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1. INTRODUCTION
d7f Poircwed superorayity coup’od Toomathor foas been cuaalowcued
in Ref. . Subseguently, it was found that [2) the theory compactifies un

the proceot of four dimensional Minkowski space-time and a 2-sphere, yielding
chiral fermions in d=4. Moreover, it has been shown that {3] due to the
fireen-Schwarz mechanism [4] , the theory is anomaly free for a special choice

of the gauge group (in particular EﬁxE7xU(T)) and particle content. Monopoie
compactification of the theory yjelds two families of chiral fermions with no
residual supersymmetry, and hence no massless scalars. If massless scalars had
arisen in d=4, they could be used in breaking the Yang-Mills symmetriss. A large
number of other matter couplings to N=2, d=6 supergravity are alsc anomaly free

(51

Clearly it is desirable to extend, if possible, the results of Ref.[1],
50 as to find a more realistic compactification scheme where, firstly the corvect
number of families of chiral fermicns would emerge, and secondly an N=1 super-
symmetry would remain ir d=4. The latter is desired, in particular, to gsnerate

massiess scalars in d=4.

It is well-known that Tocal conformal supersymmetry (6] is a very con-

venient framework to study general matter coupiings to supergravity theories.

By imposing suitable gauge conditions (breaking superconfermal symmetries down
to super Poincaré symmetries} couplings of weli-chosen matter multiplets to
the Weyl multiplet give rise to off-shell formulations of Poincaré supergravity

{7 }lreviews of this method are given in{ 8,9]}. This has been used to con-
struct general matter couplings to N=1 [10] , N=2 {11,12] and N=4 [13] super-
gravities in d=4. In this paper we perform the first steps in the superconformal
program in six dimensions. We will obtain multipiets very similar to those of
ref. [11,12 1. We first construct the superconformal generator algebra, which

is 0Sp{6,2{1). The generators are Tabeled

TA-: M“‘“\P&,KQ,D,QﬁC,Sq[ L{..“ (1.”

) J 2

where a, b, ... are Lorentz indices, o is @ spinor index and i, J, 21,2,

M P are the usual Puincaré generators, Ka is the boost, D the dilatation,
a

ab’
. . PR - ) PPN i B et
3 . 15 ihe doubiet of usug) supersymmelry goneraters, whila °a1 2o shoee of
the special supersymmetry. Ui' is symmetric and labels the triplet of 5U(2)
x 1 ik e
= £ £

UklL {see appendix A for notations).

We next realise this algebra on the following set of fields

generators, satisfying(Uij)

A

where the first four are the gauge fields corresponding to the generators

e W, VY o, Tae XY D (1.2)

Pa’ Qui’ Uij and D. The anzi—selfdua1 tenser T;bc , the spinor x1 and the
scalar O are matter Tields . As it will be explained in the text they are needed
in order to obtain a massive spin-2 representation of the d=6 super-Poincaré
algebra, which has 40 Bose plus 40 Fermi degrees of freedom. The field bp can
be gauged to zero by using the conformal boosts. We then impose the super-
conformal commutator algebra on the components of the following matter multipTets
[14]: {a) Yang-Mills multiplet (b) hypermultiplet (scalar multiplet) (c)
tensor multiplet (d) Tinear muTtiplet (e} non-linear multiplet. The contents of
these multiplets are listed in Table V in the text. For the hypermultipTet this
can only be done modulo constraints which will become field equations. The linear
maltiplet is an off-shell version of this multiplet at the expense of intreducing
an antisymmetric tensor. The other off-shell version, the relaxed hypermultipet
[14] is not treated here. Also for the tensor multiplet we need constraints in
order to impose the superconformal algebra. In this case, however, these con-
straints cannot be interpreted as field equations. Instead two of them can be
solved for the fields D and ¥ in (1.2} while the third becomes a Bianchi ident-
jty. The multipTet contains a self-dual fieid strength F;bc which is in fact the
obstacie for constructing a Lorentz invariant acticn for this multiplet separate-

ly and thus for considering this multiplet as an ordinary matter multipTet [15].

* A1] bosonic fields are real if their Lorentz and world indices are different
from 6. For w# 6 (v . )% = (v )%,
wij W



By this constraint it can be interpreted as the seif-dual part of the field

strength of an antisymmetric tensor Bu“, while T; . in (1.2) becomes the anti-

selfdual pari. This cosbined Weyl-tensor mu}tip\e: will become the basis ¥for
building actions. .e need the action of a compensating scalar or linear
multiplet to obtain Poincaré supergravity coupled to a tensor multiplet, This
basic system can be coupled to actions for scalar multiplets with or without
gauge interactions, kinetic terms for the Yang-Mills multiplets and Vinear

meftiplets.
" Ysing the compensating Tinear multiplet we obtain alsc a 48+38 off-shell

multiplet which describes Poincaré supergravity coupled to a tensor multiplet.
This auxiliary field formulation is of the type of the new minimal formulation
of N=1 supergravity [161as it has an auxiliary gauge antisymmetric tensor and

a S0{2} invariance gauged by an auxiliary vector.

Section 2 contains a detailed description of the constructicn of the
N=2 d=6 Weyl multiplets. In section 3 we construct the full superconformal
transformations of the matter muTtiplets. Actions are discussed in section 4
and a recapitulation with concTusions is presented in section 5. Our conventions
are given in appendix A while appendix B contains the N=2 d=6 superconformal

generator algebra.

1iI. THE N=2, d=6 WEYL MULTIPLET

As a first step in the construction of the N=2, d=6 Weyl multiplet we
consider the superconformal algebra in six dimensioﬁ%?ﬁ%%T%%?/l). The nonzero
commutators between the different generators of this algebra are given in ap-
pendix B. For our conventions we refer to appendix A. To each generator TA of

the superconformal algebra we assign a gauge field hi in the following way:

- =" T o= ) e

Here ! and ¢1 are SU(2) Majorana-Weyl spinors of positive and negative
» "

chirality respectively:
(- (-
(Pf‘ ==Y d’« .

Furthermore the gauge field Vu1J satisfies

WorhN

V/‘I.’;vﬁ&! , \\‘//‘C ;=0 , (\%( ;d' )*:: \/},J fur /l-lf' & .

7

Ising the structure constants of the superconformal algebra:

C
[TA _T&} E TATB %CTBTA = ycAe, Te
{+ sign if A and B are fermionic} and the basic rule

A A
%h/& =)/*5A+ Ec\'l; ;EC

2.1

(2.2)

{2.3)

(2.4)

{2.5)

one can immediately determine the gauge transformations of the superconformal

fialds defired in (2.1}. We have listed these transformations below,

S - FQ +75+ADD+5°"M&+AQKQ+/\‘J ud

B T A i EEL D )

- =



e >

L L (_ 1 ¢ ( J-_.\_ ab 3
LA N A N T AT TR AL R A
%b/':}/“np—%g@‘ 1-%—?'2!’/'.._—2-41%

u\‘ o - QL — aL La )']
SLU/‘_ :)/Lga\n* w c:E ELJC_%SE %"i‘?x Z’f/)q‘rlfdk su.

=

k*‘A“C/*m’%WQ@"(SQ v - (2.6)

X i i et N . .
The spincrs ¢ and n are pasitive and negative chirsl respectively.

R A A (2.7

D, 15 coverfant with vessert to the insarly realised symmetries

Qg eyt et iy Loty mLy Y]

7 i = S z

/" . / - /*‘a ; .8

L i ob . N L,
unt s 2y =3 e L0 P Y Y
alk
K) /“(K = a Al«‘ b/._ldly + "A)/._ AKL .

Hote also that SU(Z) indices ere omitied when a northwast-zoutheast contraction
is understood (see A, 3.

The structure constant. Fgc »f the superconfcrma! algebra also enable

us to calculate the curvaiure Tensors Ruv by means of

A
P\/.nz 42-‘3;/.\-'1” }\C\n chc (2.9)

We have listed them in Jable 1.

The underiined terms in Takie 1 represent the terms proportional to a
connection field muitipTied by a secnsbein field. The covariant derivatives D}J
are again covariant with respect to D, M and SU{Z}. For convenience we havs

written them explicitly in the expressions for R(P], R(M) and R(V).

The superconforiia] gauge fields defined in (2.1) describe 155+80 {huscnict
fermionic} off-shell field degrees of freedom The bosanic degrees of freadom
are described by the gauge fields e (30] 75} (15) fa(.’iU) and b (5],
The fermionic deqrees of freedom are descr1bed by the gauge f1e1d< ml(EO) and

¢u(40)' The 30 degrees of freedom {d.o.f.) described by the seshzhein decompos

into massive representations of the d=6 Poincaré group as a massiv: spin 2 re-
presentation (14 d.o.f.) plus lower spin representations. By definition the
d=6 Weyl multiplet is the smalTest irreducible multiplet that contains the

massive spin 2 representation.

To achieve a maximal irreducibility of the superconformal gauge field
configuratiorn we impose a maximal set of so-called <u..eniicnal constraints
{17) on the superconformal curvatures (see Table 1). Inspection of the explicit
form of these curvatures shows that R(P), R(M), R{D) and R(Q) contain terms
proportional to a connection Field muTtip1ied by a sechsbein field. . Hence,
these comnections, mab , f and m can be expressed in terms of the remaining

H
gauge fields by 1mpos1ng curvature constraints. For this purpcse the following

set of constraints suffices:

P\/NQ (PYy= o _ (90)

ol
P\/w (M)1eh=0 (36) (2.10)
R (Y=o (48)

v

We have indicated the numibw of constraints between brackets. At first sight, it
seems that one can also restrict R(D), but in the presence of the first Constraimt

of {2.10) one can show that R(D} is no longer independent by virtue of a Bianchi
identity.



