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ABSTRACT: In this article, we survey the main festures
behind the idea of grand unification, both without and
with {local) supersymmetry. We then study the high
temperature phase transiticns in the theories so
realized, and thelir relevance to the cosmeology of the
early universe. In particular, we review the basic
ingredients of {super) grerd unified models and we
give the basic tools needed for the study of their
phase transitiore., After a short introduction to
cosmology, we focus on the interplay between unified
narticle physics models and cesmology, with particular
emphasiz or the inflationsry universe scenario. In
the same perspective, new research directionz, in the
context of higher dimensional theories, &re alsc

discussed.

I. INTECLUCTION

Tt is now amccepted that the experimental evidence giQes
o strong support to the so-~calied standnrd model: strong
interactions are described by quantum chromodynamics (QCDJ,
based on the group SU(3)C, and electroweak interactions by
the Clasho-feinberg-Salam (CwW-3) model, based on the
group sU(2) x U(1),.0 fThis SU(3), x 8U(2), x 001,
standard pauge model has passed the most crucial tests so

far, the culmination being the discovery of the intcrmediate
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wi, Z wvector bosons.2 Tesnite this, however, and although
the standa»d nodel is a theoretically consistent theory,
there is a number of issues, which poirt te the direction
that the standard model is physically limited and must be
only an effective thee:, obtained from an underlying more
fundamental one.3 On the phenomenclogical side, the un-
explained mysteries include the guantum numbers, the mass
spectrum and the family replication of the fermicns {quarks
and leptons) and the arbitrary character of the scelar
(Hipes) sector of the theory. The latter leaves unarnswered
the tremsndous difference of the mass scales present in

-1/2
microvhvsics, namely the Ferrmi scale G / = 250 GeV and

S1/2 L a1

the Planck scrle GN H Hp 19 GeV.

In the past years, there have been many attempts to
remedy the above problems of the standard model. OUne way
pursued was the road to compositeness ¢'. use preons as
more fundamental constituents and QCD-like dynamics to
describe their interactions. The other way was grand
unification 5: voztulate & larfer set of rauge interactions,
based on a group G 2 su(3)C x SU(E)L x U(l)Y, with a ;
unique gaure ooipling constant EG' Supersymmetry {sysy) —,
which transforms fermions into toéons and vice-versa, has
been used in both approaches. The compositeness francwork,
with 8 compositeness scale AC not far away from G;l/g,
where supercymmetry is malnly used to supply supersymmetric
partners of Goidstone beosens, to be identified with the
known fermions, has not yet provided a reslistic unified

pietiyre and will not be discussed here.

Wnat we will consider, in this article,is the grand
unificetion approach towards the ultimate dream of a

synthesis of all fundamental interurtinons. CSupersymmetry
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serves a double purpcse in thls approach. First, through
the no renormalization thecorems 7, it can help in the A
solution of the much discussed gauge hierarchy problem, by
stabilizine tree level relations and keeping light scalers
really light, by preventing them from mcquiring radiatively
large masses, As a matter of fact, that was exactly the
motivation of introducing supersymmetry into grand
unification 8. Second, and what is much more important,
thers is the possibility of incormorating gravity in the
unification picture, since supersymmetry, realized locallv'
leads to supergravity 9. Supersymmetric grand unified
theories (SUSY CUT's), based on N = 1 superpgravity (SUGRA){O

have been discussed extensively during the past three

Lo

yaars 11 and we will give here their general characteristic

features.

Grand unification vhysics takes place at extremely
high energies (possibly at E g MP). 20, its matural arens
is the early universe, in {ts flrst moments. Here is where
particle physics confronts cosmology.lg At that early
moments, the universe was extremely hot and, so, the
behaviour of the unified theories at high temperatures
becomes an essential part of their study. Accordingly, we
will give the main relevant concepts and discuss the phase N
transitions in GUT's. Then, after = brief introduction to \
standard cosmelagy and its prodlems, we will give the
cosmological implications of these vhase trensitions. The
13

main foeus will be the inflationary universe scenario .

1.,e. the proposal that, esrly in Its history., the universe
has passed an exponentially expanding (de Sitter phase)
period. That was one of the most influential proposals in
the recent years, given that it cen provide a natursl

solution to many of the cosmolopical problems in the

T o -
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ndard Die bang thecry courlad to particle physies,

At the end, some new excitiny research directions,
: . 1h . ;
tased on the hirher—dimensional anrroach , will be diszcus-

sed, within the same perspective.

IT. CRDINARY GUTS

Wo are convinced that the so-called standard

SUORT L o BUIn) . = UL

C L Y
rediate step in the ladder towards a truly unified plcture

model wmust represent an inter-

of the fundamental Torces of Nature. The Olashow-Weluberg-
[

Balam ZU{2) x T(1), model 15 correlates the weak and

electromarmetic interactions, out it 13 not & unification

of them. True, it npredicts the weak nautral currcents whose
)

structure is of the form T_. - sin"0 & , T_. belng the
3T w em 35
third generator of the SU(E)T, 2, the electric charge
2 AN A
generator and sin o, = H}/(ﬁq + ;Y) the relative strencth

af SUCE)I {courling constant vqj and U(l}Y {eoupling
s 2

sonetant £.). Tis prediction nas been contirmed

T
exrerimentally in various leptonie, semllentonic and
el
hadronic interactions More gpectarularly, the G-W-05
model has recelved an even more ntrone suppert from the

[l 16
diseovery of the gaure bosons W and Z by the UA)

and  UA2 B ~ollwborations, nt CFRY, within the predicted
range »f vulues, On the other hand, there 15 alsoc excellent
evidence thuat hadrous are built of coloured quarks, bound

by vector gluons exchanges, which leadz to the SU(E)C

gauge theory of strong interactions, the quantum chromo-
dynamics (Q0D) ]8. The evidence fov three colours cones
f'rom various cemrces: the soin-astatistics problem, the
Ii®etime ot ”0, the cross-re-tion measurements of

; o+ \ + - + oy 4 3 .
B = {ne = hadrons)fle e »u U}, the cancellation of

=li-
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anomalies for the SU(Z)L x U1}, thecry 19. Yote,

however, that SU(3), itself has a triangle anomaly, with

an arbitrary parametzr 5 {strong CP violation) 20, but this
can find a natural solution, e.g. through the Peccei-Quinn
mechanism L. Most immortantly, SU(S)C is asymptotically
free 22, which leads to the understanding of scaling in
high-energy scattering experiments. The last success of
the standard model is the sbsence of flavour changing

neutral currents 23.

However, the standard model contains 18 independent
parareters (3 gauge couplings gB,E?,gY and 15 elementary
particle masses and querk mixing angles) and the hope is
that by embedding it in s grand unified theory (GUT)gh-26,
we will reduce the number of independent vparameters. Tn
fact, the property of asymptotic freedom of non-Abelian

gauge thecries permits grend un’ flcstion of SU(3)C x SU(?,)I

x U(I)Y. This means that the Fyafly and ¢, coupling
constarts merge into one single coupling constant B -
This is possible, sirece courling constants are diffevent at
different mass scales and, so, although the precentls ob-
served couplings are different gB(Mw) > gE(Mw) > gY(Mw),

it 1s pessible that they are equal at another mass scale.

The evolutlon of the coupling constant alu) = geﬂu)/hn

is governed by the Callsan-Symanzik R-function:

For small a,B(a) can be evaluated pe-turbatively

2

Bla) = -b &=+ 0fa”) (2.2)

where b i3 the one-loop contribution. Then
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{2.1h)
wq. (2.13) and (2.1%) can now be used to oredict ithe grand
unification scale M and sinEBw, onee we take convenient-

= = 28 M )= 0.11. The
ly w® M, where uem(Mw) 1/128, u3(ﬁw)
above are one loop results. One has also to take into
account ome=loon rzdiative corrections at u e Mw, two-looD
rorrections to the evalution between Mw and MG and

8 .
threshold effects at p & L Then e , for a GUT with the
Yorest desert” hypothesis and, in particular, for the
minimal OU(S) with three farilies and cne light Higgs
doublet, the GQUT scale M, is atproximately proportional
WX
to the QCD scale A__
MS

M, = (1.5 £ 0.5) % 1017 4 {2.15)

With A__ = (150 * SC)MeV, we have

e

My = (1 - 4} x lOlh GeV {2.16)

The precise value of M, is important for the proton decay
: o) h
lifetime prediction (rp scales as MG’ see later). Once
M, is known, the coupling constant u(MG) at the uni-
3

fication point MG can be cbtained trom any of the

Eqs.{?.12) and it is
a(Mr) = 0.02h (217}

On the other hand, within the sare approximations,

we find

-
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+0.004

~0.00% (2.18)

. 2
sin“8 (M ) = 0.214
W
in a remarkubly good agreement with the experimental value,
ineluding radiative corrections,

sine (M} = 0.217 + 0.014 (2.19}
W W exp

The search for the grand unified symmetry G is
dictated by some geneial charscteristic features: (i) The
representation of the gauge group G must reproduce the
correct partlele content of the chserved fermlon spectrum.
This means, in particular, that G must possess complex
representations, in order to give rise to massless left-
handed fermions, ugon sportatecus symmetry breakdown to
s0(3) = su(2) x Uf1). A1l fermions transforming according
to s self-conjugate (resl) representation of G aruuire a
super-hesvy mass of order MG, in the course cof spontanecus

29)

¢ symmetry breakdown ("survival hypothesis” Mﬂreovef,
the representation content must be such that there are no
Adler-Bell-Jackiw 30 anomalies. (ii) ¢ must con*tain the
gauge group SU(3) x sU(2) x U{l) of the standard model,

which means that it must be (at least) of rank 2 + 1 + 1 = &,

The first re~-irement restricts “he possible GUT gauge
group to SU(n), n % 3, 50{kn + 2), n 31 and E6 3 The
second one mekes the further restriec*ion 3SU(n), n 3 5,
solbn +2), n 22 and Eg. Tn fact, rodels based on the
gauge groups SUI5)ES 8G{10) C:E6 have been pggposed as
possible candidates for s grand unified medel . At this
point, we have to mention that the recent higher (ten-}
dimensional theories 32, Tresed on superstrings 33 and
attempting to provide a consistent unified theory of

everything {including gravity), upon compsctification







C.E. VAYONAKIS

L . :
and dimensional reduction 3 , ten actually give rise to the
above menticned GUT gauge groups, a very encouraging and

welcome result.

In the following, we will give some pertinent features
of the gu(s), 80{10) and Ee GUT models, giving more
details for the 8SU(5), which will serve as our prototype

in the subsequent sections.

1. suis)

The SU(5) 23

the 8U(3) x su(2) x U{1)} as ilte maximal subgroup. Hence,

model is thst GV model which incorporates

its uniqueness and its stringent predictions. It has 2k

generators
e} =-g—~,a=1,...,2h {2.20)

where Aa are 5 % 5 traceless Hermitian matrices normal-
ized as Tr(lahb) = 26%®.  Associsted with them, there ave
2h gauge bosons Aa, which can be represented in a 5 % 5

traceless adjoint metrix A = l—E; PR o
vovE T H

( T
1, 2B Gk gl S |
6, + = 1
1 2 3 ' 1
2.2 2 :'}E b3
1 2 /30 3 e 2
A = 3 3 3 .28 '= =
u G G, G2 += 1 X ¥
o 2 ER 3
............. L g -
3 3B ,
X X X [l
1 2 3 /2 /"
' W
- 3 3B
] _— . A
14 ¥, 1, ‘w = - &
]
{2.21}
~10-
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The 8 gluons Gj are in the top diagonal 3 x 3 gubmatrix,
the 3 weak bosens W's in the bottom diagonal 2 % 2 sub-
matrix and the hupercharge boson B corresponds to the

traceless Alaponal generator

1 |
V15 L e m - oo ... ;
| '
' |
I ] -
{
Finally, the off-diagenal (X,Y) bosons are in & 3 x 2
submatrix (they are {2,2) under SU(S)C % SU(E)L) and

mediate baryon number violsting interactions {see below),

The correet fermion asslenment is to o E + 10 repre-
sentation of SU{5)

f c o e e, .
LY [ b T T R ] :
c e o} :
- 1 -
! d2 r u3 0 u1 : ua d2
. e oo
- ; - b= -
xz5= ' % b 710= "2 ! 0 by dsl
T ( —0- T e
) e | 111 uE 'I.l3 \ M e i
I v ! 4 d2 d I e 0
L I t 3 JL
{2.22)
That +this is an anomaly free assignment for the fermions of

each generation comes from the general formula 31 for the

anoralv,characterized hy Tr({TaTb}Tc) = A([m])dabc, of a
totally sntisymmetric representaticn [m] of the group
SU(n} (the anomally of the fundamental representation is

normalized to 1): A([m]) = (if;fg)l!(?;fﬁg T " <A{{n-m])

“11-
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Sor A{5 = [4]) = -1, A(10 = [2]) = #1 and thus the combi-

nation (4] + [2} = E + 10 is anomaly free.

Finally, the scalar fields needed to implement the
two stagrs of spontaneous symmetry breaking 3 are
3U(5) L2k, SU(3)C * 8u(2); x ul1y B SU3), = ulal, s
¢ is a ﬁi,of Higgs, represented by a 5 x 5 traceless
Hermitian matrix, with votential and vacuum expectation
value (vev) given by

2

2 2.2 )9 n
Vi) = - Lomr et 4 % (Tr ¢7)° + 2 Tr{e)
I
(s |
1
‘ 1 t 0
| !
<p> = ¥V ‘ 1,
e O R
' o 2 3]
! 1 - E J
' (2.23})
<¥> is a singiet in the SU(B)C and GU(E)L spaces and
aleo rconserves U{l), Tt gives the superheavy masses
o= M2 =22 % § isa 5 of Himgs with potential and
L MY g F b 2 ¥ag b
vev o
. v
Vi) = - 5 (E7R) + 2t
o]
ro0
<H> = I o} i
| =~ ==
oo
| ,
{ ] {2.24)

<H> carries T3 into/out of the vacuum and breaks SU(E)L,

2iving masses to the week intermedi=~te vector tosons.

10w
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<H» also gives fermion messes through the couplings

aBy s

ot g,
Al H Yap? A, € Yug Vys H (2,25}
1
The first gives equnl musces to the @ = - 7 quarks and
G = =1 leptons and the second to the Q= + % quarksg .

Qf course, these tree level predictions are subject to
renormalization corrections 35, by a2 calculable amount, ac-

cording to the renormalization group equaticn

[u —3% = vplala N In (w) = 0 (2.28)

where Yf(m(u)) are the corresponding anomalous mass dimen—
sions. Summing the lesding contribution to all orders

glves 35,36

0=-1 (a3<u>1“‘§“f'§“ﬂx
My oy (W) ! T'G))

1
LR
3% T3
ul(u) }
ul(MG%
(2.27)
For n =3 and n, = 1, Eq.(2.27) gives at 1 = 10 GeV
m
o=-+ {2.28)
iox g
"o = 21

This prediction is guite successful for the third family,
relatively good for the serond one and certainly bad for

the first one. However, since the first femily invelves

-13-
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masses of & few MeV, this bad prediction can be corrected

by additional assumptions, e.g. through induced non-
37

renormilizable terms

Tt would be interesting to make here the following
remark: mewwmu)wﬁ)humﬁwh%agmMIMUz

symmetry .
x — ety

is

U{l1) Y e TP

=214 H

Z:

H = o
(2.29)

and everything else unchenged. This symmetry 1s spontane-

ougly broken by <H>. However, since the neutral component

of H has a non-zero hypercharge under U(l)Y, ghen one

can find & linesr combination of U(l)Z and U(J)Yt

% (Z + 4Y}, which is not brokem by <H»>. It is easy to see

that this is the B-L symmetry, which thus remains es a

global symmetry of SU(5)., Tt mcts as a selection rule for

proton decay in the simple SU(5) model (the filnal state

_must contain an antilepton). It also means that neutrinos

carvet got a mass (except 1f one introduces extra Higzses
or a right handed ccmponent Vg or non~renocrmallzable
terms 38). In groups bigger than SU(5) {see below), B-L
corresponds to a local symmetry snd we expect small viole-

tions of it.

