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ABSTRACT

Using superconforJiaJ. tensor calculus we construct general interactions

?f V,~?, i""£ supCi^rti ,iLj vilh -. tensor multiplet arid i nuiobfer of scalar ,

Tcctor and l i n c ^ ^^.^1^1-ci,.^. >.'„ uuiiii. Tr̂ iii the ^upuxxoiiforiual algebra, which

we rcaJ.ise cii n hO'-hZ "J^jl j^ilti^lcL &itC JU neveral amtter ial t ipl i iLs. A.

gravity coupled to a tensor miltiplet.

- TBIESTE

July 1985

* To be submitted for publication.

•• Bevoegdverklaard navorser, NFtfO, Belgiai».





INTRODUCTION

in Ref. • . Subsequently, it was found that [2] the theory cornpactif ies UII

the pro;'','t of four dimensional Minkowski space-time and a 2-sphere, yielding

chiral fermians in d=4. Moreover, it has been shown that [3] due to the

Green-Schwarz mechanism [4] , the theory is anomaly free for a special choice

of the gauge group (in particular E,xE_xU(1)) and particle content. Monopoie

compactification of the theory yields two families of chiral fermions with no

residual supersymmetry, and hence no massless scalars. If massless scalars had

arisen in d=4, they could be used in breaking the Yang-Mills symmetries. A large

number of other matter couplings to N=Z, d=6 supergravity are also anomaly free

[51

Clearly it is desirable to extend, if possible, the results of Ref.M],

so as to find a more realistic compactification scheme where, firstly the correct

number of families of chiral fermions would emerge, and secondly an N=l super-

symmetry would remain in d=4. The latter is desired, in particular, to generate

massless scalars in d=4.

It is well-known that local conformal supersymmetry [6] is a very con-

venient framework to study general matter couplings to supergravity theories.

By imposing suitable gauge conditions (breaking superconformal symmetries down

to super Poincare' symmetries) couplings of well-chosen matter multiplets to

the Weyl multiplet give rise to off-shell formulations of Poincare' supergravity

[7 ] (reviews of this method are given in ( 8,9]). This has been used to con-

struct general matter couplings to N=l [10] , N=2 [11,12] and N=4 [13] super-

gravities in d=4. In this paper we perform the first steps in the superconformal

program in six dimensions. We will obtain multiplets very similar to those of

ref. [11,12 ] . We first construct the superconformal generator algebra, which

is 0Sp{6,2|l). The generators are labeled

where a, b, ... are Lorentz indices, a is a spinor index and i, ,], ... = 1,2.

M P are the usual Poincare generators, K is the boost, D the dilatation,
ab a a

Q . ii the duub^l of u^al su^ersymmctry generators, while ^ ;.:• ".:.:•;£ of
.

the special supsrsymmetry. U.. is symmetric and labels the triplet of SU(2)

generators, satisfying(U. .)*= U1J" ^ ^^ ^ U ^ (see appendix A for notations).

We next realise this algebra on the following set of fields

, o (1.2)

where the first four are the gauge fields corresponding to the generators

P , 0 , U . and D. The anti-selfdual tensor T" , the spinor x and the
a 017 ij A aDC

scalar D are matter fields . As it will be explained in the text they are needed

in order to obtain a massive spin-2 representation of the d=6 super-Poincare"

algebra, which has 40 Bose plus 40 Fermi degrees of freedom. The field b^ can

be gauged to zero by using the conformal boosts. We then impose the super-

conformal commutator algebra on the components of the following matter multiplets

[ 1 4 ] : (a) Yang-Mills multiplet (b) hypermultiplet (scalar multiplet) (c)

tensor multiplet (d) linear multiplet (e) non-linear multiplet. The contents of

these multiplets are listed in Table V in the text. For the hypermultiplet this

can only be done modulo constraints which will become field equations. The linear

multiplet is an off-shell version of this multiplet at the expense of introducing

an antisymmetric tensor. The other off-shell version, the relaxed hypermultipet

[14] is not treated here. Also for the tensor multiplet we need constraints in

order to impose the superconformal algebra. In this case, however, these con-

straints cannot be interpreted as field equations. Instead two of them can be

solved for the fields D and x in (1.2) while the third becomes a Biatichi ident-

ity. The multiplet contains a self-dual field strength f^bc which is in fact the

obstacle for constructing a Lorentz invariant action for this multiplet separate-

ly and thus for considering this muHiplet as an ordinary matter multiplet [15].

TA-- M.i.,

* All bosonic fields are real if their Lorentz and world indices are different

from 6. For ut 6 (V^.)* = +(V ^K

Q*c
i

(1.1)
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By tim constraint it can be interpreted as the self-dual part of the field

strength of in antisymmetric tensor B , while T~ in (1,?) becomes the anti-
M« abc

selfdual part.. This combined Weyl-tensor multiplet will become the basis for

building actions. -,e need the action of a compensating scalar or linear

multiplet to obtain Poincare supergravity coupled to a tensor multiplet. This

basic system can he coupled to actions for scalar multiplets with or without

gauge interactions, kinetic terms for the Yang-Mills multiplets and linear

multiplets.

~Us'fng the compensating linear multiplet we obtain also a "45+?8 off-shell

multiplet which describes Poincare' supergravity coupled to a tensor multiplet.