The expressions for o> , 7 and s |, which follcw £rom 12.10) are given
B n B
by

a Le LJ”" €
We' = 2e’t Dt/*e”“ - el e € plrc ¥

ﬂ alb
b g e wihyt) + 2 el bM
Fa s LR - e R0 )

Q' = (3 - 2y 7) Rk (@)

The notation R'{M) indicates that we have omitted the fz-dependent term that

+

\:7"-‘

(2.1

occurs in R(M), whiTe R'(Q) indicates that we have omitted the ¢;-dependent term.

Since the constraints (2,70) are invariant under M,D,K and SU(2) trans-

a
u

superconformal algebra (cf. (2.5) and (2.6)) remain unaffected. However, the

formations the corresponding transformations of uib , f, and ¢; impiied by the
constraints are not invariant under Q and S supersymmetry and therefore the (
and S transformations of mib. fi and ¢l change by extra terms proportionai to
curvature tensors (6 ] . For instance, requiring invariance of the constraint

R(P) = O under Q supersymmetry leads to

a n\\J". 4 qb add
SeRp (1) = 88 R (D w2 (Swel )T e
= a a%  add {2.1
=HEYV R (@) + 2 (Su )T ek = 0 2.12)
gauge

Here GQ denctes the variation of R{P) according to the superconformal

algebra, whife the second term denotes the variation of R{P} owing to the extra

ab)add
B

term {$a in the { transformation of mib . From (2.12} we deduce that this

term is given by

ab add Y of e ola LJ = b
Sw, ) s - 2BV R @) E5. R (@)
A\ > t e 7 (2.13)
We should mention that the deta{o. forw of the conventional constraitts s not

cruciat, as long <5 they Tully castedul Uhe gauge fields in question,

When combined with the constraints{2.10) the Bianchi idenfities lead to
further relations ameng the superconformal curvatures. As it turns out the only
independent bosenic curvatures are R{M) and R{V¥). The a priori 225 components
of RiE{M} are restricted to 14 independent ones by the following algebraic

and differential identities:
A A

R/uva\n M) = R (M) (a0s) RL‘/«VGL] (M)=o  (15)

A ab ~ -~ A b
¥ a
R  Mevzo (20) | DG Ry T (M) =0 SR
Aln N 3 bel
D Do Refj (M) = o (35) L
where & denotes covariantization with respect to all the superconformal

transformations except the general coordinate transformations, and here with

respect to the new transformation, (2.13}. We have indicated the number of

independent constraints between brackets. The a priori 45 components of R (V)}
e

are restricted to 15 independent ones by the folTowing Bianchi identities

" A N :
O R\:cj J' (v) =0 . (2.15)
The only independent fermionic curvature is R(Q) because R(S) satisfies

Rap (5) = - %(?gﬂﬁagi (@) + % Jre @cﬁhci @) ) . (2.16)

The a priori 120 components of R{Q} are restricted to 32 independent ones by the

following identities

chq ’é\:cJ; (@) - %s Ym@ﬁbq(?)#:f—b’m B’&%L Resd Y=o {90)

¥ Ray (8y=0 () - (2.17)
Although we have now achieved a maximal irreducibility of the superconformal
cauge Tiely configuration the above procedure does not guarantee that these gauge

Tiglds constituie a cumplete field representation of the superconformal’ algebra.

A



The following counting argument shows that this is indeed not the case. The
constraints {2.10) elininate 126+48 (bosonictfermionic) field degrees of
freedom. -znce after imposing these constraints we are jeft with [14+15)+32
field a ;rees of freedom. The boscnic degrees of freedom are described by the
indeperuent gauge 1ields ei (14} and Vp;(15j, while the fermionic degrees of
iveedom are described by wl (32). These‘gauge fieid degrees of freedem form one
#assive  spin-Z, two massive spin-3/2 and three massive spin-1 representations
of ihe d=¢ Poincaré algebra. In Table 2 we have indicated these representations
LdgClals Wilh Lue Spins, WiiCh are Conlalued 10 & W= assIve spin-£ repiesenta-
Lico of the d-0 cepee-Poiacard alyeura. (rof Liis tabie we immediaively wee ohat
aliiticnal matter fields [ 171 wusi be added to the gauge iieids in order tu
obtain such a massive spin-2 representation. We have indicated these matter

fields in the fourth column of Table 2. Here T;bc is an antisymmetric tensor

), x' is an SU{2}-Majorana Weyl

] . . - i
f tive dualit e. T = - = T
of negative duality (i.e abe &;abcdef defi

spinor of negative chirality {i.e. x =-v, x ) and D is a real scalar. The
duality of T;bc and the chirality of Q are Tixed by supersymmwetry. Note that
instead of T;bc we could also use efther a second-rank antisymmetric

tensor field BH\I or two vector fields,The first possibility will be considered
in section (3.3} (in this case the spinor and the scalar have different properties
and hence will be dencted by v T and o respectively). The second possibility leads
to inconsistencies when these vector fields are coupled to the SU{2) gauge fields
Vi3, ne

Starting from the Finear transformation rules of the superconformal

gauge fields given in (2.6) and the matter fields T; C'x1 and D {ntroduced

above we can now construct the full nonlinear N=2, dgﬁ Weyl multiplet by applying
an iterative procedure which we describe below. Since this procedure can be
applied in different situaticns as well we will first deseribe it in a more
general context and then focus on the d=6 case. The method consists of the

follewing steps:

1. First write down the linearized @ transformation rules (i.e. only

containing terms lingar in the fields) for both the gauge fields and matter
1=  Tho dmrois qencoebien s Lo bha wqnen £inlds Fo17aw Fram the <uravernfrems?
RN bt PN A uare alrds fohiow freom the < T

L

P IR - f . . - - ) - T
Glgwtaa (0T VID05)) The noo przpnottonal o the matter fiolds car be found a-

L ocoaeral ans
v

cortaining = numher of
cunstant  coefficients, 17 derivatives of gauge fields are neaded cne uses the
corresponding superconformal curvature tensor {of, Table 1). One now fixes the
coefficient §n fthe transfermation rules by requiring that the commutateor of itwe
transTormatdone with

noeemelaes o and £ovasnective Ty alves a

translation, e.g. in d=6G:

ISQU.)J Sel€a)] =2 £, 9" €, 3/.. . (2.18)
The explicit form of the parameter on the r.h.s. of (2.18) follows immediately
from the {Q,Q7 anticommutator given in (B.3) by identifying ao(e) with
- _ i
=Q= e Qui

2. Determine the bosonic transformation rules of the matter fields. The
Lorentz transformations follow immediately from the index structure of these
fields. Their D transformations are characterized by assigning them a Weyl weight

w in the following way:
SD a> W A D 9b . ’ (2.19)

The Weyl weights of the superconformal gauge fields follow from the superconformal
algebra and are given for d=6 in Table 3. The Weyl weights of the matter fields
can easily be fixed by requiring that the Weyl weight of all terms on the 1.h.s.

and r.h.s. of each Q transformation rule is equal. For d=€ they are given in Teble 3,

together with some further restriction of the fields. A1l fields are real in the

sense explaired in appendix A.

- 10 -



3. Tieplace in the § transformation rules ordinary derivaiives « by fuiiy
H
~
covartani derivetives D . Such a devivaiive is defined as fuilows, Suppose a
i . ) - A
field ¢ transicrms under the superuonformal symmetriecs with parameiers e and

. (2.5)) as follows:

A,
54’* £ r*gb i {2.20)

where TA is an operator working on the field ¢. The fully covariant derivative

Du is then defined by

gauge fields hi {cf

X)d) Y -h"TAcP A4 P (2.21)

In other words, the covariantization part is always given by minus the trans-
formation rule of the field with the gauge field hﬁ substituted for the parameter
eA. In the following it is understood that whenever the transformation rule of a
field is modified, the fully covariant derivative of that field gets also mod-
ified according te the above rule. In particular, the superconformal curvatures
do get modifications which are efther proportional to matter fields or curvature
tensors. The latter correspond to modifications in the transformations rules of
the type given in (2.13). These modified curvatures are denoted by R. For the

d=6 case they are given in Tabie 4.

