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ABSTRACT: In this a r t ic le , we survey the main features

behind the idea of grand unification, t>oth vithout and

with (local) supersymmetry. We then study the high

temperature phase transitions in the theories so

realized, and their relevance to the cosr:clopr of the

early universe. In particular, we review the basic

ingredients of (super) grar.d unified models and we

give the basic tools needed for the study of their

phase transitions. Afte- a short introduction to

cosmology, we focus on the interplay between unified

particle physics models and cesmolopy, with particular

emphasis or> the inflationary universe scenario. In

the same perspective, new research directions, in the

context of higher dimensional theories, are also

discussed.

I .

I t is now accepted that the experimental evidence gives
a strong support to the so-i-s?.]rd standard model: strong
interactions are described by quantum chromodynamics (QCD),
based on the group RU(3) , and electroweak interactions by
the Plsishr**••"'einberg-Salam (G-W-S) model, based on the

Rroup SU(2) * U(l)v .1 This SU(3)_ * SU(2)T * U(])
L i L LI 1

standard gauge model has passed the most crucial tests so

far, the culmination being the discovery of the intermediate

* To be submitted for publication.
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\-r, Z vector bosons. Desnite t h i s , however, and although

the standard rri.dfl i s a t h e o r e t i c a l l y consis tent theory,

there i s a number of i s s u e s , which p o i r t t o tl:<; d i rec t ion

tha t the standard model i s physica l ly l imited and must be

only an ef fec t ive t£i" ' .c , obtained from an underlying more

fundamental one. On the phenomenalogical s i d e , the un-

explained mysteries include the quantum numbers, the mass

spectrum and the family r ep l i ca t ion of the fermions (quarks

and leptons) and the a r b i t r a r y character of the sca la r

(Higpp) sec tor of the theory. The l a t t e r leaves unanswered

the tremendous d i f e r e n c e of the mass scales present in

mlcrophysics, namely the Ferr.I scale G = 250 GeV and
-1/2 1°

the Planck scale G ^ r'p ••' 10 ' GeV.
In the past yea r s , there have been many attempts t o

remedv the above uroblems of the standard model. One way
I,

pursued was the road t o compositeness : use preons as

more fundamental cons t i tuen ts and QCD-like dynamics t o

describe t h e i r i n t e r a c t i o n s . The other way was grand

uni f ica t ion : pos tu la te a l a rge r set of pauRe i n t e r a c t i o n s ,

based on a group G D EU(3)n * SU(2)T * U ( l ) v , with a
6

unique gaufe coupling constant g . Flupersymmetry (SUSY) ,

which transforms fermions into toKonr; and vice-versa, has

been used In both approaches. The compositeness francvork,
-1/2

with a compositeness scale A not far away from G ,

where supernymmetry Is mainly used to supply supe^-ymmetrlc

partners of Goldstone bosons, to be identified with the

known fermions, has not yet provided a realist ic unified

pictnyr and will not be discussed here.

What we will consider, in this art icle, is the grand

unification approach towards the ultimate dream of a

synthesis of all fundamental interactions. Fupersymnetry

;<;Hw*iis##- a
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serves a double purpose in t h i s approach. F i r s t , through

the no renormalizat ion theorems , i t can help in the

solu t ion of the much discussed gauge hierarchy problem, by

stabilizing tree level relations and keeping light sealers

really light, by preventing them from acquiring radiatlvely

large masses. As a matter of fact, that was exactly the

motivation of Introducing sunersynmetry Into grand

unification . Second, and what is much more important,

therp is the possibility of incorporating gravity In the

unification picture, since supersymmetry, realized locally^
0

leads to supergravity . Sunersymmetric grand unified

theories (SUSY GUT's), based on K = 1 supergravity (SUGRA)~i0

have been discussed extensively during the past three

years and we will give here their general characteristic

features.

Grand unification physics takes place at extremely

high energies (possibly at E &1L). So, i t s natural arena

is the early unive-se, In Its first moments. Here Is where
12

particle physics confronts cosmology. At that early

moments, the universe was extremely hot and, so, the

behaviour of the unified theories at high temperatures

becomes an essential part of their study. Accordingly, we

will give the main relevant concet)ts and discuss the phase

transitions in GUT's. Then, after a brief introduction to

standard cosmology and its problems, we will give the

cosmological implications of these phase transitions. The

main focus will be the inflationary universe scenario ,

i.e. the proposal thnt, early in Its history, the universe

has passed an exponentially expanding (de Sitter phase)

period. That was one of the most influential proposals in

the recent years, given that It can provide a natural

solution to many of the cosmolopical problems in the

- 3 -
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standard bi<r banp theory courled to particle physics.

At the end, some r.ev exciting research directions,
"ill

based or. the hipher-dimensional approach , will be discus

oed , within the sane perspective.

T I . ORDINARY CUTS

T , - sin'M 0 , T being the
.IT, w em JJJ

We fire convinced tha t the so-cal led standard

fL'(?,'i x PL'!"-) K U ( 1 J V model must represent an i n t e r -

mediate ntep in the ladder towards a t r u l y uni f ied p ic tu re

of the fundamental 'orces or Nat'jre. The Glashow-Weinberg-

Oal am CU(2)T * • ' ( l ) v model ^ co r re l a t e s the weak: &nd

electromagnetic i n t e r a c t i o n s , but i t in not a un i f ica t ion

of their:. True, i t o red ic t s the weak noutral currents whose

s t ruc ture in of the form T
.I

third generator of the 311(2) 0 the electric charge
2 •- ^' ^

generator and sin 0^ = i'-'r/(;;n + F;',,) the r e l a t i ve strenirth

of rv',?.) {coupling constant rr^) arvi U(l) (coupling

constant p ) . Thi:; predic t ion hur, been confirmed

^xperi ry.enLal ly in various l ep ton i c , cemil eptouic and
2

hadronic interactions , T'ore spectacularly, the G-W-S
mode] has received an even :r,ore nt.rnr.p. support from the

[li:;covery oT." the f̂ aû o "bosonr, W and Z "by the UA1

iina UA? ' col luboratl otis , at "SRK , within the predicted

ranpe of Viiluea. On the other hand, there is also excellent

evidence that hadronr, are built of coloured quarks, loound

by vector p] uons exchanges, which le».dc to the SU(^)

Rautte theory of strong interactions, the quantum chroino-
1 n

dynar.ii's (OCD) , The evidence for three colours cones
from various rnurces: the snin-ntatLstics problem, the

o
1 i 'Vt: ni-̂  o!' n , the crosn^r-1 ^1.: •, jr. tneasurement^ of
R = (r e •+ hadrons)/(e e H |i ) , the cancellation of

SQPEP.UKTFTCATICTJ, TRANSITIONS AND COS"OL0Gv

a n o m a l i e s f o r t h e SU{2) * U ( l ) Y t h e o r y . r i o t e ,

however, that EU(3) i tself has a triangle anomaly, with

an arbitrary parameter 6 (strong CP violation) , but this

can find a natural solution, e.g. through the Peccei-Quinn
21

mechanism . Most importantly, EJU'3),, is asymptotically
22

free , which leads to the understanding of scaling in

hiph-energy scattering experiments. The last success of

the standard model is the absence of flavour changing

neutral currents

However, the standard model contains 18 independent

parameters (3 gauge couplings g,,£„,<' and 15 elementary

particle masses and quark mixing angles) and the hope is

that by embedding i t in 5 grand unified theory (GUT) ~2 \

we will reduce the number of independent parameters. Tn

fact, the property of asymptotic freedom of non-Abelian

theories permits p,rpi;A unification of SU(3) * RU(2)

2 and pf coupling

constsirts rcerge into one single coupling constant g,,.

This is possible:, sir.ce coupling constants are different at

different mass scales and, 30, although the prtr.ent? ;• ob-

served couplings are different g,(M ) > g_<M ) > g (M ),

i t is possible that they s.rf equal at another mass scale.
o

The evolution of the coupling constant a(y) s g

in governed by the Callan-Symam'-ik B-funetion:

U ( l ) Y - This means t h a t t h e

For small a , 6 ( o ) can be eva lua t ed p e : - t u r b a t i v e l y

= -b |-^+ 0(Q: 3)

where b is the one-loop contribution. Then

(2.2)

-5-
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s i n 2 e ( u ) = T

a <.v) 5(b - K) M
_™ g 3_ j , n - £

2TT 3 V

8 (8b3 - 3b2

Ea. (2.13) and (2.lit) can now be used to predict the grand

unification scale M and sin B^, once we take convenient-

ly p * U , where o (Mj = 1/12&, a 3 ( \ ) = 0.11. The

above an1 one loop resu l t s . One has also to take into

account one-locip rz.'iiative corrections at v * »„. two-loop

corrections to the evolution between M̂  and MQ and

threshold effects at u * \ . Then ? 8 , for a GUT with the

"great desert," hypothesis and, in par t icu lar , for the

minimal 3L'(5) with three f e l l i e s and one l ight HigfiS

doublet, the GUT scale M,, Is approximately proportional

to the OCD scale A :
MS

M = (1.5 ± 0.5) x 1O35 A

With A__ = (150 ± 50)MeV, we have

l i t
h) x 10 C.eV

MB

( 2 . 1 5 )

( 2 . 1 6 )

The precise value of Mr is important for the proton decay

lifetime prediction (T scalps as M^, see later). Once

'A Is known, thi; coupling constant cc{MQ) at the uni-

fication paint M cai; be obtained 'rom any of the

Eqs.{?.12) and it is

On the other hand, within the ssrc approximations,

we find

SUPEEUNIFICATICM, PHASE TRANSITIONS AHD COSMOLOGY

sin 9 (M. ) = 0.21 It n' n n (2.18)

in a remarkably good agreement with the experimental value,

including radiative corrections,

sin 8 (M ) = 0.21™ ± O.Olli
v w exp 12.19)

The search for the grand unified symmetry G is

dictated by some genf;r!.2 charec+eristic features: ( i) The

representation of tho gauge group G must reproduce the

correct par t ic le content of the observed fermion spectrum.

This means, in par t icu lar , that G must possess complex

representations, in order to give r ise to massless l e f t -

handed fermions t upon spontaneous symmetry breakdown to

SU(3) x EU(2) x Ufl). All fermions transforming according

to a self-conjugate (renJ) representation of G acquire a

super-heavy mass of order H , in the course of spontaneous

V, symmetry breakdown ( su rv iva l hypothesis ) . Moreover,

the representation content must be such that there are no

Adler-Bell-Jackiw anomalies, ( i i ) 0 must contain the

gauge group SU f 3) * SU(2) x U(l) of the standard model,

which means that i t must be (at l eas t ) of rank 2 + 1 + 1 = k.

The f i r s t r e t i r ement r e s t r i c t s 'he possible GUT gauge

group to SU(n), n j . 3 , S0(l«i + 2), n }, 1 and E, . The

second one makes thr- further r es t r i c t ion SU(n), n }. 5 >

S0[l*n + 2 ) , n J. 2 and Eg. Tn fact , models based on the

gauge groups SU [ 5 ) C SO(lO) C E / have been proposed as
26

possible candidates for a grand unified model . At th i s

point, we have to mention that the recent higher (ten-)

32 33
dimensional theories , phased on superstr:ings and

attempting to provide a consistent unified theory of

everything (including gravity), upon compactification

- 9 -
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and dimensional reduction , can actually give rise to the

above mentioned GUT gauge groups, a very encouraging and

welcome result.

In the following, we will pive some pertinent features

of the SU(5), SO(lo) and Eg GUT models, giving more

details for the SU(5), which will serve as our prototype

in the subsequent sections.

i. su(s)

The SU(5) model is thnt GWi' model which incorporates

the SU(3) x SU(2) * U{: ) as its maximal subgroup. Hence,

its uniqueness and its stringent predictions. It has 2k

generators

Ga = ~-, a = 1 2k (2.20)

where Xa i r e 5 x 5 t r a c e l e s s Hermi t i an m a t r i c e s n o r m a l -

i z e d as T r U a X ) - 2 S a . A s s o c i a t e d w i t h them, t h e r e a r e

2k gauge bosons A , which can be r e p r e s e n t e d i n a 5 * 5

t r a c e l e s s a d j o i n t m a t r i x A = — £_ \ A :

A =
l

2 /30

2B X3 Y3

/~2 /?0'

(2.21)

-10 -
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The 8 gluons G are in the top diagonal 3 x 3 s u t a a t r i x ,

the 3 weak bosons W's in the bottom diagonal 3 x 2 sub-

matrix and the hupercharge boson B corresponds t o the

t race ] ess r'is.frons.] generator

. 1
2

F i n a l l y , the off-diagonal (X,Y) bosons are in a 3 x 2

submatrix (they are (3,2) under SU(3)_ x SU{2) ) and
C L

mediate baryon number v io l a t i ng i n t e r a c t i o n s (see below),

The correct fermion aasipninent i s t o a 5. + 1£ r e p r e -

senta t ion of SU(5)

•Ji 5 1 0 = '

0

"U3
c

U2

n l

c
U 3

0

c

U 2
d 2

c

uc

0

U3
d 3

f

"U2

"U3

0

e

" d J

" d 2

S
+

0

(2.22)

That this is an anomaly free aHsiFnrr.ent for the feimlons of

for the

A([ra])dabc, of a

each generation cornea from the general formula

anomaly,characterized ~by T H C T V 1 } ! ^

to ta l ly antisymmetric representation [m] of the group

3U(n) (the anomally of the fundamental representation is

normalized to 1): A([m]) (ti-3) I (n-2m
(n-m-1) ! (iii-l) I

-11-
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So: A(? = [li]) = -1, A(lO = [2]) = +1 and thus the combi

nation [h] + [?.) = 5. + 1° ls anomaly free.

Finally, the scalar fields needed to implement the

two stafo^ of spontaneous symmetry "breaking are

SO(5) i^S^ SU(3)C x SU(2)r * UCl) ̂ ^ SU(3)C x U d ) e m ;

* is a ̂  of HlftRB, represented by a 5 * 5 traceless

Hermit ion matrix, with potential and vacuum expectation

value (vev) p;ivcn "by

2 2 2 | ^

= V

'_ 1

(2-23)

4> is a singlet in the SU(3) nnd m(2) spaces and

i:O conserves U{1 ) , Tt Rives the superheavy masses

- M^ = ̂ | f;2V?. H Is a 2 o f HiRRs w i t n potential and

(H H) + f (H H

0

I ° I
'i> = | 0 i

| |
i 0 !

I V
{ J (2.2M

into/out of the vacuum and breaks SU(2) ,<h> carries T,
i

giving masses to the weak intermediate vector bosons.

SUPERUNIFICATION, PHAF!F TRANSITIONS AMD COSMOLOGY

CH> a lso gives fermion masses through the couplings

1
(2.25)

The first gives equnl mfjcses to the Q = - — quarhs and

Q = -1 leptons and the second to the Q = + — quarks.

