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ABSTRACT

We discugs the problems of geuge fixing for the spinning string
in the Neveu-Schwarz-Ramond formalism. We demonstrate that the usual
Teichmiller parameters have fermioni¢ counterparts. For a surface
of gendus g

ts 2g-2

the complex dimension of the fermionic Teichmiiller variables
if g 3 2.
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INTRODUCTION

The old superstring is contained in the NSR model of the spinning
string l). The problem of quantizing the superstring is essentially
the problem of fixing the fermionic gauge, and this is relatively straight-
forward for the old string. The aim of the present note is to discuss the

problem.
2)

transformations and this remains problematic,

For the new superstring of Green and Schwarz the relevant

group is the Siegel 3

The old superstring is just two-dimensional supergravity coupled

to a set of 10 scalar supermultiplets. 1In component notation we have

e ? 2-bein a,a = 1,2

«
gravity multiplet

Ay gravitino

x¥ Bose W o= 1,2...,10
matter multiplets

o Fermi

&
As given by Deser and Zumino )the signature is Lorentzian. For use in path

integrals we need a Euclidean version. In the Lorentzian version the
gravitino field Xy is real in the sense that its two chiral components
are real. In the Euclidean version the chiral components are complex but
comprise a conjugate pair., The same is true of the matter fermions, o,

e.g.

u
y wl ¢”* . 4{*T' Lorentz

*
v ! ¥4, Euclid

These distinctions are important when considering the possible bilinears
of the theory.



The Euclidean Lagrangian is .the

. : ‘x“a.*P
B RN LU

"

a a
where gaﬂ is related in the usual way to e, and e = det e; -

connect jon term in

We 75""’ (2a)

L
2

\‘ldt'» = 0.¢ +

does not contribute because

Wt T 7 P o . (2b)

i

According to Deser and Zumino the local supersymmetry takes the
5 XF = 4 E +r (3a)
- e
Sv.la"' = (G,X" +‘-ty",{.)1f_ (3b)

form

be,* = -2 TYX, (3¢)

Sxﬂ - - v“ E . (3d)

In addition there iz a conformal (Weyl) supersymmetry
dx. = y_n . (a)

At the classical level these symmetries are strong enough to gauge away
the interactions, Quantum corrections, however, may be subject to
anomalies. Indeed, the consistent quantizing of the spinning string
hinges on showing that eua can be reduced to 60‘3 and x  to 0:
delivering thereby a free flat {in the sense of two dimensions) theory
of XY and bpu .

Amplitudes should be represented by path integrals of .the type

S (dX d(.P de dx,) (r,xp(_ S) x wave functions . (3)

-3.
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The first problem is to define these integrals by fixing the gauges in a
sensible way. In particular, one must factor out the volumes of the local
symmetry groups. Polyakov achieved this at the tree level using the

diffeomorphisms to reduce to the form

Bap

gdp = el‘f suP (6}

and local supersymmetry to reduce X, to
Ao = 7, f . (7

The conformal variables, ¢ and p , couple only through the anomalies
(which disappear in the critical dimension) and through off-sheil extra-
polations of the wave functions. On shell amplitudes, in the critical

number of dimensions, D = 10, should be independent of ¢ and o,
Integration over ?and p then yvields irrelevant volume factors.

57
The Polyakov integratjon of Byg OVer manifolds of spherical topoloegy

was generalized by Polchinski to the case of toroidal topology (1 loop).
We propose to do the same for Xy - The problem solved by Polchinskli
was not trivial in that the integral over torocidal manifolds, factored by
diffeomorphisms and Weyl scale transformations reduces to a finite
dimensional integral over Teichmuller para}neters. In other words, the
gauge fixing procedure now involves a significant topeclogical component.
In the fermionic case this seems to imply anticommuting Teichmuller

parameters .

The symbol J(dg) is intended to denote integration over two-
dimensional Riemannian manifolds, i.e. over an abstract space 4} whose
points correspond to the two-dimensional manifolds. Any two points of
4! connected by diffeomorphism and rescaling are "equivalent”. In this
sense all points of 4% are equivalent to those in a finite dimensional
subset. This subset can always be chosen such that the metric tensor
b is completely standardized, different points in the subset being
distinguished only by the range of the two-dimensional ce-ordinates.
(Such a subtle distinction of inequivalent points in the space ./} is
completely missed by the old technique of gauge fixing which considered
only the form of Bap locally. Global distinctions were ignored.)



