURVATURES WITH TORSION

In this appendix we have collected all identities for curvetureg will
torsion which have been used in this paper. All these identities can easily

be derived by first expressing the torsion~ful eurvature R N pd(I‘) into the
L]

. . n 1 p
torsionless curvature R b 8 T L ) H
uv,oc({}) Y using uy {1-1\: 2 Huv

o

R (Y zar + ene
uv,po W ovp
=R -d (r Ly P g, Y
uv,oo({}) [u( )Hv]po *3 H[u XHU]A 3 Huu \per
TA, 1)
and then using the known identities of Ru\! pg({}). Note that from the sechsbein
L]
postulate (3.10) it follows that
R (ty=-R Plu)elf el " 8.2)
UV, po uv + 8 b
We wi X . . -
e will only give the identities in terms of Ruv,pc(r)‘ Those for Huv,ab(“’:)
can easily be derived by using (A.2) and the relation R {(w) =R (w,) +
uv,ab’ - ab,puv +

+ bil, ferm.

We stress that some of the identities given below are only walid up to
terms bilinear in fermion fields. Therefore these identities can only be used
in the variastion of an action which is determined up to quartic fermion terms

but not in the expression for the action itself.

The identities read as follows. All the curvatures Ruv 0o and the
»
covariant derivatives ‘Bu are with respect to the torsionful conne:! io.

T(®).

R - R = - + B
W,po T pd,Lv "B[u %5 1pa 'b[p aluv

=.18 _in ;
R[uv,p]a 6 o Huvp 2 T [u va]u *+ bil. ferw
R =18 + bil, ferm
ulv,pol 3 W wo
5 R gt _ H by R o1
[u “vpl [w “pla
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b - _ 1 [+ » £ a
noow] H}\pr 2 R}m,d[h H‘pr] 2 Huu b
3 A .
H == H H + bil, ferm.
'ﬁiu voal 2 Tluv Tpola
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APPENDIX B

THE SUPERSYMMETRIC Rwab Rwab ACTION IN 4 = 6

(1.3) In this appendix we give the final result of Sec. 5 where we applied the
Hoether procedure to supersymmetrize the Riemann tensor squared in 4 = 6. The

Lagrangian up to guartic fermion terms is given by:

=1y _ ab ab - i)
P g Ry ) R ) + 2 wwﬂ Yy - v oy

uv pvi}l
- Ruvab(m+) $A ¥ Yy ¥ B Viﬂ b v L
- %Vti Eui vy wu\‘j = -]3; m1.|\.) L Hlpuv ol Hu"P Eul YD l“\JI\
_ Til; e—l Euvpch Ruvab("’-) Rpuab(m—) BAT
+ quartic fermions (B.1}
The. action of this Lagrangian is invariant under
8% =3E° 3
8 lpu = oau(w ) e
avid = gli A "’Auj) - %E(i - *ud)
B =-~¢ YO, ¥ {B:2)

1Y)

The torsionful curvatures Ruvab{m*) are defined in (3.12}. The coveriant
derivative cﬁu is with respect to the torsionful connection w,s T, For

ingtance in the gravitino kinetiec term we have

{B.3}

pv]

= 1 &b _
B, v .a ¢ +1tm+1 Yap wuv 2P7\[].1

Nl T -

. T

Nl

Y
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ab :18

RESULT:: ON THY SUPERSYMMETRIZATION OF (Ruv FLI\J - LlHuaH T H?ﬁ IN d=6&
%

ln this appendix we summarize the results of Sec. & where we discussed
the supersymmetrization of the Gauss-Bonnet combination (R vabRuvab - hRuaRua + RE)
. - : ab ed : : :
in d = 6. Starting Trom R[ab (“’+)Rcd] (m+) (i,e. choosing + signs in (6.1))

we find that in the variation of the following Lagrangian

e-li = R[abab(m_'_) Rcd]c‘i(m*_)
- % R{abab{m+) ;c YCde Yael * %E vib Ic:‘L Yﬁbc'ﬁe wdej
- %Q W Hlabe ¥y v Yer)
- % Ea[a YdeEf ¥ Hdef]
- %E e-l E“W’")‘T Ruvab(m+) Rpaab(wd-) BJ\T * %ll_ &t E“"’F’UXT iﬂ paiJB}\r
+ quartic fermions (c.1)

under the supersymmetry transformation rules given in (B.2) all H-independent terms

and all variations containing V:g cancel.
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TABLE 1
i iati abp 40 stion ind =6
possible terms arising in the veriation of the Ruv Ruv o .
bilinear trilinear gquartic quintie
terms terms terms terms
2
v oV
2N v, A
RV
ww,ov v,
HAV
wu
vAH
v, o
WHUHV
2 ¢ 2
v H°R)
43¢pvﬂ ¢UR am
HR
wwm *uv
OR
(v, HOR)
(¢ RBE)
N
3 L
b H (p H)
(£ wwaﬁ) b, HPE . L. u
2
H HoD H)
(ww 28 1) (b, 2HS ) ("’u

We use the abbreviationas V = VlJ and R = Ruv

uv

ab

The terms between

brackets denote structures that are autometically cancelled if we use a torsion

i etation for H
interpr Hvp

R ah(w ) inctesd of
HV t

ab

R .

uv

=36

, i.e. use both in the action and its variation

Lol

ol F

M

ot T



TABLE 2

Sources of contributions te the variation of the R a'bR‘Na.b aetion
1 ' [ f |
variation o 2 i » | 2 3
VIl e RV Ly HBYV gy VBH ¢ HV iy HR |y HBH BV |y H
source . u H I H ) Hv Hv uv u HY
T I N
; ;
R2 f 1 { X
!
AN |
V2 x i x x i \ x
X i 0
Ry b . o 9
AT o jo ! 0 l 0 ;
i !
; |
B8 } %
VHy 2 x x X x
"
2
" x x ¥} 0
L |

The terms marked with 0{x) arise from the variations which do (do not)

involve the Bianchi identities given in Appendix B and Eq. (3.16).
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