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ABSTRACT

p
We consider the superconformal extension of R -actions in 6 and 10

dimensions. We show that the fields of the conforms! multiplet alone admit a
? 2 2 J? P

one parameter family of R -actions of the form $[R + a(R - h R + H ) ] .

In d = 6 we give the supersymmetric action for a = 0, while for a ? 0 ve

give partial results. We show that for a = 0 and in a conformal gauge the

3-form field H has a natural torsion interpretation. In d = 10 we find

similar results (except the torsion interpretation) up to variations containing

the T-form field strength.

HIRAMARE - TRIESTE

February 1986

* To be submitted for publication.

1. INTRODUCTION

2
The original interest in R -supergravity theories was the fact that they

have better quantum behaviour. However, it has also Toeen widely recognized that
2

these theories are nonunltary. A class of bosonic R + H theories with
p

(torsion) terms in d = h are knovn to be unitary; however they are non-

renormalizable [l].

2
Over the last year there has been a revival of interest in R -supergravity

theories [2] due to the fact that they arise naturally in the low energy limit of

superstring theories [3] and moreover they play an important role in their

compaetification [U]. Since the superstring theories are presumably finite, the
o

R -actions they give rise to in the lov energy effective action need no longer

he renormalizable. On the other hand, given a low energy effective action from

which one computes the 3-matrix elements, of course, it must be unitary on

physical grounds. Thereforefit is of considerable interest to search for ghost-

free R + R actions in d = 10, in the same way it was done in Ref. [l]. One

such action has been found so far, which is the Gauss-Bonnet combination of

R -terms [5]: R . - 1*R + R . Whether the (unitary) superstring theory gives

rise to this combination is an important issue which has not been resolved yet.

Concerning the local supersymmetry of the low energy limit of superstrings,

this is a property vhich must hold, again, on physical grounds. This is ao

because the theory contains the gravitino field whose field equation is consistent

provided that local supersymmetry holds. We recall [6] that the superaynmetric

R-action is consistent because the divergence of the gravitino field equation is

proportional to the Einstein equation obtained from that action, and therefore
2

vanishes on-shell. Obviously the addition of R -terms alone to this action will

destroy this property, thus making the theory inconsistent.

2
There have been a few attempts towards supersymmetrization of R -actions

in d = 6 and d = 10. In particular, It has been shown that the

supersymmetrization of the Gauss-Bonnet invariant, R . - 1»R + R , [7] as veil

as R2 . [8],[9] is compatible with the Lorentz Chem-Simons form occurring in
uvab

the field strength of the 2-form field B . In Ref. [10] the transformation

rules of the d » 10 theory are considered in the dual theory which contains a
2

6-form field. B . In the dual theory the connection between R -terms

H-- — H
and the Ixirentz Chern-Siaons term is the same as the one between the Yang-Hills

F2-terms and the Yang-Mills Chem-Simons term ' [ll]. To see how this works

consider the following bosonic terms

*) We thank B. de Wit for pointing this out to us.
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R A R A B
(6)

(1.1)

where $ is the dilaton of the conforms! multiplet, L ia the scalar of the.

compensating linear multiplet [lh] and a is a real parameter different from 1.

Upon fixing the conformal gauge, L = 1, we see that (1.3) reduces to

where Hj , = ^B(g) and 7 is the Yang-Mills field strength. To dualize (l.l),

one adds to it a total derivative term H. ,A 0. ,, where G, > = dB, ,. Solving

for H, ,, and substituting the solution back into (l.l), one finds the result

(1.2)

where u>^ and u are the Yang-Mills and Lorentz Chern-Simons 3-forms,

respectively.

So far the attempts towards the supersymmetrization of the Reaction in

d • 10 or d = 6 have not led to complete results. O n e o f 'tlle difficulties is the

mixing of the H and E actions, and the necessity of modifying the

transformation rules. Both of these features are due to the fact that the theory

is on-shell. In d = k the off-shell formulation of H = 1 supergravity, of

course, is well known. This has facilitated the fully supersymmetric extension

of the Gauss-Bonnet combination if" (R . - 1*B + R ) [12].

In this note we give the first example of a supersymmetric (up to quartic
2

fennion terms) R -action in a higher dimension by constructing the off-shell

superconfomal extension of (Riemann tensor) in six dimensions. We have

considered d = 6 because (a) matter and Yang-Mills coupled M = 2, d = 6

supergravity [13] is known off-shell [ik]. Therefore, without changing the
o

supersymmetry transformation rules, we can construct the R and R -invariants

separately, (b) the theory resembles the IS = 1, d = 10 Yang-Mills coupled

supergravity a great deal [15] and (e) the H - 2, d = 6 theory may itself be

the low energy limit of a heterotic superstring theory [l6].

The reason for considering the conformal supersymmetry as opposed to the

Poincare' supersymmetry is the following. The most general R -action in d = 6

which can admit a superconformal extension is

-cc+1

(1.3)

-3-

This means that, if we want to supersvmmetrize an action of the form of then,

since cc # 1, the second term in (l.lf) should not be considered. On the other

hand, since ^ contains only the fields of the conformal multiplet, and not

the fields of the compensating multiplet, It follows that the off-shell super-

Poincare' extension of of , even in the gauge L = 1, has still a residual

superconformal invariance. Of course,the gauge condition L = 1 does change

the transformation rules of the fields of the conformal multiplet. However, these

changes are merely field-dependent dilatation, conformal supersymmetry and

conformal boost transformations [17].