Finally, from the covariant derivatives, one gets,
besides the usual SU(B)C x SU(E)L x U(l)Y interactions,
the interactions Inwvclving the superheavy ¥,Y gauge bosons
%, %, respectively) and the current eigenstates of
the fermions

{charges

~1h-
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SE[ T MFa e LT MTE e
4(,! EEELY LS AR )

WX® el 4 0. CY iﬁu Eﬁ

a u
+da eL aBy L ¥ L

L

-= MTa e, goey mya B, '}
uuLY Yu eL EGBY L R Yu dL h.c.

-

{2.30)

These are the new interactions, which viclate B- and L-
numbers. They are responsible for "the rise and fall” of
the baryon number of the universe: generatlon of the baryon
asymmetry of the universe, at first place (gee cosmology,

below}, and, then, nucleon decay.

¥ucleon decey 39, mediated by superheavy gasuge boson
exchanges, as given by Eq.(2.30), 1s mostly sensitive on
MX,Y = MG. From {2.30), one writes down the effective
Lagrangian xe ge for B-violating d=6 four Ferni qqar
interactions, responsible for nucleon decay, and then
scales them down to energies +1 GeV, which will give an
enhancement factor A: xeﬂ,(l cev) = & & ., vhere A
can be calew’nted wsing the renormalization group and the
anomalous dimensions of the ¢gqf operaters. However,
the most uncertain part of the computation lies in the
calculation of hadronic matrix elements of the effective
Lagrangian, which interpolate between the initisl nucleon
state and the varicus meson final states. These depend
on the model of hadronie structure employed, and several
methods have been applied 39. The partial lifetime for
the SU(3) dominant decsy mode p -+ e+n° thus turns ocut to
be

tlp + e"r®) = (0.06 - 2k0) x 10%9 ¥r {(2.31)

N
to be compared with the experimentsl bound e

-15-
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T35 10 yr (2.32)

which appears to rule out the minimal SU(5) model or an
sipple U mode® with the "greaet desert" between Mw and
MG.

One can, of course, consider non-minimal extensicns of
the SU.5), with additional Higrges and/or fermions, which
are not ruled out. But these are ad hac suppertions, withe
out any other justification. Another possibility would be

the existence of non-rencrrelizable interactions, e.g.

L1
3 %ﬁ Fquuv, whicl medify the gauge boson kKinetle terms
"
These can lead to an increase of MG and rp, while keep-

ing singaw accertable. And, of course, higher than
SU(5} wnificetion groups are still compatible with proton
decay experiments, due to a possible higher unification
scale Fd.

Note, alsc, that protorn decay can take pluce through
exchanges of Higgs bosons, e.g. the colour triplet in the
5 representation H, which has therefore tc be superheavy
(; lOJOGeV), to be compatible with experimert. Henre, the
need to split the 5 - plet of Higgses (doublet-triplet

separation), enoiler gevpe hierarchy problem.

2. ooiio)

=

The next bifrer grand unified model is the rank 5
L
0(20) D suls) = uf1) 2. LU L

It has LS generators =T
a,B = 1,...10, with commutation relations

[T T $ T‘r) (2.33)

af Y5] B 1(5afﬂﬁ = SasTsy 7 SayTas T %sTn

These can be constructed frem the 32 x 32 generalized Dirac

matrices Fi, generating a Clifford algebra

—16—-
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{ra,rs} = zaaB 132, a,B = 1,...10 (2.34) l

+ ;
The matrices T _: :

aB

r+ B 1+ r‘11 ;

o 2 1

o= ey =arr {2.35)

@B 2 e’ BT 11 TT1T27'tio .

are the generators of the chiral spinor representation of

S0{10}. Associated with them, there are 45 gauge bosons
AmB = _p%F
U M
5U(3)c x SU(E)L x SU(E)q subgroup content:

» which can be classified properly by their

L5 = (8,1,1) + (1,3,1) + (1,1,3)
i 9233 52,3 ] !

{2.36)

The B' ganr= bhoson is associated with the U({1l)' generator

Y' = 2(Y - "3_,{), which, for fermions, coincides with B-I..

Besides the gauge bosons known from SU(S), there are the

new X', Y' bosons with charge % and = %3 which also

contribute to B~ and L- violating interactions, and, '
g boscn with charge %, which does not contri- N
bute to such interactions, except through mixing with X', '

also, the X

Such processes viclate B-L, but they are enormously sup-
pressed by additional inverse powers of HG.
The fermions of each generation are assigned to the

el
spinor representation 16 of $0(10) ML’L3, which under
3U(5} is decomposed ag

B=5+10+1 (2.37)

-17- L
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Clarrly, the reducible E + 10 representatior of SU(S) is
conteined in an irreducible representation of S0(10) (hence
the cancelluvtion of the snomalies), and, in addition, there
is a 8U{S)} singlet that hes the gquantur rnumbers of an anti-
neutrino vi (henee neutrinos are, in general, massive in
so(10) m').

There are many patterns of symmetry bresking, and the

various rerc mrlizstion effects (for coupling constants and

s

3. E6

The next higher group is the rank 6 exceptional
group Eo D 50(10) x U(1). Tt has 78 generators

HaB'HaB = -H

Y {2.38)

whose commutatior relations we do not write down expliclt-
1y hT. Associated with them, there are 78 gauge bosons,
which under £0(10), are

a  — =
18 = 45 {F g0 + 16(X7) + 16 (X)) + 1(¥) {2.39)

I
The fermions are assigned 8 to the fundamental 27 rep~

resentation, which, under 50(10), is

27 =16+ 10+ 1 (2.40)

There are the 15 ordinarr fermions, whereas the Vi, i0
and 1 form & vector-like representation with respect to
sU(3} x 83(2) x U{1) and they are superheavy (Msurvival
hypethesis”).

=18~
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Recently, the interest in E6 models has been revived,
tLanks to developments in superstring theories, which polnt
towerds exceptional groups, as one class of possible GUTS.
Again, one has to choose from many patterns of symuetry
breaking h9,50;

For completeness, we mention some attempts to construet
a GUT model, based on the group O{18) 51, which would give
an answer to the problem of replicae*ion of families. In ~
6{18), all the known fermion families fit into Just one
representation, the 256-dimensionel spinor. Initial
phenomenclogical difficulaties 51, related to mirror
fermions, are avolded in a new constructiorn 52, whose

phenomenclogical implicaticns cen be tested soonm.

III. SUPERSYMMETRIC GUTS

A. N = 1 Globally Supersymmetric GUTS

The main motivetZon for introducing supersymmetry into
grand unification 8 has veen the gauge hierarchy problem 28
This has to do with the fact that the scalar boson masses,
being not protected by any symmetry,have the tendency to
get radiative contributions,which push them to the highest
mass scale present in the problem. This means that light
Higgs scalars, assoclated with the SU(2}Lf U(l)Y bresking,
will have the tendency to get masses NO(MG) in a conven-
tionel OUT, except if one is making a highly accurate tuning
of the parameters in the potential, which, however, has to
be altered in each order of perturbation theory. Super-
symmetry, in which there is no separate scaler mass or

scalar self interaction coupling constant renormeldzation,

-19-
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hut only wave function and gauses coupling constant re-

normalization, can, at least partlv, solve the problem.

Surersymmetry is the last possible symmetry of the
S-matrix, as a comprehensive analysis of the possible sym—
metries compatible with a non-trivial S-matrix, in a
relativistic quantian. tleory, reveals, At the beginning,
there is the Coleman-Mandula theorem 53, which states that

"

the only porsible conserved "charges" are the energy-

£
the theorem, by assuming only symmetries ilnvolving com-

momentum Pu and Torentz scalar "charges" T _. However,

mutation relations, misses symmetries involving fermionic

generators, i.e. invelving anticommutation reletions. This

5h

is remedied by the Hasp-Lopuszanski-Sohnius theorem .
which states that the most general algebra.of generators

of symmetry transfoimations of the S-matrix is e graded Lie
alpebra spanned by the following generators: (i) Bose-type
generators: tlhe energy-momentum operator Pu, the generator
of the homogenecus Lorentz transforretions Muu and =&
finite number of scalar "charges" TE’ taken Herrmitian

'I‘1 = T; {internal group). (ii) Fermi-type generators: a

set of spinorial "

charges" QS(N =1,2,...1a=1,2) and
— +
their Hermitian conjugates Q&N = (Qi)

Qg ~ (%50) and 62 ~ {0, %) under the group ST.{2.C).

, transforming as

The case N = 1, chorsicterized by Jjust one fermionice

generator Qa, iz called simple supersymmetry. Its algebra

—_ _ u. N
e, gé} = 20,8 EM (3.1a)
[a.u, caﬁ} {Q&, @,é} =0 {3.1n)
[@a. PU] = [Qa’ Pu] =0 (3.1c)
20—
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[Qu’ Mw] =3 (ow)i A {3.14)

The fermicnic generators Qa and 6@ have dimensions:

. .= 1
dim 0, = dim 8y = 5 {see Eq.(3,1a)) and carry spin L {see
Fg.(3.18)). As a result, they transform bosonic states B>

into fermionic [F> and vice-versa:

9, |B> = |F>, Qu|F’.> = [B> (3.2

5o, supersymmetry relates bosons and fermions, requiring
equal numbers of bosenic and fermionic degrees of freedom.
To every particle, there is associlated a supersymmetric
partner, cbeying different statistics. Moreover, since the
mass operator PUP“ = ME is a Casimir Invarient of the
supersymmetry elgebra,supersyrmetric partners have degener—
ate masses. Apparently, this is not the case in nature, so

supersymmetry must be broken.

The reasons, ve consider only § =1 simple super-
symmetry (SUSY)} to construct unified models at energles
below the Planck mass, are phenomenologicel, since N > 2
SUBY requires fermions with left -and right-handed components
transforming equivalently. In N = 1 SUSY, an irreducible
representation, called superrultiplet, contains supersym-
metric partners with Identical quantum numbers, but spins
different by % unit. Our theories can then be comstructed
in terms of arly tvc clarses of supermultiplets, both con-

taining two bosonic and two fermionic degrees of Treedom:

Supermultiplet Particle content
Chirsl ¢ Z: 2 reel scalar flelds

A,B(Z = A + iB).

¥ _: 2 compenent Weyl spinor,
describing a Maj)orana fermion.

-Pl-
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Yertor V ﬁu: ¢ component vector.

3 : 2 ccmponent Weyl spinor,
@ describing a Maj)orana fermion.

Again for phenomenclogical reasons, we are forced to double

the number of elementary particles in the theory, by pairing,

in a chiral multiplet, every known fermicn {gquark lepton)
with a scalar fermion (squerk, slepton), and, in & vector
multiplet, every gauge boson (gluon, W, Z, photen) to a
gauge Termion or gaugine (gluino, wino, zino, photine).
Mlso, Higes bosons are psired, in a chiral multiplet, with
Figgs fermions (higgsinos}. 5o, in a supersymmetric SU(S)

theory 5), we have the following particle content:

Supermultiplet 8U{5) representation
Vector (AU,A) 2h
Matter chiral (x ’ZX) E
Matter crirai (w,zw) 10
Higgs chiral (2,0 24
Higgs chiral {H].wﬁl) s
Higgs chiral (Hg,wﬁg) 5 (3.9)

The two Higgs scalars Hl(E) and HQ(E) are necessary in

order to give messes to both up and down quarks and leptons.

As = result of the doubling of degrees of freedom, the

expressions for the b, coefficients {Eq.{2.6)) now become:

1
b3 =9 - 2nf
1
b2 =6 - Enf -0y
3n
= _H
by = -2n. - g (3.4)

—00-
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There are the modified expressions, which have to be used
in Egs. (2.13) ard (2.1L), for the caleulation of M, and
sineew in SUSY GUTS 56. They yleld s higher GUT scale

M. and & bigger gauge coupling u(MG):

My = 6 1% & gev = 106 gey (3.58)
Ms
alM,) = 0.042 (3.5b}

The value (3.5a) pushes teyond experimentsl limits the
proton decay due to X wnd Y TDboson exchanges. However,
Higgs boson medlated nucleon decsys, through & = & operes
tors 57, are still importent and fall within observable
limits 39. The main decay modes, here, ere to keons and
antneutrincee, e.g. p > K+Gu, where the present experimen.-

tal bound is 25 x 1031 ¥r. . For sinzav. one obtalns

2 -
sin ew(uw) = 0.236 % 0,003, (3.6)

relatively higher than the corresponding prediction of
ordinary GUTS. Note, however, that these predictions can
be changed by complicating a bit the Higgs system of the
theory 58. Remarkably, the successful predietion for

mhjmr of the ordinery SU(5) ia maintained in the minimal
susy su(s) %%

The first of Egs.{3.1} has sn {mportant consequence,

since 1t relates the Hamiltonien H = P to the super-

0
chargea Qu,Od H

R 1 TR R LAY A R EE

This implies thet ¥ > 0O,
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If BUSY is unbroken, this means that Qa annihilates
the o cunr
clor =0 (3.8)

and hence Eu.(3.T) gives

E_ = <0|H|o> = 0 (3.9)
vae

Supersymmetric ground state has alwsys Evm‘ = 0, If,

hovever, SUSY is broken, i.e, if
o,l0> # 0, (3.10)

then Evac » 01 8USY can be broken only if the potential is

strictly positive.

In discussing supersymmetric models and spontanecus
breskirg of svpeorsimmetry, it 1s very converient to use
the suverfield formalism 59. A suverfield ¢(X,0,8) is
defined ms a function of “hc¢ space-time point Xu and 1he
anticommuting param-ters Ba and 6&, which are elements

of a Grassmann zlgebra:

= {8, . 8:} = 8.1 = 1t
{eu,eB} {8&’88} (eu,aﬁ) 0 {3.121

The superfield is defined in superspace, viieh Is parasme-
trized by

S(X,8,6) = exp 1 [-xup” + 680 +6Q | {(3.12)
The superfield ﬁ(X,S,g) is sctually a Taylor expansion in
8 and E.With coefficients, which are themselves loecal fielés
over Minkowski space, It turns out that, to find super-
fields, whose components trawsform irreducibly under super=-

symmetry transzformations, we need constraints. BSuperfields

that satisfy the constreint 5é¢ = S(DQQ = 0), where D's are

-2l -
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covarlant derivatives 59, are ralled left-handed (right-
handed] chirel superfields, Their particle content is
composed of twn jhysical field:: & scalar and a spin %
fermion (see chiral! supermultiplets above), and an auxiliary
(non-prropagating} field. celled F, which is the highest 62
component of the swperfield; its SUSY transformaticr is a
totsl cderivative. Superfleldz, that satisfy the reality
constraint ¢+ = ¢, are called vector superfields. Their
particle content is compoced F two physical fields: =a
spin-1 field (gauge boson) and s spin—% ferricr (gaugino)
{see vector rupermuitiplets above), snd an auxiliary (non-
propagating) field, celled D, which is the highest 823-2
component of the superfield and, eagain, 1ts SUSY transfor-

mation is a total derivative.