Of course, these tree level predictions are subject to

renormalization corrections , by a calculable amount, ac-

cording to the renontia] ization group equation

— - Yf(a(p))]mf(ii) = 0 (2.26)

where rf(
a(u)) are the corresponding anomalous mass dimen-

sions -

pives

sions- Summing the leading contribution to all orders
35,36

"'q - -1
IT

,(Mj!

(2.27)

For n. - 3 and n, = 1, Eq.(2.27) gives at u «• 10 GeV
I n

0, - - 3

mo. = -i

(2.28)
^j o

This prediction is ̂ uite successful for the third family,

relatively Rood for the second one and certainly bad for

the first one. However, since the first family involves

- 1 2 - - 1 3 -

15*.- -*-.:M ;K. .
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masses of a few MeV, this bad prediction can be corrected

by additional assumptions, e.g. through induced non-

renonmiiizable terms

It would be interesting to make here the following

remark: the (minimal) SU(5) LapranKian has a global

symmetry

X "

lip ) e il/

H > e H

(2.29)
and everything else unchanged. This symmetry is spontane-
ously broken by <H>. However, since the neutral component
of H has a non-zero hypercharge under U{l)«, then one
can find a linear combination of U(l),, and U(l ) :
1

— (Z + kx) y which is not broken by <H>. I t is easy to see

that this is the B-L symmetry, which thus remains as a

global symmetry of SU(5). I t acts as a selection rule for

proton decay in the simple SU(5) model (the final state

must contain an antilepton). I t also means that neutrinos

cannot pet a mass (except if one introduces extra Higgses

or a right handed component v or non-renormalizable

terms ). In groups bigger than SU(5) (see below), B-L

corresponds to a local symmetry and we expect small viola-

tions of i t .

Finally, from the covariant derivatives, one gets,
besides the usual SU(3) x SU(2)T * U(l)v interactions,
the interactions inve]\Hng the superheavy X,Y gauge bosons
(chargt^ —, —, respectively) anil the current eigenstates of
the feraiions

-1k-
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HC,Y

(2.30)

These are the nev interactions, vhich violate B- and L-

numbers. They are responsible for "the rise and fall" of

the baryon number of the universe: generation of the baryon

asymmetry of the universe, at first place (see cosmology,

below), and, then, nucleon decay.

39
NueJeon decay , mediated by superheavy gauge boson

exchanges, as given by Eq..(2.30), is mostly sensitive on

K^ = H , From (2.30), one writes down the effective
A , I <j

Lagrangian «C _-, for B-violating d=6 four Fermi q.qq.1

interactions, responsible for nucleon decay, and then

scales them down to energies VL GeV, which will give an

enhancement factor A: !t (l GeV) = A «£» , where A

can be calculated 'jsing the renormalization group and the

anomaJoup dimensions of the <iq.qH operators. However,

the most uncertain part of the computation l ies in the

calculation of hadronic matrix elements of the effective

Lagrangian, which interpolate between the in i t i a l nucleon

state and the variovs neson final s tates . These depend

on the model of hadronic structure employed, and several
39methods have been applied . The part ial lifetime for

the SU(5) dominant decay mode p •+ e ir° thus turns out to

be
x(p -* eV°) » (0.06" - 2fcO) = 1029 yr (2.31)

1(0to be compared with the experimental bound

-15-
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rtp
T > 5 >f 10 yr (2.32)

which appear? to ru le out the minimal SU(5) model or an;,,

fimj.if C-U1 model with the "great deser t " between M and

V
One can, of course, consider non-minimal extensions of

the GU'5), vith additional Hipcses and/or fermions, which

are not ruled out. But these are ad hoc- F.nrr'cr.tions , with-

out any other just if icat ion. Another possibili ty would be

the existence of non-renorr-irlizable interactions, e.g.
$ y v 1*1

r — F F , which modify t h e gauge boson k i n e t i c terms

These can lead t o an i n c r e a s e of M and T , while- keep-

ing s i n 9 a c c e p t a b l e . And, of c o u r s e , h ighe r than

SU(jj) unifi;«.tion groups are s t i l l compatible with proton

decay experiments, due to a possible higher unification

scale ?•',,'.
Li

Note, also, that proton decay can take TxLuce through

exchanges of Hijrgs bosons, e.g. the colour tr iplet in the

3_ representation H, which has therefore to be superheavy

(>, 10 QeV), to he compatible with experimert. Hence, the

need to split the S_ ~ Plet of Higgses (doublet-triplet

separation), another (*FI'(TP hierarchy problem,

2. SO(10)

The next blf-per grand unified model is the rank 5

60(10) D SU(5) * U(l)

a,B = l,...10, with commutation relations

It ha;; 1*5 generators TaB= -T S o,

[T ,T ,] = 1(6
ay

- 6 T - 5 T 7 ) (2.33)
* ay

These can be constructed n-cm tl-e 32 x 32 generalized Dirac

matrices T., generating a Clifford algebra

-16-
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The matrices r

(2.3M

1 + r
ii

ra6 = i" ̂ r 'r6-'' r = ir r ...r (2.35)

are the generators of the chiral spinor representation of

S0(l0). Associated with them, there are 1*5 gauge bosons

A = -A k, which can be classified proper]y'by their

SU(3)C x SU(2)L x SU(2)S subgroup content:

1+5 = ( 8 , 1 , 1 ) + ( 1 , 3 , 1 ) + ( 1 , 1 , 3 ) + ( 1 , 1 , 1 )
G i wj"2'3 wi'£ '3 B 1

J l i H

+ ( 3 > . 2 ) + ( 3 , 2 , 2 ) + ( 3 , 1 , 1 ) + ( 1 , 1 , 1 )

i x r | f x' Y I x _
1. T X ' j [ Y1 X j S E ( 2 . 3 6 )

The B' gau~= boson i s a s s o c i a t e d w i t h t h e U ( l ) ' g e n e r a t o r

Y' = g(y - „ ) which, for fermions, coincides with H-I..

Besides the gauge bosons known from EU(5), there are the
2 1

new X1, Y1 bosons with charge — and - —, which also
contribute to B- and L- violating interactions, and.

2
g boson with charge —, which does not contri-also, the X

bute to such interactions, except through mixing with X'.

Such processes violate B-L, but they are enormously sup-

pressed by additional inverse powers of >!„.

The fermions of each generation are assigned to the

spinor representation l6_ of SO(lO) '"' , which under

SU(S) is decomposed as

lj3 = I + K ) . + i (2.37)

-IT-
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Cl«r>rly, the reducible j> + 10 representation of SU(5) is

contained in an irreducible representation of 30(10) (hence

the cancellation of the anomalies), and, in addition, there

is a SU(5) singlet that has the quantur numbers of an anti-

neutrino v (hence neutrinos are, in general, massive in

so(io) kh).

There are many patterns of symmetry breaking, and the

various reuc rnrlizatior. effects (for coupling constants and

mass scales) vary analogously 1*5

3 T

The next higher group is the rank 6 exceptional

proup Eg Z> 30(10) " U(l). It has 78 generators

TJ 5. «"H „ p = I "I Q

(£.38)

= 1....16

whose commutatidr! relations we do not write down explici t-

ly . Associated with them, there are 78 gauge bosons,

which under SO(lO), are

78 = 1*5 (H J + l6(Xa) + 16 (X ) + 1(Y) (2.39)
-• —"— n H — — ciaB

1*81*8
The fermiotis are assigned to the fundamental 27. rep-

resentation, which, under S0(l0), is
27 = 16. + l_0 + 1_ (2.1*0)

There are the 15 ordinary fermions, whereas the v , 1£

and 1_ form a vector-like representation with respect to

EU(3) x SU(2) x U(l) and they are superheavy ("survival

hypothesis").

-18-
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Recently, the interest in Eg models has been revives,

t.tanks to developments in superstring theories, which point

towards exceptional groups, as one class of possible GUTS.

Again, one has to choose from many patterns of symmetry

breaking ^9,50.

For completeness, we mention some attempts to construct
a GUT model, based on the group 0(l8) , which would give
an answer to the problem of replication of families. In
0(18), a l l the known fennion families f i t into Just one
representation, the 256-dimensional spinor. In i t i a l
phenomenological difficulaties , related to mirror
fermions, are avoided in a new construction , whose
phenomenological implications can be tested soon.

I I I . SUPERS'PIUETRIC GUTS

A. N = 1 Globally Supersvmmetric GUTS

The main motive*.icr. for introducing supersymnetry into

grand unification has been the gauge hierarchy problem .

This has to do with the fact that the scalar boson masses,

being not protected by any symmetry,have the tendency to

get radiative contributions,which push them to the highest

mass scale present in the problem. This means that l ight

Higgs scalars, associated with the SU(2^xU(l) breaking,

will have the tendency to get masses M3(M_) in a conven-

tional GUT, except if one is making a highly accurate tuning

of the paramctfiri:; in the potential , which, however, has to

be altered in each order of perturbation theory. Super-

symmetry, in which there is no separate scalar mass or

scalar self interaction coupling constant renoref-li nation.

-19-
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but only wave function and gaugr coupling constant r e -

normalizat ion, car., at l ea s t p a r t l y , solve the problem.

Sur.ersymmetry i s the l a s t poss ible symmetry of the

S-matrix, as a comprehensive analysis of the noss ible sym-

metries compatible with a n o n - t r i v i a l S-matrix, in a

r e l a t i v i s t i c quantum t i e o r y , r evea l s . At the beginning,

there i s the Coleman-Mandula theorem , which s t a t e s tha t

the only possible conserved "charges" are the energy-

momentum P and Lorentz sca la r "charges" T . However,

the theorem, by assuming only symmetries involving com-

mutation r e l a t i o n s , misses symmetries involving fermionie

genera to rs , i . e . involving antieommutation r e l a t i o n s . This;

i s remedied by the Haaf-Lopuszanski-Sohnius theorem ,

which s t a t e s tha t the most general a lgebra.of generators

of symmetry transforr.ntion:-; of the fi-tnntrix i s a graded Lie

algebra spanned by the following genera tors : ( i ) Bose-type

generators : the energy-momentum operator P , the generator

of the homogeneous Lorentz transformations M and a

f i n i t e number of sca la r "charges" T , taken Herr.Stian

T = T ( in te rna l group). ( i i ) Fermi-type genera tors : a

set of sp inor ia l "charges" C (N = 1 , 2 , . . . ; a = 1,2) and

their Hermitian conjugates

"

Q = (0J ) , transforming as
a n d f°i T ' under the group Sl/2,C).

The case M = 1, chn.]T"teri?.ed by just one ferndonic

generator 0 , is called simple supersymmetry. Its algebra

[V

(3.1a)

(3,1b)

(3.1c)

-20-
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The fermionie generators 0 and

(3.Id)

have dimensions:
— 1

dim G>a = dim S^ = — (see Eq . (3 , l a ) ) and carry spin — (see

Eq . (3 .1d) ) , As a r e s u l t , they transform bosonic- y ta tes B>

into ferraionic F> and v ice-versa :

a a | E > = | F > , « J F > = [B> ( 3 . 2 )

So, supersymmetry relates bosons and fermions, requiring

equal numbers of bosonic and fermionie degrees of freedom.

To every particle, there is associated a supersymmetric

partner, obeying different statistics. Moreover, since the

mass operator P p" = M is a Casimtr invariant of the

supersymmetry elgebra,supersymmetric partners have degener-

ate masses. Apparently, this is not the case in nature, so

supersymmetry must be broken.

The reasons, we consider only N = 1 simple super-

symmetry (SUSY) to construct unified models at energies

belov the Planck mass, are phenomenologieal, since N > 2

SUSY requires fermions with left and ripbt-handed components

transforming equivalently. In [f = 1 SUSY, an irreducible

representation, called superrultiplet, contains supersym-

metric partners with identical quantum numbers, but spins

different by - unit. Our theories can then be constructed

in terms of oi ij tvo rin.Fses of supermultiplets, both con-

taining two bosonic and two fermionie degrees of freedom:

Eupermultiplet Particle content

Chiral * Z: 2 real sca la r f i e lds
A,B(Z • A + iB) .

\j>a: 2 component Weyl sp inor ,
descr ibing a Majorana fermioi:

- 2 1 -
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Ver;4 or V i1 : 2 component vector.

^ . 2 component Weyl spinor,
a describing a Majorana fermion.

Again for phenomenological reasons, we are forced to double

the number of elementary particles in the theory, by pairing,

in a chiral multiplet, every known fermion (quark lepton)

with a scalar fermion (s<u:e.:*l', slepton), and, in a vector

multiplet, every gauge bosrjn (gluon, W, 1, photon) to a

gaup-p fermion or gaugino (gluino, uino, zino, photino).

Also, HiggK bosons are paired, in a chiral multiplet, with

Figgs fei-mlons (hiffisinos}. So, in a supersyrametric EU(5)

theory , ve have the following particle content:

Supermultlplet

Vector (A ,X)

Matter chiral (x , z )

Matter r r i r a l (y.Z.J

Higgs chiral (E,*j.)

Higgs chiral (K^ ,* H

Higgs chiral (K ,*
2 H

representation

I
10

I

1
( 3 .3 )

The two Higgs scalar:-: H^jO and H,,(J_) are necessary in

order to give masses to both up and down quarks and leptons.

As a resul t of the- doubling of degrees of freedom, the

expressions for the t> coefficients (Eq.(2.6)) now become:

b 3 = 9 - 2nf

b 2 = 6 - 2nf - | nR

3n
= -anf - 10 (3.1.)

- 2 2 -
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There are the modified express ions , which have t o be used

in Eqs. (2.13) and ( 2 . i l l ) , fcr the ca lcu la t ion of M» aiirt
?

sin in SUSY GUTS They yield a higher GUT scale

M and a bigger gature coupling a(M_):
IJ G-

MG A _ GeV = 1 0

ME
GeV

a(Mj

(3.5a)

(3.5b}

The value (3.5a) pushes beyond experimental limits the

proton decay due to 7, wid Y boson exchanges. Hovever,

Higgs boson mediated nucleon decays, through £ = 5 opera-

tors , are s t i l l important and fall within observable
39

limits . The main decay modes, here, ere to kaons and
ant:neutrinos, e.g. p •* K ̂  , where the present experimen-

ta l bound is >5 * 10 yr. • For sin^d , one obtains

sin2ew(Mw) = 0.236 ± 0.003, (3.6)

relative];,- higher than the corresponding prediction of

ordinary GUTS. Note, however, that these predictions can

be changed by complicating a bit the Higgs system of the

. Remarkably, the successful prediction for

my,/»T ° f the ordinary SU(5) is maintained in the minimal

SUSYTSU(5) 5 6 b .

The f i rs t of Eqs.(3.1) has an important consequence,
i i t relates

charges Q ,0. ;a a

since it relates the Hamiltonian H = P to the super-

1 f?H S P0 - t
This implies that E > 0.