From the above argument we see that an off-shell super-Poincare action

of the form R + o£ is such that although the S term is not conformal Invariant,

(i is. In fact, if one assumes that the higher order H terms arising in the
a

low energy limit of the superstring have a common factor if then it seems to

follow that all the corrections to the R-action will be conformally invariant!

In any event, it is clear that there are advantages in working directly in a

conformal framework. We recall that in this framework the R-action is easily

obtained from L(O + R)L in the gauge L = 1 [18].

2
We have also considered the superconformal extension of the R -actions in

o
d = 10. Our results for the superconformal R -actions in d = 6 and d = 10

can be summarized as follows. In d = 6, we find that the fields of the conformal
2

multiplet, containing B , admit a one-parameter family of R -actions of the

form

• R; + a(lT v - StR̂yvas pa (1.5)

We point out that the alternative conformal multiplet containing an anti-self-dual

3-form field T~t , instead of B , [lit] does not allow an R -action. Our

results are presented in the gauge <t = 1, since in that gauge the construction

of the action is particularly simple. To undo this gauge condition one performs

appropriate field redefinitions, which we give, at the end.

- 4 -
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In d = 6, we find that in the gauge

rule reads

= I the gravitino transformation

(1.6)

vhere

ab *!C (1-7)

H being the field strength of B y. Evidently, this means that H can be

Interpreted as boaonic torsion. The remarkable simplicity of (1.6) allows us to

formulate the action in tends of curvatures defined with respect to the torsionful

connections u> defined in (1.7). For example, in the case o = 0, the

action contains the terms R(w )A *R(u ) + R(UI_)AH(W )A B. In the case a ̂  0,

although one can still use u +, it turns out that it is not particularly

advantageous to do so here. For this reason, we have considered only the

variations of the action which are bilinear in the fields, and all the variations

containing the auxiliary field V i

In d = 10, we find similar results as in d = 6. Again, the conforms!

multiplet admits a one parameter family of actions as in (.1.5). As the conformal

multiplet contains a 6-form field By ___ u [ll], instead of a 2-form field

B , there is no natural torsionful connection in this case. Consequently, the

construction of the R -action is much more involved here, and we give the result

which is invariant up to variations containing H u . u .

This paper is organized as follows. In Sec.2, we show how in the presence
o

of a dilaton field $, any R -action can be written in a conformally invariant

way. In Sec.3, we discuss the conformal supermultiplet, containing B , in

d = 6 and show that in the superconformal gauge $ = 1 and X = 0, (X is a

spinor in the multlplet), the transformation rules take up a simple form

allowing a torsion interpretation of H . I n Sec.1*, we construct the d = 6

K -actions Invariant under variations which are bilinear in the fields. Already

at that level we show that R -terms in these actions must "be of the form (1.5).

In Sec.5, we describe the construction of the R action in d = 6 up to

qjiartic feraion terns. The supersymmetrization of the Gauss-Bonnet, combination
? 2

of R -terms is discussed in Sec.6, while Sec.7 contains our results for H -actions

in d • 10. Some of the open problems are pointed out in the conclusions.

In App. A we collect some useful identities for curvatures with torsion. The
result for the supersymmetric R action is given in App. B, while App. C

g 2 2
contains our results on the supersymmetrization of R . - ltH + R in d = 6.

2 . C0W0RMAL INVAfllAHCE AND R ACTIONS IS <J KKEHSIONS

It is well known that local conformal supersymmetry [19] is a very

convenient framework to study general matter couplings to supergravity theories.

The same superconfonaal techniques can be applied to construct general super-
2

symmetric R actions as well. At first sight one might think that the high

degree of gauge invariance of conformal gravity restricts the variety of R

actions. However, this is not quite so since R terms do not only arise from

(Weyl tensor) but they can also arise from higher derivative Brans-Dicke type

Lagrangians such as <>6 =

field.

R + ..,, where 4 is a compensating

An example of a conformally invariant R Lagrangian that contains a

compensating scalar f ie ld p i s the generalization of the d = It conforms!

gravity action to d dimensions [ l l ] :

C
uv

a . a B R " > _ _ ± - R » s » + _ 2 . 2 ^ ( 2 . Dah ab _ _k_
uv uv d-2 u (d-l)(d-2)

where

ab ab _U_
it ~ d-2 v] %]

is the Weyl tensor in d dimensions. We use the following definitions:

ab ab

R a = R a b e V
V uv h

ac cb

R = R a b e w e V
yv a b

(2.2)

where e a is the vielbein, e V Its inverse and m (e) the spin connection

field. Under dilatation e and $ transform according to

-6-



fiD • = + AD (2-3)

Note that in d = h the dependence of the conforms! gravity action on $
disappears. The Lagrangian (2.1) can also be expressed in terms of a redefined
vielbein which i s inert under dilatations

•a a
e = d> e

V U
(2.M

In this case (2.1) no longer depends

impose the gauge condition

on Equivalently one can directly

- 1 (2.5)

that breaks D symmetry.

The Lagrangian (2.1) iB not the only conformally invariant R Lagrangian
2

that one can write down. In fact any E Lagrangian in terms of the inert

vierbein e

f c, Rab R
1 1 W + c R

2 ]3 J (2.6)

with c-. , c ana a a r b i t r a r y coef f i c ien t s can be made conformal invar ian t by

re in t roducing the compensating sca l a r ij> as in (2 . I t ) . Upon making the

redefinition (2.U) the Biemann tensor R

Weyl tensor C a

can be expressed in terms of the

^
plus derivatives of the dilaton field according to

with the second conformal covariant derivative ,0 3 iji of • defined tiy

S 3 e R
av

(2.8)

-7-

Using (2.T) one can easily show that the Lagrangian (.2.6) can be rewritten in the

following conformally covariant way:

ab
C

Md-l)c .-1,2

d(d-l) cl *d"1(^A3A*"
1)(3 i T 1 ) 2

d(d-l)
(2.9)

DTote that if we had started in (2.6) from the Weyl tensor squared, i.e.