One can thus construct the Lagrangian, describing a
vector &8 well as a chiral superfield and their interaction,
by using F- and D- terms. By introducing integraticn

over Gragsmann variables as

JdF):O,Jde8=Jd2982=JdEBd2§92§2=1

{3.12)
the Lagrangian is expressed ar follows:
£ =y i Jdgs WS+ heell o+
¢
+ [ a%8 %5 F <V o
2
+ { I d“e g{¢) + n.c} {3.14)

122 —v_ ¥
Tn Pq.(3.1k), W =15 % e Do’ and the first terz gives

the kinetic terms for the components of the vector super-
fields. The second terr rives the kinetic terms for the

components of the chiral superfield and describes their

-25-
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gauge Interactions. Finally, the third term gives Tukava
interactions and mass terms for the components of the
chiral superfield, in terms of the superpotentlal g(o),
which is a furction of &, up to degree 3, for reasons of
rencrmali zability. In particular, the scaler potential,

which is obtained from (3.1L), is

v = FF* + = D° 3 0, (3.15)
2 7a
where
- de -}
F=:2D =glTIL (3.16)

with T* the generators of the gauge groul. From Fa.(3.15)
{orsfrom the supersymmetric transformation properties for
the fermlon fields ¢ and 1), one can see that SUSY is
broken if and only 1f the auxiliary flelds F 0 and /or

D 61 develop a non zero wev, The supersymmetry bresking is
accompanied by the appearance of a massless Goldstone fermi-
on, which is the fermlonic partner of the auxiliary fileld

develoying vev.

The above are examples of spontaneous supersummetry
breaking. In the F-breaking, F is usually taken as a
singlet under the gauge group. In the D-breaking, D is
the component of & vector superfield of & fundamental U({1)
factor of the gauge group., One can alsc envisage a dynam-
1c¢al supersymmetry breeking 62, in which case the Goldstone
fermion is not a fundamental particle of the theory, but a
composite bound state. Flnally, supersymmetry breaking can
take place explicitly, wzen there are "saft" SUSY breaking

3

terms in the Lagreangian This is the case with mass

terms for complex scalers and gauge fermions.

26—
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For the SUSY SU(5) medel (Eg.(3.3)), the full super-
potentia] is 35
e (23 L1 02
g= A1(3 BT b o MET) 4 AH (4 Mg,

1.3 ' i)
+ L, H 22+ HZPZ
1372 % Ty iy %™ ‘ (3.17)
M and M' are of the order of the grand unification scale.
The scaler potential, associated with (3.17), is

. k.
3
v =220 4 pserms (3.18)
&

where ¢ stands for the verious scalar fields. This poten-

tial is minimized for <H1> = <H2> = <zw> = <Z. > =0 and
X

one of the following three vev's for &

<E»0 = 0
SU(5) unbroken
] \
?1
<I> = %‘M
| SU(5) + SU(4) x U(1)
| iy
3
1
_P.i
3
_h |
{ 3
- 3
- M
<> = o sU(5) + sU(3) x
i % S0(2) x Uf1)
~3M
_3'

(3.19)
All these are degenerate minima, with V = 0, and SUSY is

unbreken. For the desired SU{5) + su{3} » su{2) = Ul1)

"
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solution, while the colour triplets of HI'H2 are getting
masses of the order of MG, the SU(2) doublets in HI’HE
get masses M - M', Since these doublets must be massless,
in order to immlement the 8U{2) x U{l) breaking, we have

to impose the tree-level fine tuning

M= M (3.20)

However, becamuse of tlie exact SUSY, this is stable against
radiative corrections T and this is the technical advantage

compared with ordinary GUTS fine funings.

Tn order to discard sltogether the Tine-tuning (3,20}
and obtain natw:ally massless Higegs doublets, two main
mechenisms have been suggested. The first is the "sliding
singlet"” mechanism and the second, more universally ap-
plr:atle,is the "missing partner” mechanlism 5, based on
purely group theoretical arguments: one introduces a rep-
resentation {50 + E§ in 8U(5)), which contains colour
triplets, but no wesk doublets. Then, with a direct mas=z
term M H_H, absent, no Higgs doublet mass term is induced.

172
Neither of these mechanisms is, however, without problems.

Tn nreak SUSY, below MG’ one usually invokes either
an F-bresking mechanism or an explicit symmetry breaking
one. Using the first approach (as in the inverse hierarchy

models 66 see later), one makes use of the common property

of thlr type of models that the potential has a flat direc-
tion at the minimum. Using the second approach 72 means
that we have to introcice, explicitly, mess terms in the
potential, e.g. in SU(5)

2 2 2
= W
suis) = M Tr I7 4 my, ki

v omt? \z 12 {3.21)
X

—20-
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Now, what 1s interesting 1s that such terms arise naturally
when we pass from global to local supersymmetry, which is
the most natural further step to do. 8o, we turn to local

supersymmetry, l.e. supergravity, GUTS.

B. N = 1 Supergravity GUTS

Given the rierers of 41w gauge principle, it is
netural to ask what happens when SUSY is realized as a local
symmetry with an anticommuting parameter £ = £(X) depending
explicitly on Xu. In that case, since £ 1is a spinor and
since the gauge field should trersform into auggx), the

mauge field of local supersymmetry is a spin spinorial

ooty wT. Furthermore, since the product of two local
SUBY transformations leads to local encrdinate transforma-
tion EJ(X)GHEE(X)BU’ cre expects a connection with gravity,
hence the name supergravii . Anywaey, 1in SUSY mndels we
have the same number of fermionic and bo=cnic degrees of
freedcm, sc we expect & new bosonic fleld to be obtained

in a locally supersymmetric theory. In fact, the graviton
e? coupled to tYe energy momentum tensor, turns out to be
the SUSY partner of the spin % gauge fleld ¢§, vhich is

then called gravitinc.

S0, in % = 1 SUGRA theories, we have the following
three kinds of supermultiplets (with the corresponding
physical fields): (i) Gravi+y multiplet : (eﬁ,\bu);

(i1} Gauge multiplet: (Au,)\); (i11) Matter multiplets:
(2 5%, )
In global SUSY, generalizing Fq-(3.1k), one can write

the most general Tupengien as 1

%:—Re J desf(@)w + [ d29d2€ ¢(Ee2gv,o) + Re J dzeg(@) :
{3.22
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where f,4 and g (the superpotential) are general func-
tions of their arguments. f{¢) transforms as the sym-
metric product of two adjoint representations with respect
to the gauge group. The theory is renormalizable cnly If
£(¢) is constant, ¢ = & e25V¢ and g(¢) a polynomial of
degree less or equal to three. Giving up these restrictions
means glving uy renormalizability, which 1s a logicel step
to do tewsrdrs a supergravity theory. We however demand

that all nonrencormelizaeble terms contaln the gravitational

8
coupling constant K2 E-%%, so that, in the flat limit

K + 0, the theory becomes renormalizable.

In ¥ =1 surergravity, the kinetic function ¢ and
the superpotential g lose their independent meaning &and
the general coupling 10 of chiral and vector multiplets to
I = 1 supergravity i1s specified by the following two in-
dependent functions of the complex scalar fields Zi’ can-
tained in the chiral mul*iplets:

£, {zi) =f (Z,)

b ba' 1
${2Z,,2%)
i 2
6(z,.2,%) = =320 |- ——E—wﬁi- + in |g(z)|

2
= k3
= a{z,,2,%) + tn leglz}|
{3.23}
fab iz an analytic fun:-tion related to the Yang-Mills part
of the Lagranglan; G(Zi,Zi*) is = resl function, called

K&hler potential, because the tensor

ol - 3°g
3 3218233 (3.24)

acts as a metric of the kinetic terms of the scalar fields.

=30~
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In fact, the bosonic part of the Lagrangian 1s (we put
K=1)

=1 _1 _ 1 & _buv 1 A ~buy
e iB =-SR-p (Refab)Fw o+ o (I fah)FwF

i [T

- D

GJ D2 z

G 1-1 ) 1 -1, ab

e (Gi(GJ) 67 - 3) - % (Re flb)DaD

L (3.25)

where G7 = 3% etc., and p® = gGi T:JZJ. We do not

write down expiicitly the fermionic part of the Lagrangian
(Refs. 10, 11). -

To discuss spontaneous SUSY breaking, cne con:iders,
in analogy with global SUSY, the auxiliary fleld for the

chiral fermions

R V- (Gg)-l

i Gj + fermion dependent terms

(3.26)
end tie auxiliary fleld for the gauge fermion

w -1 i b3
D = i(Refab Y g G Ty zJ + fermion derendent terms
{3.27)

As in global SUSY, local $SUSY is broken if at least one
of these auxiliumry flelds recelves a vev end the SUSY
breaking scale MS2 is given by <F> or <D>. Note that,
a vev for the fermion dependent terms occurs only in the
presence of a strongly interacting geauge farce, that leads
to & vacuum cordensation of bliinesr fermlon-antifermion
states. 1In the absence of these, it is evident from
Eq.{3.26) and (3.27) that the eriterion foi [UCY breaking
is <Gi> # 0. We have seen that spontaneous SUSY break~
down ia accompanied by s Goldstcone fermion field. What
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happen= here is that, the Goldstone fermion

o gje. 1
= <o Gyt

loczl SUSY transformaticn. Then the super-Higgs effect

+Eaqs AE, car be rotated away by a
2 & T 67

ig effective and the gravitino acquires a mass {we pui hacl
[

1_°F . 18
here == —= =M= 2.k x 107" QeV)
L Ver
G/2
= .28
mypp * Me (3.28)
Th= potential given from Eg.({3.25) is
_ G i,-1 .3 1 -1, et
V=e [Gi(GJ) ¢ - 3] +3 (Refab ) b (3.29)

The form of the potential {3.29) suggests that there is the
possibility of broken supergravity with vanishing vacuum
energy. Althousl. this is not a solutlion to the problem of
the cosmological constant, at least there is the possibility
to fine tune it to zero. In that case, by redefining the
field: such that the kinetic terms are canonic=l, J.e.

.i = M =
cj = sj, b= S {3.30)

{something which can always be done Iin a well defined

theory), it is not dif7icult to give the relation between
&

the gravitinc mass and the scale of SUSY breakdown 7

2

M

m  m—
32 R

Under these condltions, one can also derive the mess formula

(3.31)

(for ¥ chiral superfields) e
2
2J
g Trm =3 (=)
J=0

(27 + 1) mJ2 =

= (N -1) f2m§/2 - DaDE/ME) - 2g D* Tr
(3.32)
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The phenomenologlesl relevance of this formule is immediate:
Due to the supergravity correction first term, the "mean
squared mass" of tle scalar fields is mi/? and thus these
fiells are heavier than the corresponding fermiony, & phe-
nomencloglical must 8. The low-energy spectrum, however,
has to be studied orter inclusion of renormalization ef-
fects. In fact, ons=-lonp corrections on scaler manses have
been shown to be able to induce SU(Q)L x U(l)Y symmetry
breaking at low energies, even if all scalars have positive
11

2
tree level "mean squared masses" of order ml ,.»

3/2
In general, in realistic models, we distinguish two
sectors: a hldcer sector, responsible for the spentanecous
breakdovn of supergravity, and en obzervable sector, con-
taining al’ the superfields needed for the construction of .
the model. These two sectors communiecaie only through
gravitational interactions, which means that the fields of
the hidden sector are gauge singlets with no Yikaws coup-
lings to the cbservable sector. The simplest case for the

hidden ser*or s to consider minimal kinetic energy terms,

. 1 - 1 = n . N :
i,e. Gj 6j, F&h sab with n Kahler potential
2
L ]
olz,z2%) = 2228 4 in lﬂiE%L— (3.33)
e M
from which we obtain
E*
Me ag(z) | z# 2 3 e 1_2
V=e 3 + —glz}| - = |z(2) + =D
4 ME M2 2n

{(3.34)
In the limit M + =, we recover the global SUSY result,

. : Z
which is never zero for <g > I < BaéZ) > sk 0, when global
SUSY is broken. Now, the signal of broken local SUSY is

<gf > #0o0r
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*
<g(z)oh> = <g” + L a> g0 (3.35)
M
We sce thet, in the present case, we have the possibility
Z
> # D\

becenie of the negative term in (3.34), vrovided we fine-

- ¥ = 0 (zero cosmologicel constant}, even with <G

tune the superrzotential g(Z).

The sirplest example of a hidden sector Kahler super-
potential, for one chiral superfield, for which the super-

69

Higgs effect occurs, is the superpotential

RCRND (3.36)
vhere B will be fine-tuned, so that the vsct p cnergy is
zero. With the F component of the z-field being the only
sour::e of SUSY breek’'ng, tle minimum of the potential V¥

is zero for B = (2 - ¥3) M and <Z» = {¥3 - 1) M. The

super Diger efieer ocours and the gravitino mass is

g (/3 - 1)%
Loy =y exp —5‘— {3.37)

2 2
The two real scalars (Z = A + iB) have {masses}” 2/3 my /o

2
and 2{2 - /3) !r..?,r and the formula S'I‘rm2 = 2(51-1)1113/E
e
is satisfied (N = 1}.

The ceombined superpotential g(zi,l"&), with Zi the
fields inducing the super Higgs effect and Fﬁ the
"ohgervalbla” fields, containing qua:ks, leptons and Higgs
fields and satlsfying <y&> << <zi> aM, is most frequently

written as 0

g(zi,yai = glz, )+ g(y&) (3.38)

witl the g(zi) s Polonyi-type superpotential and g(y&)
an arbitrar- gauge invariant superpotential. One can also

1
write down a facteorized supermotential i or even consider

-3
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T2

e more general case ', With the form (3,38) for the full
superpotential, we can write
2
2> = B,M, <g,> = af Mg, <g(zi)> =M. M (3.39)

2
with Ifa, + 8,1 = 3 from +ne condition V = 0. The gra-

vitino mess is y 2 5 IB [2
; i 3

= 2 R )
M3z Ty PR (3.k0)

WS is usually taeken mlOIJ GeV, an intermediate energy
scale, roretimes desirable from cormologicsl considerations.
One can now expend the potential in power geries in K = %,
take the limit X = 0 with n3/2 fixed and get an effective
Legrangian valid at scales lower than M. Then the fields z.
consistently decouple in the effective theory; the inter- -
acticns of the hidden sector with the observable one are

governed by K. We thus obtain the scalar potential

= (212,17, 2 2
ve g%+ 50 "ar3 fy I+
+my {i v v (A-3) B+ micd (3.141)
::Isil2
where E; = g exp i _ 5 and &
= »
A f B; (ui + Bi) {3.42)

The first two terms in (3.41) coincide with that in the
glebal BUSY. The third one i3 a soft breaking term, with
a common velue for all the y s {compare with (3,21)). The
effecti-c theory is renormalizable as long as the super-
potential g(ya) is a polynomial at most ecuble in fields
ya. We should bvear in mind, however, that, in general,
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nonrenornativable terms in the superpotential can be present,
given that a N = 1 SUGRA theory so cclhistructed must be only

Y . \
considered as an effective theory 7 . With non-minir.:? ¥i-

netic terms for the gauge fields fab = Sab’ cne can also
int: wduer mass terms for the gmi'no:, as well as

. =i 10, T4 .
CP-viola* ing Fuu F terns . With the use of (3.41},

various unified models counled to N = 1 supergravity, with
or without nonrenormalizable terms, have been constructed,
as well as PU{3) x SU(2) x U{1) phenomenolegical models,

predicting many superpartne-s around 100 GeV 77,

Returning now to SU{5), recall that in global SUSY,
the different supersymmetric minimal SU[5), su{d) = u{1)}
and SU(3) % 30(2) = U{1), were degenerste with V = 0. This
is no longer true in supergvavity. HNow, 4ffivrent super-
syrmetric minima have [from Ea. /3,29))
6 _ 23l : ed/ﬂg and sre only degenerate if they

M2

have the same value of fiw superpotential, whirl is not

Vo= -3e

always the case., We can take the 5U{3) x 8U{2) x U1} as
the highest of these minima with g = 0 and ¥ = 0 {zero
cosmological constant - Minkowski vacuum solution). The

other SUSY minima, however, will, in general, have V < 0
(anti=de Sitter vasuim & 1v'ion). Nevertheless, there sare

(e

arguments that the presence of gravitation renders the
Minkowski minimum stable, even If it Joes not have the
lowest energy (see alseo later)., In genernl, however, these
conziderations apply only to the observable sector. In the
hidden sector, SUSY is broken, and the question of diffe-

rent SU(5) minima can only be apswered _in the contex* ¢

specific modelc,

— 36—
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This brings us to an Interestiry class of models,
where the cosmolegical constant nsturalls vanishes after

the breaking of supevgrtnity, These "zerc flat potentials"

ere taken from the Kihler potertiel

G{Z,2%} = -3 in {2 + 7¥) {3.h3)

which leads ne*uinliy te V=0 76. In that case, the

gecrety of the Kéhler manifold 1s charact erized by

3
= = in G
Rzz* 3757%

6 (3.20)
whick mesps that the Kéhler marifold is ar Tintein space
(maximelly symmetric space). There 1= an SU(N,1) global
symmetry, where N 1g the number of c¢birel flelds. The

gravitiro mass ic

and, nt thoe tree level, is undetermined, bt non-zero.