This auxiliary field formulation is of the type of the new minimal formulation

of N=l supergravity [16 las it has an auxiliary gauge antisymmetric tensor and

a S0(2) invariance gauged by an auxiliary vector.

Section 2 contains a detailed description of the construction of the

NS2 d=6 Weyl multiplets. In section 3 we construct the full superconformal

transformations of the matter multipiets. Actions are discussed in section 4

and a recapitulation with conclusions is presented in section 5. Our conventions

are given in appendix A while appendix B contains the N=2 d=6 superconformal

generator algebra.

W.i - tu D

Here • ' and 4 1 are SU(2) Majorana-Weyl spinors of positive and negative
v v

chirality respectively:

Furthermore the gauge field V ~* satisfies

(2.2)

(2.3)

Using the structure constants of the superconformal algebra:

+ T6TA = f 6
(2.4)

{+ sign if A and B are fermionic) and the basic rule

(2.6)

II. THE N=2, d=6 WEYL MULTIPLET

As a first step in the construction of the N=2, d=6 Weyl multiplet we

consider the superconformal algebra in six dimensions^OSpt6,2/1). The nonzero

commutators between the different generators of this algebra are given in ap-

pendix B. For our conventions we refer to appendix A. To each generator T. of
A

the superconformal algebra we assign a gauge field h in the following way:

one can immediately determine the gauge transformations of the superconformal

fields defined in (2.1). We have listed these transformations below.

= sq + ? S +

- 3 - - 4 -
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- f*e^

- i. I fy + l jr ̂  - 2 /iK/t

A
4^p £ -i

(2.6)

The spir;crs tT and •> are positive and negative chirsl respectively.

r = + ̂  sl t y -.- nf y
L (2.7)

i ; csVi-rvirt -vitfc res.icri: to the Mnearly realised symmetries

^ ^ ^ 7 * ' ^ , ^ ^ . (2.8)

Note also that SU(2:) iridici.-3 t-re omitted when a northwsst-southeast contraction

is understood (r.ee A. 9).

The structure constant;, f__ of the superconferma! algebra also enable
C A

us to calculate the curvature tensors R by means of
VIM

Me have listed them in Table 1.

- 5 -

:z.9)

The underlined terms in Table 1 represent the terms proportional to a

connection field multiplied by a sechsiiein field. The covan'ant derivatives D

are again covariant with respect to D, M and SU(2). For convenience we havs

written them explicitly in the expressions for R(P), R(M) and R(V).

The superconfonnal gauge fields defined in (2.1) describe 155+80 !bo3cnic+

fermionic) off-shell field degrees of freedom. The bosonic degrees of freedom

are described by the gauge fields ea(30), n a b(75), VT.(15), fa(30) and b (5).

The fermionic degrees of freedom are described by the gauge fields * (40) and

* (40). The 30 degrees of freedom (d.o.f.) described by the se:^5hein decompose

into massive representations of the d=6 PoincarS group as a masT:ve spin 2 re-

presentation (14 d.o.f.) plus lower spin representations. By d&fjnition the

d=6 Weyl multiplet is the smallest irreducible multiplet that contains the

massive spin 2 representation.

To achieve a maximal irreducibiiity of the superconformal gauge field

configuration we impose a maximal set of so-called co.,.-c;nticnai constraints

[17] on the superconformal curvatures (see Table 1). Inspection of the explicit

form of these curvatures shows that R(P), R(M), R(D) and R(Q) contain terms

proportional to a connection field, multiplied by a sechsbein field. Hence,

these connections, u a fa and can be expressed in terms of the remaining

gauge fields by imposing curvature constraints. For this purpose the following

set of constraints suffices:

R M.V

(90)

(36)

(43)

(2.10)

We have indicated the numbtv of constraints between brackets. At first sight, it

seems that one can also t?estrict R(D), but in the presence of tfi» first constraint

of (2.10) one can show that R(D) is no longer independent by virtue of a Bianchi

identity.



The expressions for M , f and * \ which fcl<c.< frcm (Z.iO) are given

by

t> ^ z e.
bj f C

e

- if U 1 (?)
(2.11)

The notation R'(M) indicates that we have omitted the f^-dependent term that

occurs in R(M), while R'(Q) indicates that we have omitted the *]-dependent term.

Since the constraints (2,10) are invariant under M,D,K and SU(2) trans-

formations the corresponding transformations of <û  , f* and t1 implied by the

superconformal algebra (cf. (2.5) and (2,6)) remain unaffected. However, the

constraints are not invariant under Q and S supersymmetry and therefore the Q

and S transformations of <* , fa and t1 change by extra terms proportional to

curvature tensors [6 J . For instance, requiring invariance of the constraint

R(P) = 0 under Q supersymmetry leads to

= 0
(2.12)

Here SZ. denotes the variation of R(P) according to the superconformal

algebra, while the second term denotes the variation of R(P) owing to the extra

term («a>a ) a in the q transformation of u a . From (2.12} we deduce that this

term is given hy

We should mention t h a t Uic <'j>XaJ\'.'-.• f "

c r u t i a i , as long «"= Lnoy f u l - j i--jstr"'i

(2.13)

the conventional constrai1 fs is not

gjjcje fields in o,ii

When combined with the constrai"ts(2.10) the Bianchi identities lead to

further relations among the superconformai curvatures. As it turns out the only

independent bosonic curvatures are R(M) and R(V1. The a priori 225 components

of R^ytM) are restricted to 14 independent ones by the following algebraic

and differential identities:

(15)

(3S)
(2.14)

U«- (35)

where A denotes covariantization with respect to all the superconformal

transformations except the general coordinate transformations, and here with

respect to the new transformation, (2.13). We have indicated the number of

independent constraints between brackets. The a priori 45 components of R (V)1

are restricted to 15 independent ones by the following Eianchi identities

(2.15)

The only independent fermionic curvature is R(Q) because R(S) satisfies

The a priori 120 components of R(Q} are restricted to ̂ 2 independent ones by the

following identities

±fyfhl)ilh\,kc2JL(Q)=o (so)K R w j (Q)1ufyhcjl9)Tl^ih\,kc2JL(Q)

i^K^1 (fl)S0 (?) - (2-17)
Although we have now achieved a maximal irreducibility of the superconforitial

9auge field cc-ni igurdtion the above procedure does not guarantee that these gauge

di const itule a compete field representation of the superconforrnal'algebra.

- 7 - - 8 -



The following counting argument shows that this is indeed not the case. The
constraints (2.10) eliminate 126+48 (bosonic+fermionic) field degrees of

freedom. *nce after imposing these constraints we are left with (14+15)+32

field a>. .rees of freedom. The bosonic degrees of freedom are described by the

gauge f ie lds e" ( i4) and V '.(15), while the fermionic degrees of

iveeJom are described by (i' (32). These gauge f i e i d degrees of freedom form one

Missive spin-2, two massive spin-3/2 and three masiive spin-1 representations

of tiie d-ti Poincare algebra, in Table 1 we have indicated these representations

vO^LuOi" v. i i i ' i Lue i p i i i i , w i i i c i i a re C j i iLa iueU i n a ik-i. mass ive s p i n - i repi• esern.a-

t i c . i o f I K L ' d-& Oupar-Tt; :iiCiirel u T ^ c J r ^ . r ro i i i t i n ' s Laijlfe we iiwiied i d t t ; l > isju L i iut

a - l j i t i o n a l mat ter f i e l d s [111 muse be added to the gauge i i e t i i s in oroer tu

obtain such a massive spin-2 representation. We have indicated these matter

fields in the fourth column of Table 2. Here T~ is an antisymmetric tensor
i ii - i

of negative duality ( i . e . T = - - e T . ) , x is an SU{2)-Majorana Weyl

spinor of negative chirality ( i . e . x = - Y X ) and D is a real scalar. The

duality of T and the chirality of x are fixed by supersymmetry. Note that
T we could also use either a second-rank antisymmetric
a be

instead of

tensor field B or two vector fields.The first possibility will be considered

in section (3.3) (in this case the spinor and the scalar have different properties

and hence will be denoted by ̂ ' and o respectively). The second possibility leads

to inconsistencies when these vector fields are coupled to the SU(2) gauge fields

VU. [18]

M

Starting from the linear transformation rules of the superconformal

gauge fields given in (2.6) and the matter fields T x and D introduced
abcr

above we can now construct the full nonlinear N=2, d=6 Weyl multiplet by applying

an iterative procedure which we describe below. Since this procedure can be

applied in different situations as well we will first describe it in a more

general context and then focus on the d=6 case. The method consists of the

following steps:

1. First write down the linearized Q transformation rules (i.e. only

containing terms linear* in tho fields) for both the gauge fields and rrattor

iid-tri I:".'2.5);.^ . . - p,-:;:^-4-;:^! tr, th- matter fields car- be *ound ~-

. J . i-i-v, _, Ji;c' : ':-ii ' > V : L ' : > ..-• >•; ;..••• •••••J^:. ji^n-'Tc • 311 rs •"•._ z c o r j i n " i ] •• n u r ^ c r c

uuiiiLdiit c o e f f i c i e n t s . If derivstivor of gaun^ f^tlds are Fieed.?d one use? the

corresponding superconformal curvature tensor (cf. Table 1). One now fixes the

coefficient In the Iran 5 for nation rule: by requiring that the commutator of two

translation, e.g. in d=6:

(2.18)

The explicit form of the parameter on the r.h.s. of (2.18) follows immediately

from the (Q,Q > anticommutator given in (B.3) by identifying s U) with

oi

2. Determine the bosonic transformation rules of the matter fields. The

Lorentz transformations follow immediately from the index structure of these

fields. Their D transformations are characterized by assigning them a Weyl weight

w in the following way:

(2.19)

The Weyl weights of the superconformal gauge fields follow from the superconformal

algebra and are given for d=6 in Table 3. The Weyl weights of the matter fields

can easily be fixed by requiring that the Weyl weight of all terms on the l.h.s.

and r.h.s. of each Q transformation rule is equal. For d=6 they are given fn Table 3,

together with some further restriction of the fields. All fields are real in the

sense explained in appendix A.