X = ec 8 atJC ab, then all the 3+ terms in (2.9) would vanish. This

reflects the fact that the tfeyl tensor is scale covariant. Of course we can

always obtain the original Lagrangian (2.6) from (2.9) by making the inverse
a -1

e =
V

1.

redefinition e or, equivalently, by imposing the gauge condition

Comparing formulae (2,6) and (2.9) it is clear that the R actions in

terms of the inert vielbein e a are much simpler. This is why in this
u 2 a

paper we will construct supersymmetric R actions in terms of e Once we

have obtained this result we can always perform the redefinition (2.1*) and

thus obtain the supersymmetric generalization of (2.9).
As has "been explained in the introduction we will restrict ourselves in

this paper to R actions which are constructed out of the fields of the
2

aonfonnal multiplet alone. Furthermore we will only consider R

actions of the form (2.6) with c \ 0, since it turns out that only

supersymmetric R actions with c ^ 0 contain the Lorentz Chern-Simons related

term R A R A B .



3. SUPERCOBFQRMAL INVAHIASCE IN SIX DIMENSIONS AND TORSION

The N - 2 conformal supergravity theory in six dimensions has been

constructed in [Ik] . In this reference it was shown that there exist two

different formulations of the N = 2, d = (, Weyl multiplet, both with

hQ (bosonic) + ho (fermionic) components. Their field content is given by

(SB
\iv

- * E Ttv'v]

E X + 2

" e V,
uv

(3.2)

formulation It

formulation II; u V u ' v , •) (3.1)

where A , the positive ehiral E and the negative chiral n 1 are the parameters

of a dilatation, a supersymmetry and a special supersymmetry,respectively. The
i * *

derivatives D e , D \ and D $ and the field strength tensor H of B
li V li vvp uv

are defined as follows:

where e^ i s the aechsbein, ifi ( i = 1,2) a positive chiral gravitino

( I . e ; if.1 = t ( V ) , ViJ = VJ1 an SU{2) gauge field, T~. an anti-selfdual
V r V U V doc

tensor field (i.e. T~ ~ T E
ai,cdef'r~ * ' ' B a n t l s y m n l e t r i c tensor

/ ^

b c ai,cdef

gauge field, x a positive chiral gpinor (i.e. x = +Y TX )> + a negative

chiral spinor (i.e. ty = -Y-ip1) and D, $ real scalars. The spinors il1", x1

i ^
and \|) are SU(2)-Majorana. We use the same notation and conventions aa in [lit]
(the scalar $ and the spinor \ were called o and ^, respectively in

3 E'4iU 2 n 'ab
- i v1

• 2 v

o
In the next section we vill show that one cannot construct R actions

for formulation I of the d = 6 Weyl multiplet. Therefore ve only give here

the transformation rules of the second formulation:
UVp Ijt 2

(3.3)

. a 1 - a
S e = ^ - E T

g 2 '

Here h is the gauge field for di latat ions. The gauge field if of special
V- v i 1

supersymmetry is not an independent field but given in terms of ip and X
(see Eq. (2.25) of 1

p *p " * E ^v

As has been stressed in the previous section, the construction of R

actions for a conformal multiplet with a compensating scalar $ i s enormously

simplified by working with redefined fields that are inert under the confonaal
2

transformations. Onoe one has constructed and H action for these redefined

fields one can always reintroduce the compensating fields by making the inverse
o

redefinition and hence obtain an B action for the full conformal multiplet.

•) For earlier related work see [20],

-9-
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The conforms! multiplet (3.2) contains two compensating fields: the

scalar <f (compensator for the dilatations) and the spinor X (compensator for

the special supersymmetry transformations). These two fields can be eliminated

from the conformal multiplet by making the following redefinitions, which are the

supersymmetric analog of the redefinition (2.It) (note that the « in (2.1*)

has scale weight 1 whereas the if> here has scale weight 2):

Of course an alternative way to derive the transformation rule (3.5) from (3.2)

is to impose the gauge conditions if * 1 and X = 0 instead of making the

redefinitions (3.1*). To preserve the gauge A = 0 one must perform a

compensating S transformation with parameter:

n = (3.7)

( 3 .

In order to simplify the construction of the R actions even further it

is now crucial to make the following observation. We see that in the

transformation rule for the gravitino in (3.5) the field strength H a occurs

as a fully antisymmetric bosonic torsion part of a spin connection field

w (H). More explicitly, we can write the gravitino transformation rule in the

following suggestive way:

with

/yV (3.8)

In terms of these re defined fields (e^, ^ V y
i J. B ^ ) the transformation

rules (3.2) are given by (for simplicity we omit from now on the hats):
£ i 1 ab

u k +v 'ab

ab _ ab ab

(3.9)

where H is the bosonic toraion and B

From the Beebsbein postulate

the corresponding torsion potential.