3 (3.u5)

Upon coupling with the cbservable gector by writing
¥y

3

the gravitino mass as well es subseqguelt

*
Cenin(z e - SR Y e mler )P (3.0

scales can

be cbtained via "dimencderel fransmitation” TT(see later)
from non-grevitaticna® rufiative correcticns, along che of
the flat directions of the scalar potentisl. This is the
progran of the no-scale models TS, in wkich from only one
scele, to be identified with M, every other =nale below
thet is dynaricaily determined, The consistency of the
whole scherme relies on the assumption that no gquantum

gravitational effects affect the »acdative corrections.
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It is again interesting to point out that such a
perticular Kihler potential can be actuslly obtained, under

a simple truncation in the process of compactification,

from the ten-dimensicnal superstring/supergravity theoriesTg

Tv. TPHASE TRANSITIONS IN FIELD THEORIES
4.1 The Effective Potential at Zero Tempsrature

The main concept, in discussing symmetry breaking and
phase transitions in field theory is the effective poten=
tiel 80. The effective potential includes all quantum
corrections to the clessical field theory potential. By
minimizing 1t, we have the field configuration with minimal
energy, i.e. the vacuum of the theory. Thus, we can study
the symmetries of the full theory and not just those of the
Lagrangian. This will then reveal phenomena of symmeLry
breaking.

The generating functional 7iJ} for the full Green's
functions is defined by

21} = €0 T exp u[ dx seoslx)]os (k)

where |0> 1is the physical vecuum and ¢(x) & field, in
voth cases for the theory without the source term J{x)eix).

Tn functionsl integral representation

20) = NIM exp (106,31 (b.28)

36—
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where S 1is the action
= " X1 8
sle,d) = |a x[h{s(x}) + J{x)elx)] {L.2b)
The logarithm of %(J} 1is the generating functional
iW{J) for the connected Green's functions

) 2(5) = o219 ' (4.3)

The Legendre transform of W(J) 1s the generating functio-

nal [{#} for the one-particle irreducible Green's func-
tions

WrY = (1(8) + 38

il
T(3) = (W) - Joly,  _ (h.L)
a7 -t -

- L — _
where J¢ = J d'x J(x)e(x) and ¢ 1s the average fiald

[d¢ ¢ exp 15(¢,J)

30 = ) -
fcu exp 15{4,3) {L.5)

T{¢) is called the effective action. In = translaticnary
invariant theory, where #{x) is constant, we define the
effecti t r
ive potential Veff‘w) by
M3 = |a xlev, ()] (4.6)
eff ‘

The physical meaning of the effective potential can be
seen if we write

- _ = 1. —nfk b (n)
T(e) = ng ¢ [a xped T (b))
b b
w1 +=n .k y &k dkn 10k %t ¥k X )%
=y % jdx“d - ... et 1 R
né; nl 1 n (2m) 27) i
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x r ™ e ).'oﬂbal"{zn k.)
r preeek )R -

= ~ l_.g‘“ thx r(n) (0,...0}
nes n! 1
{L.7)
Then @ ()
- 1 —n n
v o {9) = = — ¢ T (0,...0)
eff I’}g nl (1-3-.8)

veff($) is thus the generating functicnnl for one-particle
irreducible graphs with vanishing external momenta. Bo, we
can calculate it by summing all one-varticle irreducible
graphs and inserting a factor EV for each externsl line.
Minimizing veff(E) with respect to ¢ giz?s the ground
state energy of the theory. The value of ¢, at which the
minimum of the Veff(;) is taken on, vields informetion
about spontaneous symmetry breaking., Specifically, if the
minimum occurs at ¢ ¥ 0, then all the symmetries of

£ (¢=3U¢), which do notleave ; invariant, are spontane-

ously broken.

To compute the effective potential, many techniques
have been proposed. For the one-looo level, the most
convenient one is the Coleman-Weinberg combinatorial me-

thed 77.

This method cannot be easily extended to higher
orders in loop expansion. We note, however, that such an
extension is more easy with the functional interral me-

8
thod 1.
Consider a general non-Abelian theory given by

bV

Liawer == P F PV e 1o gy, Groaw - Broob e

+ %—Tr(Du¢)+(Du¢) - uls)
(h.9)

mNem
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where T is the matrix of Yukewa coupling constants,
Du = Bu + ig AuaTa is the covariant derivative snd the
trace refers to the appropriate representation space. Then,

in covariant gauges and to one-loop order, the effective

potential is

(1), - (1) , 1), (1)
Vepr (81 = UMY + VeV ey (4.10)
where 2
L S (4.11)
] 2 5 2
Gln u
1) 3 W)=y :
Ve =2 — oy utE) = (b.a2)
by 2
Gl n
M 2
V(l) =L -~ 3 0r Mh(z) &n —55 (L.13)
& [ g U
2 BEU
In the sbove formulae, M~ = == is the squared mass
. —
3¢ ¢=¢
-2

matrix for the scalars, Mfg = {T4¢) that for fermions,
Mg2 = ggTr[(T$j+(T$)] that for the pauge bosons in the
broken phase with vev ¢, v Is the rencrmalization mass.
The factor 4 in Egq.(%.12) stands for the four degrees of
freedom of a Dirac fermion and the factor 3 in Fq.(h.13)
for the three degrees of freedom of a gauge boson, in the

broken phase.

Tn non-supersymmetric theories, for a Higgs potential
Vi{e) = AP(¢) with Pl4) a fourth order polynomial and
A small, the dominant contribution to the effective
potential will come from the gaure boson part:
1 - 1),=— .
Vif;($) = Uufg) + V; )(¢). This 1is the case of the

Coleman-Weinberg mode ?T, where there is no mass term

T
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%—ug ;‘2 in the potential U(%) and the minimum is at

% = 0. 7Tn these models, the one-loop result predicts spon-
taneous symmetry breakling, with the minimum of the effective
potential occuring at 3 ¢ o, wvhile one can solve x in

terms of ofdimensional trensmutation).

Now, Tor the SU(3) model in the Toleman-Weinberg mode,
for most values of the potential parameters 2, we have the
energetically favoured symmetry treaking channel
5U(5) + SU(3} » sU(2) x U(l), with the vev for the Higgs

field in the adjoint rerresentatlon
{ 1

| 1
i

I
|
1
1!
1me = = = =
1
!
1
I

@ =96 L o____.
! _3
1 2
_3
2 (h.1k)
Twelve gauge bosons become massive with mass

2 _25 2—2

Myy =58 ¢ (k.15)

Then, the dominant contribution to the effective potential
will be
— 5625 b — - -4
v - 622;; g o
& 102hn
(4.16)

and the effective potential v&%(i) = u(s) will be

2
vy - 2625 b ;h(m%_%) (4.17)

aff 102km° a
i
where o is the minimum solutien i — 0.
3 ¢=0

L

ety ot g e ecopmenlifin F W B B B OB Sy
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As another example, égt us consider the inverse hier-
archy B5U(5) SUSY models . The superpotential is taken to
be

- 2 2 2
g =3 Tr A°Y «+ ?\QX(Tr AS - ") (L.18)

where A,Y are twe adjcint representations and ig a

: ) g _ 3
singlet. The equations Y 0 and §§-= 0 are inconsist-
ent, so SUSY is breken and minimization of the potential,

derived frem (4,18}, happens with 6

.

2]
X m <
<A>=——2——u_ 2
2 2
Al + 3012 2
-3
-1 P
2
LYY ¢ 2
<Y>» = §
1 2
-3
=3

(k.19)

<X> undetérmined
Then, Including one-loop corrections, which will determine

<¥>, we get, to leading terms,

2.2 L 2
vil) . _atet |:1 v {-—-———-—AE ](29 2 %)
eff = B z 5 Ay - 508 x
3] + 30h g J\f . 3012 1
x 2 EE—]
s

, , M {L.20)
Yow, for 291" < 50g~ (g is the 5U(5) gauge coupling),
X tends to be large compared to m (py=m 1is the natural
scale), The potential decreases for inereasing ¥ +i11
the regicn where {4.20) is no longer valid. Due to

=43
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asymptotic freedom, the potential must turn over at some
point and & stable minimum develops gt VM el/gg‘ In
these models, m wiil be the small input mass scale and the
scele <X» >>m obtained by "dimensional transmutation”,
will be the large one. In realistic models, m is taken at
the intermediate range m n IOIOGEV, from which the large
mass scale MG {5 induced, out of the f1at direction. The
construction of such reglistic models, however, encounters
protlems both from particle physics 83 and from cosmology

{see below).

L., The Tffeotive Potentinl at iniLe Cepeerabaren

As we have said in the introduction and seen in the
previous sections, unification of all particles forces takes
place abt extremely high epergies and, hence, its matural
arena 1s the early universe. The assumption of an empty
space, in which scattering events take place, is totally in-
applicable in thet case, since one is dealing with high
matter and radiation density. There, the scattering events
take place in a thermel bath at some finite temperature
T =z 1/8. Then, in analogy with the T = O temperature, we
use the finite temperature generating functlional ZE(J}

'1‘r~[e_BH T expl(fi J(x)¢(x)dux)]

Tr e-BH

2By =
(4.21)
where H 1is the Hamiltonian. As in the T = 0 theory, we
also have
B s 8
wB(I) = =i tn Z°(J)
B(

By = W) - I

sy o (8.22)
83 ¢

-
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B
§T{JI) —
Then & 2 -J, and ¢(x}, eveluated at J = 0, s the
thermodynamic average of the Tield a(xX)

$(x) ;EZ_E:EEQLEl

J=0 Tr e_BH
{k.23)

FB(¢) is the finite temperature effective action and, in a
translationary invariant theory with $1x) = E, we define
the finite temperature effective potential VB (;} by

eff
SOE Jahxi-v:ﬁ.m] (t.24)
Then, symmetry breaking occurs when §22§§1.= 0 for ¢ #O0.

34
. 8
The important cbservation b is that, in Minkowsk’

T

space-time, the only changes in the functional integral,
compared to zerc temperature, are the boundary conditions.
This means that in Buclidean space, the finite temperabure
Green's functions are pericdic for Bose fields and anti-
periodie for Fermi fields, in Fuclidean time, with period
g, As a result, the morentum-space Feynman rules, needed
ta caleulate graphs, are the same as in the zero tempera-
ture guaptnr TIoid tiery, excent that every internal
energy is replaced by & quantity iw, satisfying the

gquantizaticn rundltions:

w = 2n7T for bosons

33

w = {2p + 1)aT for fermions {L.25)

and all energy inteprals are repleced with w sumrs:

- i
P, @

I
Jd b+ 2inT 2 [d3p

u

wbi5a
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- 3, ->
0 = 1)+ i)™ 80D - D)5y (b.26)
Using these modifications, we find that to one-loop order
the fipite temperature effective poterntisl is
(1) m 16 Do G (L.27)
= Voo+ ¥V, + V] .
Veff(¢") veff(¢) 3 T g

gﬁ;@) iz piven v Eg.(4.10)-(4.13) and

y - . MO(F11/e
A, J ax % in[l - exp[-xa + 1 ](h.za)
2172 Q

where V

=
n
1
=

2 -

i = [ Mo(3)y1/2
= Tr I W x En[; + expl—x2 + T3 ]

T 2 a

1/
i o M- ($)
ey J ax x° an - ex;:[—xe +—57'—] ]
gL 5
m

There is a high temperature T >> M expansion of the above

expressions. For bosons and for each degree of freedem

il (57

o 2 M
vi =2 J ax % !n[i - GXP[‘X - ] }
v 2 g i

- 30 2l
(h.31}
whereas, for fermions
A ,  M® Rk
v o= - =— [ dx x En[} + exp[-x + 5 ] J
£ 2n2 Q T
Srowl?y g een
"8 [' 50 } M)
(4.32)

L6
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The finite temperature correcticns to the one-loop ef-
fective potential, in the high temperature limit, generate
a temperature-dependent mass term CT2 ; E. This term
converts $.= 0 from & local maximum of Veff to a local
micimum. In fact, above some Tc’ ¢ = 0 I1s the sbsolute
minimum, wheress for T <« Tc, ¢ = 0 remalns a relative
minimum., a metastable false vacuum. This critical tempera-
ture TC, is the tempermture, at which the minima are
degenerate. We can roughly estimate Tc by assuming that
the location ¢ = g of the asymmetric minimum 1s tempera-
ture independent. In this approximation, the criterion for

T is
e

(1) 7 _
Ve © {g) =0 (L.33)
For ( - -
1Y Tpmy _ o b ¢~ _ 1 T2 2 .
Vope (8) = B¢ (Jan02 g1 *Ce°T
{h.34)
where B,C are model dependent constants, the condition
(L.33) gives
2
2 _ Bo_
- 3 (1.35)

The above result is expected in the Coleman-Weinberg type
af theories, since g 1s the only maess scale present and
any critical temperature should te of the same order of

magnitude. Thus in the SU(5) model, we have the dominaent

contribulicon
(1) T—y _ 5625 b -k, §°2 1, 15 2422 -
v () = —=——==g ¢ (in -z) 4+ g T
eff Lo2hn? 2 2’ T 18 (4.36)
=47-
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In a globally SUSY model, the finite temperature cor-
rections to the one-loop effective vpotential, in the high

S

temperature limit, are written

Q7= _ 1 2} T
Vorr t¢) = - g0 " - (Nb "3 Jf)

+ == iy Mi({) + Tr M?(E) + 3 Tr MZ(¢)}

=
{(4.37)
where Nb(Nf) are the operstive (i.e. massless compared to
_T) bosonic (fermicnic) degrees of freedom. Using this
result one can easily deduce that, for example, in the in-
verted gauge hierarchy model (L.18), the critical tempera-

™

8
ture is e v 6, which is the natural scale of the model.

The finite temperature corrections in W = 1 super-
gravity are more complicated 87. The potential iz given
by Fa.[3.29) and the finite temperature corrections arise
through loops of properly normalized (i.e. with canonical
kinetie terms) scelar fields and their fermionic super-
partners, gauge fields and geuge fermicns, and gravitinos.