- 9 -
- 10 -



3. Replace in the Q transformation rules ordinary derivatives •> by fuiiy

CGVoManl derivatives D . Such a derivative is defined as fullows. Suppose a

field * transforms under the super\.onformal symmetries wiUt parameLers, <-. and

gauge fields h\ (cf. (2.5)) as follows:

(2.20)

where T is an operator working on the field •. The fully covariant derivative

D is then defined by

V (2.21]

the dependtiit sadc fields u ; ind f also transform ur K since

depend on t. (cf. (2.11);. This fael enables us to givs the following rule for

deriving Uie S transformation rules for all the fields: assemble all the t> -

dependent terms in the Q transformation rule (they are hidden in the covariant

derivatives). The S transformation rule (characterized by a parameter n) is

then obtained by making in these terms the following substitution (the explicit

factors correspond to d=6):

i >'b. r (2.23)

In other words, the covariantization part is always given by minus the trans-

formation rule of the field with the gauge field h* substituted for the parameter

e . In the following it is understood that whenever the transformation rule of a

field is modified, the fully covariant derivative of that field gets also mod-

ified according to the above rule. In particular, the superconformal curvatures

do get modifications which are either proportional to matter fields or curvature

tensors. The latter correspond to modifications in the transformations rules of

the type given in (2.13). These modified curvatures are denoted by R. For the

d=6 case they are given in Table 4.

4. Determine the S supersymmetry transformation rules by requiring that

the commutator of a Q transformation with parameter * and a K transformation

with parameter A^ gives a S transformation,e.g. in d=6 (cp. to the [K,Q] * S

commutator given in (B.3)):

5. Replace in the conventional constraints (see (2.10)) the curvatures R by

the modified curvatures R (see 3.)). Note that the explicit form of these cons-

traints is not important as long as they enable us to solve for the gauge fields

di , f and <t> .In particular we will use in d=6 the following convention. We

modify the conventional constraint Y ^ R (Q) = 0 with the matter field x in
MM

such a way that this constraint is invariant under S-supersymmetry [11] . The

advantage of this convention is that the S transformation of * does not get

extra modifications of the type given in (2.13). Of course the Q transformations of

a , f and * do get modifications. They can be determined by requiring that

under Q supersymmetry the conventional constraints transform into each other. As

a convention we modify in d=6 the constraint R (M)e. = 0 with additional
v o

matter fields in order to simplify the Q transformation of * . (They eliminate

terms of the same type in «„* ). For the explicit form of the d=6 conventional
4 li

constraints, see Eq.(2.24) below.

(2.22)

In practice the only field that transforms under K and also occurs in the

transformation rules is the dilatation gauge field b . Of course the

6. Construct the full nonlinear Q transformation rules of all fields. This

can be done in the following way. Remember that the linearized transformation

rules were determined by requiring that a [ Q,Q j commutator gives a translation.

However one consequence of the matter fields is that this algebra gets modified.

For instance, calculating the iQ,Q] commutator on the sechsbein gives besides a

translation also a I -dependent Lorentz transformation (for the full nonlinear

- 11
- 12 -



ci-6 superconforirial commutator algebra see t q. (r. ? ~.: oelow). It; the nonlinear

case we now require that the [Q,Q] ccrnnrutaUj,- •:•': dil the other fields also

gives this T . -dependent Lorsntz transformation. In general this requires th<j

addition of terras of second order in the fields to the transformation rules.

This is the first step of an iterative procedure. In the next step one repeats

the calculation on the basis of the new transformation rales, etc. Mote tf.at

t-Uo. iaiTit i t e r d l i w c - p*uCeCiLirfc aS u u t M i l f c U diJOVe (.all d i SO ue d p p l )*2Q U i i n y C iObUTt:

of [Q,S] commutators instead of [Q,Q] commutators. In practice this is much

easier since in most cases the [Q.,S] commutator algebra does not get matter

field modification (cf. to (2.28; below).

This concludes our description of how to construct the full nonlinear

Weyl multiplet starting from the linearized transformation rules of the super-

conformal gauge-fields. We now present our results for the N=2, d=6Weyl

multiplet. First of all we ch-jose the following ;>et of conventional constraints:

(2.24)

v-
u . u . u , t ; ir. is cK^iioiiieu iri i . iii T a b l e 4 « c n t n

•I u~ tin; curvai.urei. The solution of (2.24) now

includes terms proportional to matu::- fields (cf.to( 2.il)).The solution for

* are given ay.u remains the same (see(2.1'l>). Those fur fa and

(2.2S)

^

The n L i t e t l u n h . ' i ! ) «•:•-

term in R(M) and tin: *

't> , iv ~ K ^ e ^ a ,

-depen-Jert; ttrms "fn R{Q) respectively.

- 13 -

We find that the full nonlinear Q and 5 transformations of N=2, d=6

confonr.a'1 s:Jpergravity are given by:

r

£ t^c x

Here and in the following we use a shorthand notation for - - --ntractions:

y T" = T
a b c T " etc. For convenience we also list the Q and S transformation

ab
rules of b arid the ce::er;dent gauge fields u and *< :

y v v

(2.27)

The algebra of Q and S transformations in (2.26) and (2.27) closes modulo field-

dependent transformations. The algebra takes on the following form:

V

-u

- 14 -



In the derivation of (2.26 - ?.28) one needs the Q and S variation of R(Q) and

R(V). For the convenience of the reader we give these explicitly:

3.1 Vector Multiplets

T

(2.Z9)

The N=2 d-6 vector multiplet consist:-- of a real vector field W an

SU(2)-Majorana spinor ft of positive chirality (i.e. T 7 n = + a ) and
i j *a triplet of auxiliary scalar fields, 1 =(Y. .•) . In order to derive the

(nonlinear) supersymmetry transformation rules of these fields we apply a

procedure which very much resembles the one which led us to the construction

of the N=2, d=6 Weyl multiplet in the section 2. The same method will be applied

to the remaining matter multiplets as well. Therefore we first give a brief

resume1 of this procedure and then can continue with the vector multipiet. The

method consists of the following steps:

1. First write down the linearized (i.e. only containing terms linear in

the fields) Q tranformation rules. The explicit values of the coefficients

in these transformation rules can be found by requiring that the commutator of

two supersymmetries gives a translation (cf. to (2.18)).