- = V[V *v]

where the supercovariant curvatures ill and H are defined bv

(3.5)

ab
- r (3.10)

it follows that the antisymmetric part of the Christoffel symbol is given by

2 V (3.11)

*U\> [y v] U [y 'ab v]

pvp [y vp] 2 T[ (3.6)

In the next sections we will see that the construction of B actions can sometimes

be dramatically simplified by working immediately with the torsionful curvature

tensor. For our purposes it appears to be convenient to introduce tioth a

ab(curvature tensor

R

E ab(u+) with positive torsion and a. curvature tensor

(iii ) with negative torsion:

-11- -12-
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13.12)

The curvatures E ̂ a (td+) and R (u ) are related to each other by the

i t h f i i d iinterchange of pair Indices:

Under supersjmjnetry $ transforms according to

= f R a b (u ) y K ^ - |
It- U\> + ' a b 2

bil. Term. (3.18)

(3.13)

This relation turns out to be very useful in actual calculations. Under

supersymmetry the connection fields a a and transform as follows:
It. R ACTIONS FOR THE d = 6 COMFORMAL MULTIPLET INVARIANT UNDER VARIATIONS

BILIHEAE IN FIELDS

1 -
2 E

ab

In order to investigate what kind of R actions we can construct for the

d = 6 conformal multiplet (3.5) we first make the following most general

ansatz for the part of the action which is bilinear In the fields.

(bilinear) = e R a \ a b + coR ̂
 a + c,R£

1 yv uv 2 v \i 3

Curvature tensors with torsion satisfy different identities than ones

without torsion. We have listed all relevant identities which we will need in

the following in Appendix A..

We finally mention that with the torsion Interpretation of H a one
can write the gravitino curvature \|/ defined in (3.6) as follows:

+ Ci i
4 UU 3, *

(3.15)

This curvature satisfies the following Bianchi identity:

j + II ^ tril. ferm.
(3.16)

where c ,..,c are arbitrary coefficients and E
ab

is the torsionless

curvature. The requirement that in the variation of (U.l) under the

transformations (3.5) with constant E all terms bilinear in the fields cancel

leads to relations between the coefficients c ,..,e . We give these relations

below, where we have also indicated which type of terms vanish in the variation

of f. if the corresponding relation is imposed:

where V is the curvature tensor of V •*:
uv \i

clt " 2 E Y • 3 R
11V U \>

V1"' = 2 3r V i)
v] k

(3.IT) " I C2 ~ 2 °3 + I

-13-



2 c 5
 + C6 =

*3 v .,
TV uvij

y yuij

a R a
- ltR aR a + R ) each with independent .coefficients o and g

respectively. Mote that the variation of the Gauss-Bonnet combination does not

contain terms bilinear in the fields. This is easily seen by writing it in the

form

^(Gauss-Bonnet) = S - 1* + R2)

6B R
[ab Rcd]

cd

In the derivation of the first two equat ions ir

identity for R and its consequences

(U.2)

have used the Bianchi

[y vp] b W [w v] a v 2 y i.t«-3J

From (It.2) we see that c • 0 and that all other coefficients can be expressed

in terms of c and

C3 = " ¥ C2 ' c5
 = " 2o6 = ~6 C7 = I

Substituting (lt.l») into (U.I) we can rewrite the Lagrangian in the

following way

(bilinear) =
al)

- ViJ V
yvij 3

and in its variation to use the Bianchi identity Dr R . ,[c ab]
ab 0.

In the next two sections, without loss of generality, we will separately

consider the supersymmetriaation of the Riemann tensor squared and the GausB-

Bonnet conibination by applying a Noether procedure. For the superaymmetriaation

of such actions a torsion interpretation of H turns out to be very useful.
uvp

Hote that the o and S terms in (!t,5) can be written in the following

suggestive way

(Riemann-tensor) - a

(Gauss-Bonnet) = 60 Rj

U ± ) • }
iu±)

where

H in R

procedure.

R y (ut) is the torsionful curvature defined in (3.12). The sign of

R (<u+) in the final nonlinear answer should follow from the Noether

where a = c ++ r

+ e

and

_ I, R
(It.5)

(3 = - -j- <:„. From (lt.5) we see that the Lagrangian

can be written as the Bum of the Riewann tensor squared together with kinetic

terms for tft , V and B plus the Gauss-Bonnet combination

-15-

5. SUPERSYMMETRIZATIOH OF R a b8 IN d

We will now supersymmetrize the Riemann tensor squared by applying a

Noether procedure. The reader who is not interested in the technical details

given in this section can find our final results in Appendix B. It turns out

that the construction of the action is dramatically simplified by using a torsion

interpretation for H . Such a torsion interpretation has been proposed

earlier in the low energy limit of the d = 10 superstring t7],[21],[22], The

usefulness of this torsion interpretation is only justified after having proven

-16-
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the invariance of the action. A priori it is not clear whether this torsion

interpretation will be useful for the construction of other actions as well.

Whether or not a. torsion interpretation is useful depends on t!/; following.

In a torsion interpretation of H one makes the assumption that in the

action all R terms and £ H terms occur in the corobination

R ( u + ) , i.e. the R and <& H terms are on equal footing. This is only

true if in showing the invariance of the action one does not use identities

which are valid for R a but not for R (io+). A typical example of such

identities are the first three relations in (A.3). For instance, R r ••({}) = 0

but R r -,(r{H))=- — £f H . If in showing the invariance of the action one

has to use many Identities like this, then it Just means that the B ab terms

and J9 H terms in the action have to be treated differently and will not

always occur in the combination R (cu ) . Clearly, when this happens a

torsion interpretation of H is not so useful anymore.