In the high temperature limit, we will have

o
()T _ = T e .
veff =- 57 (N + NG + 1T+ h 1 Tr MO + Tr Mf/E

+ 3 Tr M? + Tr Mife}
(4.38)
where N is the total number of chiral superfields, NG
is the number of generators of the gauge group G and
M? is the square mass matrix for the spin J filelds. Hote
that, in order to compute the gravitino contribution, one

uses the pauge yuwu =z (0, where the gravitino decouples from

the would-be goldstinc, which is separately included in the

=L 8=
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fermion- % contridution in (k,38), since it is eaten by
gravitino (super-Higgs effect} only at the minimum of the
potential. Then the effective action gives a contribution
to the one-loop finite-temperature potential proportional

to

2 G
Tr My, = e (4.39)

Let us first consider the minimal supergravity (3.30).
Then, the spin-zerc contribution is

e G ij i)
Tr M7 = 3
r 40 2e7{{G + GG )(GiJ + GiGJ) +

i 2 2
+ (N - - -
{ 1)G G, 2N} + op CE(R)]yu; ;

(4.%0)
where Cz(R) is the Casimir invariant for the representa-
tien R and i@ sum over all representations is implied,

The fermion contribution is

2 _ G, i} i) 2 2
Tr M1/2 =e (6°Y + G )(GiJ + GiGj) + bg CE(R)Iyuf
(L.41)
and that of gauge bosons
2_ .2 2
Tr M) = 2g CE(R)IyuI (4.he)

Putting everything together, the thermal corrections are

(1) T 2 d
Vorr == %[ (m + N + 1} + gg {3(Gi‘1 + GiGJ)(GiJ+ GiGJ)
1 5 2
+2(¥ - 1)a G, - 2(N + 1) + 12¢g 02(9)|yu] }
(b.43)

The number of the chiral superfields is expected to be
0(100); for example, in the minimal SUSY SU(5) we have

“hg-
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N = BQ (the singlet 7 for SUSY bvreaking, 3 famiiies of
quarks and leptons, the adjocint g& Higgs I and two
5 and E Higgses H,H). Then, in the large N limit,
(4. 4k) reduces to

y 7P

1) _ ~
* 12

m
v ——éENT

G i
off e N{G G, - 2) {4.Lk)

Finally, let us consider the non-minimel supergravity,

characterized by (see Ea.(3.46))

b
G =-3 en(2 + 2% - )+ F(yu) + F*(yu*) {4.L5)
along with s non-minimal fab‘ The zere—-temperature polen-
tial in that case is
* -
ve2/3GFF AT g pu 1o pagd (h,L6)
o 2 "ab

One has now to normalize the fields end prroceed as before.

8
In the large N limit, we now find 8

2
2
(aym " Lo 2/3CG+F +F% o
= o + == N
Verr s NT +qg Fe FoF

(4.47)

One has to remsrk the following. From (%.LE), (h4T), it
is evident that, in the large N Jimit, the global minima
of the total potential are given by the SUSY condition

Fu = 0. However, as in the glohal SUSY theorles, there are
often degenerate minima satisfying this condition, and then

the non~leading terms in N could bresk this degeneracy.

—50-
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4.3 Decay of the False Vacuum

Lecording to the big bang model (see later),the uni-
verse started from e very high temperature and, then, cooled
down up to the presently observed temperature of %K. In
our field theorv lanpuepe at finite temperature,this is
equlvalently described by saying that, initially ¢ =0 is
the ground state of the thecry. Then, as the temperature
decreases, at some critical temperature Tc the symmetrie
vacuum will cease to be stable (false vacuum) end a new
energetically favoured ground state appears (true vacuum).
At that point, quantum,thermel and gravitational flurtupe
tions will teond to push the theory from the false to the
true vacuum. In discussing this transition, we have to
evaluate the relevant quantity T/V, the decay rate per unit
volume. During this phase transition, the univeree wiil
expand exponentially and supercool in the false vacuum for
a period (F/V}-l, unti] tre phase trensition complete it~
self.

First, let us consider the zerc-temperature theory,
teking into account only quantum effects. One treats quan-
tum fluctuaticons in a semiclassical approximation, using
functional integral methods. After tunnelling, the further
evolution of the fields will be determined by sclving the
clessicsel fleld equations. We will not give full details,
since there are already excellent review articles BO. We
will simply state the final results. The decay rate per

unit volume 1s

=N e (4.48)
where

)} (4.4}

N
b4
-
M
w
o
ar
h =4
-~
+
<
=)

-51-
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is the Euclidean scticn and Qh iz a determinental factor
[T .
with dimensions of [mass] . ¢ is the olh) symmetric

solution [instanton) of the squations (Euclidean space )

av__ (e}
38 ¢ = —Sl {L.50)
(Ut b
or equivalently
%y 3ap Meerl®
Py aa Mot o oy
gt v ¥ W T sy
™is O(4Y gymmetric solution has the lowest Euclidean
action SE 8 and, thus, gives the dominant contribution
to (4 u8). The initial conditions are
" implo) =
lim #(0) ¢fa.lse vacuum
-+ = \
¢ (k.52)
ap(p) .
dp o 0

(4.51) is the classical equation of motion of a point par-

ticle in the potential -V sublect to a time-dependent

24 eff’
damping force ;-E% {p plays the role of time). 1In terms

of p, the Fuclidear action becomes

A= erp 8] (4.53)

- 2 1 qdg 2
@ = Dol 12 ey
P
0
The soluticon E' must be non-trivial in the sense that we

cannot uze b = 4 If more than one such solu-

false vacuum’
tions exist, the leading contribution is from the one with

the smzllest action.

After tunnelling the evolution of the field is de-
seribed by the classical egquations of motion (Minkowski

space now)

T
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y W ot}
B8 ¥ = - {.5l)
or, equivalently (1 = ip),
2 3w
M+iﬂ=-—eff(¢) (L.55)
o2 ra 3 :

which is the classical eguation of motion for e particle in
the potentisl Veff(¢), starting at some ¢ = ¢* with a time
dependent damping force., The evolution of ¢(t,;), for

t > 0, describes the growth of & bubble of the true vacuum

in a sea of false vacuum.

Mow, for the finite-temperature theory, there are sone
modifications needed 90. Quantum stetistics at T £ 0 is
eguivalert t¢ the Euclidean guantum field theory, but with
periodicity condition with period 1/T in the Fuclidean
time direction. Therefore, instead of the O(4) symmetric
bubble of size v{0) considered previocusly at zero—-tempera—
ture, one hus now bubbles with centers separated by
r{T) = 1/T in the Fuciidean time direction. As the tempe-
reture increases and the boundsry enmergies become more and
more sigﬁjficant, at sufficiently high temperatures

(

T >> v (0} the minimal energy field configuretion will be

congtant in Euclidean time and have an 0{3)sywmetry. As

S,
a result, the action A should be revlaced by 3’1‘ .

where 83f¢) is the three-dimensional bubble action. To

compute 53(35, one should find the 0(3) symmetric solu-
tion of

v ff(¢,T)

Puing = .,_:3.3.;._._... u=1,2,3 (k.56)

—-53~
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with boundary condition

. 2.
11m|;‘2* - ${|xl7) = $ratse vacuum {4.57)
or of ( N
2 v $,T
g, 28 e L AP (h.58)
dr2 r dr 3¢

The decay rate per unit volume is again given by (L.4B), but

now the action is

LA S S G -y e
A= Jo at J a7 x {5 au¢ K Veff(¢,T)} =
I 82 4y G, {4.59)
=TT T Ddr rog Ry errt T :

In a cosmological context, one has to compare the
decay rate per unit volume T/V,(computed from (4.48) and
{L.59)) with the corresponding natural guantity of cosmo-
lomy (see mext sectlon), i.e. the expansion rate of the uni-
verse per unit volume,which from Einstein equatiurs is
given by
R [Blu - & ,p]a (4.60)

where Rt} 1is the scale factor of the universe, dot means
differentiatior with respect to time and p = V{0) 1is the
energﬁ density of the symmetric vacvum. For the phase

transition to occur, the condition

s (h.61)

must be satisfled,

Usually, it is impossible to obtain an analytic solu-
tion to Fqs.{L4.58) and (4.59) and, also, to calewlate the
L .
determinental factor (' analytically. One can obtain a so=-

5k

SUPERUNIFICATION, PHASE TRANSITIONS AND COSMOLOGY

Jution and the corresponding action 53(3) numerically,
using corptter celevlation:. Also, in most cases, it is
sufficlent to have a rough estimate of the order of magni-

tude of Qh.

Let us consider some cases, where the atove considera-
tions have been applied. For the Coleman-Weinterg FUD)

theory, we have seen that, for T »> E,

(1T = _ M, 3 1 22 1 _14
Vo (0) = B¢ lim 2 -3 T+ 5B
s25 b (L.62}
where B = > g ,C= 1% RE and the last term has been
102hx 1

added to cancel the cosmelogleal term, so that the true
vaccum state $ = g have zero energy. As a result, the
false vacuum state E'= 0 haes a positive energy 1/2 BUh =
= v(0). The condition (k.61} has been examined, in details,
in the present case 91, with the conclusion that the phase
transition, due to tunnelling, happens only at temperatures
T << “su(s) where, for the minimal 8U(5), ) u lOsGeV
is the SU(S

ASU(S

]
) A parasmeter. However, already before ASU(E)’

the coupling constant becomes lerpge, perturbation theory
breaks dcwn and the above analysis no longer applies. In
fact 92, one can argue that, due to non-perturbvative ef-
fects, like condensations of the type <FuuFuv> or <@@>
the phase transition will tske place before A. Also, from
another direction 93, taking into ncceunt the temperature
dependenne of the courling constants of the SUIS) poten—
tial, one finds that the phase transition will take place

before A, when 2
asv__..(s,T)
T) =_L. < 0.

a¢e

2(

-55-
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For “he GUSY sU(%) theory ., the superpotentisl js given
v (; 17) and there exists the degenerate vacuum (3.197,
Tn suversravity, these degene~ote states get split, but the
splitting is very smell compared to Hh. Let us now add
the termerature effects 9h. Conaentrating only on the ad-

Joint, Hiegs fileld I, the gquadratic temperature-dependent

term In the potent! ]
T 1 2 2y ol m. ge L6
v =£(2])\ + 25 )T Tr f (4.63)

mhese Tinite tenperctire effects produce an additicnal
splitting in the various degenerate stelac. Fowswver, fh,63)
iz mirlrized by <E> = 0, so the SU(S) phase is preferred

st hiir? temperntures T >> M. AL T M, we cannot make &
definite statement, but al low terzerastures T << M, we

can use the massless guantun pas arproximation, in which
the effective potentiazl {eaual to the free energy) is given

b

>

L

Vo= - éb-’Nb + %*HrfTh + F-terms + D-terms (L.6W)

Sinee the SU(5) phase hzs the most unbroken penerators,
because of the first term inm (U.64), the 0] nhnse has
the lowest enerpy and 5o is aeain oreferred for T << M.
However, due to streny  coupling effects 9h, one would ex—
pect a succrsciorn of vhase transitions su(s}) » SUEE)‘x
Ul1Y + sul3) x su{2) x u(1}. A closer inspection )), how-
ever, shows thal thic trensition cennct oceur: Corditiou
(4.61) is far from satisficd nrd, ro, a repid phase transi-
tion with many bubbles forming and percolating locks inpoc-
sible in the present model. CSupergravity terms are of
order (Hm3/2)2 and cannot reverse the situation. The only

wey out i¢ to suppress the harrier between the phases and
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=6
this can only be achieved " by introducing very small

: -12
coupling parameters V10 , & severe fine-turing.

Finally, another important fector in discussing phase
transitions in cosmology is the curvature of spacetime.

97,58

One considers the action

g = J PR vy []5 g 3,0 3V - V($) ~ —2— R]

10mia
(4.65)
end locks for minime! action stationary points of its
analytic continuatior to Fuclidean space. Under the reason-
able assumption that the minimsl sclutions will hawe 0(L)

symmetry (at zerc temperaturc), the Euclidean equations of

motleon are

n el oL &V
b3l e g (4.66)

and

pto= 1+ -E-;E pg(;— a7 - (L.67)
where the length element is (ds)2 = (dg)z + o(g)z(dﬂ)z, and
prime denctes d/d;. Then, one can construct 8T an explicit
salution, in the thin-wall approzimation {small energy dif-
ference between the vactum), and zhow that, in the case in
which a state with positive cosmological censtant decays
into Minkewski space-time, gravity makes vacuum decay more
Jikely {the bubble ascticn decreases and the radius of the
bubble at its moment of materialization beccres smaller),
compared to the flat spece-time regvlt. UNete, however,
that in decays from a felse vacuum with V(false vacuum) g g,
things are Just the other way around and gravity can stabil-
ize a metastable scalar fleld configurstion 5, 97, %9

(some other recent work on phase transitions in de Sitter

or anti-de Sitter space, can T found in Ref. 100).
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Tor sufficlently large curveture, it has been pointed

out 10l that the radius of the bubble solution would exceed

the de Sitter radius H_l. In this case, the only Euclldean
sclution of the instanton equatiors (mpait frem ¢ = 0) is
the homogeneous sclutiors ¢ = ¢1, where ¢1 is the lorel
maximum of the potential. This is interpreted as homcgene-
ous tunnelling of & herizor volume of space from ¢ = 0
to ¢u= ¢1, with tunnelling probability Pe= e‘B, where

M
B = i PO - i ]. $ is unstable and, so, after

8 (v(e=0) " Vle=e )" N1

tunnelling,the fleld ¢ will clessically move towards the

glotal minimum.
V. STANDAFR COEMOLOGY

The expansion of the universe can be described by &
simple Newtonian argurent. Consider a mass m ai radius
r of a homogeneous and isotropic sphere. Now expand all
length scales by a factor R(t). The initial radius vector

ro will trungform to r, where

r = R{t)r {5.1)

y=r1= %-r = Hr (5.2)

whefe Bz R/R is called the Hubble parameter and expresses
the expansion rate of the sphere (dot, as ususl, means
dirfereniiziior. with respect to time). If the spherical
Pall reprcrents the universe, then the present value of the
expansion rate H is ¢alled Hubble's constant. We can

G
write down an energy conservatlon equation for the motion
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of m (Ekin + Epot = const.). This yields, if p 1s the

sverage density of the ball of matter,

- P Rz = conat.

ﬁwm;
tH
1
o=

Lrg
3 (5.3)
This is Just Friedman's equation for the expansion of &
homegeneous and 1sotrovically expanding universe, f:1led
with pressure free material, which of course can be chtainead
rigorously from Einstein's equatinons, as we will see ncw.

At the hesrt of the standard cosmology of our expanding

universe 12, 102

y there is the cosmolegical principle: The
Universe is, and always wes, homogeneous and isotropic. On
sufficier’ly smell scaler, of course, the universe deviates
from isotrory and homogeneity. T4 is assumed that these
smaller scale, more local departures may be treated as per-
turbations on the homogeneous isotropic cosmological model,

in the early unlverse.