3. SUPERCONFORMAL MATTER MULTIPLETS

Having constructed the N=2, d=6 Weyl multiplet in the previous section

we now proceed with the iroUe!* multipiets. We present here the transformation

rules and discuss action:, hi lection 4. In this paper we deal with (non-abelian)

vector multiplets and scalar iujltipiets (hypermultiplets) which transform under

an optional gauge grc;;p astociut-iiJ wii.'i trie vector fields contained in the vector

multiplets. FurtheiriO'-e we conskler t.'.p tensor multiplet and both the linear and

nonlinear multiplets i-nt mil d ; • ;;uvJ .iypermultiplet [ 14 ] . These trtultipiets

are the buildiny blc.kr i , !,-. . v. r: uct ion of general matter couplings to N=2

. d=6 Poincare supergravitji

2. Determine the bosonic transformation rules of all components of the

multiplet. In particular assign them a Weyl weight w. For d=6 we have listed

these Weyl weights for all matter multiplets in Table 5, together with some

further restrictions on the fields as well.

3. Replace in the Q transformation rules ordinary derivatives 3 by fully

covariant derivatives D (cf. eq. (2.21)).

4, Determine the S supersymmetry transformation rules. As explained in

section 2 this is most easily done by assembling all b -dependent terms in the

Q transformation rules and by making the substitution i K c * i (cf. eq.(2.23)).

5. Construct the full nonlinear Q transformation rules of all fields by

requiring that the superconformal commutator algebra given in eq.(2.28) is

realized on all components. Especially the 1 Q,S]commutator is easily calculated.

- 15 - - 16 -



This concludes our description of how to construct the full nonlinear

transfirjnaf'^i ruler, for i1-1 fitter ;;sul lijjleLj. We now ^resent our results for

s {W1( , '•

v :
u I ^ - - i

The ^

of n reads as follows:

y- F \iv) r'1- -i yy f

MV J li K

(3.1)

f^v + 2.

( 3 ' 2 )

The fields are Lie-algebra valued, so the last term of D " implies

a commutator between the generators. We introduced here and in the fol-

lowing a coupling constant g. For non-simple groups this can be trivial-

ly extended to several independent coupling constants.

Note that in d=6, unlike to d=4, the nonabelian gauge transformation of U

does not occur as a field-dependent central charge transformation in the

commutator algebra I 19] .

- 17 -

3.2 Scalar Multiple!

,f ^ {>! ?\ -; r J

i-;»d or

lowered with a matrix

(3 .3 )

The -• •>T i ty ccncHfinn1: : r ?

)* =-A; (3.4)

The scalar multiplet can transform in a representation of a group which respects

these conditions

(3.5)

The same conditions appeared in 4 dimensions [12] and it was shown that by

field definitions of A Q the matrix P can be brought in the standard

form

-i o

-i 0 (3.6)

The transformations in (3.5) are by definition those of GL(r,Q), and in fact

the fields A a can be interpreted as r quaternions.

The Q and S transformations can easily be found by applying the procedure

outlined in subsection 3.1. They read as follows

- 18 -



or any subgroup does not close. First we define a covariant quantity as one on which no

transformation has a derivative on a parameter, hence

(3.8)

where g is the gauge coupling constant. The superconformal commutator algebra

(2.28} is not realised on y*-

, S^ffj] S<= «K2-l^-£ f
(3.9)

ra should therefore be a field equation to have this algebra realised on shell.

The variation of r° under Q supersymmetry leads then to the field equation

for A1. These equations are given by

(3.10)

These equations are complete in the sense that supersymmetry transformations

do not lead to new field equations. Explicitly one finds

< A -r J, (3.12)

First we suppose that also T • is a covariant quantity

(3.13)

but the algebra does not necessarily close'on <f>

(3.14)

The position and order of indices are written consistently with the conventions

for spinor indices as given in appendix A. The notation c indicates that the sum

over c includes translations. Unbarred indices run over any other transformation.

n is the "non-closure function on*". We will now consider the transformation

of the following covariant derivative

f (3.15)

To calculate sD we use

(3.11) (3.16)

The •^-dependent terms in (3.11) can be obtained by requiring that the fQ.SJ

Ccommutator given in (2.28) is realised on

not form a multiplet. One can also derive the f, terras in (3.11) directly

from the non-closure function (3.9). For this we need a modification of the

r and C. although these quantities do

where t h are terms containing "covariant" matter fields but not explicit
m v

qauqe fields (apart from e ). Observe that the * -matter (T,x) parts in (2.27)
p y A

are included in the second term of (3.16) using for fgC the structure
functions of (2.28). We obtain then
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TAf

T

{o. i / )

terra are the

formation of

141U utl i . t j i • I ' lc aet-UItu oTi

A A „ . .
term are the remnants of o difference T - f=,, . Consider iny <iow ihe

We use

Z1

Then the third term in (3.17) is cancelled and we jbtain

(3.18)

(3.19)

Tht s.f'coru tersii i;> •;TG1 '.. - cw; from (?.2O) anci (3.9).