( 3 .7 )
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If SUSY i s unbroken, t h i s means that 0, ann ih i la tes
a

tVif: •-11'uiir :

0> = 0 (3 .8 )

a n d h e n c e E a . ( 3 . T ) g i v e s

E <=0 [ H | 0> = 0 ( 3 . 9 )

Supersymmetric ground state has always E

however, SUSY is broken, i . e . if

Q |0> * 0,

- 0. If,

(3.10)

then H > 0: SUSY can be broken only if the potential is

s t r ic t ly positive,

In discussing supersymitietrlc models and spontaneous

breaking of i;i.-IhOr*:*"mmetry, I t is very convenient to use

the superfield formalism A suuerfield *(X,6,?) is

defined as a function of tlic space-time point X anr! 1 he

anticommuting parar^^ters 6 and 9, , which are elements
o a

of a Graasnann algebra:

{ e , e > = { e . , e - l = ( e , e - S = o
a p a p a t

(3.11)

The superfield is defined in superspace, viJnl: is parame-

trized by

S(X,6,6) = exp i [-X VV *- BO 0 Q (3.12)

The superf ie ld *(X,9,9) i s ac tua l ly a Taylor expansion in

S and 8 with c o e f f i c i e n t s , which are themselves loca l f i e ld s

over Minkowski space. I t turns out t h a t , t o find super-

f i e l d s , whose components transform i r r educ io ly under super-

nymmetry t r ans fo rmat ions , we need c o n s t r a i n t s . Euperfieldf

tha t s a t i s f y tlifl cons t r a in t D. * = 0 (D i - 0) , where D's are

-2H-
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covariont derivatives , are nailed left-handed (rifrht-

handed) chiral superfields. Their particle content is

composed of tvo physical fJelcis: a scalar and a spin —

fermion (see ehira^ supermultiplets above), and an auxiliary

(non-propapating) field. cf:ied F, which is the highest e2

component of the superfield; Its SUSY transfonT^tier is a

tota: derivative. Kuperfiel ds, that satisfy the reality

constraint » = * , are called vector superfiel as . The: r

particle content is cop.porert if two physical fields: a

spin-1 field (gauge boson) and a spin— ferr.ior (gaugino)

(see vector rupermultiplets above), and an auxiliary (non-

propagating) field, called D, which is the highest 82? 2

component, of the superfield and, again, Its SUSY transfor-

mation is a total derivative.

One can thus construct the Lagrangian, describing a

vector as well as a ehiral superfield and their interaction,

by using F- and D- terms. By introducing integration

over Grassmann variables as

de = o, de e =
-\

d£s e2? 2
= i

(3.13)

the Lagriungian is expressed ar: follows:

£ = { j- |d2e W™W + h.c.} +
4 a

g(*) + h.c} (3-iit)

In Fq.O.lM, w a = ]7
 D e V D e V and the first term gives

the kinetic terms for the components of the vector super-

fields. The second ton-, rives the kinetic terms for the

components of the chiral superfield and describes their

-25-
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gauge interactior.s. Finally, the third term gives

interactions and mass terms for the components of the

chiral superfield, in terms of the superpotential g(*),

which is a function of », up to degree 3, for reasons of

renormalj z abil i ty. In particular, the scalar potential ,

which is obtained from (3.11*), is

where

V = FF* + \v2 >, 0,

F = | | ,

(3.15)

(3.16)

with Ta the generators of the gauge E'o'l-. From Fq.(3.1S)

(or"from the supersymmetric transformation properties for

the ferminii fields i|i and X), one can see that SUSY is

broken if ana only if the auxiliary fielrle F and/or

D develop a non zero vev. The supersymmetry breaking is

accompanied by the appearance of a mai-fless Goldstone fermi-

on, which is the fermionie partner of the auxiliary field

developing vev.

The above are examples of spontaneous supersummetry

breaking. In the F-breaking, F is usually taken as a

singlet under the gaufje group. In the D-1>reaking, D is

the component of a vector superfield of a fundamental U(l)

factor of the gauge group. One can also envisage a dynam-

icaJ supersymmetry breaking , in which case the Goldstone

fermion is not a fundamental particle of the theory, but a

composite bound s ta te . Finally, supersymmetry breaking can

take place explici t ly, when there are "soft" SUSY breaking

terms in the Lagrangian . This is the case with mass

terms for complex dealer? and gauge fermions.

-26-
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For the SUSY SU(5) model ( E q . ( 3 . 3 ) ) , the ful l super-
potentift] i s

i j 1 * * i j a i|i x , (3.17)

M and M' are of the order of the grand unification scale.

The scalar potential, associated with (3.17), iB

where 4 stands for the various scalar fields. This poten-
t i a l is minimized for <R > = <H > = <Z > = <z. > = 0 and

1 2 \h v
one of the following thrfce vev's for t:

<i!>0 = 0
SU(5) unbroken

f L
3"

¥

*•

SU(5)

3 j

2M

2M

-3M

SU(5) + SU(3)

* su(a)

(3.19)

All these are degenerate minima, with V = 0, and SUSY is

unbroken. For the desired SU(5) + SU(3) x SU(2) x u(l)

-27-
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solution, while the colour triplets of
a r e getting

masses of the order of VL^, the SU(2) doublets in H^H,,

get masses M - M'. Since these doublets must be mass less ,

in order to imnleraent the SU(2) x U(l) breaking, we have

to impose the t r e e - l e v e l fine tuning

H = M' (3.20)

However, because of the exact EUSY, this is stable against

radiative corrections ^ and this is the technical advantage

compared with ordinary GUTS fine tunings.

In order to discard altogether the fine-tuning (3.20)

and obtain r.r.J:u; .-.;.!;• massless Higgs doublets, two main

mechanisms have been suggested. The first is the- "sliding

singlet" mechanism and the second, more universally ap-

plied!:.] e, is the "missing partner" mechanism , based on

purely group theoretical argument:;: one introduces a rep-

resentation (50_ + 5£ in SU(5))> vhich contains colour

triplets, tut no weak doublets. Then, with a direct mass

term M H H absent, no Higgs doublet mass term is induced.

Neither of these mechanisms is, however, without problems.

To '.reak SUSY, below M , one usually invites either

an F-breaking mechanism or an explicit symmetry breaking

one. Using the first approach (as in the inverse hierarchy

models , see later), one makes use of the common property

of th;.i- type of models that the potential has a flat direc-

tion at the minimum. Using the second approach means

that we have to introc.vce, explicitly, PP.SS terms in the

potential, e.g. in SU(5)

flV SU(5)

|Z (3.21)

- 2 8 -
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Now, what is interesting IK that such terms arise naturally

when we pass from global to local supersymmetry, which is

the most natural further step to do. So, we turn to local

supersymmetry, i.e. supergravity, GUTS.

B. II = 1 Supergravity GUTS

Given the :,w;t;r of tin gauge principle, it is

natural to ask what happens when SUSY is realized as a local

symmetry with an ant:. commuting parameter E, = £(X) depending

explicitly on X . In that case, since £ is a spinor and

since the gauge field should trw.sform into 3(i?(X), the
3

i1'". Furthermore, since the product of two local

gauge field of loco] ;;upersymmetry is a spin ^ spinoriiij

SUSY transformations leads to local coordinate transforma-

tion £ (X)o £ (K)a , c ? e expects a connection with gravity,

hence the name supergravit;- . Anyway, in SUSY models we

have the same number of fermionic and bo^onic degrees of

freedom, so we expect a new bosonic field to be obtained

in a locally supersymmetric theory. In fact, the graviton

e coupled tu fie energy momentum tensor, turns out to be

the SUSY partner of the spin — gauge fie] a + a, vrhich is

then called grn—ltliit...

So, in N = 1 SUGRA theories, we have the following

three kinds of supermultiplets (with the corresponding

physical fields): (j) Gifi.̂ it; multiplet : (em,i|j );

(ii) Gauge multiplet: (A ,\); (iii) Matter multiplets:

In global SUSY, generalizing

the most general lH[;--n!;gian as

, one can write

f Re d2Bf(4)WW + d£9d2e <|(te2gV,*) + Re d26g(»)
.22)
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where f,4> and g (the superpoten t ia l ) are general func-

t i ons of t h e i r arguments. f(4>) transforms as the sym-

metric product of two adjoint r epresen ta t ions with respect

to the gauge group. The theory i s renorm«l".zable only i f

f(*) i s cons tan t , <|> = * e E * and g(») a polynomial of

degree less or equal t o t h r e e . Giving up these r e s t r i c t i o n s

means giving up r eno rma l i zab i l i t y , which i s a l og i ca l s tep

to do tovsrflr a supergravi ty theory . We however demand

tha t a l l nonrenormelizable terms contain the g r a v i t a t i o n a l
2 _ 8IT

coupling constant K - —x 1 so t h a t , in the f l a t l imi t

K -* 0 , the theory becomes" renorma]i£able.

In H = 1 supergrav i ty , t h e k i n e t i c function $ and

the superpotent ia l g lose t h e i r independent meaning and

the general coupling of ch i r a l and vector mul t ip l e t s t o

IF = 1 supergravi ty i s specif ied by the following two i n -

dependent functions of the comp^x sca la r f i e ld s Z. , con-

ta ined in the chirall mult i p l e t s :

fab(Zi) = f b a ( V

+ in |g(Z)|EG(Z.,Z.«) - -3ln |-

= dfz.̂ *) + In \ \

(3.23)

f , is an analytic fun -t ion related to the Yang-Mills part

of the Lagrangian; G(Z ,Z.*) is a real function, called

K&hler potential, because the tensor

acts as a metric of the kinetic terms of the scalar fields.

-30-
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In fact, the bosonic part of the Lagrangian is (we put

K = 1)

= - i- H - I (Ref )Fa
B 2 U ab ii

f . )
at)

- 0J
r 1 GJGJ - 3) - | (Re

T?JZ,.
i J

(3.25)

iL< i J
write down explicitly the fermionic part of the Lagrangian

(Hefs. 10, 11).

To discuss spontaneous SUSY breaking, one con.-iders,

in analogy with global SUSY, the auxiliary field for the

chiral fermions

?L • e °'
2 (G^)"1 G + fermion dependent terms

nd ti.L- auxiliary field for the gauge fermion
(3.26)

g S lJJZ * fermion dependent terms

(3.27)

As in global SUSY, local SUSY is broken if at least one

of these auxilinrv fields receives a vev pjnd the SUSY
2

breaking scale M is given by <F> or <D>. Note tha t ,

a vev for the fermion dependent terms occurs only in the

presence of a strongly interacting gaupe force, that leads

to a vacuum condensation of t>ilin<?.'ir fermion-antifermion

states. In the absence of these, i t is evident from

Eg.(3.26) and (3-27) that the criterion fc: PUTT breaking

is <G > 4 0. We have seen that spontaneous SUSY break-

down is accompanied by a Goldatone fermion field. What

- 3 1 -
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happen- here i s t h a t , the Goldstone fertnion

nT = -<e G,> \ + — <P > X1", ff.r be r o t a t e d away by a

loca l SUSY t ransformat ion . Then the super-Hi gg--, e f fec t

i s e f f ec t i ve and the g r a v i t i n o acquires a mass (we put hot!-
M

here \ ~ =1 = M = 2.1* * 10 GeV)
K

 /HIT

n3/2
a/2

V =

Th.t p o t e n t i a l g i v e n froin Eq . . (3 .25 ) i s

G . ( G b - 1 GJ - 3] + \ (Ref "X ) D

(3.28)

(3.29)

The for^ of the potential (3.29) suggests that there is the

possibility of broken supergravity with vanishing vacuum

energy. Although this is not a solution to the problem of

the cosmological constant, at least there is the possibility

to fine tune it to zero. In that case, by redefining the

field/ such that the kinetic terms are canonidj , i .e.

(something which can always be done in a well defined

theory), it is not difficult to give the relation between

the gravitino mass and the scale of SUSY breakdown

"3/2
! — (3.31)
fj M

Under these conditions, one can also derive the mass formula

(for N chira] superfields)

Trm = Z (-)
J=0

= (N - 1

] )

- 2g Tr T1

(3.32)

-32-
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The phenomenological relevance of this formula is immediate :

Due te the supergravity correction first term, the "mean

squared mass" of tin- scalar fields is m?/^ and thus these

fielc'.s are heavier than the corresponding ferroion? , a phe-

nomenological must . The low-energy spectrum, however,

has to be studied after inclusion of renormalization ef-

fects. In fact, one—loop corrections on scalar ma-ses have

been shown to be able to induce 2U(2) * U(l) symmetry

breaking at low energies, even if all scalars have positive

tree level "mean squared masses" of order

In general, in realistic models, we distinguish two

sectors: a '-.iil.-̂r- sector, responsible for the spontaneous

breakdown of supergravity, and an observable rector, con-

taining al" the superfields needed for the construction of-

the model. These two sectors eommunic&i:e only through

gravitational interaction!:, which means that the fields of

the hidden sector are gauge singlets vith no Yukawa coup-

lings to the observable sector. The simplest case for the

hidden sen'iir i s to consider minimal kinetic energy ten»s ,

i.e. G^ = <5̂ , f = 5 , vith a Kahler potential
j j ah ab r

G(Z,Z*) = '^+ In (3.33)

from which we obtain

3 g(Z) D
2 a (3.31*)

In the limit H

which is never zero for

BUSY is broken. Now, the signal of broken local SUSY is

< GZ » * 0 or

°, ve recover the global SUSY result,

8 > - < f? " * °. w h en global
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M
(3.35)

We see tlvt, in the present case, ve have the possibility

V = 0 (zero cosmological constant), even with <G > ̂  0,

beci-'ie of the negative term in (3-3M, nrovided we fine-

tune the supprpotential g(z).

The s if.pl est example of a hidden sector KaM er super-

potential, for one chiral supei-field, for vhieh the super-

Higgs effect occurs, is the superpotential

g(Z) = M (3.36)

where B wi l l be f ine- tuned, so t h a t the vs.cv r mergy i s

zero. With thf F component of the z - f i e ld 'being the only

source of SUSY breaking, t i e minimum of the po t en t i a l V

i s zero for B = (2 - ^3) M and <Z> = ( /3 - l ) M. The

if- occurs and the gravli.ino mass i s

(3 .3T)

2

'3/2
The two real scalars (Z = A + iB) have (masses) E

and 2(2 - nf) ir., ,.„ and the formula STrm = 2(N-l)n

is satisfied (If, = l ) .