4. Determine the S supersymmetry transformation rules by requiring that
the commutator of a Q transformation with parameter ¢ and a K transformation
. a . :
with parameter nK gives a S transformaticn,e.g. in d=6 (cp. to the [K,Q] ~ S

commutator given in (B.3)}):

- A YaE)

Be () Selo] -

(2.22)

In practice the only field that transforms under K and also occurs in the

transformation rules is the dilatation gauge field b . OF course the
1

-1 -

the dependeit gauge Tizlds Guab ;u ind fua also transform urder X since thay
depend Gn bu vof . {20105, This facl znables us to give the following rule for
deriving ilie S transformation rules for all the fields: assemhle a1l the b -
dependent terms in the { transformation rule (they are hidden in the covariant
derivatives}. The S transformation rule (characterized by a parameter n} is
then cbtained by making in these terms the following substitution (the explicit

factors correspond to d=6):

7 Vb ¢ — 75 . {2.23)

5.  Replace in the conventional constraints {see (2.10)} the curvatures R by
the modified curvaturesﬁ {see 3.)). Note that the explicit form of these cons-
trafnts is not important as long as they enable us to solve for the gauge fields
ab f and ¢ .In particular we will use in d=6 the following convention. We
modify the convent1ona1 constraint *FRUJQ) = 0 with the matter field x in
such a way that this constraint is invariant under S-supersymmetry [11] . The
advantage of this convention is that the § transformation of ¢u does not get
extra modifications of the type given in (2.13}. Of course the G transformations of
wi? s fz and ¢ do get modifications. They can be determined by requiring that
under Q supersymmetry the conventional constraints transform into each other. As
a convention we modify in d=6 the constraint Rib (M)e; = 0 with additional
matter fields in order to simptify the Q@ transformation of Ou. (They eliminate
terms of the same type in aq¢u). For the explicit form of the d=6 conventional

constraints, see £q.(2.24) below.

6. Construct the fuli nonlinear G transformation rules of all fields. This
can be done in the following way. Remember that the Tinearized transformation
rules were determined by requiring that a [Q,0 ] commutator gives a translation.
However one consequence of the matter fields is that this algebra gets modified.
For instance, calculating the (Q,Q] commutator on the sechsbein gives besides a

translation also a T, -dependent Lorentz transformation (for the full nonlinear

abc

-1z -



d=6 superconformai commutator algebra see fy.(

s nz

Poelow). in the nonlinesr
case we now require that the [0,%) commutais: =4 431 the other fields alsc

gives this T;bc—dependent Lorentz transformation. In gereral this requires the
addition of terms of second order in the fields to the transformation rules.
This is the first step of an iterative procedure. In the next step one repeats
the calculation on the basis of the new iransformation rules, etc. Note that

the same fteralive procedure a3 Ouihineu dugve Can @is0 bk appiied using Ciosure
of [Q,51 commtators instead of [Q,Q] commutators. In practice this is much

easier since in most cases the [Q,5] commutator algebra does not get matter
field medification (cf. to (2.28} below).

This concludes our description of how to censtruct the full nonlinear
Weyl muTtiplet starting from the linearized transformation rules of the super-

conformal gauge-fields. We now present our resuits for the N=2, d=6 Wey]

multipiet. First of ail we chuose the following set of conventional consirainis:

a,
R/nf {.P) =
R “b(M)e"L f T T ™ s leD =0
- Vaths 1z o : {2.28)
H/‘g %mﬂ (C\})"’"’L’XVX
The wel il tae e i G suews € 6 05 @agiainea dn 3. Li Tabie 4 we iave
3iven the wapiioly Tove Tov i 60 the curvaturss, The solution of (Z2,24) now

incTudes terms proportional o matiz: fields (cf.to{ 2.11)LThe soiution for

wab remains the same {ses{2.11}). Those fer fa and ¢T are given by:

‘L(.A -’ﬂ(M-=u-L a \ _l‘r 7‘6‘“'_ ‘ .
§)~‘- Y /\ L) o f_'/.‘ f )] ?‘ +2_:D§,‘ D
t | ot oy Lea oy i | : 2.25)
q}‘ e R IRG @
Al g A, " . ~,
- l’m;,’ ur; @ "
R/‘ - R/‘W’ &b ) aNo= R/L e/a_

The notation RO Gee o 1G7 iuiaevs Lhal we have omitied the v -depenuent
-~ ~ ) i
term in R(M) and the v -deperdert ferms in R{Q} respectively.

- 13 -

We Find that the full noniinear § and 5 fransformations of N=2, d=6
conformal supergravity are given by:
L YcY
G 25 8 %
St = Gurt o RPTRE 1 gy

£

E

va 2% a »
YLy FEAA) 5 FCy i), 5C )
A WX ? 2
%Ta‘u:fwn’ Jabe Rde(@) £ Vabe

A

;X 3 \@ XT)WPEL*’%‘#‘RIE(V)S'+LD§-.—~E~5"T-?;(2'25)
0= FV RN - 25X

Here and in the following we use a sherthand notation for --<orntractions:

vy .T = rabchbC etc. For convenience we also Tist the G and $ transformation
A

. ‘ . ab 1
rules of & and the cependent gauge fields a and ﬂu:
U

bcg‘ -& ?ia,zw—w““% “‘)Ra\, HQ £d (2.27)
T F AT Yty ﬁm Ery, + Qayt -

The aTgebra of G and S transformat1ons in (2.26) and {2.27) closes modulo field-

dependent transformations. The algebra takes on the following form:

&O(a} ,go(&)];iﬁﬁf‘gl é“ + S (?1- S A T—qbc)

. o —ab —_
cse(mEAE at) vy B0 DT LA D)
- = ek
‘LF_ f() Baxf-]‘go‘}\_}z‘??)*g”(“isg 7)
c b (4 5(‘76) ) . (2.28)



in the derivation of (2.26 - 7.28} one needs the § and 5 variatiun oflalQ) and
R{Y}. For the convenience of the reader we give thece expiicitiy:

I

+ 2 X“b@}«') K

/

A ok Wb :
SR (@)= (29, g V) £?

\ — b A e — — ; A ok .
(Do ™ B0 Tow )e vk B 00 et
- abc - . — ab ;
- “;;' 7nl:T _Euvc g +'} TQBVXVJ 7 ‘

SR/.JH(V): - f;‘v.j) (s) + 3 3(“3’5/{‘53,3 P2 (2.29)
¢ 5 O T 47 R 8)
— % ?"(; D/).u‘ XJ) .

3, SUPERCCNFORMAL MATTER MULTIPLETS

Having constructed the N=2, d=6 Weyl multiplet in the previous section
we now proceed with the motter multiplets. We present here the trarsformation
rules and discuss actions ia saction 4. In this paper we deal with {non-abelian)
vector multiplets and scaiar wultipiets (hypermultiplets) which transform under
an optional gauge group assaciatad with Lhe vector fields contained in the vector
multiplets. Futtheﬁnre we consider Yhe tonsor muitiplet and both the Tinear and
nenlinear muitiplets bt noi or2 = Iased aypermultiplet [14] . These muitiplets
are the building blecks 0 o [ wstrdetion of genera? matter coupiings to N=2
.d=6 Poincaré supergravity
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3.1 Vector_ﬁ@l}ijgﬁi

The N=2 d=6 vector Tu?tip1et consists of a real vector field.wu, an
SU{2)-Majorana spinor o' of positive chirality (i.e. 17ﬂ3 =+ 2') and
a triplet of auxiliary scalar fields, Yij = (ﬂj)*' In order to derive the
{nonlinear} supersymmetry transformation rules of these fields we apply a
procedure which very much resembles the one which led us to the construction
of the N=2, d=6 Wey] multiplet in the section 2. The same method will be applied
to the remaining matter muttiplets as well. Therefore we first give a brief
resumé of this procedure and then can continue with the vector multiplet. The

method consists of the following steps:

1.  First write down the linearized {i.e. only containing terms Tinear in
the fields) Q tranformation rules. The explicit values of the coefficients
in these transformaticn rules can be found by requiring that the commutator of

two supersymmetries gives a translation (cf. to (2.18)).

2. Determine the bosonic transformation rules of all components of the
multiplet. In particular assign them a Weyl weight w. For d=6 we have listed
these Weyl weights for all matter multiplets in Table 5, together with some

further restrictions on the fields as well.

3.  Replace in the § transformation rules ordinary derivatives Bu by fully

covariant derivatives Bp {¢cf. eq. (2.21)).

4, Determine the S supersymmetry transformation rules. As explained in
section Z this is most easily done by assembling all bu -dependent terms in the
() transformation rules and by making the substitution } g e+ ' (ef. eq.2.23).

5. Construct the full nonlinear Q transformation rules of all fields by
requiring that the superconformal commutator algebra given in eq.(2.28) is

realized cn all components. Especially the 10,5] commutator is easily calculated.

- 16 -



This concludes our descripticn of how to constryct the full nonlinear

transformatian yylos or 217 mattor 1

metliplels. We now HTPESENL Qur resylts for

C e Showie BWT wuu Wi vilse Luiiponents (W‘l s ¥,
11
' Toa e Lol i tup gy Yduge grudp. wWe find
o WML - e UTEL L ON Tuiesy aFe Given oy:
- - - . v
i < T . N [ : ' < ' 1
o . T - & o 5 Tl - F L - = 0!
v M ?{/\ , r)j{. 7 tf} } f 7 >’ E
al - . .

oo - i o } .y ) -

PR A J A 2_?“_7.‘ . (3.1)
The scwre vard g TraT Prengan Vo000 i v and thu Supul LOvalianl agrivative
A i m #

n pﬂ of 9 reads as follows:
A
E#, (W) = f;v (w,} t 2 Wy L
7

AR : : b g . ;
D_»J.\ ﬂ.‘—%b -Q'Q-#-CU th-ﬁ"%v ‘J’ZJ

/J.
R Ly Yoi -3 Went .

YFe (W)= 2 EXE«@L]JZ+ b ) _ﬂlc—zfﬁh‘}z .