"r.ii no!i-c!o:u'e functio-i on D AJ follows from the last term of (3.8)

ami r.hr SLCC: d term in (3.11) is then In-̂ odiatelji' obtained. For the def init io

of u " we need one mre observation. As " (or in general D * ) does
A a A A

transform in a .'icn-covariant Lerm we cannot define D r or D, D * •":J~h
a b a ,

tha i , i i i i Li ui .^roi ' i i iaL foi i y i v e s no d i i i v a t i / e en a p a r a m e t e r . As ? „ ;

c o n t a i i . j MU covm i d . - . t i i a i i o i ; f r o n ; the nan c o v e n a n t Lc rn i n ( 3 . 2 0 ) (h u. -.•LB " 0 )
3 a *o

occurs

(3.22)

We can define in general C.C * such that the antisjrtr»';d; iz part in
D a

\ab"l does not transform in a derivative on £

A\. a

(3.23)

The second line of (3.20! arc tint '^variant terms" in the transformation of the

gauge fields in (3.75), e.g. for i- ;

Uiis def in i t ion, hhich dif fers from (3.15) by ih<- factor I in the th i rd term,

satisfies

13.24)

and this is the way in which the second term in (3.22) comes in (3.11).

The result is thus that if a covariant field transforms only in covariant fields

(i.e. (3.12), (3.13/J then ths tfciii.'-jj iiiatinn of the covariant derivative with
A

] . i ' " e n t r "'••'•.:'-• " '•".. : " ' . " " • • ' : - . . - ' l : t ' . ^ \ • » : • : • ' " - r h > ; : . ; o r H t ° r r i i

d
G r ^ j i n s L i r ^ r ' " ' " ' l i"- 1 c . . . " 1 ". - . ' o r . A w j " ! -k rcv , 1 : ! ^crj^'^j!.1;1.!..:: o f v h i s

theorem is that a covai-iant box ir, -^. in (3.10)tocA = SaD A = c-ua6 (eufi A)).
a p & v

3.3 The Tensor Multiplet

ii, riyiu iiiptrspdct: niJ one can introduce a real scalar superfield o

sat-jiiyiny b'" a - J. Jrte components are ti real scalar a , an SU(2i-Hajorana

j "6 i i
spinor if of negative chirality (i.e. T, * = - + ) and a self-dual 3 index

tensor F . They have to be singlets under the gauge group. The full trans-
abc
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formations under (J and S are

- 3

To obtain closure one should impose the constraints

(3.29)

In the domain o^ 0 the first constraint can be used to define x as a

function of fields of the tensor multiplet. The third constraint (using also

(3.25)

The algebra does not close on these fields

~ f..

F=

^ 2

- O

^ P

(3.26)

The quantities r atid G transform among themselves and in an independent

quantity L.

These transformations are

= - ^ ?*„•„,. bcr •» ]• ? v ^ v t Vcj+ r

p

(3.27)

(3.28)

3.30)

and (2.25)) can be solved for D. The constraint G = 0 can be solved as a Bianchi
ab

identity

7

B is a newly introduced antisymmetric tensor gauge field which transforms

as

{3.32)

where A
u denotes the gauge invariance of B .In fact this modifies (2.28}

by a term

(3.33)

which is a "central charge-like" term. In rigid supersymmetry its field strength

is self-dual which prevents the construction of an action [15] . Here T

provides the antiselfdual part, and we will be able to obtain an action of Super-

gravity coupled to a tensor multiplet [ 1 1 .

At this point we could interpret the system (40+40 Weyl multiplet; 11+8

tensor multiplet; 1 U 8 constraints) as a new 40+40 Weyl multiplet with independent

components

- 24 -



(3.34;

We give the poperties of these fields and their transformation rules in appendix

C.(See also Table 8).

We also tried a different approach, where we started from B , * and °

as independent fields as well, but we would not impose (3.29) as constraints,

but using field equations. In other words we would construct an on-shell tensor

multiplet

<r f- P (3.35)

{the left-hand side of (3.31) would then just be called F+ + F"). However this

failed as (3.35) turns out to be non invariant in order * e.g.

r
J>

(3.37)

where W and a stand for W A t,, a At. and t. are the representation matrices.
u |J A n ft

The algebra closes iff E satisfies the following Q and S invariant constraint

(3.36)

This observation has already been made In [20]. However in the group manifold

approach this does not prevent a. consistent description.

3.4 The Linear Multiplet

The N=2, d=6 linear multiplet consists of a triplet L1J, an SU(2}-Majorana

spinor +1 of negative chirality (T, *n = - i1) and a constrained vector field

£ (see eq. (3.38)). This constraint can be solved in terras of an antisymmetric
d

tensor gauge field E if the linear multiplet is inert under gauge trans-

formations. The full Q and S transformation rules are given by

, t

SL'J =

V - i

For g = 0 the solution for E in terms of E ^ p o is

and there is a gauge invariance

or for the dual 2-index field we have

(3.38)

(3.39)

(3.40)

E " =
r^

^ s

(3.41)

.'6 -



Also here there is a "central charge-like" term in the algebra (see (3.33))

(3.42)

So it is the antiselfdual part of the tensor gauge transformation which appears

in 1Q.Q) .

ix -it:fr*]

3.5 The Nonlinear Hultiplet

All matter multiplets discussed so far have transformation rules that

are linear in the components of the multiplet itself. The nonlinear part of

these transformations is entirely caused by the presence of the fields of the

N=2, d=6 Heyl multiplet. We will now discuss a multiplet which does not possess

this property. The nonlinear transformations are induced by the presence of a

bosonic constraint of the type encountered in nonlinear sigma models. The multi-

plet contains Lorentz scalar fields *^ ( a - 1,2) of zero Weyl weight which

parametrize .an element of S U U ) . Hence the 2x2 matrix * i satisfies

* -
(3.43)

The indices a,&,~.. are raised and lowered by means of the invariant tensors

e and according to

(3.44)

From (3.23) it follows that * represents three spin-zero degrees of freedom.