It turns out that the torsion interpretation of K used in this
livp _

section does not only predict all J^H terms In the action, but also all H

terms] This enormously simplifies the calculation. For instance, a priori we

can have in the Lagranglan terms of the form

(Hoether) = - R V t .
uv ui Xvj

(5.M

Since we will determine the full action only up to quartic fermion terms we will

from now on neglect terms tiilinear in the fermions in the

variation of the action. * Furthermore we will always remove the

derivative from e by partial differentiation. For instance when we vary

in (5.M asif

and

î = s& {<o ) e we will move the derivative to R(w +), V

. The type of terms bilinear in the fields vhich cancel in the

variation of (5.3) and (5.1*) are given in the first column of Table 1.

& {The choice of the aign in the H ^ & {a)+) terms in (5.3) and (5.h) is

motivated by the cancellation of trilinear terms of the type g> R . They arise
2

from varying the sechsbein in the R and \|< in the R̂ i ip term and are

given by

ab,

a!RM (5.1)
and

in arbitrary combinations and with different possible contractions. However all

these terns turn out to occur In the combination

(5.2) (5.6)

The fact that we have taken in (5.2) R ab(u ) and not R a b(u +) will be

explained by the Hoether procedure which we will discuss now.

We start from the ansatz given in (U.7):

(Riemann-tensor)
TUV

- v i J v
UV uvij

(5.3)

respectively. Note that the sign of H in one of the R's in (5.6) is fixed

since we have £Ui aR(u ) c. We now see that the y -terms in (5.5) and (5-6)
yv + 2

cancel in a natural way if we take for the kinetic term R((u_) (i.e. - sign
in (5.5)} and for the Soether term R(iu+)]|i * (i.e. + sign In (5.6)) and then

use the identity R ab'"-' (3.13))-

ab
\i\>

(<u+) is not yet fixed. In the variation ofNote that the sign of H in

(5.3) with constant e all terms bilinear in the fields cancel. For local E

the same cancellations occur if we ada to the Lagrangian (5.3) the following

Hoether terms.
-18-
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The y -term in (5.6) can he cancelled by adding a term $_ (Chern-Simons)

M B A K A B which is related to the Lorentz Chern-Simons form as discussed in the

introduction. For this cancellation to occur it is essential that the conformal

supergravity multiplet contains an antisymmetric tensor gauge field B . It is

at this point that we would have failed to write down an R-action for fonnulation

I of conformal supergravity (see Eq̂ . (3.1)) which contains the tensor T

instead of B The cancellation occurs in a natural way if we take the R in
yv J

R A R AB to be H(u ):

(Chern-Simons) H

To show t h e gauge i n v a r i a n c e o f t h i s t e r m u n d e r SB = <>r,A •, we u s e t h e B i a n c h ii ,
AT

identity for R (u ) which can be written as
[X T]

R

<£ U ) Rv , * % ) = 0 (5 .8)

and the fact that no explicit sechsbein occur in of(Chern-Simons), This allows

us to write SB = ^r\(a M i ^d- *° partial differentiate with <& (us ) .

Note that the Bianchi-identity (5-8) is an exact identity ( i . e . not modulo b i l .

ferine): Our result up to now can be summarized as follows. All bilinear
2

terms and nil trilinear terms of the form ty R vanish in the variation of the

Lagrangian

= R
y

R
yv

R
yv

V i j V . ,
yv yvij

sechsbein postulate (3.10) we can always move the derivative JB (o> , I") through

a sechsbein. The variation of (5.9) leads to the terms marked with 35 indicated

in Table 2, In this table we have not indicated the bilinear terms and the

i|) R terms since they where already cancelled in the variation of (5.3), (5.4)

and (5-7). The same cancellations occur in the variation of (5.9), but only

up to higher order terms. A typical example is the cancellation of the

terms naming from the kinetic term and the Hoether term Vib
y

yv

y yv
The two contributions cancel upon using the Bianchi identity of 1(1 (see (3.16)).

This then leads to trilinew terms of the form \\i HV, i|i RV and V2* .
yv ' *y %

Also the terms arising from such manipulations have been indicated in Table 2

(these are the terms marked with 0).

We now first consider all trilinear terms in the variation which contain

V. The terms of the type $ V and <(i RV cancel. The term of the form ifi H V

coming from varying the v kinetic term is cancelled by adding to the Lagrangian

the following form:

I V
3 yv

*vj
(5.10)

This term gives new contributions to the variation of the type 1(1 V#H, 1(1 HV

and t w~V (see Table 2). The ) VcBH tern cancels against a term which did

arise in the cancellation of the 41 RV terms (see Table 2). The 1(1 HV terms

which do arise from the variation of (5.9) and (5.10) and from the cancellation

of the VJ0 41 terms are cancelled by adding to the Lagrangian the following

terms of the type i|i H:

- RRyv V i J if .
yv yi *AvJ

In (5-9) it is understood that the eovariact derivative e©

(5.9)

is with respect to

o) and r (for the definition of «& ^ for instance, see (B.3)).

Our strategy is now as follows. First we determine the full variation

of (5^9)• Whenever we have to partial differentiate in this variation we do

this with respect to the torsionful connection us and T, Because of the

" Hv
This concludes the cancellation of all trilinear terms in the variation that

contain V..