- 3

L
g

The fields are Lie-algebra valued, so the Tast term of D 2l implies

8 commutator between the generators. We intreduced here and in the fol-
lowing a coupling coenstant g. For non-simple groups this can be triyial-
1y extended to several independent coupling constants.

Note that in d=6, unlike to d= 4, the nonabelian gauge transformation of W,

does not occur as a field- -dependent central charge transformation in the
comnutator algebra [ 19] .
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3.2 Scalar Multiplet

- ot AT e 1 Tn A hur e MR n Tab ) eppcdebe Af
i v . a
! TTox T el ntey Do Aok ar af TSN opd ardween
N -
Wit et e chiest Dia ST T dpdex ic yaiead or
WL e et in o R
Towered with & matrix n
s .4
N Flo .o sl . (3.3)
N \ P“\ i f) lll”
The ~o2¥ity conditione are

#*

AT A A :-A“‘Ej{r | 'F“’;:“f’fﬁ . (3.4)

The scalar multiplet can transform in a representation of a group which respects

these conditions

SAL - gAY A,

%«/’35 f-d _[{_a//g ) (%D(j)*fa’/a . (3.5)

The same conditions appeared in 4 dimensions [12] and it was shown that by

field definitions of A: the matrix p can be brought in the standard

af
form

-to {3.6)

The transformations in (3.5) are by definition those of GL(r,Q), and in fact

the fields AL can be interpreted as r quaternions.

The Q and S transformations can easily be found by applying the procedure

outlined in subsection 3.1, They read as follows

%A‘i: "F.l;a , 83T g ,é//‘[‘d' £d +2/I‘J' 7“ (3.7)
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Here the ravariant derivztiva ~3nm hn ricn
A Tl |

gr any subgroup
;:‘A“B A'(. . A"( P - o{/{"{ W“ tﬂB — L&
R UL U S 2R T A T S I
(3.8)

where g is the gauge coupling constant. The superconformal commutator algebra

(2.28} is not realised on ?°"~

Lsq(e), Safe0] 5%= eqzae)- % [ zr e,
(3.9}

re should therefore be a field equation to have this algebra realised on shell.

s a
The variation of T under Q supersymmetry teads then to the field equation

for Al, These equations are given by
[T T - A Ay T3 gy, AR
C*LE({)\&@ +LD)A.(.*‘_§‘X.+Q 2P L Y Af’J (3.10)
T A R N VA L T

These equations are complete in the sense that supersymmetry transformations
do not Tead tc new field equations. Explicitly one finds
~ -e'_ | “‘ . <-¢‘ -
R A A B A A R A
n .
SC s F D™ v L.y Wt Sy T e %
7T AR . 7
BT = 2y P L, T i, TP
re "
7 . v/ e dorr (3.11)
VCE Wty Lyt T Ry .
a2l % +33‘Y ?j}‘ ’LHJ

The vu—dependent terms in (3.11) can be obtained by requiring that the 1{Q,5!
commutator given in (2.28) is realised on 1 and C:a1tMMQ1tmﬁe quantities do
not form a muTtiplet. One can also derive the v, terms in (3.11) directly

from the non-closure function (3.9). For this we need a modification of the

- 19 -

e e g T T TR R W R TR T

M e 4 LR

" “ K ' * R R -~ -~ bond L
CHEUPEN UN Luval 1ane uur svuciecs to vof, D0 Tear the zago thot the

- ahas

L=

does not close. First we define a covariant quantity as one on which no

transformation has a derivative on a parameter, hence

S = gh TA?ﬁ (3.12)

First we suppcse that also TA ¢ is a covariant quantity
ST e TeT
TaP= €7 lgta (3.13)

but the algebra does not necessarily close on ¢

[5(s) $(e1 6= &6 [TATs1 P - el (e Tod +ag ) -

(3.14)

The position and order of indices are written consistently with the conventions

for spiner indices as given 1in appendix A, The notation ¢ indicates that the sum

over ¢ includes translations. Unbarred indices rum over any cther transformation.

" a8 is the "non-closure function one". We will now consider the transformation

of the following covariant derivative

6/47 = - }I/«A Ta ¢ | (3.18)

To calculate aﬁu ¢ We use
= A
¢y A LA cyB¢_ A
a}l’ =Yt v 8 hf gu + Smh/u (3.16)

where emhA are terms containing "covariant" matter fields but not explicit
u

gauge fields (apart from epm). Observe that the wu-matter (T,x) parts in (2.27)

are included in the second term of (3.16) using for fBCA the structure

functions of {2.28). We obtain then
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A iy A
\ LN =1 B . LB - ‘ A
8 D/“CI[) = "",M “*(P = f'?,# }EC g7 e < j{“i‘T —(anu / 14";’{)
I /
= MR T T - £ foc Te
= ¢ :/“*ﬂv‘ B/ ,ﬂ?J - < ” a A
P .
’ “ob T, b
"'}",E‘ -"\ F - S A N D
f"“i @&(b ya LA ( Wb/-‘ /A L2.17)
The Tirst bevm wives bne Cuvds 1ddh u€l ixalive un TAQI . Vils seLUhu eha Liiru
term are the remnants of a Jirference FBé - Féé . Consider ing now ihe Lrans-
formation of
A
A RS
V.- en U §b . (3.18)
v
We use L
v . b . B ¢ L
Geln = - ey v 8 2o S J“;,L 7ic 2% .
(3.19)

Then the third term in (3.17) is cancelled and we osbtain
g A o i A B
SSDQC‘FZS K)QTA¢ + £ }]/“ i/BA
e A - Ay - (3.20)
- g*n.l'_‘ ’rg. "-?)} - ng”q_ ) [ A ¢

The second Yine ¢f {3.20, arg the “covariant terms" in the transformation of the

gauge fields in (2.16%, e.g. for &
W

W = T 0 ¢ 4+ Yoo, 3
%z?j’.a’, 43@(}‘7 . (3.21)

The result is thus that if a covariant fiald transfoerms only in zovariant fields

{4.e. (3.12), {3.13) then the lrenaiwaiativn of the covariant derivative with
Fas
Larents Tolny n e oo 7 - TR A A 117 S_"'.""'"- teyrm
a {
eriginating "ros The Yoo T ol Aowet T-Engun sonioguene s of Shis
. - . . i C oan 1 B A
theorem is that a covariant box 1s sz in (310034 = DD A = c‘aﬁpge:DvAﬁ.
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o

The second term in oT0 fo cowe Trop {2.20) and (3.9}

A ) '
ure funcLics on D A: follaws frem the last term of {3.8)
&

sece:d term in (3011) s then inondiately obtained. For the definiiinon

arng

PRSI . K . n
of 0 i we need one more observation. As T (or in general D¢ } does

a
N R . R A o AA

transform in a acn-covariant ierm we cannot define Da T or DbDa ¢ curk
s e O U SRS et T
cial ibs wensiumalion gives no derivative cn a parameter.,  As e

. s . . . AB T
COfivaing ww covariantization from the non covariant term in (2.20) (haﬁd'kBA -0
L IS P PP N P o I SP-VP LS L SEATR AT

VERTE oy . LI

ZHS - ('5162)& )] + 3 jnb[é\)w@b] S ' (3.22)

”~

Da¢ such that the antisywncliic part in

~
Db
{aby) does not transform in a derivative on &

“UL%]J 2 UA‘P - ‘57‘11\95“%‘%"?13734
SIS TR CRUNYS L

We can deflue in general

Tais definition, which differs from (3.15) by the Tactor } in the third term,

satisfies
19, 9.0¢-R" T ¢

and this is the way in which the second term in (3.22) comes in (3.17).

2.3 The Tensor Multiplet

i FiBiG shpLrSpate 1@ one can introduce a reql scalar superfield o
samislyiﬁg b;; a - U, Tae compunent§ are a reaI_sca?ar g , an 5U{2}-Hajorana
spinor v of negative chirality (i.e. v, ¢ = -3') and a self-dual 3 index
tensor F;bc . They have to be singlets under the gauge group. The full trans-

- 22 -



formaticns under Q and S are

o= W

so/szg/,-g_ny m)w Mw
5 V- FT Y _\(jg’r)yv +o—q‘>

The aIgebra does not cTose on these f1eIds

[%Q(S‘], 5q(€z)] = eT. (J.Zf) -+ Sn_c,

Sn‘c_qf“‘: %7“ FE E;Xq_ 2;_

t - — —
Sue Py = -3 E¥n & Lo+ + ..f;.a,_ Yo £ WoVegr

Pefp-toy-dyT
b= D (Flow20Tae ) -

R (03 W~ £ T¥SY

(3.25)

%n_cA o= 0

(3.26)

s i . .
The quantities r and Gab transform among themselves and in an independent

quantity C

roA

_{9* - L SO oy S

,(‘g Da GD)w+3FT+-6—xzp
These transformaticns ars

1 N T L S 7L =
SP“-%TCE +Ll?-(:.qb}) 2 _—é“;‘f“’ fd’qu//u‘

REL SR S DT T W vy T
5 YT Tabe —z?mgr'
A ” oy —
SL-e gDy gl Erpt 27l
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(3.27)

(3.28})

To obtain closure one should impose the constraints

r1;= G ab = C: =0 .