Under supersymmetry *a transforms into an SU(2)-Majorana spinor ^ of

negative chirality (i.e. *n = - and a real Lorentz vector field V .
3

This vector field turns out to have the noteworhty feature that it

transforms under special conformal transformations (K), as it does in d=4 fii].The

full Q,S and K transformations of the multiplet read

(3.45)

Here we included the possibility of gauging the SU{2) or an S0(2) subgroup

corresponding to the index a by means of a vector multiplet (W^, " . Y...). The

covariant derivatives rj J1 and D x are given by
H n u

The superconformal algebra (2.28) closes if and only if we have the following

Q,S and K invariant constraint of Weyl weight 2 A

(3.47)

= 0
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where the supercovariant derivative D V is given by Scalar WuUiplet Action

(3.48)

4. ACTIONS

In this section we will obtain actions for matter muitiplets couied to

Poincare' supergravity. We will start with the action for the scalar multiplets.

It will turn out that this action formula applied to a compensating scalar

multiple! gives the action for Poincare supergravity coupled to a tensor multi-

plet. The second actiun formula .vhich we need is that for a product of a linear

multiplet with a vector multiple!. This formula can then be used in two ways.

The linear tnultip'let â.i i>; i.'v-i '•kinetic multiplet" (or multiplet of currents)

of the vector pultipk-i - ','-, 'tb components are functions of the components

of the vectcr ;ii>.1t.iplei. Jr. fiir ,*&j' we cntaui the kinetic terms for the vector

multiplets. The otner way is n.'aci. iy us in four dimensions [21, 22]ta vector

mu'i'tiplet can be defired frox the components of a tensor multiplet. Inserted in

the action formula thi prcucos a "i:perconformal invariant action for the

tensor muJtiplet ("iirprrvad l;ne-j,r !«ultfpTet"). This multiplet can also be

used as a compensating multiptet.. One obtains then an off-shell -Formulation

of Poincare supergrav ity coupled *•:; ;i tensor multiplet (see Table 6).

As we know the field equations from section 3.2 we can easily write an

invariant action similar to the one known in 4 dimensions [19,21] .

(4.1)

We introduced here a tensor d with the following properties

* - J (4.2)

The first line can be assumed as the symmetric part of d „ wou'd give a total

divergence in (4.13. The second equation makes (4.1) real. The action is gauge

invariant for transformations (3.5) which satisfy

(4.3)

In [12 1 it was shown that field redefinitions can simulataneously bring P

in the canonical form (3,6) and d in the form

(ft (4.4)

For physical fields we have d =-5 , Ixjt as we will explain shortly we also

need "compensating fields" for which d ~ & , Transformations which satisfy

(3-5) tiid (14.^! are those of Usp(p,<i).

To get a better understanding of the content of (4.1) we write explicitly

the bosonic terms. Using (3.10) and (2.25) we obtain after a partial integration

where

; J V % ; < A +

A-; it A/

(4.5)

(4.6)

•MM
• rSSv-trtV. ;. •"-*< i m . '



and we write R for R in (2.25). At this point we can replace D by the components

of the tensor multiplet. The constraint (3.29) gives for the bosonic part

(4.7)

We then obtain

Me can use then as dilatational gauge choice

D-Gauge: A = - 2 (4.9)

to have the standard Einstein gravity action as first term in (4.8). Then we

can use the field equation of V .J to get

(4.10)

The action thus contains automatically Poincare1 supergravity and a tensor

multiplet (observe that the fields have positive kinetic energy). To be able to

impose (4.9) we need at least one multiplet (two values of o ,a ..,) with the

+ sign in {4.4} (remember [3.4} to see this). This multiplet is the "compensating

multiplet". One can say that '4.91 fixes one of the four scalar fields of this

multiplet. The other 3 are fixed by an SU(£} gauge choice e.g.

SU(2) gauges (4.11)

The interactions of the scalar multiptet correspond to fields taking values on

'the quaternionic protective space

Sofqx
(4.12)

We expect that the other quaternionic manifolds mentioned in [23] are contained

in our action (4.1) by considering tnultipietL- transforming in a gauge group

but without kinetic terms for the vector multiplies.; The field equations for the

fields of the vector multiple change the manifold and we use more compensating

scalar multiplets to fix gauges of the gauge group. All this is completely the

same as in 4 dimensions, where this procedure was first applied to construct the

manifold [24]

SU(*.,n) (4.13)

X sSU.Cn)* W.CO

4.2 Action Formula for Product of Vector and Linear Multiplet

The action formula we are looking for is contained in the constraint for

the linear multiplet (3.38) which has Weyl weight 6. In fact if we select there

the g-dependent terms we obtain the following density

(4.14)

In (3.38) the fields of the vector multiplet are Lie algebra valued: however,

in (4.14) we consider an abelian vector multiplet, and the fielda are

not supposed to be multiplied by representation matrices acting on the linear

multiplet components. The linear multiplet can transform under the Abelian

group with an arbitrary weight. One can convince oneself from the gauge 1n-

variance as the transformation sW = a A gives after partial integration
a a

the g independent terms of (3,38) while by construction of (4.14) the trans-

formation of the linear multiplet components gives the g dependent terms of

(3.38). If the linear multiplet is inert under the gauge group, then (3.41}

can be used to rewrite the second line of (4.14)
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7 l (4.15)

straightforwardly computes the other components of the linear multiple!

