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ABSTRACT

We discuss tha problems of gauge fining for the spinning string

in the Keveu-Schvarz-Ramond formalism. We demonstrate that the usual

Teichfniiller parameters have fermionie counterparts. For a surface

of genius g the complex dimension of the fermionic Teichnuller variables

is 2g-Z if g >, 2.

INTRODUCTION

The old superstring is contained in the NSR model of the spinning

string . The problem of quantizing the superstring is essentially

the problem of fixing the fermionic gauge, and this is relatively straight-

forward for the old string. The aim of the present note is to discuss the

problem.

For the new superstring of Green and Schwarz the relevant

group is the Siegel transformations and this remains problematic.

The old superstring is just two-dimensional supergravity coupled

to a set of 10 scalar supermultiplets. In component notation we have

gravity multiplet

matter multiplets

2-bein

gravitino

Bose

Fermi

1,2

1,2..., 10

As given by Deser and Zumino the signature is Lorentzian. For use in path

Integrals we need a Euclidean version. In the Lorentzian version the

gravitino field >. is real in the sense that its two chiral components

are real. In the Euclidean version the chiral components are complex but

comprise a conjugate pair. The same is true of the matter fermions, #",

U gJ l Us,
Lorentz

Euclid

These distinctions are important when considering the possible bilinears

of the theory.
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The Euclidean Lagrangian is the

l
where gaP is related in the usual way to ea

a, and

connection term in

det . The

(2a)

does not contribute because

(2b)

According to Deser and Zumino the local supersynmetry takes the

form
V vt1 7-1 r

£ V

(3a)

(3b)

In addition there is a conforraal (Weyl) supersymmetry

(3c)

(3d)

(4)

At the classical level these symmetries are strong enough to gauge away

the interactions. Quantum corrections, however, may be subject to

anomalies. Indeed, the consistent quantizing of the spinning string

hinges on showing that e^3 can be reduced to 6^ and xQ to 0:

delivering thereby a free flat (in the sense of two dimensions) theory

of XM and (>M .

Amplitudes should be represented by path integrals of.the type

x wave functions (5)
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The first problem is to define these integrals by fixing the gauges in a

sensible way. In particular, one must factor out the volumes of the local

symmetry groups. Polyakov achieved this at the tree level using the

diffeomorphisms to reduce g to the form

(6)

and local supersymmetry to reduce xa to

- r. (7)

The conforms1 variables, op and p , couple only through the anomalies

(which disappear in the critical dimension) and through off-shell extra-

polations of the wave functions. On shell amplitudes, in the critical

number of dimensions, D - 10, should be independent of <p and p.

Integration over 9 and p then yields irrelevant volume factors.

51)
The Polyakov integration of g . over manifolds of spherical topology

was generalized by Polchinski to the case of toroidal topology (1 loop).

We propose to do the same for X • The problem solved by Polchinski

was not trivial in that the integral over toroidal manifolds, factored by

diffeomorphisms and Weyl scale transformations reduces to a finite

dimensional integral over Teichmuller parameters. In other words, the

gauge fixing procedure now involves a significant topological component.

In the fermionic case this seems to imply anticommuting Teichmuller

parameters.

The symbol J(dg) is intended to denote integration over two-

dimensional Riemannian manifolds, i.e. over an abstract space 'Hi whose

points correspond to the two-dimensional manifolds. Any two points of

if}[ connected by diffeomorphism and rescaling are "equivalent". In this

sense all points of ffl are equivalent to those in a finite dimensional

subset. This subset can always be chosen such that the metric tensor

g is completely standardized, different points in the subset being

distinguished only by the range of the two-dimensional co-ordinates,

(Such a subtle distinction of inequivalent points in the space -//J is

completely missed by the old technique of gauge fixing which considered

only the form of g „ locally. Global distinctions were ignored.)
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THE BOSONIC MEASURE

The idea of Polyakov is to make the space, tyl , of metric tensors

on the 2-space H, into a "Riemannian function space" by inventing a metric

tensor for it. This tensor could be thought of as an operator. G, acting

on the tangent space of <?H , It is defined by

M
(8)

where the integral extends over a closed 2-manifold, H. This functional

is supposed to represent the (distance) between two neighbouring points,

and g „ + 6g „ , in the space of

If G is D decent operator then it should have a determinant,

Det C. With Det C it should be possible to define the Riemann-Lebesque

measure on '^i , viz.