{3.29)

In the domain o# 0 the first constraint can be used to define y as a
function of fields of the tensor multiplet. The third constraint (using also

A A A A A 4

PP o= P - 3bt Do+ Db o4 fu o \
- 0 - w Tzf)ﬁ X+ 2’/‘})&@73’/‘% (3.30)

and (2.25})) can be solved for D. The constraint G_,_ = 0 can be solved as a Bianchi

ab
identity

F)L( *'2_0"_[}&:( = 331'/«&@1 +3?y¥nyW+% %szfjf; o

(3.31)
Bu“ is a newly introduced antisymmetric tensor gauge field which transforms :
\
as \
8B - EYw W - EVG W +2?f/~/‘v1 , (3.32)

where A, denotes the gauge invariance of Buv . In fact this modifies (2.28)
by a term
LSle), Ste )= (2.29) + 5, (1 805, o)
(3.33)
which is a "central charge-like" term. In rigid supersymmetry its field strength
is self-dual which prevents the construction of an action [15] . Here T;bc 1
provides the antiselfdual part, and we will be able to obtain an action cf super- l

gravity coupled to a tensor multiplet [T 1.

At this point we could interpret the system (40+40 Wey? multiplet; 13+8
tensor muitiplet; 1148 constraints) as a new 40+40 Weyl muitiplet with independent

components
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(3.34;

We give the poperties of these fields and their transformaticn rules in appendix
C.(Sez also Table 8J.

We also tried a different approach, where we started from pr ,b and «
as independent fields as well, but we would not impose {3.29) as constraints,
but using field equations. Im other words we would construct an on-shell tensor

multiplet
e C-a WP+ Gy al- TO0rBred (F_,m : W“})«:f !l .38

{the Teft-hand side of (3.31) would then just be called Frs F7). However this

failed as (3.35) turns out to be non invariant in order v, e.g.

%i - }’L 5 j(% lrd) F‘ch E;C e (3.36)

This observation has already been made in [20]. However in the group manifold

approach this does not prevent a consistent description.

3.4 The Linear Multiplet

The N=2, d=6 Tinear multiplet cons15ts of a triplet L J,an SU{2}-Majorana
spinor ¢ of negative chirality (v, ¢ = - #') and a comstrained vector field
Ea(see eq. (3.38)). This constraint can be solved in terms of an antisymmetric
tensor gauge field E - if the linear muitiplet is inert under gauge trans-

formations. The full Q and 5 transformation rules are given by
U4 = FC¢l)

- rgllos ot Eae - L I

-+ -

’ v mly e —_
Ea=Fda Do L Fhy T -y By -3l
S Fide 2, LI
Z}EL\D’-: JZJ l—

S : Lo ko0 .
ﬁ)u:(af\awl_é-y A AL AT AN,
R R LA AT

'I\\|,—

gLIJ 7/1{ T’*XEZ’LL **Lﬁy s

(3.37)

A A . .
where Hl and 9 stand for wlJ tA’ Q tA and tA are the representation matrices.

The algebra closes iff Ea satisfies the following Q and S invariant constraint
A .-
n* I g % ! R
QE«_%‘PZ_.Q}J.(?—ZJYJ Ly = o

4 A
" - b
DoEe = fonr S Eu v ek £ g Wala -]

Wy YT A F - ¥
—%*Vﬂd-l LR A 7. xJL,JJfSct}Ly‘ceﬂ» zz S
(3.38)
For g = 0 the solution for Ea in terms of ﬁ)vao is
B e e es et Ubpear (3.39)

and there is a gauge invariance

gAE/WN- =4 }E/« Av‘f"'}

(3.40)
or for the dual 2-index field we have
E/\V".T - - ,—;"E E/..ch— AT E
EY = e @ ESY
7. o ' o Tt
SESY E 4 s L vy, [ A7)
@vE/-\f: ,,.avE,n'__ i",/v B,}pw’Le - .?L: v)F'th X/&Vf lf}v}' L:J-
(3.41)



Alsc here there is a "central charge-Tike" term in the algebra (see (3.33))
LSeltn Soten]= 2.28) & Su(& #770s} L‘;j) (3.42)

So it is the antiselfdual part of the tensor gauge transformation which appears
in 10,09

3.5 The Nonlinear Multiplet

A1l matter multipTlets discussed so far have transformation rules that
are linear in the components of the multipiet itself. The nonlinear part of
these transformations is entirely caused by the presence of the fields of the
N=2, d=6 Weyl multiplet. We will now discuss a multiplet which does not possess
this property. The nonlinear transformations are induced by the presence of a
bosenic constraint of the type encountered in nonlinear sigma medels. The multi-
plet contains Lorentz scalar fields Oi (o= 1,2} of zero Weyl weight which

parametrize .anelement of SU{2). Hence the 2x2 matrix ° satisfies
.81 -, #1d -5
“Tp Y ) cER TR {3.43)

The indices a,B,.. are raised and lowered by means of the invarlant tensors

EGB dnd eas according to

ps - £ @JF £px : (3.44)

From (3.23) it fol]owsthat of represents three spin-zero degrees of freedom.
o
Under supersymmetry 0 transforms 1nt0 an SU{2)-Majorana spinor Al of

negative chirality (1.e. L Y, 3! ) and a real Lorentz vector field V

This vector field turns out to have the noteworhty feature that it
transforms under special conformal transformations (K}, as it does in d=4 {11].7he

full Q.5 and K transformations of the multiplet read
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S@J‘= %(:Aj) @J&
S - @Jﬁ@}
37 A £ AN A -2y

sd SR 56*"7 ¥ g 'yt

(S 1

V.. T D A+ LEX A -FELLAN

(
LOE¥ AT A - EABLYE L
v £ L2V LS

t1g FCY¥a (&d)f "@‘Jéf B 73'0\('{ - FANAxk @ . (3.45)

Here we inciuded the possibility of gauging the sU{2) or an SO{2} subgroup
corresponding to the index o by means of & vector miltiplet (Nu, &, Yij)' The

R : ~ i ~ i .
covariant derivatives Dp oa and Du % are given by

—%(:2‘}) @({"" ‘ '

A VRN R ¢

v —(a,-%b/ﬁ;—rw;lx.\.)a LV AP K

! Ay 5 CAU Ak vagl B9
- R TP Y 4

The supercenformal algebra {2.28) closes if and only if we have the following

Q,5 and K invariant constraint of Weyl weight 2

@«VQ—%D—%VO‘V ((ﬁ ?_()YO . +LA/9’R +£;];(
T5IRTA A b Wj 2 +z}(\/;;)f 3 P
+ s’}iz(sz')f‘ 3t dF =0

{3.47)
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N ; .
where the supercovariant derivative Du Va is given by
A

Y)/t\/.,L = B/,Va« b/Avm + tt:?.mi’Vl, + Sfﬂ“—’;?“fql, '3/9‘1)2
*-%‘ ?a(Y&JK + %T %au~iay;b'q VL - %; iEL 3:; a(--r“42

(3.48)

Y . -
B qf;l: x-\jﬁiz idiéiJ ;?ﬁ -+ f}u Do ;1

. 'xé-ri-f
-—ila 13L Ut& ( :ZJ )f ésw 4’ i [

4. ACTIONS

In this section we will obtain actions for matter multiplets couled to
Poincaré supergravity. We will start with the action for the scalar muitiplets.
Tt will turs out that this action formula applied to a compensating scalar
multiplet gives the aciiorn for Poincaré supergravity coupled to a tensor multi-
plet. The wecund actiun formuia «#hich we need is that for a product of a Tinear
multiplet with & vector multipiet, This formuTa can then be used in two ways.
The Yinear multipiet ~an e The “kinetic multiplet" {or muTtipiet of currents)
of the vector eultipic.: “.¢. -ty components are functions of the components
of the vector awtidplel. s inis aay we cbtain the kinetic terms for the vector
multiplets. The otner way is aracuiy 35 in four dimensions [21, 22] a vector
muitiplet can be defired fram the components of a fensor multiplet. Inserted in
the action formuis th s pro~uces a superconformal invariant action for the
tensor muitiplet {“fmproved Iinesr wwitipiet”). This muitiplet can also be
used as a compensating muTtipief, One abtains then an off-shell formulation

of Poincaré supergravity coupled *o & tensor multiplet {see Table 8).
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4.3 Scalar Multiplet Action

As we know the field equations from section 3.2 we can easily write an

invariant action similar to the one known in 4 dimensions [19,21] .