The combined superpotential g(z.,y ), with z. the
l a x

fields inducing the super Higgs effect and y& the

"o"bservab]i;" fields, containing qus-hs, leptons and Higgs
fields and satisfying

written as

Ja
4, is most frequently

) (3.38)

with the g(z.) a Polonyi-type superpotential and g(y )
i a

an arbitrary gauge invariant superpotcn.tial. One can also
71

write down a faetoriZfd superuotential or even consider

-3U
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a. more general ease , With the form (3,38) for the full

superpotential, we can write

<z±> = BjM, <g1> = a* M
2, <g(ii)> = Hg M (3.39)

with Ilc^ + 6,

vitino mass is

3 from +.hn condition V = 0. The gra-

m3/2 = — " P ~T (3.U0)

Mg is usually taken M O GeV, an intermftdiate energy

scale, poiwtimea desirable from copmological considerations.

One can nov expand the potential in power 3eries in K E —t
M

take the limit K •* 0 with n ^ fixed and get an effective

Lagrangian valid at scales, lover than M. Then the fields z.

consistently decouple in the effective theory; the inter-

actions of the hidden sector with the observable one are

governed by K. We thus obtain the scalar potential

where g = g exp

{I

I!,

+ (A-3) g + h.c.} (3M)

and
73

A = E B,*(a. + B.) (3.U2)
. 1 1 I

The first two terms in (3.1*!) coincide with that in the

global SUSY. The third one is a soft breaking term, with

a common value for all the y's (compare with (3.21)). The

effecti-.-r theory is renormalizable as long as the super-

potential g(y ) ia a polynomial at most cubic in fields

a

y . We should bear in mind, however, that, in general,
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nonrenornal-irable terms in the superpotential can be present,

given that a JJ = 1 SUGRA theory so constructed must be only

considered as an effective theory , With non-min'!-.:" ki-

ne t i c terms for the gauge f i e lds f =
ab a b

, one can also

int;vifcC" mass terms for the gau,';'not , as well as

CP-violat 'ng F ^ F^V terms : ° ' 7 . With the use of (3-!*l),

vaviou.^ unif ied models coupled t o H = 1 supergravi ty , with

or without nonrenormalliable terms, have been cons t ruc ted ,

as well as PU(3) * SU(2) * U(l) phenamenological models,

p red ic t ing many superpartne-r- around 100 GeV ,

Returning now to SU(5), r eca l l t ha t in global SU.Tf,

the d i f fe ren t super symmetric minimal SU(5), SU(U) * U(l)

and r\'(3) x SU(2) x U ( l ) , were degenerate with V = 0. This

i s no longer t rue in supergr^vi ty , Nov, i?.:'f'Vrent super-

sycmetric minima have (from En. '3 .29) )

V = -3e'
G _ -31 and are only degenerate if they

have the same valve o." i-'fo superpotential, whi'-;; is not

always the case. We can take the SU(3) * SU(2) * U(l) as

the highest of these minima with g = 0 and V = 0 (zero

cosmologica] constant - Minkowski vacuum solution). The

other SUSY minima, however, will, in general, have V < 0

(anti-de Sitter va-:v> ~ .;• ?.v' Jon). Nevertheless, there are

arguments that the presence of grir:itation renders the

Minkowski minimum stable, even if it does not have the

lowest energy (see also later). In general, however, these

considerations apply only to the observable sector. In the

hidden sector, RURY is broken, and the question of diffe-

rent SU(5) minima can only be answered .in the conte-.:4 r "

specific modelc.

-36 -
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Thir, brings us to an intMfcstir.K rltiaa of modf:2f:,

where the cosmologicaj constant ns.r.urtilji vanishes after

tile breaking of surei-f^ii-ity. These "zero flat potentials"

are taken from the Kahler potcrti&l

G(Z,Z") =• -3

which
per;; r >

(Z + Z») C3.!t;)

E p.p.-'u cJ iy to V = 0 . In that case, the

of the Kahler manifold is chq^r^i erized by

RlZZ* ~ 3Z3Z* ~" ~ z z * 3 -ZZ* > J "

whirr mc?i'r tha t the Kahler nar i fo ld i s an lZ:.r.•• • *EIn space

(maximally symmetric space) . There i s an SU(K,l) global

symmetry, where H is the number of i-hiral f i e l d s . The

gra1.1^ t ir^o r;a^ G .1 c

» 3 / s = - < G > = <Z + Z*>"3 (3.!* 5

and, nt tit- t r e e le"ri:l , i s undetermined, h j t non-zero.

Upon coupling with the observable sec to : by vrit:'.i;p

,2jr.(z (3 .1 *6 )

the gravitino mass as well as suhspqvsii.+ wit scales csn

be obtained via "dir.ien^.cnej transmutation11 (see later)

from non-gravitational rud ative correctioriF, alonp one of

the flat directions of tr-e scalar potential. This is the

program of the no-scale models , ju wtich from only one

scale, to be Jd'-nt:.fied with M, every other scale below

that is dynanicaj-3y determined. Thii consistency of the

whole scheme relies on the assumption that no quantum

pravitaiioral effects affect the "".?' ative corrections.

- 3 7 -
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It is again interesting to point out that such a

particular Kahler potential can be actually obtained, under

a simple truncation in the process of compactification,

from the ten-dinenaional superstring/supergravity theories

IV. PHASE TRANSITIONS IH FIELD THEORIES

U.I The_Effectiye Potential at Zero Temperature

The main concept, in discussing symmetry breaking and

phase t ransi t ions in field theory is the effective poten-

t i a l , The effective potential includes a l l quantum

corrections to the classical field theory potent ia l . By

minimizing i t , we have the field configuration with minimal

energy, i . e . the vacuum of the theory. Thus, we can study

the symmetries of the full theory and not Just those of the

Lagrangian. This will then reveal phenomena of symmetry

breaking.

The generating functional z(J) for the full Green's

functions is defined by

Z ( J 1 » < 0 | T e x p ( i j d ^ x J ( x ) $ ( x ) ) | o > ( U . l )

where |o> i s the physical vacuum and $(x) a f i e l d , in

"both cases for the theory without the source term J(x)<|)(x).

In functional in tegra l representat ion

S(J) = (It.2a)

-38-
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where E is the action

s U . J ) '-k J(x)*(x)] (It.2b)

The logarithm of z(j) is the generating functional

iW(J) for the connected Green's functions

(It.3)

The Legendre transform of W(J) is the generating functio-

nal r(<i) for the one-particle irreducible Green's func-

tions

W(J) •

where

6J " *

d x J(x)*(x) and * is the average field

7(x) = ~ (x) =
d* I(I exp

exp (It.5)

is called the effective action. In a translationary

invariant theory, where ${x) is constant, we define the

effective potential V (?) by

(It.6)

The physical meaning of the effective potential can be

seen if we write

V^V"* n)

-39-
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Then

. . . . . . . .

V -(*) is thus the generating functiicnnj for one-particle
ef f

irreducible graphs with vanishing external momenta. So, we
can calculate i t by summing all one-particle irreducible
graphs and inserting a factor <t> for each external l ine.
Minimizing V f f U ) with respect to $ gives the ground
state energy of the theory. The value of <J>, at which the
minimum of the V e f f(I) is taken on, yields information
about spontaneous symmetry breaking. Fpecifically, if the
minimum occurs at 4> )* 0, then all the symmetries of
^(4>. 3 $), which do not leave 4> invariant , are spontane-

V
ously broken.

To compute the effective potential, many techniques

have been proposed. For the one-]oon level, the most

convenient one is the Coleman-Weinberg combinatorial me-
TTthod . This method cannot be easily extended to higher

orders in loop expansion. We note, however, that such an

extension is more easy with the functional Integral me-

thod 8 l .

Consider a general non-Abelian theory given by

i T r it f,

- 1 * 0 -
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where r is the matrix of Yukawa coupling constants,

A T is the covariant derivative and they a
D = 3 +

trace refers to the appropriate representation space. Then,

in covariant gauges and to one-loop order, the effective

potential is

where

61+n
.11)

— h Tr M'U

V ' = — 3 1r M U ) Jin

in

2.
In the above formulae, M =s _ i s the squared

that for fermions,
p p

Tr.atrix for the scalar3» M = (F4>)
2 2 — + —

M = g Tr[(T*) (T^)] t h a t for the gauge bosons in the
S

broken phase with vev <fi, n is the renormalization mass.

The factor 1+ in Eq.(U.12) stands for the four degrees of

freedom of a Dirac fermion and the factor 3 in Eq.Ct.13)

for the three degrees of freedom of a gauge boson, in the

broken phase.

In non-supersymmetric theories, for a Higgs potential

V U ) - XP($) with P(<{>) a fourth order polynomial and

X small, the dominant contribution to the effective

potential will come from the gaure boson part:(1),v
Coleman-Weinberg mode 7T

This is the case of the

, where there is no mass term

- 1 ) 1 -
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— y J> in the potential U[ + ) and the minimum is at

$ - 0. In these models, the one-loap result predicts spon-

taneous symmetry breaking, with the minimum of the effective

potential occuring at + » a, while one can solve X in

terms of o(dimensional transmutation).

Now, for the SU(5) model in the Coleman-Weinterg mode,

for most values of the potential parameters , we have the

energetically favoured synmetry breaking channel

SU(5) •+ SU(3) * SU(2) x uCl), with the vev for the Higgs

field in the adjoint representation

Twelve gauge bosons bocore masnive with mass

2 25 2 - 2 (it. 15)

Then, the dominant contribution to the effective potential

will be

and the effective potential

where d is the minimum solution — I - 0'
eff

-It2-

T »!•••** ar

SUPFRUNIFICATION, PHASE TRANSITIONS AND COSMOLOGY

As another example, let us consider the inverse hier-

archy SU(5) SUSY models , The superpotential is taken to

be

g = Tr A 2Y + J,2X(Tr A
2 - m2) (U.lB)

where A,Y are two adjoint representations and ia a

singlet. The equations ^ =
91

= 0 and 0 are inconsist-

ent, so SUSY is broken and minimization of the potential,

derived from (It.18), happens with

-3

-3

-3
(It.19)

<X> undetermined

Then, Including one-loop corrections, which will determine

<X>, we get, to leading terms,

,2,2 h ,2

„(!) V 2 m

eff 2 £
Xl 3OX2

u
(U .20 )

Now, for 29*2 < 50g2 (g is the 5U(5) gauge coupling),

X tends to ̂ie large compared to m (p=m is the natural

scale). The potential decreases for increasing X till

the region where (It.20) is no longer valid. Due to

-1*3-
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asvrotJtotic freedon, the po ten t ia l must turn over at some

point and a s tab le minimum develops at <%> ** m e , In

these models, m wi l l be the small input pass scale and the

scale ^X? >>m obtained by "dimensional t ransmutat ion" ,

wi l l be the large one. In r e a l i s t i c models, ai i s taken at

the intermediate range m t 10 GeV, from which the large

mass scale M- is induced, out of the f l a t d i r e c t i o n . The

construct ion of such r e a l i s t i c models, however, encounters

problem?, 'both from p a r t i c l e physics and from cosmology

(see be lov) .

,nhP fotfntim

As we have said in the introduction and seen in the

previous sections, unification of all particles forces takes

place at extremely high energies and, hence, i ts natural

arena is the early universe. The assumption of an empty

space, in which scattering events take place, is totally in-

applicable in that case, since one is dealing with high

natter and radiation density. There, the scattering events

take place in a thermal bath at some finite temperature

T = l /S. Then, In analogy with the T = 0 temperature, we

use the finite temperature generating functional Z (J)

. 21 )Tr e
-EH

where

also have

H is the Hamiltonian. As in the T =• 0 theory, we

W
e(j) = -i in ZS(J)

r e(J) = (we(J) - J * ) 6 J A J ) _ _ - (U.22)
6J
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thermodynamic a v e r a g e oT t h e f i e l d if(X)

Tr

™ ^~"U (H.23)
o __

r (ifO i s the f i n i t e temperature e f fec t ive action anct, in a

t r a n s l a t i o n a r y invar iant theory with if(x) = $, we define
ft —

the finite temperature effective potential V -„(•) by

rB(T)
Then, symmetry breaking occurs when

81+
3 *

The important observation " " i s t h a t , in Minkowskl

space- t ime, the only changes in the functional i n t e g r a l ,

compared t o zero temperature , are the boundary cond i t ions .

This means tha t in Euclidean space, the f i n i t e temperature

Green's functions are per iodic for Bose flel ' !s and a n t i -

per iodic for Fermi f i e l d s , in Euclidean t ime , with per iod

E. As a r e s u l t , the inorertum-spate Feynman r u l e s , needed

to ca lcu la te graphs, are the same as in the zero tenpera-

tu.-*j ^wartTir ^; r."; C t i ^ r ^ y , except t ha t every In te rna l

energy i s replaced by a quant i ty iui, s a t i s fy ing the

quant izat ion ron

en = 2niT for bosons

ID - ( 2n + 1)T>T for fermions (I*.25)

and all energy intepi-u.Tr are reple.i-ecl with a surs:

* \ 2iirT
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( I t . 2 6 )
« > - p ' ) •

Vsing these modifications, we find that to one-loop order

the finite temperature effective potential is

h }.- ... ..{l),-v . ..T
effv¥'~

(lt.27)

w h e r t . v l l ) C < | i ) i s r i v e n ' . v E q . ( l t . l O ) - ( l K l 3 l a n d

h r " r ( ,-, M'~ C i h / i

T ,
v ; = -is Tr In 1 + expl-x

/2-1

J
(U.29)

V" = 3 - — Tr dx x li
r f

n 1 - exp -

2
X +

There is a M.f;h temperature T » M expansion of the above

expressions. For bosons and for each degree of freedom

t1\ ! / 2

VT =

whereas, for fermions

^f = -

90

•t1
2 l / 2

2 r I 2 M f U ) 1 "I
dx x In 1 + exp -x + - L

5 —

t.31)

.i[ Afl . i^. . . .
" a 90 J 2 ^

- U 6 -
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The finite temperature corrections to the one-loop ef-

fective potential, in the high temperature limit, generate

a temperature-dependent mass term CT $ . This term

c o n v e r t s = 0 from a local maximum of V ._ to a local

minimum. In fact, above some T , * = 0 is the absolute

minimum, whereas for T < I , $ = 0 remains a relative

minimum, a metastable false vacuum. This cr i t ical tempera-

ture T , is the temperature, at which the minima are

degenerate. We can roughly estimate T by assuming that

the location i> « a of the asymmetric minimum is tempera-

ture independent. In this approximation, the criterion for

T is
c

Veff (U.33)

For
T 2

where B,C are model dependent constants, the condition

(It. 33) gives

2

(It.35)
Ed

The above result is expected in the Coleman-Weinberg type

of theories, since a is the only mass scale present and

any cr i t ical temperature should be of the same order of

magnitude. Thus in the 30(5) model, we have the dominant

contribution

2 - 2 2

2
102l.it2

(U.36)
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In a plobal ly "USY model, the f i n i t e temperature cor-

rec t ions t o the one-looiD ef fec t ive p o t e n t i a l , in the high
85temperature l i m i t , are wr i t ten

" 9 0 "

• T2{Tr + Tr I^ + 3 Tr M

(U.3T)

where K, (N ) are the operative (i.e. massless compared to
b f

T) bosonic (fermionic) degrees of freedom. Using this

result one can easily deduce that, for example, in the in-

verted gauge hierarchy model (U.18), the critical tempera-
ture in " ** m which is the natural scale of the model.

c

The ("inite temperature corrections in N = 1 super-

gravity are more complicated . The potential is given

by E Q . C 3 . 2 9 ) and the finite temperature corrections arise

through loops of properly normalized (i.e. with canonical

kinetic terms) scalar fields and their feraiionic super-

partners, gauge fields and gauge fermions, and gravitinos.