THE BOSONIC MEASURE EVP({' 2rc R
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5) ) "\-»l'j_, e ‘*1 N (12)
The idea of Polyakov is to make the space, qn . 0f metric tensors
on the Z-space M, into a "Riemannian fupction space" by inventing a wmetric

I -ordi i
tensor for it. This tensor could be thought of as an operator, G, acting n these co-ordinates the metric tensor will depend explicitly on the

moduli. It will be a well defined function of th -ordinates, 3%,
on the tangent space of 97 . It is defined by i ° © new corordinates, @
and the meduli, < . The exprassion (10} seems to give a complete
pacametrization of the space of metrics, g% . The points in this

(s}-, G 8‘3) = %, jdlo’ '0/5' (7“’1“ . ﬁds aF’, ¥ C‘ 3ﬂ'ﬁ' aﬁ) Sa.P 8%75 , function space are characterized by three functions, o and 4 , pius
\ M

3g-3 numbers, o
(8)

o .
{%ap}'“’ i":‘?,"—"}- (13)
where the integral extends over a closed 2-manifeld, M. This functional
is supposed to represent the (rli.stance)2 between two neighbouring peints,

Bag and Bag + ‘Sgaa ., in the space of metrics, #77 . No generality is lost by supposing that det E = 1, since a scale factor
can be absorbed in the definition of < .
If G is a decent operator then it should have a determinant,
Det G. With Qet G {1t should be possible to define the Riemann-Lebesque The utility of a parametrization like {10) lies in the fact that the
measure on @7, wiz. functions o% and ¢ represent gauge degrees of freedom and so0 can be
'Ilv gauged away. Nothing of physical significance can depend on o® and P .
drl = —[T da“P {e) ' et G I . (9) We shall use the Faddeev-Popov procedure to fix them as follows:
¥
o LA -~ -
To make sense of this it will be necessary to define a co-ordinate system on o (0) = & and ?{‘T) =a - (14)
1. Most useful would be co-ordinates that can be easily fixed by means of
the general co-ordinate and Weyl invariances. For example, one should be But first it is necessary to obtain det G in the neighbourhood
able to write of the points (14). The first step is to expand (10} in the neighbourhood
ny a at n of (14): N
3 25" o 20(6) A .on (s)
Gap®) = lm oo | 0 T ¥R (5,000 Gopl®) = G, 10) v 2000 o
26 | 4c™ ot Yé
v A 1A A Ta )
g - + L]
where the form of g is standardized. With genus 32 2 it is possible to + (i vn‘ ) %TPM) + ¥ Wp ‘am 5 2 4 g‘ﬁ % sdpﬂ
represent M as an lrregular polygon in the hyperbolic plane, + (15)
: 1d7 47 where {0} and E£%(s) = 5% - ¢° are small quantities.
ds - JPE— . {11)
(r- 'x'z)" The next step is to take the first differential of this formula,

i.e. to find the response of Bag to infinitesimal var{ations in the

Opposite sides are to be {dentified. The positions of the 4g corners
PP po L co-ordinstes ¢p , £* and o

must be specified in terms of the 3Ig-3 complex moduli 1. Then by means
of an appropriate reparametrization ohe ought to be able to map the 4g
corners into regular positions, say

-6-



M -~ A . ¥) ~ i vee
%Qur_’ k= S‘C ( SUP,‘& + 'J-(f C)U*I!.I. + ‘E a qrﬁ-‘ A )
+ 189 Gop

[4 A ¥ A 4 A IR
¢ (5% 9 0% vy ~ B%ur Yop + 8% %P,z)
(16)

+ higher orders in ¢ and £

This expression is to be substituted into the distance functional (8) to
establish the form of G in the new co-ordinates. We simplify the
computation by restricting to the points @ = £ =0 (which is all that
we need) and writing (16) in the compact form,

bgep = BT Gapi + 269 @,,P + (Wb, wpsgdv%.,,v,gg).