The remarkable thing is that the result up to now, i.e. the Lagrangian

given by the sum of (5.9), (5.10) and (5.11) turns o.ut to be the final answer

for the R ^ * R ^ a - action (up to quartic fermions of course)!
 I n other

words just looking to variations proportional to V gives us the whole

answer. We have given an explicit expression for the R a R
F yv

Appendix B.

a R - action in
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It Is now straightforward to check that all the remaining variations,

i.e. and cancel. We have indicated the different

contributions to these variations in Table 2. Note that the \(i H terms only

arise from cancelling the i(T HR terms and they turn out to cancel by

'themselves.

It is amazing to see that a whole set of structures which could arise

in the Variation of the Lagrangian ( i . e . the terms of the type JSiJi

1(1 V * * H ty HJ6R * RJ&H $ 8H£K $ HB * Hty HJ6R, * RJ&H, $ H B , * H •& H and I|I H in Table l )

simply do not explicitly arise once we use a torsion interpretation for H

everywhere. Without this torsion interpretation the construction of a

supersymmetric R R action would be significantly more difficult.

yvp

6. THE SUPERSYMMETRIZATIOH OF (R a bR a b + R2) IN d

In this section we will diBcuss the supersyrametrization of the Gauss-
Bonnet combination (E R a - liR aR a + R ) in six dimensions. In

yv pv m y
particular we will investigate vhether a torsion interpretation for H can

simplify the construction of the action.

We s ta r t from the ansatz given in (It.f):

(Gauss-Bonnet} = R
Lab

a b .
cd ]

cd ,
(6.1)

Note that in (6.1) the (3H) terms cancel. The sign of H in (6.1) is not

yet fixed. Since the variation of (6.1) does not give rise to terms bilinear

in the fields {the Gauss-Bonnet combination is a topological invariant) ve are

only allowed to add Noether like terms to (6.1) vhose variation under Si(i = JB e

does not give rise to bilinear terms. The most general such terms one can write

down are given by:

(tether) - • c£ vdej
(6.2)

with c ,c arbitrary.

We first consider in the variation of (6.1) and (6.2) the trilinear
2 2

terms of the type <ji R . They arise from varying the sechshein in the R and

ill , \|i in the Ri it term and are given by
r\i UV UV"

-21-

5 - a de.
(6.3)

and

ab,

(6.1*)

respectively. Hote that the sign of H in one of the R's in (6.4) is fixed

since we have <5ip o£R(iu+)£. The cancellation of the y -terms In (6.3) and

(6.It) occurs only in a natural way if one takes for the Gauss-Bonnet combination

and the Boether term R(aj )R(u ) and R{».H i|i (i.e. + signs in (6.3) and
^\ + y uv

(6.1+)} or_ R{ai+)RUJ and R(u_)\|i « (i.e. + and - sign in (6.3) and - sign in

(fi.lt)) respectively. The y -term in (6.It) can be rewritten in the following

form (we have substituted the value of e ):

gh, gh,
Rcd

- abode

I(I , RH V terms (6.5)

The trilinear term of the type i(i R in (6.5) can he cancelled by adding to

the Lagrangian the following Chern-Simons related term:

(Chern-Simons)
uv pa

(6.6)

We will not discuss the cancellation of the R Hip and RH i|) terms in (6.5)

here, Hote that auch terms did not occur in the cancellation of the Y

terms of the type i/i R in the previous section (see the text after (5.6}).

*) In [Si] it has been shown that the combination R(oi+) R(ID } should arise

in the low energy limit of strings.

-22-



The variation of the Gauss-Bonnet combination [6.1) does give rise to one

er trilinear variation which is of the type i(i EH. For the combinations

i )R(u ) and R(<D )R(W ) these variations are given hy

c - d e
E Y tf

(6.J)

7. THE SUPERSIMMETRIZATIOH OF R ACTIONS IN d = 10

In this section we investigate what kind of R actions one can write down

for the d = 10 conformal multiplet. The conformed, supergravity theory in

ten dimensions with 128 (bosonic) + 128 (fermionic) components has been

constructed in Ref. [11]. Its field content is given by

and

*de] *
(6.8)

respectively, whereas the combination R(u) )R(u> ) leads to a more complicated

expression, which we shall not give here. It turns out that we are only able

to cancel the RHifi terms in (6.8) in a natural way. They are cancelled by

adding the following i^ H term to the action:

i i abc de
e] (&.9)

" ' v' V" V
(7.1)

+Y,,*,.)>where e is the zehnbein, I(I a positive chiral gravitino ( i . e . ifi = +Y11<
1 )

B a 6-index antisymmetric tensor gauge field, X a negative chiral spinor
U"V6

( i .e . X = -y,.X) and <f> a real scalar. In the gauge

transformation rules are given by

a _ 1 - a
% ~ 2 E Y

1, X = 0 the

Unfortunately we have seen above that it was exactly this R(io )R(W }

combination vhich did give rise to a ip R variation vhich could not be

cancelled in a natural way.

We have thus come to the formulation of our main problem with the

supersymmetrization of the Gauss-Bonnet combination. Unlike to the super-

symmetrization of the Riemann-tensor squared in the previous section we here

cannot find a magic combination for the signs of the bosonie torsion in the

curvatures R(<u+) such that we do find natural cancellations everywhere. This

does not mean of course that such a supersymmetric Gauss-Bonnet action does not

exist. It only indicates that a torsion interpretation for H seems to be

less natural in this case. This would mean that the actual construction of such

a Gauss-Bonnet action probably will require much more work than was the case in

the previous section. -

Of course one can restrict oneself to first try to cancel all terms

arising in the variation of (6.1) and (6.2) containing V. Remember that

In the previous section this sector did give us the final expression for the

R • ai5R atl action. The cancellations occur in a natural way if we take + signs
yv y\)
in both (6.1) and (6.2). In that case we are indeed able to cancel all

variations containing V by adding appropriate terms to the action. We have

given the result in Appendix C. Unfortunately the result given in (C.I) is not

the final answer. Starting from this expression the main problem would be to

cancel the RHif variation given in (6.7). We hope ta give the final result

in a future publication.