In the high temperature limit, we will have

eff
^ T 2

+ 3 Tr H 2 + Tr M

M2 H- Tr

where N is the total number of chiral superfields, N

is the number of generators of the gauge group G and
2

M_ is the square mass matrix for the spin J fields. Note
J

that, in order to compute the ̂ ravitino contribution, one

uses the pauge yvty a Q, where the gravitino decouples from

the would-be goldstino, which is separately included in the

HUPEKUHIFICATItJH, PHASE TRANSITIONS AND COSMOLOGY

fermion-- contribution in (U. 38), since i t is eaten by

gravitino (super-Higgs effect) only at the minimum of the

potential. Then the effective action gives a contribution

to the one-loop finite-temperature potential proportional
to

Let us first consider the minimal supergravity (3.30).

Then, the spin-zero contribution is

Tr M? = 2eG{(GiJ + + G G ) +
1 J

2+ (II - D G ^ - 2N} + 2K2C2(R)|y [
2,

t.1*0)

where C2(R) is the Casimir invariant for the representa-

tion R and L. sum over all representations is implied.

The fermion contribution is

Tr

and that of gauge bosons

Tr H 2 = 2E
2C2(R)|ya!

2 (h.

Putting everything together, the thermal corrections are

2 2
VefJ

D G ^ - 2(N +

The number of the chiral superfields is expected to be

0(100); for example, in the minimal SUSY SU(5) we have

-1*9-
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H = 60 (the singlet z for SUSY breaking, 3 families of

quarks and leptons, the adjoint Z^_ Higgs T, and two

5. and 5. Higgses H,H). Then, in the large N limit,

(U.kU) reduces to

2 2
.* ' 1 ) T urm ^- 0 i /1 1 1 \

Finally, let us consider the non-minimal superRravity,

characterized by (see Eq.(3.Jt6})

G = -3 in(Z + Z* - 5-S-) + F(y ) + F*(y •)
3 a a

along with a non-minimal f . The zero-temperature poten-

t ia l in that case is

f
2 ab

{kM)

One has now to normalize the fields and croceed as before.
88

In the large N l imi t , we now find

G + F

v

! !

One has to remark the following. From (h.h6), {k.kf), it

is evident that, in the large N limit, the global minima

of the total potential are given by the SUSY condition

F = 0. However, as in the global SUSY theories, there are
a

often degenerate minima satisfying this condition, and then

the non-leading terms in N could break this degeneracy.

-50-
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^.3 Decay of the False Vacuum

According t o the big bang model (see l a t e r ) , t h e u n i -

verse s t a r t ed from a very high temperature and, then , cooled

down up t o the p re sen t ly observed temperature of 3°K. In

our field theort lanpuetrp at finite temperature,this is

equivalent^ described by saying that. Initially * = 0 i s

the ground state of the theory. Then, ELS the temperature

decreases, at some critical temperature T the symmetric

vacuum will cease to t>e stable (false vacuum) and a new

energetically favoured ground state appears (true vacuum).

At that, point, quantum .thermal and gravitational fluctua-

tions will tend to push the theory from the false to' the

true vacuum. In discussing this transition, we have to

evaluate the relevant quantity r/V, the decay rate per unit

volume. During this phase transition, the univerpe will

expand exponentially and supercool in the false vacuum for

a period (l7v)~ , until \,le phase transition complete i t -

self.

First, let us consider the zero-temperature theory,

taking into account only quantum effects. One treats quan-

tum fluctuations in a semiclassical approximation, usjog

functional integral methods. After tunnelling, the further

evolution of the fields will be determined by solving the

clt.ssirf.1 field equations. We will not give full details,

since there are already excellent revlev articles . We

will simply state the final results. The decay rate per

unit volume Is

where

A =

V
(hM)

+ \ttw
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is the Euclidean ac t icn and f! i s a determinental factor

with dimensions of [mass] . <S> i s the- 0(l») symmetric

solut ion ( ins tanton) of the equations (Euclidean space)

3V
3 3 <f =

V V

e f f (It-50)

or equivalently

This 0(1*) symmetric solut ion has the lowest Euclidean

action S, and, t h u s , fives the dominant contr ibut ion

to (It.,US 1 - T h e i n i t i a l conditions are

-i —

_1_J_1II T * M ' T* ji -i ^ .^^

dp
= 0

p = 0

U.5l) is the classical equation of motion of a point par-

ticle in the potential - V , subject to a time-dependent

danrainp; force - 7*- (p clays the role of time). In terms
• p dp

of p , the Euclidean action becomes

A ; s E

The solution

cannot use

0
L2 'dp' e f f

(It.53)

must be non-trivial in the sense that we

If more than one such solu-&
false vacuum

tions exist, the leading contribution is from the one with

the smallest action.

After tunnelling the evolution of the field is de-

scribed by the classical equations of motion (Minkowski

space now)

- 5 2 -
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a r , e q u i v a l e n t l y (X = i p ) ,

( 1 * . 5 5 )

which is the classical equation of motion for a particle in

the X'Otertial V ($), start ing at some $ = <fi* with a time

dependent damping force. The evolution of $ ( t ,x ) , for

t > 0, describes the growth of a bubble of the true vacuum

in a sea of false vacuum.

Now, for the finite-temperature theory, there are some

modifications needed , Quantum s ta t i s t i c s at T / 0 is

ecir.ivalet't t< the Euclidean quantum field theory, but with

periodicity condition with period l/T in the Euclidean

time direction. Therefore, Instead of the 0(M symmetric

bubble of size r{0) considered previously at zero-tempera-

ture , one has now bubbles with centers separated by

r(T) = l/T in tile Euclidean time direction. As the tempe-

rature increases and the boundary energies become more and

more s:f-7:j ficant, at sufficiently high temperatures

T » r (0) the minimal enerpy field configuration will be

constant In Euclidean time and have an 0(3)symmetry. As
S.C+)

a r e s u l t , the action A should be renlaced by —~— ,

where S ($) i s the three-dimensional bubble ac t ion . To

compute S , U ) i one should find the 0(3) symmetric so lu-

t ion of

3* -, P = 1,2,3

- 5 3 -
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with "boundary condition

l i m , ^ .

or of

false vacuuin

,2 . , , , 3V f .U ,T)
d if 2_ a$_ _ e f f
. 2 r dr Hdr

r = v\x

(It.57)

(I*.58)

The decay rate per unit volume is again gi'̂ en by (!i.U8), hut

now the action is

f 1 /T r _ _
A = dt U J x {| a^ 3̂ 4, + veff(*,T)} ;

Veff(*,T)}

In a cosmologies! context, one has to compare the

decay rate per unit volume r/V,( computed from (U.US) and

-•(!».59)) with the corresponding natural quantity of cosmo-

logy (see next section), i.e. the expansion rate of the uni-

verse per unit volume(which from Einstein equations is

given by

5 (I4.6O)

where R(t) is the scale factor of the universe, dot means

differentiation with respect to time and p = V(0) is the
energy density of the symmetric vac

transition to occur, the condition

it

For the phase

r/v > H ( I t .61)

must be satisfied.

Usually, it is impossible to obtain an analytic solu-

tion to Eqs.Ct.58) and (U.59) and, also, to calculate the
It

determinental factor a analytically. One can obtain a so-

SUPEEUNIFICATION, PHASE TPAIfSITIONE AND COSMOLOGY

lution and the corresponding action S (if) numerically,

using coiripi't er ralnv.l&tiarif.. A3 so, in most cases, i t is

sufficient to have a rough estimate of the order of magni-

tude of fi .

Let us consider some cases, where the above considera-

tions have been applied. For the Coleman-Wejntr:rt PU(5l

theory, we have seen that , for T » +,

(It.62)
——— 75 2

where B = 9 s , C = 77 f, and the last term has been
added to csnceJ tne cosmclogieal term, so that the true
vaccum state $ = 0 have zero energy. As a resul t , the
false vacuuin state * = 0 has a positive energy 1/2 Bcr =
= V(0). The conditlim (U.6l) has been examined, in de ta i l s ,

91in the present case , with the conclusion that the jihasfi
transit ion, due to tunnelling, happens only at temperatures
T « Am/,_v, where, for the minimal SU(5), Amr,,_, ^ 10 " "
is the SU(5) A paratfeter. However, already before A , .,

the coupling constant becomes large, perturbation theory

breaks down and the above analysis no longer applies. In
92

fact , one can argue tha t , due to non-perturiiative ef-
or <4iji>fects, like condensations of the type <F F

the phase transition W11:L tske place before A. Also, from
93another direction , taking into nctoLnt the temperature

dependence of the coupling constants of the SU(5) poten-

t i a l , one finds that the phase transition will take place

before A, when „

< 0.
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For tin: PU5Y SU(?) theorj , tin- sutierpatential is given

tv ! , 17) and there exists the degenerate vac..™ ("1,19).
Tn nuncrr.ravity, these deger.e-r.t e states Ret sp l i t , but the

spli t t ing is very smell compared to "A . Let us nov add

the temperature effects . Concentrating only on the ad-

Joint Hiffgs field T, the quadratic tenperature-dependent

term in the potent;;:! -: s

= ^ (2] A2 + Tr T,S ( I t .63)

These f i n i t e tt-Kj •m-.t r re e f fec ts produce an addi t ional

s p l i t t i n g in the various degenerate st&U;L . However, flt.6s)

iF. mirJi i?.ed by <I> = 0, so the GU(5) phase is preferred

at i d r temperatures T >> -A. At T % M, wp cannot make a

de f in i t e s ta tement , t u t at low tenjcjrat.v.rps T << M, ve

can use the massle-ss quantum pas approximation, in which

the e f fec t ive po ten t ia l (eaual to the free energy) i s given

by

V = - —• 'II + X li *T + F-terms + D-terms (It.61*)
90 b 0 f

Since the SU(5) phase hs:: the most unbroken genera to rs ,

because of the f i r s t term in C ' l . ^ ) , th.r Hi';.) rthr.ar. has

the1 lovest enerRV and so is arnin nreferred for T << M.

However, d-:.e t o s t ronr couplinH effects , one would ex-

pect a sucor-sr.ior. of nhase t r a n s i t i o n s SU(5) •* EUfU). "

U(l ' + SU(3; x 3U(2) * U ( l ) . A closer inspect ion , how-

ever , shows that thr.E; t r a n s i t i o n cannot occur: Conditioti

(I1.61) i s far from sat isf icr i nrd, r o , a rapid phase t r a n s i -

t ion with many bubbles forming and perco la t ing lofkr impor-

sible in the present moie] . Superpravity terms are of
order (rim ,o) and cannot reverse the situation. The only
vii;,- out is to suppress the ta r r ipr between the phases and

-56-
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-6this can only be achieved ' by introducing very small
-12coupling parameters MO , a Eievere fine-tur.ing.

Final]y, another important factor in discussing phase

sitions in cosmology

Ont considers the action

transitions in cosmology is the curvature of spacetime.
97 9P7 I ' 7 "

(it.65}

and looks for minimal action stationary points of its;

analytic cor.tinuat:<;r to Euclidean space. Under the reason-

able assumption that the minimal solutions will have Q(k)

symmetry (at zero temperature:), the Euclidean equations of

motion are

and

(U.66)

.67)

where the length element is (ds) = (d^)2 + p(?) (dfl)£, and
97prime denotes d/dij. Then, one can construct ' an explicit

solution, in the thin-wall approximation (small energy dif-

ference between the vacv.um), and show that , in the case in

which a state with positive cosrnological constant decays

into MinkovBki space-time, gravity makes vacuum decay more

Jikely (the bubble action decreases and the radius of the

bubble at i t s moment of materialization becc:r<=s smaller),

compared to the flat space-time re^iOt. Note, however,

that in decays from a fplne vacuum with V(false vacuum) < 0,

things ari-1 just the other way around and gravity can s taMl-
75 07 GQ

ize a metastaWe scalar field configuration ' '

(some other recent work on phase transitions in de Sit ter
o r a n t i - d e S i t t e r s p a c e , c a n T:r f c u n c l i n P e f . ] C 0 ) .
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For sufficiently large curvature, i t has been pointed

out 1 0 1 that the radius of the bubble solution would exceed

the de Sitter T-HĈ 'US H~ , In this case, the or.ly Euclidean

solution of the instanton enuatiors (oyfiit free + •= 0) is

the homogeneous solutlors i|> = $ , where $ is the loct]
maximum of the potential. This is interpreted as homogene-

ous tunnelling of a horizon volume of space from • » 0

to if = $, , with tunnelling probability P°= e , where

i s u n s t a b l e s m d - s o - a f t e r

he field $ will clE.ssically move towards the

glo\-al minimum.

V. STANDARD COSMOLOGY

The expansion of the universe can be descr ibed "by a

simple Newtonian arguirert . Consider a mass m at radius

r of a homogeneous and i s o t r o p i c sphere . How expand a l l

length sca les by a fac to r R ( t ) . The i n i t i a l r ad ius vec tor

r wi l l t r t i .sform to r , where

Hence, t he v e l o c i t y of the expansion i s

u = r = — r = H r

( 5 - 1 )

( 5 .2 )

where H s R/R In cabled the Hubble parameter and expresses

the expansion rate of the sphere (dot, as usual, means

differertr.mior. with respect to time). If the spherical

ball represents the universe, then the present value of the

expansion rate H is called Hubble's constant. We can

write dovn an energy conservation equation for the motion

- 5 8 -

SUPEROTIFICATION, PHASE TRAITSITIOITS AMD COSMOLOGY

o f JO + E const.). This yields, if p is the

average densi ty of the t a l J of mat ter ,

const. = - |- (5.3)

This is Just Friedman's equation for the expansion of a
homofjpneous and Isotropically expanding universe, filled
with pressure free material, which of course can be obtained
rigorously from Einstein's equations, as we will see riov.

At the heart of the standard cosmology of our expanding
12 102

universe ' , there is the cosmologlcal principle: The

Universe is, and always was, homogeneous and isotropic. On

sufficiently small sealer, of course, the universe deviates

from isotrojiy and homogeneity. It is assumed that these

smaller scale, more local departures may tie treated as per-

turbations on the homogeneous isotropic cosmological model,

in the early universe.