The cesmological principle implies the Robertson-—
Welker (BW) metric

2 2 2
as® = at” - B (8] 54 rPlae” + sin®e as?®)]  (5.1)
1-kr

where r,6,¢ are ccmoving coordinates and k = 1,-1,0
corresponds to a closed, open or flat universe. The energy
momentum temsor fur a perfect fluid applies here
T M diegle,n,0,p) (5.5)
ne
vhere p 1s the energy detsity and p is the pressure.
Then, {5.4) and (5.5), plagued into Einstein's equaticne

M
uv

™) (5.6)

R | -
\ G (T guv Y

1
] 2
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give Tor the tirce-time component
il (5.7
3R = «brn{p + 3p)R .
and for the space-space component
a4 2 4 o = Leip - p)RY (5.8}

Sy eliminating & from Bas.(5.7) and (5.8), we get the

first order difrfcrential Friedman's equaticn

42
1 [ S e g (5.9}
” q2 3

x s Iy l
The expansicn rate H = R/R  sets the characteristic time

-1 -1
= 1 a " Mpe
for the growth of R(t}. Presently H01~ 100 ng k?oga D
= ho(loloyrlil, where observetlierii’l & by &1 .
In genersal, the ground state will contribute a non-
zero vacuum energy density
vae _ O |aa o (5.10)
TuU = <0 Tuv s} GO guv
And then Fq.(5.9) is written as
R R 3
Az B p 1s the ro—called cormological constant.
where S e, . : _120! .

Today, this is extremely small: A < 107~ GeV™ ~ 10 4p
and there still remains a big mystery why.

In addition to Bg.05.9) we have the continuity equation

{conservation of energyr)

alp RS) = -pd o {5.12)}

a
=
.

b= -3(p + 1) - {5.13)

|

—6H0=
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Since we have three functions of time: Rit), p(t} and
p{t), to close the se®, wo need 8 third equation. Tuis is

provided by the equation of state:

p=olt) {5.14)

Two simple equations of state are of mest interest:

{1) Ideal wvxs of non relasivistic particles (i.e. KT << mCE)
or "dust™, wi4l p = 0¥ [ = nm and p << ch, e.g. for
galaxies Y v 250 kmfsec << ¢, p o oUE << p¢”, Then, p= 0
is an excellent approx’mation and Eq.(5.13) gives

o R (5.15)

NR
(i1) Tdesl gas of extremely relativistic particles (i.e. of
missless particles me® << KT), so

2
p = %3 p =i B(myr (5.16)

where H{T) = Nb(T) + % Nf(T) iz the effective number of
tazerie aud fermionic degrees of freedom at temperature T.

Eqs.(5.13) and (5.16} then imply

In this case, the entrooy density is given by

o]

2n " 3 e -
s = Egh*N(T)T 5.18)
whereas the photon density is
2
= 20 _ w7 b
yURET T s T (5.19)

Note that, from Fqs.(5.15) and (5.17), we have

P
JRagao (5.20)
Pr
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for the early universe. So, in the esrly universe, we are
in the radiation dominated era ard only later on

13 A

{at T £ 1 eV, © 2 10 “ser;, the universe enterc the matter

dominated era.

Another approximetion, usually gssumed, in the standard

cosmology, is adiststlc expansion

a 3 - 2
Fry {(sR”) = 0O {5.21}
Provida-d T{T) is constant, thiz implies

RT = const. {5.22}

As we will see below, the assumption of sdialatic expansion
is st the heart of the various cosmologlcal protlers of the
ctanderd cosmology and it is this assumption, which 1is
abandoned Tor a brief period in the esrry bListeay of “be

universe.

For the radiation dominated era, Fq.(5.9) yields
1/2

R(t) = ¢ (5.23)
Equivalently, if we write Fq.(5.9) as

2

T ¥ 8nG

4 R S 1. .24

HIRR ok (s.2)
then, for the flat universe (k = 0), we can solve it

*)

explicitiy using the initial condition T{Q) = =3

(#) T(0) = = applies to an elementary particle picture
for the early universe. On the contrary, in a ccmposite
particle picturc, as it is suggested in some superunified

theories, there exists e limlting temperaturc, of the order

103a

of the Planclk temperature T The same is true in

P Te rea3ly 'I‘p an ultimate
temperatire of the universe or a eritical temperature of

superstring theories 1

some kird ¢f a phase transition {1ike the conflnement -

deconfinement phase trans!tion in QCR) 7
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I S 1
Tl = Lx /16 N{T) © (5.25)
Numerically
2 - -6 -1/2 -
T(gev) ~ 2.2 x 107 W(T) *(sec) (5.26)

fror: which one can find the temperature T of the unlverse
st some time t or vice-versa. E.g. for T = 1 MeV, vith

+* -
only photong, ¢ -e  pairs and 3 left-hended neutrinos
presen’., we find +{1 MeV) A 1 sec.

Later, during the matter dominated era, we have

3
p o T
2/2
t for flat universe k=0
Rit) = t asymptoticelly for open
univerge k=-1
¢yeloid for closed universe ks+l -

(5.27)
Finally, the so-called de Sitter phase of the universe

is realized, for example, if in ®g.(5.11} k = A = 0 and
o = const. or alternatively if p =k =0 and A # 0, The
universe expands with a constant expansion rate H

R(t) = o' (5.28)

Tt is exactly sfter such an exponentially expanding {infla-
tionary) perZod that the adisbaticity eondition 1s violated,
since st the end of it a large amount of entropy is producegd,
as we will gee. After this brief background, let us now
discuss the varlous cosmological provlermc, most of them
inherent in the standard model.

1) Horizen problem

An important feature of standard cosrology is the

o . 10L
eristerce o* perticle horizon , or causally connected
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distance at time t. The distance that a light signal

s s : cs 1
coulc lawe prorageted, since the big bang, is finite ard

wiven by
t
dt’ t n .
= = == for R = t n <3
e.H(t) R(t)JOR(t') T )
{5.29)
To T ofwer'n cosrclopy
2t in radiation dominated eva
a,(t) =
3t in matter dominated era
{5.30)
The present visible universe, which is our prescn® herizon
distores v
t
[ 1 28
= R{ VT 107 em (5.31)
dplty) Pto)J Rz ™ Hy
o]

The ensence of the horizon problem lies in the fact
that . vhereas the "size” or the "scric factor” of the uni-
verse incroases as R o« tn, with n < 1, in Friedmor's coo-
meiciy, the horlizon distance dH{t}(Eq.(j_gg)), increases
linearly with time. Thus, when these two dictances, which
ecineide today, ere traced back in time, the horizon dis-

tance is alwsrs less than the "size" of the universe: For

: 13
ex1yle, at decopling tiwe tdec v 1077 see,

23 {
=2 0% %en 5.32)
dH(tdec) tdec ol cm

whereas the "size™ of the universe at that time is (from

the adiabaticity condition RT = const.!

LIS mit)
dec 28 0 28
x 107 em = x 10 om =
R(z,) e 15.33)
w3k of 25
- EOOOGk *x 10 Ten o= 10 Tep

6l
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which is two orders of magnitude bigger than (5.32). This
means thst the present universe would consist of

(102)3 = 10" causally disconnectad regions in volume. At
temperatures appropriste for grand unificstion, e.q.

T 1O16_17GeV, the ratic of the horizon distance to the
"size" oI the universe iy WO(JO-EB) and the problem becomes
even more draretic. We cannot understand ow the present

laree scale homogeneity/isotropy has been emerged.

2) Flatness vroblem
The quantity
Q= o/, (5.34)
measurer the ratio of the energy density of the universe to

the eriticel density o
P t
N (5.35)

the largest density the universe can posfess to expand for
all futurc time. In general, §i varies with time, but for
k=01t is 1 for any time. here is a connection of 0

and another parareter, the deceleration paramater

qlt) = - =5 (5.36)

=L E
q—en(1+3p) (5.37)
In the radiation dominated ors, T = % and g = Q, whereas

in the precent matter dominated epoch, p << p and

a, = n”/z. From HO =100 h0 km sec-] Mpc’l, the present

eritical density is pOcr= 2 x 10_29 hg gr cm-3, vhereas the
present matter density is writier as o, = 2 x 10_29 ﬂohg
gr cm—3.

Although 1y and QO are not kncym with great pre-

etgicn, we know that 0.05 < 9,2 and 0.1 < b,

<
0
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From Eq. (5.9), we can write

LORE el
Sk
J E(t) = R2 81TGD/3 (5-38)

For the epoch of nucleosynthesis, when tN = 10—25 and

T, = 10MeV, e(t,) = 10726 izd Aty =1 ¢ 0{1076). ¢
the SUT epoch, with T ~ 10°7 Tgev, eltyy) = 0{107°%)
and Aty ) =1 ¢ 0{10™°%). This means that, very ;arly
in the universe, the ratio of the curvature term k/R” +to
the density term B81Gp/3 was extremely small, i.e. the
expansion of the universe proceeded at the critical rate
Hir = BaGp/3, to & very high degree of precision. So, our
universe is today (and has been in the past) closely
described by the k = 0 flat model (& = 1 is a critical
stable point). The smallness of the ratio € requires an
"{nitial condition”" and constftutes the flatness

protlem 103, 106.

3} Smell-scale inhomogeneity (or origin of density
perturbations)

On small scales (< 100 Mpe), the Universe is very

.

ciumsy. Today, &p/p ~ 107 on the scale of a galaxy

(= lO12 Me}. However, to create galsxies, it is necessary
to assume density perturbations of amplitude 8g/p ~ 10-E10-5
or S0, ou the scale of & galaxy, in the early universe., On
the other hand, the uniformity of the microwave background
radiation on very small angular angles (<<lo) indicates that
the universe was smooth, even on galactic scales, in the
early stages. In the standard cosmology, the initial seed

for &p/p, was, in general, put in by hand,

_66-
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b} Baryon asymmetry

The baryon asysmetry problem is to understand why, in
the observarle universe, the denzity of beryons is many
orders greater than that of entibaryons and, also, why the
density of baryons is much less than “he density of photons
nB/nY ~ 10—9. Agaln, In the standard cosmology, this value
is put in by hand.

The sbove problems are problems assccisted with the
stendard cosmology. However, there exist some others, which
are created when we put the unified thecries in & cosmolo- -

gical context.

5) Magnetic monopnle prollem
wWhen there occurs a phase trancition, assoclated with

the breaking of a group G+ G' x U{1), topologically stable

magnetin moropoles are produced lOT. Thelr mass is
M
G
m v .
s {5.39)
and their number density is rouphly
1
novg {5.40}
£

wiere £ ls the correlation leng*h of the Higgs field.

This cannct be grester than the causal horizoen dH(t) = 2t

(in a radistion Gominated era). Se. at the GUT time, it is

1 1
n ; N —— (5-]41)
M a 3 8t 3
R G
Since annihi%ntion of such monopolés is rather negligible
io
sitce tG + y Bt present their matter denslty is estimated
15
o =mn ~10 1 .
W iy P. (5.42)

s -
where e, ~ 10 77 gr cm 3 {s the criticel density today.

Under such circumstaners the universe could not have sur-
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vived until now, This primordial monopole problem is very

acube, gince it is present in practically sll GUTS.

6) Domain wall problem

Domain walls, which are produced when discrete symme-
tries are broken, give rise to a somehow similar problem,
since thelr surface density is so large that the observable
part of the universe would be largely anisctropic 109. For
example, such domain wall problem arises in theories with
the simplest SU(5) potential, in theories with spontaneous
CP-violation, in axion models etc, and there must be a

mechanism to avoid the undesirable effects.
7) The gravitino problem

In the early universe, gravitinos with mass
m%/E ~ O(Mw) decay after the process of nucleosynthesis,
which invalidates the successful preduction of light
elements abundances 110. Such undesirable effects from
gravitino decays can be avoided only if their relative

111a
abundance was reduced to very small amcunts .

8) The Polonyi preoblem

The Polonyi problem 111e is due to the fact that the

Folonyi field is only coupled gravitationally to itself

or to matter, so it takes long to reach its minimum and
release the energy stored in it, As a result, the universe
undergoes a late period of reheating and any baryon-to-
photon ratioun is diluted by unacceptable amounts.

The interesting thing about the Inflationary universe
scenario, to be described in the next section, is that, in
principle, it can solve all the sbove problems. To be true
the solution to the baryon asymmetry problem was first
suggested many years ago 112 and it has found i1ts natural

—GR-
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realization inside GUT8113. The inflationary universe
Scenario simply mskes the baryogenesis mechanism more ef-
fective llh. Starting with a baryon symmetric universe,
there must be three ingredients, necesgary for baryosynthe-
sis, a11 of which are present in a GUT: (i) B-nenconserving
interactions {szee Eq.(2.30)); (ii) violation of both C

and CP, necessary to produce excess of matter over anti-
matter, and also present in GUTS; and {iii) departure from
thermal equilibrium, something which naturslly happens in
cur expanding universe, The standard scenario for baryo-
genesis 1s the out=of-equilibrium decays of superheavy
(mainly  Higgs) bosons (or even fermions), whose inter—

actions violate B conservation,

To terminate this section we have to add two more
cosmological problems which have not Yet found a satisfae-
tory answer, although some interesting speculstions have
been put forward for their solution. These are: (i) the
singularity problem: the scale factor R{t) ~vanishes at
t + 0 whereas the energy density becomes infinite 115
(interesting speculation: creation cof universe from
"nothing"lls). (ii) the vecuum energy (cosmological con-
stant) problem: Associated with every phase transition
(GUT, Weinberg-salam, qCD ete.), there is a reduction to
the vacuum energy or, equivalently, to the cosmological
constant A by many orders of magnitude ( 1026 GeVE,

=30 -Lko =2
V10 TTGeV, v 107 TGeVS etc. respectively) and, today, we
. =120 2 -
end up with A < 10 Mp ~ 10 SEGeVE. Such a series of

cancellations, up to zero, with an accuracy of 10-82Ge'\"2
¥
remaini a big puzzle (there are meny interesting specula-
: 17
tions » but none reslly solves the problem, Some kind

of symmetry must certainly be involved here 117&).
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vI. TINFLATTONARY UNIVEPER SCENARLO

The inflationary model a8 ig besed on the ides thet
there was an epcsh during which the vacuum energy dsnsity
o . susociated with the GUT thante tepreition, drminated
tgzctotal energy density o of the universe. Before and

after thir epoch, the radlation eneryy density
el

Prad = % N(TJTLL = F‘._h ir deminsart, snd the universe iz in
Tra

the Frledrnr phase. However, during this shert epoch of
the vaecuom energy dominance, we have p = Dra.d + pvac’

witl Pod % Piac = const., end p = pvac = const. Hence
- H=R/R= ;_Gp (6.1

and this yleldz the exponential expansion

R(5) ve (6.2)
During this peried, the universe i in the de Bltfer phe:sse

end, frow Fa.{5.13}, since p = 0, we have

P = - < 9] (6.3)

80, the pressure is negat tve and it is this which makes the

universe expand exponentially.

As we have seen in the study of the GUT phace transi-
tions, st wery high temperatures ¢ = 0 is the absolute
minimum of the potential,vwhereas as terperaiire decreases,
there appears a second local minimum ¢ = 0. Until T % Tc’
tte universe is trerped in the ¢ = 0 vacuuw s1d is 1in the
Friedman phase. For T < TC, +tee ¢ # o minimum is lower
than the ¢ = O one, the non-zero veculr energy p ap-

vac

pears and dominates over g ., This is the beginning of

rad
the inflationsry period.

T
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However, to assume thal inflation takes place ms the
universe supercools in the false vacuum 10 does nol work.
The Lubbles with the true vacuum inside do not cellide fast
encugh to coalesce and make an homegeneaus univerve 119.