To make sense of this It will be necessary to define a co-ordinate system on

fit • Most useful would be co-ordinates that can be easily fixed by means of

the general co-ordinate and Weyl invariances. For example, one should be

able to write

where the form of g is standardized. With genus > 2 it is possible to

represent M as an Irregular polygon in the hyperbolic plane,

is* - (11)

Opposite sides are to be Identified. The positions of the 4g corners

must be specified in terms of the 3g-3 complex moduli T. Then by means

of an appropriate reparametrization one ought to be able to nap the 4g

corners into regular positions, say

-5-

(12)

In these co-ordinates the metric tensor will depend explicitly on the

moduli. It will be a well defined function of the new co-ordinates, oa,

and the moduli, T . The expression (lo) seems to give a complete

paranietrization of the space of metrics, ^ . The points in this

function space are characterized by three functions, oa and <P , plus

3g-3 numbers, T :

u) ~ (13)

No generality is lost by supposing that det g « 1, since a scale factor

can be absorbed in the definition of <f> .

The utility of a parametrizatlon like (10) lies in the fact that the

functions o and a> represent gauge degrees of freedom and so can be

gauged away. Nothing of physical significance can depend on oa and 90 .

We shall use the Faddeev-Popov procedure to fix them as follows:

and (14)

But first it is necessary to obtain det G in the neighbourhood

of the points (1A). The first step is to expand (10) in the neighbourhood

of (14);

(IS)

where and are small quantities.

The next step is to take the first differential of this formula,

i.e. to find the response of g to infinitesimal variations in the

co-ordinates and
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f ' " * •

(16)

+ higher orders in <fp and

this expression is to be substituted into the distance functional (8) to

establish the form of G in the new co-ordinates. We simplify the

computation by restricting to the points f - £ » 0 (which is all that

we need) and writing fl6) in the compact form,

The distance functional reduces to
(17)

dV

where

(18)

(19a)

(19b)

*p ' L V, "/»- ' (19c)
In these expressions (!!><") coincides with Polyakov's formula and (19»J

with Polchinsfci's one-loop improvement. The mixing term (]9b> becomes

relevant at two or more loops and is implicit in Moore and Nelson.7)

-7-

The computation of |Det Cl can be formalized as a Gaussian
functional integral.

ex^

where the 6g-6 (real)-dimensional matrix H^, is given by

(20)

This expression results from a shift in the integration variable if.

The correlation function Ga^ is defined by

(22)

(which is supposed to be unambiguous for g >, 2, since G has no zero-

nodes, i.e. conformal Killing vectors).

It is easy to show that the Faddeev-Popov factor associated with

the gauge choice (14) Is trivial. Hence the final expression for the

measure is

\
(23)

i.e. a finite-dimensional integral. The range remains to be specified.

The integrand of (23) is supposed to be invariant with respect to

the so-called modular group. This is a discrete group with infinite number

of elements which acts on the space of 1 . It corresponds to an ambiguity

in the specification of £(3 , T ) . There is supposed to be an infinite set

of points, t , for which g represents the same Riemann surface. For

such points, connected by a modular transformation, the corresponding

2-spaces are connected by a conformal transformation.
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In the case of genus • I, the modular group is SL(2,Z), i.e.

the set of matrices

c d
with integer a.b,.., and ad-bc • 1

It has two independent generators.

ri 1 \
giving T •+ T + 1

c
In general, the action of this group is defined by

, ,» at + b
T CT + d

The fundamental region to which the integral over T should be restricted Is

always taken to be

Im t > 0, |T| > 1 , |Re T| < | .

For genus ? 2 one does nut know what the modular group should be.

In addition to the Integral over ftl , .there will be one over

the space of mappings M -» H , I.e. the space-time co-ordinates, X^fo

The metric on 3fe c a n be taken to be

Yff (24)

M
We need to evaluate

-9-

, (25)

where 1 is the Laplacian on scalars. Because of the' zero mode this

integral diverges. In the special gauge discussed above where

Ui JJ
constant

we should be able to separate the zero-mode, xM, and write (25 ) as

(26)

where Det1 means "product of non-zero eigenvalues" .

-10-



FERMIONIG MEASURE

We apply a prescription analogous to Eq.(17) to the fermionic

variables x • Again the tangent space has three components

SA (27)

where 4va is constrained by

-, 6 \ j a - V «v" - 0"a a (28)

The space of solutions of these equations is finite dimensional and we may

write

129)

where the C,a^ represent spinor differentials associated with the manifold H.

Analogous to the conformal vectors would be the constant spinors K,

i ' K|r (30)

The same point xa is then represented by A and A+K. One must therefore

constrain the integral over A to be orthogonal to such constant spinors.

This could lead to a significant factor.

(31)

Here the norms are defined by

rt

(32a)

fl
(32b)

where *^, r = 1,2,.. is a basis for the covariantly constant spinors

(these are c-nunihers, not Grassmann. Hence 3" = o" ).3 o )
rs vsr

-11-

Analogous to the Teichmuller metric Hj., there will be a fermionic

which is antisymmetric.

Putting these together, we write

K(p,v) , (34a)

where v, are the Grassmann-Teichmuller parameters and K is a Jacobian.