The cosmolofp.cal principle Implies the Robertson-

Walker (PV) metric

. R2(t) sin2e
1-kr

where r,6,$ are ccmoTin? coordinates and k = 1,-1,0

corresponds to a closed, open or flat universe. The energy

momentum tensor for a perfect fluid applies here

diap:(p,p,p,p) (5.5)

where p is the energy decs't.y and p is the pressure.

Then, (5.1*) and (5.5), plagued into Einstein's

\v " " a' G (T,
M 1_
v " 2

X,V (5.6)
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P ; •';• :"i.T ^hn ^ r : — t i r c e component

31? = -l+nrT{p + 3 p ) s (5.7)

and for the space-space component

RR + ?.h': + r.ir = L-TI•;•;() - P ) B 2 (5.8)

3y e l iminat ing R from Eqs. (5 .7) and ( 5 - 8 ) , we get the

f i r s t order d i f f e r e n t i a l Friedman's equation

2 P (5.9)
BJ - R 2 " 3 »

The expansion rate H = E/R sets the characteristic time

for the growth of R(t). Presently H = 100 h km "• Miic-

= h (10 yr) , where observut.: cr L Z:; T { h. i 1

In general, the pround state will contribute a non-

zero vacuum energy density

|0> = °0 Euv

And then Eq.(5.9) is written as

(5.10)

(5.11)

where A .-. 6irG p is the L'c-caJled ccirmolORlcal constant.

Today, this is extremely small: A < 10" GeV •v 10" M '"

and therr: s t i l l remains a big mystery why.

In add-; tier; to Eq.(5.9) we have the continuity equation

(conservation of enerp)

d(p R3) = -p d TT (5.13)

P = -3<P + p) ̂ (5.13)

-60-
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Since we have three functions of time: R(t), p(t) and

p(t), to close the sir''., ve need a. third equation. Tais is

provided by the eolation of state:

P = p ( t ) (5.l i t)

Two simple equations of s t a t e are of moi:t i n t e r e s t :

( i ) IdeaJ p a of non r e l a t i v i s t i c p a r t i c l e s ( i . e . KT « me1")

or "dus t" , viM 1. = T)7m., c = nm and p << Pc , e . g . for
2 2

galaxies u "" 250 km/sec << c , p •>• Pu < < pc . Then, p = 0
i s an excel lent approximation and Eq.(5-13) gives

-3

MB
(5.15)

( i i ) Ideal gas of extremely r e l a t i v i s t i c p a r t i c l e s ( i . e . of

massless particles me << KT), so

(5.16) ...

where N{T) = N^(T) + ~ N (T) is the effective number of

bc-uric end. fermionic degrees of freedom at temperature T.

Eqs.(5.13) and (5.16} then imply

In this case, the entropy density is Riven by

s = ̂  N(T)-r

whereas the photon density is

Note that, from Eqs.(5.15) and (5.17), we have

PR

P-M « H * o
PR

(5.17)

[[>.',&)

(5.19)

( 5 . 2 0 )
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for the early universe. So, in the early universe, we are

ater on

enters the matter

in the radiation dominated er i I'j'd only la ter on

0(at T < 1 eV, t > 10 serO, tl't< uriv

dominated era.

Another approximation, usually assumed, in the standard

casmoloQ', is aditit-Etic expansion

££• (sR3) =* 0 (5.21)

Prov:d-d K(T) is constant, thin implies

BT = const. (5.22)

As we will see belov, the assumption of adial'Otic expansion

is at the heart of the various cosmologicall problei•>:• of the

standard cosmology and i t is th i s assumption, which is

abandoned fnr a brief period in the eay?.y V.isi.f'Vy of \he

universe.

For the radiation dominated era, Eei-(5.9) yields

n ( t ) - t 1 / 2

Ecniivalently, if we write Eq.(5-9)

(5-23)

(5.21.)

then, for the flat universe (k = 0 ) , we can solve it

explicitly using the initial condition 1(0) » •»»

(*) T(0) = » applies to an elementary particle picture

for the early universe. On the contrary, in a composite

particle picture, as it is suggested in some auperunified

theories, there exists a limiting temperature, of the order
103a

of the Plane!', temperature T

superstring theories " . Is reaD!1} T

The same is true in
an ultimate

tv-r. of the universe or a cri t ical temperature of

some kir.d i f a. phase transition (like the confinement -

deconfinement phase transition in QCD) ?

- 6 2 -
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Numerically

= 2.k2 * 10'6

C5.25)

(5.26)L(GeV) " ' • " ~ ^ a^> x(sec)
fror: which one can find the temperature T of the universe
at some time t or vice-versa. E.g. for T = 1 MeV, vith
only photons, e - e pairs and 3 left-handed neutrinos
present, ve find t ( l MeV) i< 1 sec.

Later, during the matter dominated era, ve have

H(t)

2h
t " for flat universe k=0

t asymptotically for open
universe k=-l

cycloid for closed universe k=+l -

(5.27)

Finally, the so-called de Sit tfr phase1 of the universe
is realized, for example, if in Eq.(5-ll) k = A = C and
q = const, or alternatively if p = k = 0 and A # 0 . The
universe expands with a constant expansion rate H

R(t) = eHt (5.28)

It is exactly after such an exponentially expanding (infla-

tionary) perioc1. that the adiabaticity condition is violated,

since at the end of i t a large amount of entropy is produced,

as we will see. After t lds brief background, let us now

discuss the various cosmologies] problems , most, of them

inherent in the standard model.

1) Horizon problem

An important feature of standard cosrelogy is the
10*te;;i stereo o*' pf.rt.icle horizon , or causally connected
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distance at time t . The distance that a light signal

cou2c 11avt proi af.Eted, sin.:*? the t ip bang, is finite mi1,

f̂ iver. by
t d t 1

1-n
for R « t , r ••

i?. 29)

III r / 'C;-:-r'r.

j 2t in radiation dominated era
dH(t) =<

I 3t in mutter dominated era

(5.30)

The present visible universe, which is our preset;-1 hcriz.on

= R V
'0 dt ' 1 . .28

5^ 10 cm

The essence of the horizon problem l i f s in the fact

that , vhereas the "size" or the "aciif factor" of the uni-

verse iru:.n:ases as R « t , with n < 1 , in Friedimr 't cc;:-

mc": r>f~/, this horizon distance d (t) (Eq. ( 5.29)) » incrnai-r^

linearly with time. Thus, when these two 3i:=tances , which

coincide today, pn- traced back in time, the horizon dis-

tance is alvnys less than the "size" of the universe: For

e j ' i i ' i f , at fIeco'>T>litifr l i t re t ,
' d

t,dec
10 sec.

d u ( t ) = 2tH dec dec {5 . 32)

whereas the "size" of the universe at that time is (from

the adiabaticity condition RT = const.1

' 5 -33 )

3000 k

- 6 1 + -
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which is two orders of magnitude bigger than (5.32)- This

means thst the present universe would consist of
2 3 6

(10 ) = 10 J causally disconnected regions in volume. At

temperatures appropriate for grand unification, e.fr.

T ̂  10 ~ GeV, the ratio of the horizon distance to the

"ai^e'' el the universe ii -vOdO ) and the problem becomes

even more drairp.tic. We cannot understand !:ov the present

large scale homogeneity/isotropy has been emerged.

2) Flatness problem

Thft quantity

n = P/P (5.31*)

meamiver. the ratir> of the energy densitv of the universe to

the cr:.tj.c'i.-2 density

Pr = ¥*• ( 5 - 3 5 )

c Onij

the largest density the universe can possess to expand for

all future time. In general, (J varies with time, but for

k - 0 it is 1 for any time. There is a connection nf 0

and another parareter, the deceleration partur.̂ ter

RH
(5.36)

From Eqa.(5.7) and (5.9) we get

1 = ^ ( 1 + 3 ^ ) (5.37)

In the radiation dominated era, p = ̂  and q, = n, whereas

in the present matter dominated epoch, p << p and

qQ = flf,/2. From HQ = 100 hQ km sec" Mpc" , the present

critical density is p = 2 x 10" h. gr cm" , vhereas the
"" -29 2

present matter density is wrUtc-r, n.E p = 2 x 10 ^n^n
gr cm

Although q and S). are not fcK.vm with great p r e -

c i s i o n , we kiwi: t ha t 0.05 < q.^ 2 and 0.1 < il < h.
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From Eq. (5.9), we can write

fi(t) =

For the epoch of nucleosynthesis, when t.

T = lOMeV, E(tM) = 10

the GUT epoch, with T ^ 10'

'-GUT' = ' "~5

'H
io"2s

-16,

(5.38)

and

and n(tj = 1 + 0(10 ). At
16 17

(JeV, c(t
GUT'

= o(io"55)

and fl(tGUT) = 1 + 0(10 ). This means that, very early

in the universe, the ratio of the curvature term k/R to

the density term 8irGp/3 was extremely small, i.e. the

expansion of the universe proceeded at the critical rate

H = BTTGP/3, to a very high degree of precision. So, our
cr

universe is today (and has been in the past) closely

described by the k = 0 flat model (£! = 1 is a critical

stable point). The smallness of the ratio E requires an

"initial condition" and constitutes the flatness
105, 106

problem '

3) Small-scale inhomogeneity (or origin of density

perturbations)

On small scales (< 100 Mpc), the Universe is very

clumsy. Today, 4p/p •*, lCr on the scale of a galaxy
12

(= 10 M ). However, to create galaxies, it is necessary
" -1* -S

to assume density perturbations of amplitude Sp/p ^ 10 -10

or so, on the scale of a galaxy, in the early universe. On

the other hand, the uniformity of the microwave background

radiation on very small angular angles (<<1 ) indicates that

the universe was smooth, even on galactic scales, in the

early stages. In the standard cosmology, the initial seed

for Sp/p> was, in general, put in by hand.

SUPERUBIFICATION, PRAeE TRANSITIONS AMD COSMOLOGY

h) Baryoi; asyjipetry

The baryon asymmetry problem ia to understand why, in

the observable universe, the density of t>n.ryonB is many

orders greater than that of fcntibaryons and, also, why the

density of baryons is much less than the density of photons

rig/n i- 10 , Again, in the standard cosmology, this value

is put in by hand.

The above problems are problems associated with the

standard cosmolop/. However, there exist some others, which

are created when we put the unified theories in a cosmolo- ~-

gical context.

5) Magnetic monopnle prr/Met:

then tiere occurs a phase transition, associated with

the breaking of a group G •+ G1 * U(l), topologically stable

.in mfiopoles are produced 10T
Their mass is

MG

M
(5.39)

and their number density is rougMy

1
n ^ —r (5-^0)
M ^J

whcri? C ia the correlation length of the Higgs field.

This cannot be grt'»1 er than the causal horizon du(t) = 2t

(in a radiation dominated era). So. at the GOT time, i t Is

1 1

Since annihilation of such monopoles is rather negligible

sit c? t

wherp p=

, at present their matter density is estimated

f> = m n •v- 1015p 1 (5.U2)m n •v- 1015p 1
M M c

-2° -3
10 ' gr cm is the critical density today.

Under such circumstances the universe could not have sur-
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vived until now. This primordial monopole problem Is very

acute, since it is present in practically all GUTS.

6) Domain wall problem

Domain walls, which are produced when discrete symme-

tries are broken, give rise to a somehow similar problem,

since their surface density is so large that the observable
109

part of the universe would be largely anisotropic , For

example, such domain wall problem arises in theories with

the simplest SU(5) potential, in theories with spontaneous

CP-violation, in axion models etc, and there must be a

mechanism to avoid the undesirable effects.

7) The gravitino problem

In the early universe, gravitlnos with mass

m , i> 0(M ) decay after the process of nucleosynthesis,
•371 v

which invalidates the successful preduction of light

elements abundances . Such undesirable effects from

gravitino decays can be avoided only if their relative
I l i a

abundance was reduced to very small amounts .

8) The Polonyi problem

The Polonyi problem is due to the fact that the

Polonyi field is only coupled gravitationally to itself

or to matter, so it takes long to reach its minimum and

release the energy stored in it. As a result, the universe

undergoes a late period of reheating and any baryon-to-

photcn ration is diluted by unacceptable amounts.

The interesting thing about the Inflationary universe

scenario, to be described in the next section, is that, in

principle, it can solve all the above problems. To be true

the solution to the baryon asymmetry problem was first
112

suggested many years ago and it has found its natural
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realization inside GUTS . The inflationary universe

scenario simply makes the baryogenesis mechanism more ef-

fective . Starting with a baryon symmetric universe,

there must be three ingredients, necessary for baryosynthe-

sis, all of which are present in a GUT: (i) B-nonconserving

interactions (see Eq.(2.30)); (ii) violation of both C

and CP, necessary to produce excess of matter over anti-

matter, and also present in GUTS; and (iii) departure from

thermal equilibrium, something which naturally happens in

our expanding universe. The standard scenario for baryo-

genesis Is the out-of-equilibrium decays of superheavy

(mainly Higgs) bosons (or even fermions), whose inter-

actions violate B conservation.

To terminate this section we have to add two more

cosmological problems which have not yet found a satisfac-

tory answer, although some interesting speculations have

been put forward for their solution. These are: (i) the

singularity problem: the scale factor R(t) vanishes at

t -+ 0 whereas the energy density becomes infinite

(interesting speculation: creation of universe from

"nothing" ). (Ii) the vacuum energy (cosmological con-

stant) problem: Associated with every phase transition

(GUT, Heinberg-Salam, QCD etc.), there is a reduction to

the vacuum energy or, equivalently, to the cosmological

26 2constant A by many orders of magnitude (1. 10 GeV ,

1, 10~ CeV, "» 10~ GeV etc. respectively) and, today, we

end up with A < 10~ 1 2 0 M 2 "- 10~ £GeV2. Such a series of

cancellations, up to zero, with an accuracy of 10 GeV ,

remains a t>ig puzzle (there are many interesting speeula-
11T

tions , but none really solves the problem. Some kind

of symmetry must certainly be involved here ).
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VI. INFLATIONARY UNIVTPfrF. SC5HARLO

The in f l a t iona ry model "L" i s based on the idee thai,

there vaj; an e p c h during which the vacuum energy

p . s#soci&ted with the GUT p):nr.e trsi••• i t i o n , d^
va.c'

the t o t a l energy densi ty p of the u n l w r t r . Before: and

af te r thii- epeiU, tlifi rad ia t ion energy d e r s l t y

M rad 30
P."1* if dcir.inf.it, and the universe i s in

the F r : e ^ , ! phase. However, to r ing t h i s short epoch of

the vacuum energy dominance, we have p = 0 r a d
 + P

vfitV p - const . , sr,d
vac:

„ =
p

vac

VBC

= const. Hence

( 6 . 1 )

and this yield? the exponential expansion

R(t) * e H t (6.2)

Curing this period, the universe h- in the tie Gilt.tr vhei.f

and, frorii Ea.(5.13), since p = 0, we have

p = -p < 0 (6.3)

3o, the pressure is ne(j;-+ :'•« and i t iE this which makes tlv:

univerne expand exponentially.