. (17}
The distance functional reduces to
(53,6 83) = a, ‘ot‘S‘r.J
4 2 jd%‘ 1 4 Giu aE“
v+ [ds 5” o 1313
t 2hvc) fdtw 5y 89 , (18)
= o - af .
where L{‘.! = - Sd’a‘ Jur;,:. 4 vy (19a)
Ci,y = - avf %Up-i (19b)
(:Ia‘s = - 2 ( Sdp vl - [vo’rvﬁ]) ) (19¢)

. ! 5)
In these expressions (17¢) coincides with Polyakov's formula and (19a})
with Polchinski's one-loop improvement. The mixing term (]gh) becomes

relevant at two or more loops and is implicit in Moore and Nelson.7)

Ilfz

The computation of |Det G can be formalized as a Gaugsian

functional integral,

A {(4se)(asp) dsr “P[__%(S%,G 53)}
= j(di‘é)dﬁr expl - L Gy 2l L

f

Y
- jd% g Gh Sfd
-1 Jd § ¥ ao(s §¢b

) O
det H‘jl L \D“t (:‘up h ' (20)

where the 6g-6 (real)-dimensional matrix Hij is given by

H;J- = G;J‘ — S‘diu"dlo" Gid|°) GUP(G'GI) Gr,j (6 l) . (21

This expression results from a shift in the integration variable &% .
The correlation function GuB is defined by

c‘“{* (_—}FT (6,6) = S: Szfﬁ‘-—G') (22)

(which is supposed to be unambiguous for g » 2, since GuB has no zero-

modes, i.e. conformal Killing vectors).

It is easy to show that the Faddeev-Popov factor associated with
the gauge choice (14) is trivial. Hence the final expression for the
measute is .

b3 Y, U/
\ 3 ' ] 2
{dp = 3“_&1" | Dt Gy | \olaH;j\
I

(23)

i.e. a finite-dimensional integral. The range remains to be specified.

The integrand of (23) is supposed to be invariant with respect to
the so-called modular group. This is a discrete group with infinite number
of elements which acts onthe space of 11 . It corresponds to an ambiguity
in the specification of g{8,7t) . There is supposed to be an infinite set
of points, 1 , for which Q represents the same Riemann surface. For
such points, connected by a modular transformation, the corresponding

2?-spaces are connected by a conformal transformation.

-s-



In the case of genus = 1, the modular group is SL(2,Z}, i.e.

the set of matrices

a b
{ ] with integer a,b,... and ad-bc = 1}
c d

It has two independent generators.

1 1
giving t -+ 1 + 1
0 1
0 1
1
'[’-b-‘ .
-1 o]

In general, the action of this group is defined by

at + b
ct + d

T

The fundamental region to which the integral over Tt should be restricted is

always taken to be

1

Imt > 0, It »1, IRe 1] < 3 .

For genus > 2 one does not know what the moduiar group should be.

In addition to the integral over 4 , _there will be one over BG

the space of mappings M -+ RD. i.e. the space-time co-ordinates,
The metric on 3€ can be taken to be

(x,q%x) =

M

We need to evaluate

fd’o \/—5 X" ) X'(e) | (24)

where V¢

2

= j(d)() exp {__'{_ j:l‘ur v x¥ (" VLX”)

j(d)() ¥ X -E jd’o"‘qg"ﬁaux”apxp =
M

™~

is the Laplacian on scalars. Because of the zero mode this

integral diverges. In the specfal gauge discussed above where

= canstant

5 g
[ee8

we should be able to separate the zero-mode, x", and write 25) as

b -Y%
fd*- ]Dat'(_vl)' .

where Det' means "product of non-zero eigenvalues" .

-10~-
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FERMIONIC MEASURE

We apply a prescription analogous to Eq.{17) to the fermionic

variables Xg * Again the tangent space has three components

dxg = Y, b0 + V 82 + Sv, (27)

a

where évu is constrained by

Yy s - v, &H* = 0 . (28)

The space of solutions of these equations is finite dimensional and we may

write

® v
o _ L@V
EV (@} = Z‘ C“)S ’ 129)
4
where the C“i represent spinor differentials associated with the manifold M.
Analogous to the conformal vectors would be the constant spinors «,

Vyx = 6

o = K= 2k Kk
v k’ r (30)

The same point X, 1is then represented by A and X+k. One must therefore

constrain the integral over A to be orthogonal to such constant spinors.