€ dor AL Con (25 R AT

(4.7}
We introduced here a tensor du8 with the following properties
cﬂ.(F:-—JP.( d.q;-‘*de(vfr}s
(d < B ) L 01 = {8.2)

The first Tine can be assumed as the symmetric part of due would give a total

divergence in (4.1}. The second equation makes (4.1) real. The action is gauge

invariant for transformations (3.5} which satisfy
-K
5 ) d, P da T, P =0

In [12] it was shown that field redefinitions canm simulataneously bring o,

{4.3)

B
. . 8
in the canonical form (3.6) and d, in the form

d.f - 1

' (R’T even ) (4.4)

{
For physical fields we have du =-5m , but as we will explain shortly we also
need “compensating fields" for which dﬂ6 = ﬁua. Transformations which satisfy

(3.5) zna {4.3) are thoze of Usp{p,a).
Te get a better understanding of the content of (4.1} we write explicitly

the bosonic cerms. Using (3.10) and {2.25) we obtain after a partial integration

S O S P O }1%5“2_(,4;*52,4}‘)% P f

{4.5)

i A T z
1y . 1 iR
+g vq. vﬁl‘j A +S, RA +.|5 D A

where

Ao A @MF“

(4.6}

N e e i et o RIRC PP

e



o~
and we write R for R in (2.25). At this point we can repface D by the components

of the tensor multiplet. The constraint {3.73) gives for the bosonic part

4 a —
ETD=@ UQG—**‘\E"O*R-*%—FT‘T .
We then obtain

€' 381,3 = ‘; P\A’L— qu’j GLP du AFE +—'i(44; fA;) Va: i 4.( f

4.7

- . T
Iy T o _ “+ -— (4.8)
+-§-V«.‘JVQJ' A +-};A"‘ b‘ﬂ‘o- +l,lLAto-’F'T .
We can use then as dilatational gauge choice
2 .
D-Gauge: A” = - 2 (4.9)

to héve the standard Einstein gravity action as first term in {4.8). Then we
can use the field equation of VaiJ to get
‘ i .5, F ¢
_t "
€ 5&4‘.&""“'12':R" ’an“(qu* 4<1A3AJ d‘ )}QAF
-t _ 3 —2 NDrpred . (4.10)
_%0‘ Val Val™ ?o— p) B ?/\Bvr

The action thus contains automatically Poincaré supergravity and a tensor
multiplet (observe that the fields have positive kinetic energy). To be able to

jmpose (4.3} we need at least one multiplet (two values of & ,8 ...) with the

+ sign in {4.4) (remember {3.4} to see thic}. This multiplet is the “compensating

multiplet”. One can say that {4.9) fixes one of the four scalar fields of this
multiplet. The other 3 are fixed by an SU{Z} gauge choice e.g.

g < ;

5U(2) gauge: f!;wigg ;w =i, 2 (4.1}

The interactions of the scalar mwltipiet correspend to Fields taking vaiues cn

the quaternionic projective :pace

MSF (Z'in)

(4.12)

U_Sf(z) X RSP[in)
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We expect that the other quaternionic manifolds mentioned in [23)] are contained
in our action {4.1} by considering multipiets transforming 1in a gauge group

but without kinetic terms for the vectormultipletsi The field equations for the
fields of the vector multipid change the manifold and we use more compensating
scalar multiplets to fix gauges of the gauge group. A1l this is completely the
same as in 4 dimensions, where this procedure was first applied to construct the
manifold [241]

sulz,n) (4.13)

Su(z) x Suln) x wlv

4.2 Action FormuTa for Product of Vector and Linear Multiplet

The action formula we are looking for is contaiﬁed in the constraint for
the linear multiplet (3.38) which has Weyl weight 6. In fact if we select there
the g-dependent terms we obtain the following density

e“gﬁ\“_ - Y;J' L"J‘ +z234 - K. "L’“‘ " ﬂl‘

+4 Wa (Eq' P - LW )"hczﬂ;,‘f-y)

In {3.38) the fields of the vector multiplet are Lie algebra valued: however,

(4.14)

in [4.14) we consider an abelian vecter multiplet, and the rields ara

not supposed to be multipiied by representation matrices acting on the Tinear
multiplet compenents. The linear muitiplet can transform under the Abelian
group with an arbitrary weight. One can convince oneself from the gauge in-
varjance as the transformation awa =9, A gives after partial integration

the g independent terms of (3.3B) while by construction of [4.14} the trans-
formation of the linear multiplet components gives the g dependent terms of
{3.38). If the Tinear multiplet fs inert under the gauge group, then (3.41)

can be used to rewrite the second Tine of (4.14)
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4.3 Vector Multiplet Action

Ir four dimensicnc tha sction of the vector multinlet is nonforaal Ty

invariant, essentially because

(ot )32 0) 7 5

has Weyl weight four. In 6 dimensions this should be multiplied by a quantity of

Weyl weight 2 in order to be a candidate for a conformal invariant action. In

other words we want to construct a Tinear multiplet of field equations for the
vector multiplet. In 4 dimensions this could start from Lij = Yij but here there
is a mismatch of Weyl weights and we need compensator scalar fields. One could
think of several possibilities: scalars belonging to scalar muTtiplets, linear
multiplets or the tensor multiplet or even a combination of them. In any case

it is not difficult to write an S-invariant condidate for Lij. Te define a
Tinear muitiplet the Q-transformation of Li‘j should be as in (3.37) i.e. ¢nly
an SU(Z) doublet. This corresponds to the superspace constraints

(k , i)
9. LY =0 (4.17)

This singles out the expression
i i -y
o ey 29 © 4 . (8.18)
S0 it is the tensor multiplet which enters in this construction, As this
multiplet anyway enters in the construction of Poincaré supergravity this is

a solution which does not raise the number of independent fields. Ome now
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straightforwardly computes the other components of the Tinear multiplet

(for an abelian vector multipet}
E » . . y 2 |
[y 0 ! a ;
Y —‘~G‘Hﬂ 1—>/(}77‘j +1[;b} FQL(W)QIV‘

\ Xa\;c ﬁ\ + . A l:
AT abe (8) R ~ (Yo ) T

Ap 2 A Abe
B O (Faw) @) s1(Fta-z2oT Jabe F (W)
+1‘3L (Z2*y) Y3 R - (4.19)

One can verify (3.38} using (3.29). For the abelian case this constraint can

even be solved for the antisymmetric tensor

E/~ D= fp») (W) A il‘- i)-u(v-a‘c B'P _F-J\t(w)
{4.20)

Inserting {4.18-20) in the action formuia {4.38) or (4.15) one obtains an action

for the abelian vector multiplet *)

¢d, - 0"[—«-}; EWF/‘"- 2 52 2 +Yi Zj]
k€ e B AN e 2l Yy

o

s Vf( A (r | A
+?_YLB”“3’ Fyr"’ Fue) Zg‘f%z’/) ‘Pl'—'L‘RYF (8)32

G 1)
3527 wd ¥
Tz b %‘X JZJ (4.21)

*) We remark the striking similarity between this actiom and the analogous

result in 10 dimensions [25,26] .
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It turns cut that (4.21) is also an invariant for non-abelian vector multiplets
Obviously one then writes a trace before the whole expression, and the fields

are again Lie zigebra valued.

4.4 Actjon of the Tinear Multiplet

We will reverse now the procedure which we we used in the previous
section. We construct now a vector miitiplet as muitiplet of field equations
for the fields of the linear muTtiplet. Again we need scalar fields to compensate
for a mismatch of the Weyl weights. But this time, as in N=1 [27] and N=2 [ 22]
in four dimensions, we can use the scalar fields Li“:| of themultiplet itself as
Weyl compensator. This kind of action was called the improved tensor multiplet
in [21, 22 ]. We define as there

P 3
L=1(L Lij) . (4.22)

We determine then 2 by S-invariance and by demanding the Q-transformation of

the form (3,1), which determines then also /F\w and Yij . The results are
SR - T0) IR T
PINERE 11 L’(yu L g OB 2L
- - 5y kL T
+|l§,L T ¢ +iL L'd b’a'PJ L ¥ +2g L LJ‘“‘J

" & k(t

Y= 0.9 v L 910 0L
SR, ~3 LD 7
- D - a2 _ S A
AP Ry T EEP, N F Pl
-3 §‘ch;(?;)3)¢% aF LFT Lkl“ @QL;)'{ ‘@3’1 (h

P EIT e PR

» _
d 1—,1,35,,5“‘1_4

(4,23}
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. | [
+ 2 7L k¢ L”e Per %1 Eq —4 ° @ufa(f")“_k fka‘((g)
N % 7 w (LH (-Fklfﬂ(.( )( Lmnt?” Yq(ﬂ) + 7‘JL-I yktf)-é)k

—131, ﬂ(t(f)&) —3Lk(iLj)1 ik‘f{

Fatw) = -1 Rugyit- 2 Dol i)
kp 2 A
N LklﬁaL f @L;Lgf + Rq:(f?) Yk
A o T '
-2 9, (L L ¥: Py ‘PJ ) (4.23)

F satisfies a Bianchi identity, but exactly as in 4 dimensions the Lalal

ab )
term cannot be written as a derivative of a gauge vector inanSU(2) covariant

way. This cohomoloegy problem is related to the singularity at L=0. This has
been discussed in detail in [22] . This implies that we cannot use {4.14), but
only (4.15) to write down an action. The linear muitiplet should thus be gauge
inert as we need the antisymmetric tensor. ?ab“') is obtained from (3.2) and

the bosonic part can be written as

)
i},(th—z}ﬂ Lk

- 1§E/\(En '« Vv::U’ L:J LHI) .
(4.24)

The bosonic part of the action for the Tinear multiplet is then
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H (4.25)
- BT L :

In section 3 of [22 ] it was checked that in 4 dimensions and in the absence of
supergravity this action is equivalent to the scalar multiplet action. This has
been done using a duality transformation and field redefinitions, and also by
checking S-matrix elements.