-23-

= VI(Vp- 3 Y V E H(7)

SB
(7.2)

where the covariant derivative D e and the supercovariant curvature K,--, is
V (7)

given by

1 ab
•i— hi v E

V u ab

C 7' 3 )

We use the same notation and conventions as in [ll]. An unusual feature is that

the zehnbein and the gravitino both satisfy a differential constraint:

R = _ I*.71 H ( 7 )H ( 7 ) + 9

(7:1+)
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Here R is the Ricci scalar and 41 the aupercovariant gravitino •-•urvature
= 0 (7.8)

u _ / i ab ac cbi 11 v

V
In order to investigate what kind of R actions one can construct for

the a » 10 eonformal multiplet (7.2) we first make the following most general

ansatz for the part of the action which is bilinear in the fields:

T. R
yv

H ( T ) Q .
'(7)

(7.6)

vhere c..,..., c, are arbitrary coefficients, note that we have not written down
2 2

an E term since R * 0 up to terms quadrilinear in the fields. Also we have

not vritten down a iji yUT 9
—
i| 1/1 ijy using the BianchI identity for 1(1

term since this term can be rewritten as

uv
and the constraint y v = 0,

v
The requirement that in the variation of (7.6) under the transformation

rules (7.2) with constant t all terms bilinear in the fields cancel leads to

the following relations between c ,..., c, :

°2 " 2 C3 3 R a

yv u v

D«

(T.7)

In (7.7) we have indicated which type of terms vanish in the variation of of

in the corresponding relation is imposed. In the derivation of the second

equation of (7.7) we have used the identity

vhich follows from the constraint y ^ • 0 and the Bianchi identity
y v oft T

D [y*vp] = ° " F r o m ( 7 - 7 ) f t f o l l o w 3 t h a t % = ~ 6! ' C 3 = l < ! * c l + C 2 ) -

Substituting th is into (7.6) we can rewrite the Lagrangian in the following way:

t - ab + 2
1 ^ 1 -

v- v
- It R a H

U U ( T . 9 )

where a and B = -± ^ 2 ^ g. From (7.9) we see that the Lagrangian

can be written as the sum of the Riemann tensor squared together with kinetic

terms for (i and B plus the combination (R a bR al> - U E ̂ R a)

each with independent coefficients a and 0 respectively. Note that in the

full action (E,

combination (R

(see (7.1*))
yv

R ^

ab

*) may be extended to the Gauss-Bonnet
+ R ) since in that case R ^ queurtic terms

It is not easy to extend the result (7.9) to the nonlinear case by

applying a Hoether procedure. This is mainly due to the following two reasons.

First of all it is clear that unlike in d = 6 we cannot give the six-index

antisymmetric tensor gauge field of the d = 10 eonformal multiplet the

interpretation of a torsion potential. This aeans that one has to consider

separately variations containing R
Jiv

and H,_,, which complicates the

calculation enormously. Secondly one must apply the Noether procedure in the

presence of the constraints (7.1*). The effect of these constraints is that a

priori independent variations become dependent which is again a complicating

factor in the calculation. Consequently it could well be that in d = 10 it is

easier to immediately construct R actions for the d = 10 Poincare* supergravity

theory. On the other hand;a disadvantage of that strategy is of course that one

then has to deal with an additional spinor i. and dilaton $, Giving the two

index gauge potential B of the Poincare' theory the interpretation of a

torsion potential does not seem to lead to dramatic simplicifactions since by

doing this one cannot avoid the explicit torsion dependent variations of the

type &% = He.
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It is not difficult to extend the result {1.9) to actions iu whose

variation all H-independent. terms cancel. For completeness we have given this

result below.

8. CONCLUSIONS

e X% (Riemarm-tensor) =
yv

e A (Gauss-Bonnet) = Rr
 a R _,c
Lab cdj

2 Hj B ill — — H
' ryv yv 61

ab 7 ab \

ab R a b

ab

H
v l " " U7

(7.10)

+ ...

(7.11)

Note in both (7.10) and (7.11) the presence of the Lorents Chern-Simons related

term B A K A B . The dilaton 4> and the spinor X of the conformal multiplet

are easily reintroduced into the R actions by performing the field redefinitions

2
In this paper we have supersymmetrized various R -actions in 6 and 10

dimensions which are closely related to the Lorentz Chern-Simons 3—form} and we

have emphasized the importance of the supereonformal invariance. In addition to
2

their conformal invariance, the R -actions constructed here, differ in two more

respects from the ones discussed in the literature [7],[8],[9].

Firstly, our theories are off-shell. Moreover the auxiliary fields are

propagating and therefore cannot be eliminated to go on-shell, unless one allows

infinitely many terms arising in an Iterative solution. This prompts us to
2

conjecture that the supersyametrissation of the on-shell R -action may require

infinitely many corrections in the action as well as in the transformation rules.

2

Secondly, the duality transformation in the presence of R -actions does

not seem to be possible due to the fact that the action contains derivatives of

H and/or its higher powers. This is in accordance with the fact that the usual

on-shell Poincare* actions containing the B field cannot be made off-shell.