This could lead to a significant factor,

S (d6") f’P(—-}_lli:\H")

Here the norms are defined by

~Th
’d:.t &l : 1)

1}
M
O
-
on
o

~ . 2.
L N T Y

J‘d%‘/’—xrfx

s s (32b)
2

(32a)

[
[t}

143

where Kpr £® 1,2,.. is a basis for the covariantly constant spinors

~ ~
(these are c-numbers, not Grassmann. Hence Q. _=Q_ ).
rs sr

IS

Analogous to the Teichmuller metric Hij' there will be a fermionic

ek 3 ) B at
HI.J = j d'e Ji ljap Vl fg V: (33)
which is antisymmetric. H

Putting these together, we write

where v, are the Grassmann-Teichmiiller parameters and K is a Jacobian.

Taking the Polchinski prescription

(4% ) = (dsp)(asr)dev Kipv) o

we compute K as follows,

1 - gwsx] up(-'Tuwﬁ)

KCp¥) [(dsp}(deR1d by »

Ay

xerp| - _fi[d’.rq 3"'{‘ (sffl; -0-1',‘81).t ,sv:)l (fpSP t VPE;I t BVP)

= Kp.w) [(dap)(dsa)azn- p

~

*eXp _Ji Ifdig(_zépifsip _.(69‘-75276“,\ bhc,) -83’]'5\/?8'))

wi—

2 bv W, v (35)
Y

Acting on spinors we have 8)

V- iW’ = %_(V] + g‘ ) . (36)

It remains to effect integration over the fermionic coordinates ¢“.

With the norm

_lz_

N T el SRR

T i O -,



wip” - [dsdy gt gr

M

one should separate the zero mode ¥

te, = 0

6)

With the usual definitions

13}

it

1

—~3 N By il™
[1dip) e *

~ Ot '
..-;—_—[d’bws ll,io l'st - I’_"s,PW

j‘ {d5¢,)d5y) e

¥

NI
(Sdicr\)'é ) S(ds'q») JENT

To summarize, the amplitudes are represented by path integrals of the form

~-S
J‘(dX d‘P de djt ) e > wave functions

= [ox a, @) (8¢ (og an) ¢ (dpda) dv

) " ,
x \Tl.,t[?,.fv‘:r [v‘vp')) \ b oet (v

> {duﬁ/m'ti)ll ex\,,g‘_[dzg (3"#3,)( R ,_\.t}vq) +> (wé)

‘ 2
o) Jaer]

" where g is understood to ba expressed in terms of p,A,... etc. Super-

conformal {nvarjance now permits P ,L,p and A to be fixed conveniently.
It is not clear yet whether there is some non-trivial dependence of the

fermionic parameters

V.

-13-

(37)

(38)

(39}

(40)

TENSORS AND SPINORS IN A COMPLEX BASIS

The metric can always be brought to isothermal form

USSP L § ((de*Y + (ds™)
2
= 2e'f dz d3z . (1)
where
z o Ol4a0t z . 6-ig"
i ’ i (42)
Transformations which preserve the isothermal form are analytic in z
- ) - <
z > 2/ = ft2) , 0z {(z) o (a2
29 W _ 2 dr g
¢l > e =t ,‘fz, (43b)
i.e
"o I | dz
@zt = ¢lz) | EAEE (i)

Irreducible tensors have only one component in this basis.

by a pair of weights {p,q

then ¢

o> ¢

is a tensor of type (p.q).

). Thus, if

< G(E)

(1,0} and dz

-14-

In particular

~ (0,1}

(-1, )

They are classified

{45)



The covariant derivatives Vz and Vé are defined by
2t 2 £
g “P - LT 0, ’\e, be \’) (46a)
z' ey

20 Bl 9, ("'ﬂw *\’) . (46b)
r

These are covariant tensors of type (p-l,q) and (p,q-1), vespectively. They
are covariant because o 2PF ¢ is of type (0,q9-p) so that az(ezpﬁfy) is

covariant of type (-l,q-p), etc.

pPefinitions can be extended to spinors by introducing isothermal frames

et = @? dz and e = £(fd_z (47a}
so that ds® = Ze+e_. Frame rotations generally imply
. - - =l
+ + a0
e > £ & , € > & ¢ ) (47b)
where oz} 1is real. The isothermal form is maintained under analytic
reparametcization if the frame rotations are fixed appropriately. Thus one
wants
L]
(') ) :
"_q' dz' - C‘P‘z dz e.talZ) (48a)
k]
which implies
o ] — L ]
cafz) o Py - eiz) 4 A dz’
dz
- e E g
dz / Vdz
dz’
- A g e . (48b)