We will now consider also the application of the Tinear multiplet as

compensacor multipiet. Ushig that Daﬁ;L contains - SfaaL, {2.25} and (4.7} we

abtain for ULL,B

..\ \& L
ENA RS 'J

i g : : t i)k {
4+ \jqd :"i }“Lké —f% ‘VA k'_ VA:‘{ [_7 J-

. - -9 R - + =
H.%Le-“@ 0. méiLc-'F - T {4.26)
L ERE -
-t L ETE L

1 e~ L;L- Ry
7

{
SLEA L L YLk
Z Vs J FBV ke .
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As ditatational gauge chcoice we adopt then

D-gauge: L =1 (4.27}

{If we have a combined system of of we would take L - iA . SU(2) cannot

be completely broken in this case. A gauge choice
-
134 (4.28)

breaks DaSU(Z) to an S0{2) subgroup. This SO(2) is then gauged by the auxiliary

s, The action (4.26) now reduces to

field V ..
uij
o ir .
€';ﬁLls - -1% R *..% \AKJ »ﬂ\u- _ %[ = a0 o - #‘ETQE;L

{(4.29)
- E
VT 4

We obtain, as in section NIl an action for Paincaré sunergravity coupled to a

Vg 1 - 2679V B" 8w

tenser maitiplet However in thic case we used as comrensator muTtiplet the linear

gultiplet, which {s an off-shell representation. Sc we obtain here a formulation

of the theory with an off-shell closed algebra. For clarity, we repeat the

independent Tielda in Table 6 wlth,the number” of off-ghell components (negative
for fermions). CObserve that ¢ of the linear multiplet has disappeared due-to.

S-invariasnce,

This formulation has a remaining S0(2) invariance as in the “new
The last

o

nirimal"auxili oy field formulation of M1 a=h supergravit& [1€].

tern in {4.29) is characteristic of tkis formulation.
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5, CONCLUSICNS

In this paper we constructed Jocal supersymmetric matter couplings in six
dimensions. Throughout our work we applied superconformal techniques. We first
construct a superconformal invariant action. After imposing appropriate gauge

conditions these actions lead to matter coupled Poincaré supergravity.

By adding a tensor multiplet to the Weyl multiplet of section 2 and im-
posing constraints necessary for closure of the algebra, we came to another
version of the Weyl muTtiplet. This version resembles the Weyl multiplet in
d=10 supergravity [26] . There one has introduced differential constraints on a
scalar and a spinor. Here we started with fields D and x which were determined
by these constraints such that the independent fields have no differential con-

straints,

The fields of this 40+40 multipTet contair the physical fields for super-

gravity coupled to a tenser multipTet. To obtain a Lagrangian we have to add a
~second compensating multiplet, In N=2, d=4 we had 3 possibilities at this stage.
The first one used a non-linear multiplet [11]. This does not help us here
because it does not offer an action {In d=4 the action came from the first com-
pensating multiplet and the non-linaar multiplet could make the field equatfon
consistent). The second possibiiity [11} wakes use of a scalar multiplet, This
is the most useful choice for the construction of hypermultiplet couplings and
considerations on their symmeteies {321, We can use that also in d=6 as we
explained at the end of section %.1. As the scalar multiplet is not an off-shell
muTtiplet this does not give us an auxiliary Tield formulation of N=2 d=6 super-
gravity. Such a formuiation i< obtained here only using the third possibility
[22 ] which has a-Tinear multipiet as sevond campensater. It 15 an auxiliary
field formulation which is compaircle with the new minimal feorm of N=1 d=4 in
the sense that it has a SO{2) ipvar i and an auxiliary antisymmeiric tensor
field.

The general action which we cbtainsd can be written as
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(g or K; contains a compensating multiplet as discussed above, and the action
describes at least supergravity and a tensor multiplet. 4% can contain an ar-
bitrary nuimber of hypermultipletsand describes their kinetic terms and gauge
interactions. We obtain in this sector gquaternfonic Kdlher sigma models [23, 24 ]
In particular by its field equation the SU(2) gauge field V‘_l i3 of the Wey!
multiplet becomes the composite SU{2) connection of this manifold. oev contains
the kinetic action for the vector multiplet. These vector multiplets are in af}

also coupled to the tensor multiplet, e.g. we obtain a term

&gt - T Ei”“ Ir (F;;g— F; z;)

KEL can describe also physical Tinear multiplets, probably equivalent to hyper-
multip]ets.d%v, which we have used previously to construct cgl andxi; can

also be added as an extra term with independent fields of linear and vector
mutliplets to describe interactions probably equivalent to U(1) gauge interactions

of scalar multiplets . g in {5.1) 1s a coupling constant.

As an example of the possibilities in (5.1} we mention the gauged N=2
supergravities. In the formulation with the compensating scalar multiplet we
can gauge an SU(2) or S0(2) acting on the a,a,... indices of the compensating
multiplet by physical vector multiplets as in (3.5). The gauge condition {4.11)}
implies then that the Poincaré theory is invariant under a diagenal subgroup of
this gauge group and the SU{Z) automorphism group of the supersymmetries acting
on the i, Jj,... This invariance is gauged by the vector multiplets.A cosmological
term is generated by the Yijf1e1d equation (see the last term of (3.10) inserted

in (4.1) and using the nonzero values of the field A;t compensator of dilatations].

In the off-~shell formulation (with the Tinear multiplet compensator} we
can gauge only the S0{2) group acting on the gravitinos. This is done by adding
0‘t',l.\l’

equation of E|J then implies

for the compensator tensor multiplet and a U{1} vector multiplet. The field

ij
ps T
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Autoworpnism troup after the rield savations. ¥ deir again a constant terw

1)

P ; S e s .

due to ti Fyrst terms in a5), It mmplies a cosmeloyical constant, Gbserye
that 1ir % the cosmolagical constant in gauged supergravity s a positive

constant ‘n the potential as it originates from V. ., In fact 1., getting a
- + ] 1J ‘,J
constant term is like 3 Fayzt-Iliopoulos term, breaking supersymmetry sponta-

neously.

Throughout this work we Found much tha same mechanisas as those in g=4
N=2 superconformal tensor calculus. However, some new aspects arose especially
concerning the tensor miltiplet. Apart from the intrinsic value of the construc-
tion of 6 dfmensfcnal matter couplings in view of compactifications {see intro-
duction), this construction can shed some Tight on the structure of 10 dimensional

conformal supergravity.
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APPENDIX A
NOTATIONS AND CONVENTIONS

Throughout this paper we use the Pauli metric Eﬁvz diag(+,...,+). The

8x8 Dirac matrices }(a {a= 1,...,6) are defined by the property
Gady + Vode = 2 Sab (A1)

and are hermitian. A compiete set of 8x8 matrices 0; satisfying trOIUI = SGII

is given by

, @) 0 s ()
Or =54, @ id a’,a’,‘a’j’ (A.2)

H J
where we have used the following notation
a fom
X(lﬂ: Xﬁlh_av\ -_-X[ 'th‘--xq“]:.!_ é(_|) X ‘__-a)qh (A_3)
nt P

where 2% means summaticn over all permutations. The matrix '7} which ¥s defined

by
7{? 24 f.}&jﬁ; Yo s Zf;

(A.4)
) {n} . {6-n) , . .
allows one to express ¥ in terms of . This duality relation reads
H o4, 5
a,.. a . a,. .0y ‘b...lb‘_h +4 I n=edy,
3 M L Xh--bs—n ¥a | Sys (A.5)

{-n\ ~L=n:ygt

The charge conjugation matrix C in six dimensions satisfies [27]

T -1

-\
C-C Ct(C.y Faz-C¥al 3;T=—C3;C (A.5)
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carry an SU(2) index. i {3 = 1,2). This index can be raised or Towered
ij.

Qur spinors

by means of the « symbol «
CTENAL L, A AT

Spinors in six dimensions can satisfy an SU{2}-Majorana and Weyl

(A7)
condition

respectively:

—; T .
A= (a) ¥ - ()T C
where "6" denotes the time component and e. g for a left handed spinor (A.8)

Nty 20, A% 1L (%)

It fallows that A A 1s a real sca?ar quant1ty if c.c. {includes the change
of order of fermionic quant1t1es . Tensors w;x oY *g& .. are real except for
timeTike components. When SU{2} indices are omttted,a northwest-southeast con-

traction is understood, e.q.

3);0\),7{/ . ji Xr.) ZPL'

(A9}
Changing the order of spinors in a bilinear leads to the following signs:
b ) ¢
XYY L wr™ A ty=+ :n=0,3,4
(A.70)
th=- :n= 1,2,5,6

An additional sign is needed if the SU({2} indices are not contracted, e.q.
AW YA but 3y = e pd YA

The completeness relation trOI{JJ =8 LR {see A.2) Teads to the following
Fienz rearrangement formulas:

’l{:‘.iiz_g_ gz(iiiq’lfj)ya“j‘!.(jibﬂbczg') YQLC}%(H»X;) (A.1a}

* For fermionic operators as in appendix B one should realise that we insert

only a sign whereas the crder of the operators is not changed: (Qm ng]* =
= - @ v @ vt

T T TR PRI T T TR T TR T A R

if % and A4 are both negative chirai and

”LFJA“:- L 31"’4;

T T positive chirai and /'t

(ﬁia’“k’qj qu.}{—(l*a’y) (A.11b)

is negative chiral.