As we have seen in the study of the GUT phat.e t rans i -

t ions , at very hj.fL temperatures 4> = 0 is the absolute

minimum of the potential,whereas as t.p^e;*£.'i.vir decreases,

there appears a second local minimum $ = 0. Until T > T^,

the universe is trapped in thf. <f = 0 vaeui:r a\ d is in the

Friedman phase. For T < 1 , tl'n< $ ~ o minimum is lower

than the if = 0 one, the non-zero v&cunir energy p ap-

pearc and dominates over p . This is the beginning of
r&d

the inflations.rj- period.

-70-
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However, to assume that, inflation takes pleice as the

universe supercools in the false vacuum doeK not ».o!t_.

The tubtDes vitli the tn:i? vacuum inside do not collide fast
119

e:ic.i:f:h to coalesce and make an homô eneo-.js unlwrte

Simply speaking, one canr.pt Inflate the false vacuum. The

phase transition wt? vti.t ir not o:' XY.f. type vith tumie].ling

frc-m a fslpe to true vacuum and bubble fcrwition. Instead,

one has to allow first the phaar transition from the false
l?0 121

to the true vacuum and then inflate the true vacuuir

This becon.er, posrible if the potential has a larg^; flat

region near ifi = 0. In this scenario, the phase transitiUin

is of the so-called "slov-rollover" type. During the "slow-

rollover" transition, a single bubble (or fluctuation region\

with tl.t t r ie vacuum inside, under^oos infleticn end grr.vs

to a region which includes our visible universe. This is

possible, since as the temperature dct-ronnes , the barrier

between false ami trut vacuum becomes small enough and, then,

<H'.e to quantum and/or thermal fluctiii.-tio^s, i t is enough for

one sueh bubble to be kicked out. uf t i t herrifr to tls-

"slow-roi:icver" region and be inflated there.

We distinguish three sta^n dur'ng the inflationary

process:

3) The tunnelling

Due t o thermal and/or quantum t u n n e l l i n g , 4 i s taker,

across the b a r r i e r (remem^.er t ha t we need Jus t one bubWe

with the t rue vacuuir ins ide t o ujqjlf..?.n our v i s i b l e un ive r se ) .

The dynamics of the above process determine wher, oiid how the

picceas ocf.-urs- a n ; , vJfo-. Ihe value of $ a f t e r the b a r r i e r

i r pene t ra ted . For d e f i n i t e n e s s , fvp-vosse t h a t the b a r r i e r

is overcomf: when the temperature i s T and the value of

<• i s $ <- a. From thit; p o i n t , the " s lov - rq l love r "
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>•'.- r,.:.;.- to the t rue vacuum * = a stu-.-i.r~. This bring.- us;

to the second stage of the seen,-] ' t , i . e .

2; Inflftior c~ "slov-rollover" period

Di'^rig th is stage, the evolution of 0 ; s1. adequately

described by the semi-classical equation of nation. The

exp.-nsion -n.U-. V it, it n:r;. ~r.~_ , i'̂ f ernined by tile energy

density o? i.h< unive"fe

with
= 1 I2

rnd

(6.10

(6.5)

where p
r

...... p represents the energy density in rsciation,
rad

produced by the time variation of cj> - For TQ « T̂  , the

original tlitii::.' e< trr onent makes a negligible ror&t r:;but ion

to 0. Then, Eq.(5-13) can be spl i t Into two equations :

t'r.r seraJ-clasr. io;;i eou^tion of motion

C 6 . 6 )

and the evolution of p
r^d

P + hup = r * 2 {6.i)
rad rad

Is norni-lized z' ttf-.t ft;; X.im t i c tci'r Is — 3 if? 41 .

The term acts like E fyict: ui •' 1 and arises,

because the exp."n ; tr of the universe "red-Ehifts away" the
•2

kii.f'ic enr.-[j of i*. T!:i: tent- P i). nr-.a F if account

for part lclf creation, due to the time-vp.r; p.' "ci" of ^ (they

aj'iv not importr,i'- ii,.;,'p.g the "slow-rollover" period).

Ue assiume $ to ht ;;iHtially homoiteneouK. We take the

sizo of the sir.cvth small rcfian (inside a bubble or :i\:.'u-

ation region) to be of the order of the "phy?-;<-: horizon"

F" and follow the evolution of if vithin i t . For V

-12-
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sufficiently flat between $ - <f> and ^ = a, ^ fivolvec

ve:'j clr;vly in thi.t rc-p:on and the motion of if i s fr ict ion-

dominated, so that En.(6.6) becomes

If one t r ies a solution +

afte1" on- e-fold. For V

01
3*

It

(6.6)

= e , I(I tak<;p off e.r[;onentially,
sufficiently f l a t , the "rollover"

titr.e t required A +o transverse the flat regie:, cr

be long eomcared to the exr-ar. ion tiinescale H . For de-

finiteness, sny t fC If"

During this period, p = V($) - V(̂ > = 0 ) , since both
1 •? , •.— t and p , are <<V * ) . The expansion rate is then2 rad
Just

H - f o - V ^ / t "" M

8nG
- ^ v(0) ( 6 . 9 )

While Hwhere V(0) is assumed to be of the order H

is cor]!,t,(,i t , P. JTC\E expor.entiE.llly

R(t) ^ eHt (6.1C)

and for t = t = 60 H , R exp;:rds by a factor e

drv.i.r.g the tTslow-rolloverrt period. As a r t^ul t , thr physi-

cal Fj-iii- of the smooth region incr"r,r.es to e H ^ 10 H

This is sufficient to solve the horizon and flntness prob-

lems: Our observable universe today ("v 10 cm), at the

grand unification temperature T ^ Id1 ' " ' GeV, had a

physical size vei l within the physical Fiixe of a smooth

region, which solves the horizon problem. On the other

hanii , tlr- qufrtJty e( t ) of Eq. (5.381 becot-.c-s exponential-

ly snalJ (•!• cf'rr inflation £ „ = eJ after
In fact,before

because of this exponential deor'fisne of e, the Inflationary

universe predicts tlsat today 0 should be
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l(± 0(10~ g nUm e l")) . Alro, the magnetic I'/ropole problem

is obvi.c'VL'ly avoided, since Higgs fields sr» correlated and,

therefore, apprmtipj+tly uniform, in a fluctuation region.

For similar reasons, the domain vail problem is avoided.

3) Reheating

After inflation, $ will start to grow fast as the

potential steepens to reach $ - a. Hear $ = 0 , 4 oscil-

lates around the absolute minimum with frequency w:

a2 = V"(a) M
(6.11)

As if osci l la tes about $ = " , i t s motion is damped by,

both, the expansion of the universe and particle creation.

The r-dependent terms in Eqs,(6.6) and (6.7) are now

important and account for part icle creation, due to the

time-variation of 4. r($) is determined "by the part icles

with which 4 i s coupled and by the strength of that

coupling. Hear $ = a, I is the decay rate of the $

(Higgs) par t ic le .
123To be more precise , one needs a potential with a

flat region, where if term is negligible and the motion of

$ is a friction dominated, i.e. 3H<j> = - — • This requires

an interval, where

< 9 H
g

,1/2 (6.12)

If • > $ , <t> denote the starting and ending values of

$ in this interval , we must have: $ - * £ O(lOH), to

insure that quantum fluctuations will not drive $ across

-7U-
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12^a
the flat region too quickly . This is because in

de Sitter space, the scale of quantum fluctuations is set

by H: A* s H/2n (H/2IT is the Hawking temperature). Then,

the time required for

H~

to transverse the flat region

should he >, 60H~ (to solve the horizon a"d flatness prob-

lems), that is we must have

iH dt

t. *.

(6.13)

FIGURE The potential for a successful inflation

It is during this de Sitter phase that quantum fluctuations

in $ produce density perturbations Sp/p necessary to

explain the small-scale inhomogeneities. Quantum fluctua-

tions in <|> create density fluctuations Gp/p, with dif-

ferent sizes (wavelengths) and amplitudes. Since this is

a quantum effect, we expect that their sizes are much smal-

ler than the horizon size (strictly speaking, the event

horizon ) H~ . As the universe expands, these also grow

(their wavelength gets red-shifted). Since the event hori-

son, within which we have causal microphysics (quantum
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fluctuations in if) remains the same during inflation, the

fluctuation size will reach H and cross it. To an ob-

server inside horizon, the fluctuation will seem to dis-

appear. At that time, microphysics freezes out and, also,

the fluctuation 6p/p freezes out, with an amplitude which

can be calculated. After inflation, during the subsequent

Friedman-Robert son-Walker (FRW) phase, the horizon distance

prows faster than the fluctuation size and, eventually,

there will cosie a time, when the fluctuation reenters the

horizon. The observer will then rediscover the fluctuation,

but now with perhaps a galactic size. This is how infla-

tion provides the seeds for the formation of the large-scale

structure in our universe. The theory for calculating the

amplitude <Wp, when it freezes out, is rather involved

(Refs. 80 and 12>4 ] . The final result is that the amplitude

of density perturbations, on a wavelength H, is

where M^-) applies if the scale in question Jl reenters

the horizon when the universe is radiation (matter) domi-

nated; H is the value of the Hubble parameter during in-

flation; dct> - H/2TT is the fluctuations in 0; and i(t )

is the value of $, evaluated at the time of freeze-out,

when the fluctuation relevant for the scale S. leaves the

horizon. The important thing is that this is not only an
12S

almost scale-invariant Harrison-Zeldovieh spectrum , but,

it also enables us to calculate the spectrum of density

perturbations, from first principles, in terms of the

parameters of an underlying field theory. To achieve an

acceptable amplitude for density perturbations, we must

have
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Sp/p
-It -

10 -10 (6.15)

Note that this limit also comes from the fact that, on angu-

lar scales » 1°, the temperature fluctuations

AT/T = ̂  Sp/p must be < 10~ -io"5 to be consistent with

the observed isotropy of the background radiation

Constraint f6.l5) turned out to be the most stringent one or.

inflationary models •

The reheating scenario depends on whether V > H or

r < H. If r > K, the coherent field energy density
1 * 2

(p, = — i + V(c(i)) is efficiently converted into radiation
(good reheating). The reheating temperature is

a A
(H2

i/a

(6.16)

In this case, baryosynthesis occurs via the standard out-of-

equilibrium decay mechanism * If, on the other

hand, T < H, P will not immediately convert into radiation,

but $, as it continues to oscillate, redshifts away vith

the expansion. The universe then consists of a very cold

gas of * particles. Eventually, when all f particles

decay, the reheating temperature

viously, by a factor '
RH

30

TTEN(T)

l A (r

is smaller than pre-

(6.IT)

Baryosynthesis should occur now directly via very out-of-

equilifcrium decays of cold $ particles . If the mass

of the Higgs boson, responsible for generating the baryon

asymmetry, is M , then the net baryon number produced isH

lRH
AB (6.18!
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where AB is the baryon number produced by the H, H*

decays.

Usually, there is another constraint, which must be

also satisfied for a successful inflation, namely the ther-

mal constraint : the high temperature potential V

must have a minimum at <fi = 0 or, more precisely, at a

point where the zero temperature potential is flat (first

and second derivatives of V vanish). This is not satis-

fied in minimal supergravity along with the other con-

129

straints , but it is possible to find non-minimal exten-

sions, which satisfy all the constraints

The last, but by no means least, requirement for a

successful inflation must be the potential to come from

a successful particle physics model. In fact, this must be

a guide in the search of inflationary models. We will not

give full details of the various models considered in turn,

in the search for successful inflation. Initially, the

Coleman-Weinberg potential was considered as a good candi-

date, but, above all, the magnitude of the density pertur-

bations produced was uncomfortably large . Supersyro-

metric models, based on the inverse hierarchy, also were

unsuccessful . However, supersymmetric models, in

general, appeared to offer the best hopes to realize infla-
132

tion . Note also that, in order to avoid radiative cor-

rections to spoil the flatness of the potential, it is

almost essential that the field * responsible for infla-

tion, be a singlet field . Since such gauge singlet

fields are present in N = 1 supergravity theories, super-
13!+

gravity models have been considered extensively . In

particular, inflation has been implemented in the maximally

symmetric SU(N,l) supergravity models . No model, how-
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ever, seems to have managed to implement inflation in an

unambiguous and natural way.

Moreover, the problem of initial conditions
136

s t i l l controversial. In particular, whether or not * = 0

is chosen as the in i t i a l condition has been questioned

However, in "primordial" inflation models, where <<(i> i*L ,

proper in i t i a l conditions are obtained

One scenario, which deserves particular attention,is
139

the chaotic inflation , which seem to be realized in a

wide class of models. The scenario is based on chaotic

initial distribution of the scalar field $. Domains of

the universe with [$\ £ 0(1) M can go through an in-

flationary period, as $ slowly rolls to the minimum of

its potential V($). In this type of inflation, the expan-

sion of the universe at the inflationary stage is quasi-

exponential, since H slowly changes during inflation. In

the models of chaotic inflation, the assumption is made that

in the Lagrangian the kinetic energy terms do not dominate

over the potential energy, which means that $ must be

uniform on scales larger than the horizon, which is perhaps

unreasonable. The chaotic inflationary scenario has been

also considered under the combined action of a scalar field
1U0

and gravitational vacuum polarization

Before concluding this section, we recall that the

inflationary universe predicts that today fi = 1, to a

high accuracy. However, luminous matter in galaxies

accounts for only ft. ^ 0.01, whereas baryons seem to
D ,lum

contribute fi^ , < 0.1. There can be non-baryonic
0, baryon •*

dark matter (e.g. white dwarfs, Jupiters, etc.). But cer-

tainly, to cover the gap between 0.1 and 1, as required

by inflation, we need particles with only gravitational
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effects at present. This is the dark, matter problem

"There are many possibilities, like massive neutrinos, pho-

ltlb 141c
txnos, axions or quark nuggets .

VII. KALUZA-KLEIN THEORIES AND COSMOLOGY

In recent years, there has been a considerable interest

in the revival of the old Kaluza-Klein (K-K) proposal ,

namely that all fundamental interactions, today described

by theories with local invariance under some given symmet-

ries, could be (geometrically) unified in a higher dimen-

sional theory of gravity, based on local coordinate and

Lorentz invariance. Given that modern physics is based on

two different concepts: local coordinate invariance, which

leads tD general relativity, and local gauge invariance,

which leads to gauge theories, what the K-K approach

actually does is a unification of these tvo basic principles

into one: local coordinate invariance in more than four

dimensions. Gauge invariance is then not an independent

principle, but it can be deduced from the general covariance

in higher dimensions. Through some compactification mecha-

nism, the extra dimensions are curled up into a compact iso-

metric space of presently unobservable dimensions, whereas,

in the four dimensional space-time, there are left the usual

gravitational and gauge interactions, as an effective low
11*3

energy approximation of the fundamental theory

The idea is certainly one of the most revolutionaries

introduced into physics and there exists a widespread feel-

ing among physicists that it must be relevant, at some

stage, in Nature.