Taking the Polchinski prescription

we compute K as follows;

fd&X)

(34b)

« K(pw)

Acting on spinors we have a)

(36)

It remains to effect integration over the fermionic coordinates 1> .

With the norm
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(37)

one should separate the zero mode

**„ - 0 (38)

With the usual definitions

J

0)

(39)

To summarize, the amplitudes are represented by path integrals of the form

f(dX dtj* de ) « wave functions

I/ft

where xa Is understood to be expressed in terms of p,A,... etc. Super-

conformal Invariance now permits <¥ ,t,P and A to be fixed conveniently.

It is not clear yet whether there is some non-trivial dependence of the

fermionic parameters v.

-13-

TENSORS AND S P I N O R S I N A COMPLEX B A S I S

The metric can always be brought to isothermal form

* eup

where

z =

Transformations which preserve the isothermal form are analytic in z

(41)

(42)

(43a)

I.e.

(43b)

(44)

Irreducible tensors have only one component in this basis. They are classified

by a pair of weights (p,q). Thus, if

(45)

then f is a tensor of type (p,q). In particular

dz -v (1,0) and dz «• (0,1)



The covariant derivatives 7 and V; are defined by
z z

(46a)

(46b)

These are covariant tensors of type (p-l,q) and (p,q-l), respectively. They

are covariant because elpCP • is of type (0,q-p) so that 3 z(e
i p^t) is

covariant of type (-l.q-p). etc.

Definitions can be extended to spinors by introducing isothermal frames

>+ - & At, and = e

so that ds* « 2e e . Frame rotations generally imply

*« -1 a

where "Hz) is real. The isothermal form is maintained under analytic

reparametrization if the frame rotations are fixed appropriately. Thus one

wants

which implies

(48a >

*!'

A typical spinor * would transform according to

(48b)

(49)
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under frame rotations and as a scalar (say) under reparametrizaLion. In the

isothermal frames therefore, its response to analytic reparametrizations would

be

I.e. it is a tensor of type (1/4,-1/4). The important feature is that

p-q » 1/2. The defining character is

p - q = integer for tensors

= •* integer for spinors

An important property concerns complex conjugation

Consider now the tensors C, „ subject to

and

The first of these implies (; • • 0. The second then gives

0 -

* 9zz

and the conjugate relation for C-- = C ,*.

zszz

Thus, C is an analytic function of z (quadratic differential).
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The fermionic Teichmuller nodes must satisfy

and V v" = 0
a

It is convenient to introduce frame notation here,

i.e.

V^ =

Because v* » 7m (v t Iv j, where v and v are Hajorana it follows that
+* *)

v = Bv , B = tj. Hence

v- = v;* (- ̂  >

It is necessary to fix a sign convection. Since under tangent space rotations

we must have
\ 1~' If

i.e.

i.e.

This means that

- (t)

4 "t

,i.
a. 4

-J7

In the above example, therefore we must interpret the transformation

Jl2 V (*;

to imply

The condition Yav
a = 0 eliminates the (\,-\) piece anJ leaves the irreducible

piece.

v 0 /
Consider now the other condition, Tav =• 0. rt breaks into two components

7.V , v

According to the general formula

which has weight (^"J-) as it should.

Hence the Grassmann analogues of quadratic differentials must be of

the form

-fcr X analytic function of z
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The normalization condition would be

j d v f%
M

J
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CONCLUSION

In these notes we dealt with the issue of gduge fixing for the spinning

string in the Neveu-Schwarz-Ramond formalism. We demonstrated that the gravitino

field x has a Grassmannian-Teichmuller component which cannot be gauged

away by supercontormal transformations. These variables are the fermionic

generalizations of the bosonic Teichmiiller variables. Using the Riemann-Roch

theorem it can be shown that for a closed surface of genius g the bosonic
Q)

TeichmiUler variables span a space of 3g-3 complex tiintensions. The analogous

number for the fermionic variables is derived similarly and in lg-2 if g >, I.

For g - 0 it is zero and for g • 1 it is 1.

To proceed further we need to know the detailed structure of the integrands

of the amplitudes In particular their dependence on T and J,

Recently , there has been some progress in Calculating the bosonic

determinants entering our Eq.(40). These calculations use the Selberg

trace formula. Using the same formula Gava et al. ll' have shown that the

occurrence of the divergences in the bosonic partition function can be related

to shrinking to zero of the hyperbolic geodesies on the world sheet. However,

a useful parametrization of the space of moduli is still lacking. This

problem is perhaps more challenging for the fermionic moduli.

One important problem not dealt with in this note is the CSO1'

projection on supersymnetric subspace of all possible states of NSH model.

This is essentially the problem of summing over the appropriate G-parity

states in Polyakov's path Integral. To achieve this Witten 12* has

suggested to sura over all possible 2 B different spin structures of a

surface of genus g.

NOTE ADDED

After this work was completed we received Refs.13 and 14, where similar

ideas are discussed.
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