One of the more fregeuently occurring calculations with v -matrices is

the product [28]

{'m> »

(At ()
Y AT e o= onl ) Y (A.12) ;
. N
The coefficients C{n,m) for n,m < 3 are given in Table 7 . ‘
Products of ¥ -matrices are given by:
b b bie- b th, by -~=bu3
faca T = Ao T ™ ()01 S, Ky,
.-b
T ) () 1 by ] " by b, {A.13) bm)
— - n "
- (1) 5[4‘5 X«; An] * Y (3)( )3| S[, SaLSq_.,)’n,, ST
Throughout this paper the dual Tabc of a tensor Tabc is defined by
Ja ’
. —_d 4
T be = -2-—- g&hcﬂ(!f { f (A.74) \
which means that T = 7. Positive and negative dual parts aré defined by: ‘
s L
Tob{ = % (quoc 'I.TC\Lc) {A.15)

Differently then in d=4 (anti)selfdual tensors can be real in the sense that

-abc abc

+ .
the comporent with abc#6 are real. We remark that 7, T = éTabcT is non

abc
zero but the product of two tensors of the same duality vanishes

+ b
Tabe TF¥ 20 (A.16)

Other useful identities for (antil)selfdual tensors are
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+ ——‘:col bed - ~ - <
Foaca T + F+ Tacd 2-;; %3: Fc,ie T e

+ od + e

FCo{ ["LT = ) thj,c Tde_] = D

(A 17}

The 3-¥ tensors (1% ¥ )ngc are t+ self-dual, respectively. ATthough we usually

omit spino indices we still need them for general formula as (2.1}, {2.4), (2.5)..

The conventiions are then the following. Spinor indices a ,8 ... are raised or

lowered with the symmetric tensors C *® or ¢ s which are each other inverse
[+ ]

and complex conjugate
4 < o x*
f(:rj" S ¥ ) ((i f ) = (:°<F
The usual'f—nmtrices have their indices in SW-NE direction, 350 e.g.

X3 A = X5 v 'B;(F (A.19)

The x-matrices are antisymmetric in their spinor indices

(A.18)

C‘fra\]«(sz‘ },‘chyf‘ -3—7«\/9& {£.20)

and satisfy

* :
(¥ “F\? I (A.21)

Firally remark that ¢cur {antiisymmetrizations are with weight one

[ab:{ = 3 (ab - ba} (A.22)

APPENDBIX B

THE SUPERCONFORMAL ALGEBRA IN SIX DIMENSIONS

The 28-parameter conformal group in six dimensions consists of the 21-

parameter Poincaré group {translation Pa and rotations M_ ), dilatatjons D

ab
and special conformal transformations Ka. The algebra is given by

AT B PR T T

LPe Moe J= P Siya

LKaMb = K Sie

LR Kol = =2 (S D+ 2 Map)
Lo, pcle P

LD, Kil=-K.

{6.1)

We next introduce two supersymmetries Q' (i= 1,2). The spinor generator q'
o a
are SU{2)-Majcrana-Weyl
L * ir ~f
O LQCF) (B’; )P-( :C“f 4 Q
d (8.2)
The [ K,Q ] commutator produces two cther “special" supersymmetries SL . The

, C@;': $(-%3), ﬁ‘:‘)f- ;

spinor generators Sl are SU(2)- Majorana~wey1 and positive chiral. The Jacobi

identities demand that [ Q-I ) a J contains D, M and mareoyer an SU(Z) tripTet
Y

generator Uij which satisfes ¥ . = U (UTJ)* = 0. The new (anti)

commutators are



0,041 -~ £ Qg 2 P
N ol e
ES-{,SF}' ,_b;a)o(/a £ K
1R, 3= 4 Gy D +4 G £ M- 4 Cyp ]
M, @) ]--4 G @)
Tha, Si)= =7 (B S)

Yuid, Q'(k]* ';‘_ Ek(f QJ)a/_ ) [[,({/’ S(kaé Ek(;‘.%).{

Dby, MeeD= -4 Wir g+ 2 Uy £u
,6:3-3@ ,  D,SiJ--is =
(ke @) (@as). (R, Se)= - (@)

In (B.3) we have used a shorthand notation to demote chiral projections of Dirac
matrices, e.qg.

g = (5000, ap=(r-mat),

F {B.4)

and the same for all other matrices. The superconformal generators satisfy

generalized Jacobi identities. As an zxempie, we prove the (Q,Q,5) Jacobi identity.
First substituting the comuutators (8.3) yields:

E{Qi,Q;. j f S:‘]d [Qxi,goé,sx'k}] - [_Q;, {Q.;,Sa%}] =
= %E‘J (jq)u‘tﬁ qufe )jk" 'é"(:d“{ﬂ)fi E'jk {b:qbo)'(c (B.5)
'7-ch)‘ (2;(}.@,(“+§-5ka<;) + (m‘«—)/zof)
. ~ 47 -
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We next apply the Fierz relation (cf. eq. (A.11a))

g =3 PR QM) g - £ T Oac)E%Nep] 00

on the second and third terms at the r.h.s. of (g.s). Then the Yabc terms

a
cancel between each other and the .~ terms cancel against the first term at

the r.h.s. of {B.5). This proves the Jacobi identity (GQ,Q,5} = 0. Thus we
have obtained a parametrizatfon of the supergroup Osp(6,2]1}.
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TABLE 2

Massive spin-2 representation of the d=6 super-Paincaré algebra

Fields of N=2, d=6 conformal supergravity in the formulation with T;

TABLE 3

bc

spin. ¢ N=2 gauge fields matter fields

2 (18 1 1 e

‘ p

3/2 (8) 3 4 -v:

1 (5) 5 3 v 2 T B
W abc pv

172 (2) 3 a ' or

0 (1) 1 1 D o

The numbers between brackets in the first columm represent the

dimensionality of zach spin. Those in the second column denote

the number of spins coatained in a massive spin-2 representation.

The number iw the third and fourth column indicate the massive

spin states, which zre descriped by the supevconformal gauge

fields and the added matte~ fieids respectively.

Field Type Restrictions su{2) w
a .
e boson sechsbein 1 -1
]
1,1 fermion Ty vl =+ dr1 2 -3
n " n
. . ‘s *
v beson A N C N U I XS 3 0
¥ n N utll ~
- -1 -
Tabe  Bosom Tabe = 7 & “abdef def 1 !
x1 fermion ¥, x1 = x1 2 3/2
D boson real € 2
b‘J boson dilatational gauge field 1 0




Fields of varicus d=6 superconformal multiplets: the coefficient w _denotes the

Weyl weight
TABLE 4 N

Field Type Restrictions SUH2) W

Extension of the superconformal curvatures R to the fully covariant curvatures

Non-abelian vector multipTet

of N =2, d = 6 conformal supergravity

Hu boson real (non}-abelian gauge field 1 ]
ﬂ1 fermion Y, ﬂ1 = 4 g 2 3/2
s . ; .
R v (f)- /«v(P) = @ v boson Y]‘j = Y‘ﬁ = Yij 3 2

.

K/J (@) - R (@)= L ¥ T VoW

Scalar multiplet

OA Ab — {n A
h/f“ () - R/‘“’ (W) = %/j K"J (®) *“"Vﬂﬂ (Q) Al boson AL = ”A§ - =-(A:)*, see eq(3.3-4) 2 2
[a o &1 _ -abe r® fermion v, 20 o= 2" ] 5/2
“%59%761’l ey T "~
A

Tensor multiplet

o (- Ry () = & Hop X

’R d{ ﬂ d - ) : B, boson real antisymmetric tensor gauge field 1 0
v) - (v .
/« /u' ) "f}t jv] ol fermion Y, oot 2 572
,\ -
h L Y
- ! _L - a boson real 1 2
R/“' (S) ﬁ/‘v (5) —‘—[)’ D’r 3: Y )R«L (V) IP,:JJ ~
- : P Dua F Linear muTtipTet
1 2t i T -
L boson LY =1 = L1j 3 4
¢ fermion Y, 8 == b 2 9/2
Ea boson real constrained vector; cf.eq.(3.38) ] 5
Nontinear multiplet
Al boson element of SU(2), e: = -(o‘i'}* 2 0
o
A fermion T, xf = - xi 2 3
Va boson real constrained vectorikf.eq,(3.47) l 1
- b5 -
- 5 -

o B *mﬁwmﬁ !WEEK;&L&



TABLE 7
TABLE &

Independ: % fields of the off-shell formulation of Poincaré supergravity coupled

The coefficients C{n,m) defined in (A.12}

&the tensor multiplet

numbey of
components
% < T
e: physicdl graviton field,gauges general cocrdinate 15 | o 0 ] 2 3
transformations i m
v: physical gravitino; gauge field of supersymmetry -40 . 0 1 6 . -15 -20
V;‘] auxiliary SU{2) triplet vectar 2x6 1 i -4 - 0
Vuij s gauges an S0{2) invariance +5 7 1 2 1 4
a physical scalar. Singularity at ¢ = 0 1 3 1 0 3 0
\p1 physical fermions -8
B N physical antisymmetric tensor gauge field 10
7]
vpo auxiliary antisymmetric femsor with 3 index gauge invariance 5
u
- 5§ -

- 57 -



Fields of N=2, d=6 conformal supergravity in the formulation with Buv

Field Type Restrictions SU(2) W
e: boson sechshein jv -1
i . i i

wu fermion v, u»u =+ \Dp ,\2., -ij2
- - . *

v boson v e sy T 6 3 0
H U 3 uTd ~

B boson sB = 23 A 1 0
KV Hv T vl -

v fermion 1,w1 S—_— 2 5/2

' d

5 boson real ’1' 2
bu bosan dilatational gauge field l 0

~ B9 -

ey

ar i vy