Still in the higher dimensional perspective, "but in a

different context, the recent emergence of superstring

theories has created a lot of excitement. The cancel-
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32
lation of all anomalies (including gravitational ones),

as well as of infinities (up to one-loop level, this has
32

been verified ), has led to hopes that one can have a

consistent quantum theory of gravity, along with a pheno-

menologically acceptable particle physics. Various investi-

gations ' support these expectations (in particular, one

can get the chiral quantum numbers of quarks and leptons,

thus solving the chirality problem of conventional K-K

theories). These theories are naturally formulated in ten

dimensions and, upon compactification, one can get a mani-

fold M x M , where M is the flat Minkowski space-time

and U a compact six-dimensional space.

In this section, however, we will only discuss cosmo-

logy of a conventional K-K theory, in the case where the

effective potential V „„ depends only on the scale b of

the cotnpactified internal space, i.e. V = V fj.(b)- This

includes a wide class of models , for example compactification

by (one-loop) quantum fluctuations due to matter fields

(Fiefs. ll*li, ll*5) (in analogy with the Casimir effect in QED)

or by a vacuum expectation (vev) of a background matter

field present in the theory * In a more general

case, one would have a dependence of V „ on another

scalar field and/or higher derivative terms, like R^,

Py,,R , !\™p0
R > a a l n superstring theories. These more

complicated cases remain to be fully investigated.

In K-K theories, the fundamental constants depend on the

internal radius b. Sc, Tlewton's gravitational constant G

U8and gauge coupling constant g are given by

,1/2

0
(T.I)
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where G i s the g r av i t a t i ona l constant ir. the higher

H = (k + D)-dimensional Laprangian. Any change in volume of

the i n t e r n a l space w i l l generate a chanpe of the physical

cons tan t s , e .g . r, and a . There are a va r i e ty of em-' R N em

p i r i c a l r e s u l t s l " 9 j which suggest tha t G and a have

remained unchanged over cosmolrj-i caJ time

'a fa < 10
em em

"11 "1 {1.2)

Something in the theory must keep the extre dimensions sta-

t i c . In the class of models we will discuss, this is achie-

ved by an appropriate fine-tuning of b, which will also
CO

give zero four-dimensional cosmological constant A . If,

however, before the time b had reached i ts equilibrium

value \i , i t was ever away f roir that, there could exist an

effective foil]—dimensional cosmologica.1 constant, which

would drive an exponential (inflE.tionary) period for the

four-dimensional world . In fact. , this could be a

rather general phenomenon. After the inflationary period,

h will finally do a. rapid oscillatory approach towards its

equilibrium value b ' . This is. a camped oscilla-

tion in which the damping rate of the oscillation amplitude

is determined ty the expansion of a{t) (a(t) is now the

seals; factor of the four-dimensional world) and the oscil-

lation frequency is of order b (presumably i< Planck

energy). This rapid oscillation can then produce energetic

particles, which in a realistic model will include X,Y

bosons, W, Z, photons, gluons, quarks, leptons ar.d/or their

SUSY partners. This is the ennl opue of the last stage

(reheating) in the inflationary universe scenario.
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In applying K-K theories to the early universe, one

must provide solutions of the type F x If , where F is

now the four-dimensional Friedman universe, and, moreover,

give a positive answer to the stability of such solutions.

In discussing cosmology in higher dimensions, we choose

a generalized FRW ground state metric

gm = diag (-1, ^(tjg^tx), (7.3)

where x(y) are 3(D) spatial coordinates (we assume a

D dimensional compact Einstein space). Then, the components

R m of the time dependent Ricci tensor for 1* + D dimen-

sions are

R Q 0 = 3a"
1 a + D b"1 b

R±1 = -(2k + aa + 2a
2 + Dab"1 a b) g

B ^ = -(2k + *:*> + (D - 1) b £ *• 3ba.~l

If we define the energy momentum tensor a.1;

b a) g

T =
MN

P
P 3gij

PD i
mn

, T = = -p +

the (h + D)-dimensional Einstein equations

give the dynamical equations

" 6 ^ TMN

(7.U

Dp
D

( 7 . 5 )

( 7 . 6 )

( 7 .7 )

(7 .8 )
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b ' ' [bj UJ|bJ b? D+2 LD+2 D

(7.9)

From these, one can get the first-order Friedman equation

(7.10)

One must supplement fiese equations with the conservation

equation for p, V-r , p

It (7.11)

where fi.^ (ft,.,) are the three (D/-dimensional volumes :

For t.ĥ  tî ree (D)-dimensional sphere, they are: ££,, = 2?r R f

Now, one has to determine T , i.e. p, p , p . Given

a specific model, we have to calculate the free energy F,

from which we deduce p, p , p . From the free energy, we

define the energy 0 and the entropy S by

S - - • £

+ TE = F - T ||-
T

(7.13)

rhen

P =
"3"D 3 Sl.,flD 3a

1 1 3U

(7.l

SUPERUNIFICATTON, PFfASE TRANSITIONS AND COSMOLOGY

In general, F, p, p , p will depend on a, b, a, "b, as

well as on temperature T. As we said at the beginning, we

are going to consider here dependence of the effective

potential on b only (and, of course, T), This is equi-

valent to say that we take the 3-dimensional space to fee

flat compared to the D-dimensional ons [and also ignore

a, b dependence). We can then vrite

F = f(t, T ) (7-15)

Initially, the (̂4 + D ) dimensional universe was very

t: T > —, —. In that case, the free energy is the [k + D)

dimensional radiation

h+c

5 " a3%
 T

F « - n3nD T
M P " (7,i6)

Then, the entropy is

(7.17)

As a result, if the entropy E in a (3 + D)-dimensional

comoving volume is constant, we have that, in this initial

radiation dominated stage,

T « (a 3b D)" l / 3 + D (7.18)

Then, solutions of Ecjs. (7-8)-(7.10) are of the form

a, b . t 2 A + D (7.19)

Although the entropy per (3+D)-<lim comoving volume

remains constant, the entropy in the 3-dim comoving volume

can increase. This is achieved at the time of collapse of

the extra dimensions (through the compactification mecha-

nism) , when the 3 dimensions expand while- the D dimensions

contract, and the total mean volume decreases. Then, the

temperature increases and a large entropy (̂ 10 ) can be

obtained and squeezed into the horizon 3-volume (equivalent-
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ly, a can, at the same time, increase largely, by a factor

at least VLO ). This approach to inflation, which does

not require a cosmological constant, har been studied by

various groups ' . It seems to need a large number

of extra dimensions (D > 1*0) to work. Certainly, one can

increase the entropy in tht: horizon 3-volume this way, but

it is not known if there exist a consistent physical moiiel

for the above approach to be implemen+«d.

Next, we come to a later stage characterized by a

temperature T in the range — < T < —. At that stage, we
a b 1 5 5

usually have a free energy with contributions coming

from the 4-dimensional radiation, through a finite tempe-

rature effect from various kinds of particles contained in

the theory, as well as from effective background matter

fields, as for example quantum fluctuations of matter

fields ' and/or the vev of matter fields present in
1U6 1U7

the theory ' . Then, we can write

(7.20)

where the first term represents the background matter fields

contribution (e.g. n = ̂  for quantum fluctuations , n = 7

for 11-dim SUGRA or n = 2 for 6-dim Einstein-Maxwell

theory ), and the second one represents the 't-dim thermal

effects. Then we have

BT

v =
D

- — + BT

3BT

It

- p + n
m rad

n A_
D ,n

= P3m

- P
Dm ( T . 2 1 )

SUPERUHIFICATION, PHASE TRANSITIONS AND COSMOLOGY

These are now the expressions, which have to be substituted

in Eqs.(7.8)-(7.10).

In order to see if we can recover the Friedman universe

i.e. a solution F « N , we set b = const. Then, Eqs.(7.8)

to (7.10) give

12 „,. (1*) -2k

7 (7.22)

(7.23)

where we have defined Newton's constant by G = ~- and the

^-dim. radiation energy and preF^ure by

KL. * Vrad' Sd " Vrad."
How, we immediately recognize from Eq.(7.2h)(compare

with Eq.(5.11))that the effective four-dim, cosmological

constant is

A = - ~ + - (7-25)

where V f.i.tt) is the total effective potential for the

system of matter and gravitation, defined by (after assu-

ming Poincare invariance)

eff

(7.26)
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t M A

where V - fj o = — i s the usual 4-dim energy d e n s i t y .

V p f f i s the minimum energy of any s t a t e in which the expec-

tation value cf the fields has the value indicated by the

argument of the potential. Hence, a stable solution is one
associated with a minimum of V ff "

In fact, it is not difficult to ?ee that the Friedman

solution with A = 0 is the stable solution. Eqs.(7.22) to

[1.2k) give the Friedman solution in a radiation dominated

Lini verse if

(h)
A = 8-nr,., vVeff

d Veff ( b )

(7.27)

whicv indicate that the Friedman universe corresponds to a

stationary point of V f, which vanishes at that point. It

has to he emphasized here that Ear,. (7.27) imply a fine-

tuning of the (1. + D)-dim. cosinolopical constant A, so

that 'A = 0 :

" fill
T - ™L , , . „ \V (7.28)

where b is the constant solution obtained from (7.23}

(7.29)

To further check the stability of this solution, i.e. that

the stationary point (7-2T) of V corresponds actually
1 r 1 1 c / i fill

to a minimum, we consider "* -1 the small perturbations

a f t ) = a o ( t ) + S a ( t )

b ( t ) = 5 b ( t ) (7 .30)
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1 /2

where a (t) « t is the Friedman solution in the radia-

tion dominated era (with k = 0). Then, Eq.(7-9) gives

+ 3 — {b + cib = 0

where

0 D(D+2) I b =

L d

The g e n e r a l s o l u t i o n of E q . ( r f . 3 l ) i s

, - i A L ,T (D , , - . ,

(7.31)

(7.32)

b =

6b = t

'.-•here H ^ and

f > 0, i . e . with

(7.33)

are the Hankel functions. So, vith

db2
> 0 (7.3lt)

b = b_

the solution is a damping oscillation with frequency

and asymptotic behaviour

6h .-3A

(7.35)

(7.36)

(at the same time, Eq.(7.10) gives that asymptotically

6a^^t , so 6a is also damping yj-th time). Thus, we

see that the Friedman solution with A « 8ir̂ ,, V „„ = 0 is
K erf

in fact a stable solution against small perturbations (the

effective potential V f f has a local minimum, with V=flf,= 0

at that point).
eff
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However, in general, there may be more than one solu-

tions to Eq.(7.29), with constant radius b. As we have

Just seen, the solution b = b Q with A = 0 is the stable

one. Let us denote by b = t^ the (in general) unstable

solution with A (b ) > 0, for \>Q < ̂ . Then, with the A

term dominating in Eo.(T.2M, we will have

(7.37)

and t h i s corresponds to a ds S i t t e r phase for the 3-dim

unive r se . If i t can l a s t long enough, one can have the

usual cosmologicfll i n f l a t i o n a r y scenar io . In f a c t , in the

place of the (Higgs) scalar field in the usual inflation,
we now consider the dynanical scalar field

Then, Eq.(7•9) yields

A + 3 ~

where

V ( 4 > ) = -

+ D* = -

"2*

(7 .38)

(7.39)

-2k

D+2

D+2
+ 8TTG -

2 V
e f f

dV
e f f

d<t

Note the exis tence of two p o t e n t i a l s : V e f f , which d e t e r -

mines the Hubble parameter (Eq.7-37) and V(*) , which

determines the evolut ion of * . I t i s easy to see tha t the

solut ion 4> • $ . i s s t a b l e :y0

v(*0) = o

V'*0) " " D+2
2 V

eff " D d*

-90-

SUFERUTJIFICATION, PHASE TRANSITIOKS AND COSMOLOGY

v"(*0) D(D+2) > 0

So, $ = 41 is a local minimum of V(i(i}, as b

(T.Ul)

is for

V , From Eqs.(7.28) and (7.29), the stable solution
D

corresponds to (n = b v )

y, D+n-2 = e7rTA(n+D) (7.1*2)

bQ
2(n+D)

(7.1*3)

which is the fine-tuning needed in order to get the Fried-
It D

man universe F x N .

The potential V($) is

-,)

This potential has a local minimum

(7-Ult)

, whereas the

point $ = $ = JLnb is unstable and the potential is un-

bounded from below at <J + "•• It is obvious that success-

ful inflation is not possible, since this potential is not

flat enough to produce the required amount of inflation.

Since the point $ is unstable, thermal and/or quantum

corrections will soon terminate the inflationary phase.

Density perturbations and reheating due to the rapid

oscillation of * around $ , follow 1^ O a' ^ T the same

lines, as discussed in the usual inflation, although detail-

ed calculations remain to be done. Moreover, in the present

model i s , in fact, a metastable s tate . Although,
using the results of section ^.3» one can arrange to have a

metastability lifetime, which is longer than the age of the
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158a
universe as in some supergravity models

158-b

not always possible to end up with the

), it is

state. In

other words, the 4 = <f> solution, vith Friedman universe

, is not always an attractor
156

From Eq.(T-'*'*), it is otvious that the potential is

unbounded from below, because of the cosmological constant

A. What we apparently need is a potential, where the Frled-
h D

man universe solution F x H is the absolute minimum of

the potential. Such models do exist. The first exarrple

is the pure gravity model in It + D dimensions, with higher

derivative terms in thtt action . In fact, this was the

first model, vhere inflation alonp these lines has been

proposed. Another example is provided ty the 6-dim N = £

super^-avlty theory , which is also a strong attractor

161
There are two other, potentially embarrassing ,

cosmological problems, associated with K-K theories. One

is associated with the so-called pyrgons ; massive (with

m = Mp) excitations produced upon compactification, of the

extra dimensions. If they are stable, they contribute

M.0 ! One then has to rid the universe of these massive

statle particles through decay, or dilute their abundance

through entropy creation. The other problem ic associated

with K-K magnetic monopoles : massive (with m = Mp)

stable topologii1?.! defects in the geometry of compactifica-

tion. The study rf etymological production of K-K

monopoles has revealed an intrinsic problem in predicting

the number of primordial monopoles, detection of which

would be a potential source of information on the dynamics

of dimensional reduction.
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r. EPILOGUE

As we have already stressed, in the search of solution

of the various cosmological problems (most notably through

Inflation), our guide must be a successful particle physics

model. If superstring theories, under active scrutiny now,

turn out to Justify the present excitement as a finite

anomaly-free quantum theory of all interactions, the prob-

lems, wft have discussed here, have to be fully examined

within these theories. In any case, the cosmology of a

"hidden" world seems to play an interesting role in the

evolution of the universe . The so successful marriage

between particle physics and cosmology continues, and many

mere fruitful results are expected in the future.
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