Simply speaking, one canzoet inflate the false vacuum. The

phase transition we went ic not ol ile type with tunnelling
frem & falre to true vacunm and bubhle forrstion. Instead,
one has to allow firegt the phasc transition from the falsc

to the true vacuum and then inflate the true vacuur 20, 12%
This becemes pocsible if the potentiel has e i.a.rge flat
region near ¢ = 0. In this scena:iio, the phase tranzifion
1s of the so-called "slow-rollover" type. During the "slow-
rollever” trausition, a single bubble {or fluctuation regionm)
with the trve vacuum inside, undergeoes infleticn end grovs

to a reglon which includes our visible universe. This is
possible, gince ae the temperature dcereases, the barrier '
between false and truc vacuum becomes small enough and, then,
due to quantum and/or thermal flucine=!mig, it is enough for
one such bubble to be kicked out of tle terrier to the

"slow-rollcver" reglon and be infleted there.

We distinguish three stagez during the infletionary

Process:

1) The tunnelling

Due to thermal and/or guentum tunneiling, ¢ 1s taken
across the barrier (remewer that we need }ust one bubhle
with the true vaeuum inside to wxplseln our visible universe).
The dynemlcs of the above prosess determine wher ard how the
precess oecurs anl, alse, the value of 4 after the barrfer
!5 penetrated. For definiteness, sivppose that the barrier
iz overcome when the temperature is T, and the value of

0
¢ is ¢O <s g, From *Lis point, the "slow-rollover"

=T1-
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oo to the true vacuum ¢ = o startn. This brings us
to the second stage of the secencr’e, 1.e.

27 Infiatior or "slow-rellover" period

Tm-.ng this stage, the evelu“ion of ¢ ‘r adequately

deseribed by the semi-classical equation of motion. The

sxpansior rute P ir, Ir morownl, Cetermired by the energy
density of tie wniverse
2 Ap
e = (6.4)
with R
12
== + yig) + (6,
p=Sd Vi) +o . 5)
where P rad represents the energy density in rsciation,
produced by the time variation of ¢. For TO << TC, the
ariginal thovrr: corronent makes a negligible rodhribution
N 122
to _o. Then, Eg.(5.13) can be split into two equations :
the geml-classicsl enustion of motion
33 - L] V
¢+ 3T B = 38—?)— (6.6)
and the evolution of p
rad
S oeugp =T 8 {6.7)
rad rad

\ . . 1 u
(¢ 55 normelized ze thet Zte kinetlc torr 1s g-au¢3 8.
The: HH$ term acts 1llke 8 fricticesl s and arises,

because the expen for of the universe "red-shifts away" the
. .0

kiretic encopy of 4. The terre T ¢ ard I ¢ account

for particle creatior, due to the time-varietlcr of ¢ (they

are not importsl® dirlng the "slow-rollover” period).

We assume ¢ to te uretially homogeneous. We take the

size of the amovtl: small region (insids a bubble or Ivufu-

ation region} to be of the order of the "phrzicr horizon™
H—1 zrnd follow the evein.ion of ¢ +ithin it. For V
—7oo
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sufficiently flat btetwsen ¢ = ¢O and ¢ = o, ¢ evelives
very zicwly in thet ropfon and the motion of ¢ is friction-

domineted, so that Eo.{(6.6) becomes

3H£ = - 5; {6.8)

R . it
If one tries a solution 4 = e ', ¢ taker off exponentiaelly,
after on- e-fold. For V sufficiently flat, the "rollcover”

time tT regquired fro & to transverse the flat regic: oro
be long comevared to the expan-ion timescale H_l. For de-

. R
finitensss, say tr LU VIS S

During this pericd, p = ¥(4) = ¥{¢ = 0}, since both

2
% ¢ and prad are <<Vf¢). The expansion rate is then
Jusat

3

{ 8nG ]1/2 ) w,” .o

where V{0} 1is assumed to be of the order MGh. While H

is conntun s, P prove expoventiclly

R(t) R (6.10)

- 60
and for t = tr = 60 B 1, R expurds by a factor e
drving the “slow-rollover® period. As a resuli, the physi-
. ) 60 -1 28 -1
col zive of the smooth reglon Incrences to e H & A~ 10 H 7,
This 15 sufficient to solve the horizon and flotness prob-

lems: Our cbservable universe today (™ 1028cm), at the
grand unification temperature TG ~ 1016_1T GeV, had a
physical size well within the physical sive of & smooth
region, which solves the horizan problem. On the other

hand, tte quertity elt) of Eq.(5.38) beccrss exponential-
L -190
Cafter  © N

because of this exponentiel decreane of €, the inflatlonary

1y smaller &7 cr infletion

universe predicts that today & chould be

_'T 3=
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1t O(lo_‘big numberyy - gveq, the magmetlc wrropole problem

{s obviovily aveided, since Higps fields are correiated and,

therefore, approvim tely uniform, in a fluctustion region.

For similar reasons, the domain wall problem is avolded.

3) Reheating
After inflation, ¢ will start to grow fast as the
potential steepens to reach ¢ = c. Near ¢ = ¢, ¢ oscil-

1ates around the absclute minimum with frequency w:

2 2

w = ¥"a) = MG2 > = MGh/MP {(6.11)
As ¢ osclllates about $ = g, its motion 15 demped by,
both, the expesnsion of the universe and particle creation.
The T-dependent terms in Fgs.(6.6) ana (6.7) are now
important and account for particle ereation, due to the

time-varistion of ¢. T($] 1is determined by the particles

with which ¢ is coupled and by the strength of that
coupling. Wear p = o, I is the decay rete of the ¢

(Higgs) rarticle.

1z
To be more precise 3, one needs a potentisl with &
flat reglon, vhere 3 term is negligible and the motion of
av’
o

¢ Is a friction dominated, i.e. 3H$ = -3 This requires

an intervsl, vwhere
2
EIRACYRP
5 oH

ae°

ale) /v s Geneyt/? (6.12)

If ¢5 2 ¢O, ¢e denocte the starting and ending values of
¢ in this interval, we must have: ¢e - @S 2 o{10H), to

insure that quantum fluctuations will not drive ¢ across

~Th-
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the flat region toc quicldy 1235. This is because in

de Sitter space, the scale of quantum fluctuations is set
by H: A¢ = H/2n {H/2r is the Hewking tempersture). Then,
the time required for ¢ to transverse the flat region

should be 3 SOH-l{to solve the horizon 8hd flatness prob-

lems), that is we must have

b, 2

_ 3574

JH dt = - h 734 5 60 {6,13)
5

1

% 4 % .

FIGURE The potential for a successful infletion

It is during this de Sitter phase that quantum fluctuations
in ¢ produce density perturbations 8¢/p necessary to
explain the small-scale inhomogeneities. Quantum fluctua-
tions in ¢ create density fluctumtions &pfp, with dif-
ferent sizes (wavelengths) and amplitudes, Since this is

a quentum effect, we expect that their sizes are much smal-
ler than the horizon size {strictly speaking, the event
horizon th) H-l. As the universe expands, these also grow
{their wavelength gets red-shifted). Since the event hori-

son, within which we have causal microphysics (quentum

-75- -
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fluctuations in ¢ ) remains the same during infletion, the
Tluctustion size will reach H_l and cross it, To an ob-
server inside horizon, the fluctuation will seem to dis-
appear. At that time, microphysics freeczes out and, also,
the fluctuation &p/p freezes out, with an amplitude which
can be calculated. After inflation, during the subsequent
Frisdman-Robertson-Walker (FRW) phase, the horizon distance
grows faster than the fluctuation size and, eventually,
there will come a time, when the fluctuation reenters the
horizon. The observer will then rediscover the fluctuation,
but now with perhaps a galsctic size. This is how infla-
tion provides the seeds for the formation of the large-scale
structure in our universe. The theory for calculating the
amplitude é&p/p, when it freezes aut, is rather involved
(Refs. B0 and 12h). The final result is that the amplitude

of density perturbations, on a wavelength &, is

8o . 2y HA .
’ ’ E (e or 9 %'(_ti-) (6.14)

where h(%ﬁ applies if the secale in guestion L reenters
the horizén when the universe is radiation (matter) domi-
nated; H is the value of the Hubble parameter during in-
flation; &4 = H/2r 1is the fluctuations in ¢; and &(tf)
is the value of ¢, rvaluated at the time of freeze-out,
when the fluctuation relevant for the scale 2 leaves the
horizon. The important thing is that this is not cnly &n
almost scale-invariant Harrison-Zeldovich spectrum 125, but,
it also enables us to casleulate the spectrum of density
perturbations, from first principles, in terms of the
parsmpeters of an underlying field theory. To achieve an

acceptable amplitude for density perturbations, we must

have

SUPERUKNIFICATION, PHASE TRANSITTONS AND COSMOLOGY

b s

dp/p ~ 107" 10 (6.15)

Noete that this limit alse comes from the fact that, on anpu-
o
lar scales >> 17, the temperature fluctuations
Tal = o
AT/T = 5 %/e must be £ 107 21077 4o be consistent with
the ohserved isotropy of the background radiation 126.

Constraint {6.15) turng out to be the most stringent one on
+

inflationary models .

The reheating scenario depends on whether [ > 1 ar
'<H. If T > E, the coherent field energy density
1l 2
(p® 54 r Vie)) 1is efficiently converted into rediation

{good rehesting). The reheating temperature is

30 1/L It
. _qo / i L5 17k }1/2“"’
B w7 b S {T) " "
)] (A.16)

In this case, baryosynthesis acccurs via the standard out-of-
equilibrium decay mechanism 113, llh. If, on the other

hand, T < H, p¢ will not immediately convert inﬁo radiation,
but ¢, es it continues to oscillate, redshifts away with
the expansion. The universe then consists of a very cold

gas of & particles. Eventually, when ali ¢ particles
decay, the reheating temperature TﬁH is smaller than pre-

viously, by & factor (P/H)l/er

o [i_]lfh 12 ety (6.17)

T W
{ P G

T
N RS

Baryosynthesils should oeccur now directly via very out-of-

equilibrium decevs of cold ¢ particles 127. IT the mess

of the Higgs boson, responsible for generating the baryon
asymmetry, is MH‘ then the net baryon number produced ig
'
TRH

nE/nY = == AB (6.18)
H

-T7-
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where AB 1s the baryon number produced by the H, H*

decays.

Usually, there is snother constraint, which must be
also satisfied for a successful inflation, namely the ther-
mal constralint 128: the high temperature potential VT
must have a minimum at ¢ = O or, more precisely, at a
point where the zero temperature potential ig flat (first
and second derivatives of V vanish). This is not satis-
fied in minimel supergravity along with the other con-
straints 129, wut it is possible to find non-minimal exten-

130

sions, which satisfy all the constraints

The last, but by no means least, requirement for &
successful inflation must be the potential to come from
a successful particle physics model. In femct, this must be
s guide in the search of inflationary models. We will not
give full detsils of the varlous models considered in turn,
in the sesrch for successful inflation. Initisglly, the
Colemsn-Weinberg potential was considered as a good candi-
dste, but, above all, the magnitude of the density pertur-
bations produced was uncomfortably large e Supersym-
‘metric models, based on the inverse hierarchy, also were
unsuccessful However, supersymmetric models, in
genersl, appeared to offer the best hopes to realize infla-
tien 132. Hote alsc that, in order to avoid radiative cor-
rections te spoll the flatness of the potential, it is
almost essential that the field ¢ responsible for infla-

133

tion, be a singlet fleld Since such gauge singlet

fields are present in N =1 supergravity theories, super-

gravity models have been consldered extensively 13&. In

perticular, inflation has been implemented in the meximally

135

symmetric BSU(N,1) supergravity models No model, how-—

~T8-
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ever, seems to heve managed to implement inflation in an

unambiguous and netural way.

Moreover, the problem of initisl conditlons 136 seems

still controversial. In particular, whether or not ¢ = 0
is chosen as the inltial condition has been questicned 137.
However, in "primordial" infletion models, where <¢> «m%,

proper initial conditions are obtained 138.

One scenario, which deserves particular attention,ls
the chaotic inflation 139, which seem to be realized in a
wide elass of models. The scenario is based on chaotie
initiel distribution of the secalar field ¢. Domains of
the universe with [¢] 2 O{1) MP can go through an in-
flationary period, as ¢ slowly rolls to the minimum of
its potential V{¢). In this type of inflation, the expan-
sion of the universe at the Inflationary stege is quasi-
exponential, since H slowly changes during inflation. 1Im
the models of chaotic inflation, the assumption is made that
in the Lagrangian the kinetic energy terms do not dominate
over the potential energy, which means that ¢ must be
uniform on scales larger then the horiécn, which is perhaps
unreascnable. The chaotic inflationary scenario has been
alro considered under the combined action of a scalar field

and gravitational vacuum pclarization lhO.

Before concluding this section, we recall that the
inflationary universe predicts that today 90 =1, %t a
high accursecy. However, luminous matter in galexies
accounts for only nO,lum ~ 0.01, whereas baryons seem to
contribute QO' baryon % 0.1. There can be non-baryonic
dark matter {e.g. white dwarfs, Jupiters, ete.). But cer-
tainly, to cover the gap between 0.1 and 1, &s required

by inflation, we need particles with only gravitational

-T9-
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1hla
effects at present, This is the dark matter problem .

There are many possibilities, like massive neutrinos, pho-

Lib 141e
tinos, axions 141 or quark nuggets N

VII., KALUZA-KLETIM THEQRIES AND COSMOLOGY

In recent years, there has been = considerable intﬁrest
in the revival of the old Kaluza-Klein {K=K) proposal 1 2,
namely that all fundamentel interactions, today described
by theories with loecal invariance under some given symmet-—
ries, could be {geometrically) unified in a higher dimen-
zional theory of gravity, based on local coordinate and
Lorentz invariance, UCiven that modern physics is based on
two different concepts: local coordinate invariance, which
leads to general relativity, and local gauge invariance,
which leads to gauge theories, what the K-K appreoach
actually does is a unification of these two basic principles
into one: local coordinate invariance in more than four
dimensions. Geuge inveriance is then not an Iindependent
principle, but it can be deduced from the general covariance
in higher dimensions. Through some compactification mecha~
nism, the extra dimensions are curled up into a compact iso-
metric space of presently unobservable dimensions, whereas,
in the four dimensional space-time, there are left the usual
gravitational and gauge interactions, as an effective low

1k3
energy approximation of the fundamental theory .

The idea is certainly one of the most revolutionaries
introduced into physics and there exists a widespresd feel-
ing among physicists that it must be relevant, at some

stage, in Nature.

5till in the higher dimensional perspective, but in a

different context, the recent emergence of superstring

32,33

theories has created a lot of excitement, The cancel-

~B0-

-

SUPERUNIFICATTION, PHASE TRANSITTONS AND COSMOLOGY

lation 3 of all ancmelies (including gravitational onest,
as well as of infinities {up to one-lcop level, this has
been verified 32), has led to hopes that one can have a
consistent quantum theory of gravity, along with o pheno-
menologically acceptable particle physics. Various investi-
gations 34,79 suppert these expectations (in particular, one
can get the chiral guantum numbers of quarks and leptons,
thus solving the chirality problem of conventional K-K
theories). These theories are naturally formulated in ten
dimensions and, upon compactification, one can Zet a mani-
fold M x N6, where M 15 the flat Minkowski space-time

6
and N~ a compact six-dimensional SpaCe.

In this section, however, we will only discuss cosmo-
logy of & ronventional K-K theory, in the case where the

effective potential Veff depends only on the scale b of

efp = Veff(b). This

includes a wide class of models, for example compactification

the compactified internal space, i,e. ¥

by (one—loop) quentum fluctvations due to matter fields
{(Refs. 1L, 1L5) {in analogy with the Casimir effect in QED)
or by a vacuum expectation (vev) of g background matter

3 4
field present in the theory 146, 1*7. In a more genersl
case, one would have a dependence of Veff on another
s
scalar field and/or higher derivative terms, like .

P
RMFRMN, RMNPQRMN Q, as in superstring theories. These more
compliceted cases remnin to he flly investigated.