A typical spinor % would transform according to

P - aptzd = e Pz) (49)

-15_

under frame rotations and as a scalat (say) under reparametrization. In the
isothermal frames therefore, its response to analytic reparametrizations would
be -

tl/(r-) - q—: (')

tar gz’
? 3 Az
& $z)
(VY g
- i — z
. dl t dl.)
i.e. it is a tensor of type (1/4,-1/4). The important feature is that
p-q = 1/2. The defining character is

P-q = integer for tensors
1. :
= 3 integer for spinors -

An important property concerns complex conjugation

o ‘qi ~ (P.C‘) Hoem

Consider now the tensors C“B subject to

oB - -
a ;JF =0 and v Z"f‘ =0 .

¢ - ()

The first of these implies C,7; ®= 0. The second then gives

T
0= V'L,

il
oo
N
™
N
™
L
"~

and the conjugate relation for Cié

9% = 0

Thus, & is an analytic function of =z (quadratic differential).

-16-



The fermionic Teichmuller modes must satisfy
¥ W= 0 and Vuvu = 0

It is convenient to introduce frame notation here,

'Y; v* = 'X; VAN Y 2{1
° oY v i v,
(E °IV:) +(o o)(,—)
= ® Ve
v*}

1
_;h(
A
Rt

3

i1}

vtoo (3) ,

Because vi = 7% (v’ t ;vz), vhere vl and v2 are Majorana it follows that

- x %
v o= Bv+ , B Y- Hence )
*
- - v, ~ ~2,1)
%)} It is necessary to fix a sign convection. Since under tangent space rotations

£+‘% 6+ etd

v (44)
tl»”*\\’ - ,q}'rtq) Liu
DR 4

we must have

i.e.

This means that

In the above example, therefore we must interpret the transformation

1 b
S (B3

to imply

<<
¢
e
-
4+
Pi=
|
‘—
[}
—_ e
|
—
s
{
T
N

a
The condition Yoy = 0 eliminates the (%.-%) piece and leaves the irreducible

the form

piece,
+ 0
Vv = ( ~ ( 3 L3 )
+ L
LA 7 4
— V‘
v = (l) ~ 3 3
o k y! i .
Consider now the other conditien, vuvu = 0. It breaks into two components
o + -— . -
Vv oo vVt gyt . /V.V.\
v/ -
According to the general formula
.p? ’U‘
4 e < 1
- Z
WV,
3
3 2 "')
_ -z ( v
A L A =

S ()

which has weight (%,-%) as it should.

Hence the Grassmann analogues of quadratic differentials must be of

W}* ~ e X analytic function of =z

-18-



The normalization condition would be

v - ‘ s g %"P Ve v
M

= szdi e’ ( VTR VY L vty v )

]

..1-Sdzdi AR

< °O

CONCLUSION

In these notes we dealt with the issue of gauge fixing for the spinning
string in the Neveu-Schwarz-Ramond formalism. We demonstrated that the gravitino
field x, has a Grassmannian-Teichmiiller component which cannot be gauged
away by superconformal transformations. These variables are the fermionic
generalizations of the bosonic Teichmuller variables. Using the Riemann-Roch
theorem it can be shown that for a closed surface of genius y the bosonic
Teichmiller variables span a space of Jg-3 complex uxmensions.9 The analogous
number for the fermionic variables is derived similarly and in 2g-2 if g 3 2.
For g = 0 it is zero and for g =1 it is 1.

To proceed further we need to know the detailed structure of the integrands

of the amplitudes In particular their dependence on 1 and v.

1]
Recently ! ). there has been some progress in calculating the boscnic
determinants entering our Eq.(40). These calculations use the Selberg
trace formula. Using the same formula Gava et al. 11) have shown that the

occurrence of the divergences in the bosonic partition function can be related
to shrinking to zero of the hyperbolir geodesics on the world sheet. However,
a useful parametrization of the space of moduli is still lacking. This
problem is perhaps more challenging for the fermionic moduli.

One important problem not dealt with in this note is the GSOI)
projection on supersymmetric subspace of all possible states of NSR model.
This is essentially the problem of summing over the appropriate G-parity
states in Polyakov's path integral. To achieve this Witten 12 has

suggested to sum over all possible 22g different spin structures of a
surface of genus g.
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NOTE ADDED

After this work was completed we received Refs.13 and 14, where similar

ideas are discussed.
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