In order to obtain a Poincare' Einstein/Yang-Mills plus R -action in d = 6,

we add a separately supereonformal invariant action containing L(O+ R)L + +F " ,

where L is the scalar of the compensating linear multiplet [lU}. Hence the total

action becomes

"'* (S.I

(7.12)

thereby undoing the gauge conditions <|> = 1 and X - 0.

where a i s an arbitrary constant. Imposing the conformal gauge L = 1 one

finds the o f f - s h e l l Poincare' action

= d6 x e H + + (R2 . + a F2 ) + • • •J L yv v -1 (8.2)

Since the F and R part of the action (8.1) did not contain the fields of the

compensating multiplet, it follows that the F and R parts of the action (8.2)

are still superconformol invariant!

It has been observed in Ref. [13] (see also (?3]) that the (R + ̂ F^)

action has the following global seale'cpvafiance

-27-
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(3.3)
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APPENDIX A

vith c constant. This must be compared with the local Scale irtvariarice of the
$F part of the same action given by

2 c(x)

Jf(F)
(8.1*)

Assuming that it is this Local scale invariance vhich will hold in the higher

order terms of the low energy limit of the string theory, ve conjecture that the

Lagrangian in that limit will take the form

IDENTITIES FOR CURVATURES WITH TORSION

In this appendix we have collected all identities for curvatures viu

torsion which have been used in this paper. All these identities can easilj

be derived by first expressing the torsion-ful curvature R ...(r) into t.h,

torsionless curvature H {{}) by using

R (r) = a r a + ••
UV.pCT y vp

- i- H *•
2 yv

R . + a F" + •••)
yvab n yu ' (8.5)

where a are arbitrary coefficients not determined by supersymmetry, refers

to all possible contractions allowed by supersymmetry, and the action of (8.5),

excluding the K-term, is locally superconformal invariant.

and then using the known identities of

postulate (3.10) it follows that

Buv>pe,(<}).

(r) - R
U

Note that from the sechsbein

•A.?)
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We will only give the identities in terms of R ( r ) . Those for H
u . p

can ea s i l y be derived by using (A.2) and the r e l a t i o n R (u> )
UV,ao -

+ toll. f e rn .

R
ab,|iv

)±
(w ) ++

We stress that some of the identities given below are only valid up to

terms bilinear in fermion fields. Therefore these identities can only "be used

in the variation of an action vhich is determined up to quartic fermion terns

but not in the expression for the action itself.

The identities read as follows. All the curvatures R and the
vv.pa

covariant derivatives «o are with respect to the torsionful conne-' ii».

r ( H ) .

" p [y H\)]pa + [p

Z

--i*

[y
\ „ VT
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[y ̂  v]

APPEHDIX E

THE SUPERSYMMETRIC R
u

R
uv

at A C T I 0 N

yv
d _• g

fi> H i = I Hr
 X H n, + til. fern),[u vpa] 2 [yv po]X

(A.3)
In this appendix we give the final result of Sec. 5 where we applied the

Hoether procedure to supersynmetriae the Riemaiiri tensor squared in d = 6. The

Lagr&ngi&n up to quartic fermion terms is given ty:

-1\ (.o ) H
- v

(c ) + 2
yv yv yvij

- RR
yv

v i J ̂

V
ab, \ „ at>,£u)-) V (

+ quartic ferraions (B.I)

The action of this Lagrangian 1B invariant under

1 -
E

J) i-U
TXw 6

SB
y
B
yv

'[y v]
(B:2)

The torsionful curvatures R a (<u+) are defined in (3.12). The eovariant

derivative JB is vith respect to the toraionful connection iu+, r. For

instance in the gr&vitino kinetic term we have

1* +x ab yv A[y Tpv]
<B.3)
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APPENDIX .

RESULTS ON TOT SUPERSYMMETRIZATIOH OF (H a l '
V V

IN

In this appendix we summarize the results of Sec. 6 where we discussed

Ftthe supersymmetrization of the Gauss-Bonnet comhination (E
ab cd()R

Ft
yv H + R )

Uab cd y u U
in d = 6. Starting from R ^ (iu+)Rcd-, (u+) (i.e. choosing + signs in (6.1))
we find that in the variation of the following Lagrangian

—1
e

cd,r cd,
K' Rcd] <V

5 _ ab, , — cde
I R[ab K > *c y

1 ,J.j — abcde
12 ̂ b *ci Y

10 — def

+ quartic femions

pv poij XT

(Cl)

under the supersymmetry transformation rules given in (B.2) all H-independent terms

and all variations containing V5^ cancel.
at)
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TABLE 1

All possible terms arising in the variation of the action in d = 6.

bilinear
terms

'V

&r\> R

trilinear
terms

ill HJlV
P

U

+yvHV

+ HEuv

(t|i R*H)

*pv

quartic
terms

, ,

* U V H 3

quintic
terms

We use the abbreviations V and R J*R J The terms between

brackets denote structures that are automatically cancelled if we use a torsion

interpretation for H , i.e. use both in the action and its variation

R at(«.) inctead of R. ,ab.
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TABLE 2

Sources of contributions to the variation of the H H a action

source • v.

R2

yv*^ yv

v2

vr
™*y2

v2

X

0

<j> E V

X

0

V

X

X

1

0

X

Ji HV
UV

X

0

X

X

X

0

X

X

v yv

1(1 ESE

0

0

, / v

X

X

0

0

The terms marked with 0(x) arise from the variations vhich do (do not)

involve the Bianehi identities given in Appendix B and Eq. (3.l6).
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