In X-K theories, the fundamentsl constants depend on the

internal redivs b. Sc, Newton's gravitational constant G

N
and gauge coupling constant g are given by 148
1/2

¢ o (7.1)

w*F o, €M% -t

=81
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where G is the gravitational constant ir the higher
W= (L + D)-dimensicnal Legrangian. Any change in voclume of

the internal space will senerate a chanpe of the physical

constants, e.g. GN and a n There are a variety of em-
pirical results 149, which suggest that G, and «, have
remained unchanged over cosmological time

. - -1

GN/GN < 10 1 ¥r

& Jo = 1973t yr_l (7.2}

“on’ Yem
Something in the theory must keep the extre cimencions sia-
tic. In the class of models we will discuss, this is echie-
ved by an approvrizte fine-turning of b, which will also
zive zero four-dimensional cosmological constant K . 1f,
however, before the time b had reached its equilibrium
value bD, it was ever away from that, there could exist an

~effective four-dimensional cosmological constant, which

would drive an exponential (infletionary} period for the
four-dimensional world 150. Tn fact, this could be =2
rather general phencmenon. After the inflstionary period,
b will finally do a rapid oscillatory epproach towards its

equilibrium value bO 151’152.

This iz a damped oscille-
tion in which the damping rate of the gscillation amplitude
is determined by the expansion of af{t} (a(t) is now the
scale factor of the four-dimensional world) and the cscil-
lation frequency 1s of order b;l {presumably " Planck
energy). This rapid oscillation can then produce energetic
particles, which in a realistic model will include X,Y
boscna, W, Z, photons, gluons, guarks, leptons ard/or their
SUSY partners. This is the ernnlogue of the last stage

{reheating) in the inflationary universe scenario.

Ao~
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In applying X-K theories to the early universe, one
must provide zolutions of the type F‘h x ND. where Fh is
now the four-dimensional Friedman universe, and, moreover,

give a positive answer tc the stability of suech solutions.
In discussing cosmelogy in higher dimensions, we choose
a generallized FRW ground state metric
2, = disg {-1 aE(t)é‘ (x), B2(t)E_ (y}) (7.3}
MR * i3 * mr1 .

where x(y) are 3(D) spatisl coordinates (we masume a
D dimensicnal compact Einstein space). Then, the components

ﬁﬁw of the time dependent Riccl tensor for 4 + D dimen-

sions are
— N -1 =1 e
ROO = 3a ae+Db b
R, = —(2k + a8 + 28% + par ™ & 1) 3
i) i]
= _ ~ W .2 =1l s e, m
mn——(2k+.)b+(D-l)b + 3ba " b oa) &

(7.4)

If we define the energy momentum tensor as

— P e
Ty = P38, . ' TET, —-9+3p3+DpD
P.g
P (7.5)
the (4 + D}-dimensional Einstein equations
Ry -2 (R+ K) g, = ~6n5 T (7.6)
My T 2 Sy ~ T :
give the dynamical equations
B E_ X = [ -1
35+D b_D+2+B“G[TQ p] {(7.7)
. ~Z . 3
& & aljb, 2k _ A =T_
s.+2[] +D[a][b] 2 ;B B"G[D+2+p3](7.8)

=83~
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I . e ~ _
. ) al (o 2k _ A el
%J—+I‘D—1j [E} +3[§][E}+?_D+2+8WG [D+2+pDJ
{7.9)

From thesze, one can get the First-order Friedman equation

N oy D o2 . [
5k . PKD al” b ol 2 = F G
0—2 + ‘;-é-- + 6{;] + D(D - 1)[})] + (’D{a [b A+ 16w P
# (7.10)

One mast supplement these equations with the conservation

equation for e, FE’ DD
d = - g _pa L g (7.11)
= (R3RDD) = -pfy a7 % Bty 3 %
where i, {2.) are the three [D}-dimensional volumes:
I

q. = Ja3 x Vi), o = Jaﬂnggfaw (7.12)

3 =3 B
5353
For the t%reo (D)-dimensional spherec, they are: 93 = 2%°R7,
N+
Q = gjrg bD
D FfD:l)
Wow, one has to determine E&N’ i.e. p, Pes pD. Given

a specific model, we have to calculate the free energy F,

from which we deduce p, pB, nD. From the free energy, we
define the energy U and the entropy & by
3F
5=-=-=
AT a,b
aF (7.13)
Jg=F +Ts =F -T 5%
Then
U 13 aul o= _L11 bi!l
p= > Pyt T3 Bn * nT TDag b
REQD 3 3 QBQD Jn b2 35 e
{(7.14)

8L~
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In general, F, p, Pss By will depend on &, b, 8, 5, as
well as on temperature T. As we said at the beginning, we
are going to consider here dependence of the effective
potential on bt only (and, of course, T), This is egui-
valent to say that we take the 3-dimensional space to be

flat compared to the D-dimensional one {and also ignore

&, b dependence). We can then write
F =0, fb, T) {1.15)
Initielly, the (4 + D) dimensional universe was very

11
hot: T » a° p+ o that case, the free energy is the (L + D)

dimensional radiation

LD :
Fe-qa0 T {1.16)
Then, the entropy is
340
SRR (7.17)

As a result, if the entropy S in a (3 + D}-dimensional
comoving volume iz constant, we have that, in this initial

radiation dominated stage,

7w (ap0)7H/3D (7.18)
Then, solutions of Eqs., (7.8)-{7.10) are of the form
a, b = tz/h+D (T.19}

Although the entropy per (3+D)-dim comoving volume -
remains constant, the entropy in the 3-dim comoving volume
cen increase. This is achieved at the time of collapse of
the extra dimensicns (through the compactification mecha-
nism), when the 3 dimensions expand while the D dimensions
contract, and the total mean volume decreases. Then, the
temperature increases and a large entropy (mloga) can be

obtained and squeezed into the horizon 3-volume (equivalent-
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ly, a can, at the same time, increase largely, by & factor
28 . .

at least n107). This spproach to Inflation, which does

not require a cosmological constant, haz been studied by

153, 154

variocus groups It seems to need a large number
of extra dimensions (D > L0) to work. Certainly, one can
inerease the entropy in the horizon 3-volume this wey, but
it is not known if there exist a consistent physical model

for the above approach to be Implemen*ed.

Next, we come to s later stage characterized by a

temperature T in the range % < T« %. At that stage, we
usually have a free energy with contributions 155 coming

from the 4-dimensional radiation, through a finite tempe-
rature effect from various kinds of particles contained in
the theory, as well as from effective background matter
fields, as for example gquantum fluctuations of matter
fields 14, 15 and/or the vev of matter fields present in

146, 1kT

the theory Then, we can write

- AL 4
F = 93[ o - BT ] (7T.20)

where the first herm represents the background matter flelds
contribution fe.g. n = 4 for guantum fluctuations lhh, n=7
for 1l-dim SUGRA 146 or n =2 for 6=dim Einstein-Maxwell
theory lhT), and the second one represents the L-dim thermal

effects, Then we have

L
g = hQSBT
p = L [ Ay 3ETL] ap_top
n rad
Ly
1 [ A h] -
v, =7 |- —+ BT = p + p
3 QD 5 . 3 rad
p=l[ﬂl\__.5p
D QD b \p Dm (7.21)
_86-
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These are now the expressions, which have to be suostituted
in Egs.(7.8)-(7.10).

In order to see if we cen recover the Friedman universe

\ . i
i.e. a solution F x ND, we set b = const. Then, Egs.(7.8)

to (7.10) give
w () - T
i.’. 2[&] + ?..IE ETI'G ™ 4 -
- sl = —m— 4 GG |- =
o e 2 ¥ Prag " paz T VT D+2 ' Pam) (7.22)
~
T
- _ 2k, A = m
0= - b2 + Dip + 8any [— 5:E'+ Pl {T.23)
6 . .[(3)° (1) PRD | - -
;5 + 6[; - lﬁﬁﬂy Drad = - ;E-'* A+ 1€n G pm {7.24)
where we have defined Newton's constant by GN = %E' and the

h£§im. radiation energy and pressure by
ére.d =8

Now, we immedistely recognize from Eq.{7.2L){compare
with Eq.(5.11))that the effective four-dim. cosmological

constant is

(L}
A

DPrad® Fraa = nDprad-'

+ sw:pm = BwsN veff(b) {7.25)

-~
kD
2‘i-

=4
rof|

vhere Veff(b) is the totel effective potential for the
system of matter and gravitation, defined by (after assu-

ming Poincaré invariance}

_ 4
Teotal ~ “Jd * Vere

1 (P, o - —
Verr T Téns Jd v 7 (y) (Rly) + A) + Jdny eply) o =
1 2kD -] )
= -~ -+ Al + ¥
16m3, b2

=87=
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L)
A . . s
vhere V= nDom = - i5 the usual b4-dim energy density.
v is the minimum energy of any state in which the expec-

eff
tation value of the fields has the value indicated by the

arpument of the potential. Hence, a stable solution is one

associated with a minimum of V@ff.

Tn fact, it is not difficult to =ee that the Friedman
solution with (k)= 0 is the stable solution. Egs.(7.22) to
(7.24) give the Friedman solutien in a radistion dominated
universe if

L)
A= EHSN Veff =
av_ oo}

b ———— =0 (7.27)

o

whie* indicate that the Friedman universe corresponds to a
statjonary point of Veff’ which vanishes at that peint. Tt
hasz to he emphasized here that Fas.(7.27) imply a fine-
tunin%hof the (L + D}-dim. rosmological constant K, 50

that A = 0:

_ () -
A = ———EKE - 1fy G,\I v (7.28)
b2
0
where b i5 the constant selution obtained from (7.23)
- — -
h A 8 P .
— T - T + PTG .2
bg o e TV’T H po {7.29)
To further check the stability of tnis solution, 1.e. that
the stationary point (7.27) of ¥ .. corresponds actually
- eff
151,156

to a minimm, we consider the small perturbations

alt) = an(t) + daft)

nlt) = b, + 8blt) (7.30)

88—
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1/2 . . .
where aG(t) = is the Friedman sclution in the redia-

tion deminated era {with k = D). Then, Eq.(7.9) gives

- &O 1Y
b+ 3 — &b + cdb = 0 (1.31)
g
where
_ Len%y o2 4 Vopel {7.32)
¢ 7 o) 2
dp b=t
0
The general solution of Eq.{7.31) is
_ -1/ (1) (2)
b =t ¢, i (Ve )+ ¢, Hy o ety (7.33)

(1) 2
where Hl/h and Hi/ﬁ are the Hankel functions. So, with

c > G, 1.e. with

>0 (7.3k4)

w= vz «pt (7.35)

and asymptotic behaviour

-3/L
&b
e t {7.36)
{at the s:me time, Eq.(7.10) gives that asymptoticelly
Gatkwt*B/ , 50 S& is also damping Yﬁ%h time). Thus, we

see that the Friedman solution with A = Bn@N v er = 0
e

in fact a stable solution against small perturbetions (the

is

effective potentinl Veff has a local minimum, with Veff= a,
at that point}.

=59-
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However, in general, there may be more than one salu-
tions to ®q.{T7.29), with constant radiys_ b. As we have
Jlust seen, the solution b = bo with =0 is the stable

one., Let us denote by b = b, the {in general) unstable

1 (L)
solution with A (bl) >0, for b, < b . Then, with the A

term dominating in Eq.(?.2h),hwe will have

a= et §(b, ) =—= (7.37)

snd this corresponds to a de Sitter phase for the 3-~dim
universe. If 1t can last long enough, one can have the
usual cosmological inflationary secenaric, In fact, in the
plece of the (Higgs) scalar fielé in the usual inflaticn,

we now consider the dynamical scalar Tield

$=4nb {7.38)

Then, Eq.(7.9) yields
$+3é—$+nr§2=—9»%ﬂ (7.39)

8,

where

%
3 8nG s AV s !
) 2 e
c T J % 55 12 Yerr "D Tds {7.40)
%

Noté the existence of two potentiels: Veff’ which deter-
mines the Hubble parameter (Eq.7.37) and ¥(4), which
determines the evolution of 4. It is easy to see that the

solution ¢ = ¢0 is stable:

=Ty
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lGWGN
" = "
TH80) = pigre) Vereltg) > O (7.42)
So, ¢ = ¢, 1s & local minimum of v{¢), as b = b, is for
Veff' From Eqs.(7.28) and (7.29}, the stable solution
corresponds to (R = Wy )
; o D
p DO-2 £13 A(p+D) {7.42)
] T 2KDv

D

T= 2§b§D+n—2 (7.43)
boe(n+D)

which is the fine-tuning needed in order tec get the Fried-

: D
man wniverse Fox N7,

The potential V{4¢) is

_ow 26 A 16G(n+2D)s  _-(n+D}é
vig) = -k e~ 50 ¢ GEET%IETT%:E) e - (¢ + ¢,
: (7.44)

This potentinl has a local minimum ¢ = ¢0, wheress the
point ¢ = ¢l = Lnbl is unsteble and the potential is un-
bounded from below at, & + =. Tt is obvious that successg-
ful infletien is not possible, since this potentlal is not
flat encugh to produce the required emount of inflation.
Sinee the point ¢1 is unstable, thermal and/or quantum
corrections will soon terminate the inflationary phase.
Density perturbations and reheating due to the rapid
oscillation of ¢ around ¢O, follow 1508, 157 the same
lines, as 4discussed in the usual infletion, although detail-
ed calculations remain te be decne. Moreover, in the present
model ¢O is, in fact, a metastable state. Although,

using the results of section 4.3, one can arrange to have =

metastability lifetime, which is longer than the age of the

-9l
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: 158b
universe fas in some supergravity models ? )

, it 1is

not always possible to end up with the ¢ = ¢O state. In
other words, the ¢ = ¢O soluticn, vith Friedman universe
156

Fh ® ND, is not always an atiractor

From Eq.(T.44)}, it is obvious that the potential is
untounded from below, beceuse of the cosmelogical constant
. What we ajparently need is a potential, where the Fried-
man universe solution Fh x ND is the absolule minimum of
_the potential. Such models do exist. The first example
is the pure gravity model in L + D dimensions, with higher
derivative terms in the sction 150&. In fact, this was the
firsE model, vhere Inflation alonp these lines has been
proposed. Ancther example is provided bty the 6-dim N = 2

1
supergravity theory 159, which is also a strong attractor

161
There asre two other, potentially embarrassing N

cosmological problems, associated with K-K theories. One
is associated with the so-called pyrgons l62: massive (with
m = MP’ excitations produced ugon compactification, of the
extra dimensions. 1If they are stahle, they contribute

N1026 pc! Cne then has to rid the universe of these massive
statle particles through decay, or dilute thelr abundance
through entropy creation. The other problem ic asscclated
with K=K megnetic monopoles 163: massive {with m = MP)
steble topologicel defects in the geometry of compactifica-
tion. The study 16k cf ce=mological production of K-K
monopoles has revealed an intrinsic problem in predicting
the number of primordial monopeles, detection of which
would be a potential scurce of information on the dynamics

of dimensional reduction.
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VIII. EPILOGUE

As we have already stressed, in the search of solution
of the various cosmological problems {most notebly through
inflation), our gulde must be a successful particle physics
model. If superstring theories, under active scrutiny now,
turn out to Justify the present excitement as & finite
anomaly-free quantum theory of all interactions, the prob-
lems, we have discussed here, have to be fully examined -
within these thecories. In any case, the cosmology of =
"hidden" world seems to play an interesting role in the
evoluticn of the universe 165. The so successful marriage
between particle physics and cosmelogy continues, snd meny
mere frultful results are expected in the future.
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