(for an abelian vector multiptet)

+•

4.3 Vector Multiplet Action

Ir. four diraer;,:"Icn: ths action of th? vector rrv

invariant, essentially because

(4.16)

has Weyl weight four. In 6 dimensions this should be multiplied by a quantity of

Weyl weight 2 in order to be a candidate for a conformal invariant action. In

other words we want to construct a linear multiplet of field equations for the

vector multiplet. In 4 dimensions this could start from L1J = ¥1J but here there

is a mismatch of Weyl weights and we need compensator scalar fields. One could

think of several possibilities: scalars belonging to scalar multiplets, linear

multiplets or the tensor multiplet or even a combination of them. In any case

it is not difficult to write an S-invariant condidate for L . To define a

linear multiplet the Q-transformation of L should be as in (3.37) i.e. only

an SU(2) doublet. This corresponds to the superspace constraints

(4.17)

This singles out the expression

(4.18)

So it is the tensor multiplet which enters in this construction. As this

multiplet anyway enters in the construction of Poincare supergravity this is

a solution which does not raise the number of independent fields. One now

(4.19)

One can verify (3.38) using (3.29). For the abelian case this constraint can

even be solved for the antisymmetric tensor

i.
(4.20)

Inserting (4.18-20) in the action formula (4.14) or (4.15) one obtains an action
*)for the abelian vector multiplet

_ z J2

.

(4.21)

*i We remark the striking similarity between this action and the analogous

result in 10 dimensions [25,26] .
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It turns out that (4.21) is also an invariant for non-abelian vector irailtiplets:

Obviously one then writes a trace before the whole expression, and the fields

are again Lie -" igebra valued.

Afr )c

4.4 Action of the linear Multiplet

We will reverse now the procedure which we we used in the previous

section. We construct now a vector multiplet as multiplet of field equations

for the fields of the linear multipiet. Again we need scalar fields to compensate

for a mismatch of the Weyl weights. But this time, as in N=l [21 ] and N=2 [ 22]

in four dimensions, we can use the scalar fields L1J of the multiplet itself as

Weyl compensator. This kind of action was called the improved tensor multiplet

in [21, 22]. We define as there

L./ (4.22)

We determine then n by S-invariance and by demanding the Q-transformation of

the form (3,1), which determines then also F and Y1J . The results are

F , satisfies a Bianchi identity, but exactly as in 4 dimensions the La La L
ab

term cannot be written as a derivative of a gauge vector inanSU(Z) covariant

way. This cohomology problem is related to the singularity at L=0. This has

been discussed in detail in [ 22 ] . This implies that we cannot use (4.14), but

only (4.15) to write down an action. The linear multiplet should thus be gauge

inert as we need the antisymmetric tensor. F b ( U is obtained from (3.2) and

the bosonic part can be written as

yii - -

(4.23)
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The bosonic part of the action for the linear multiplet is then

(4.24)
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As dilatational gauge choice we adopt then

D-gauge: L = 1 (4.27)

(4.25)

In section 3 of [22 ] it was checked that in 4 dimensions and in the absence of

supergravity this action is equivalent to the scalar multiplet action. This has

been done using a duality transformation and field redefinitions, and also by

checking S-matrix elements.

We will now consider also the application of the linear multiplet as

c o m p e n s a t o r m u l t i p l e t . U s i n g t h a t D D L c o n t a i n s - Of I, ( 2 . 2 5 ) and ( 4 . 7 ) VJC
S a

1,8obtain for

(If we have a combined system ojf$ + ̂  we would take L - JAZ = 1). SU(Z) cani&t

be completely broken in this case. A gauge choice

(4.28)

breaks D«SU(Z) to an S0{2) subgroup. This S0(2) is then gauged by the auxiliary

field V^ - «7J. The action (4.26) now reduces to

,, -. - A t. + 1 v.a v*i|(- - ̂. r-
1 ̂

(4.29)

We obtain, as in section H;i an action for Poincare" sunergravity coupled to a

tenser iTwittplet However in Ehi" ca^e we used as conrgnsator multiplet the linear

multiptet, which is an off-shell representation. So we obtain here a formulation

of the theory With an off-shell closed algebra. For clarity, we repeat the

independent field3 In Table 6 with the number' of off-shell components (aegatlve

for fermions). Cbserve that .fi1 of the linear multiplet has disappeared duerto.

S~invariance.. This formulation has a remaining S0(2) Invariants as In the "new

3ii.r'insal"aui:ilij.ry field formulation of N-" <l=k supergravity [l6]. The last

tevm in \k.29) Is characteristic of this formulation.
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5. CONCLUSIONS cb - oU L

In this paper we constructed local supersymnetric matter couplings in six

dimensions. Throughout our work we applied superconformal techniques. We first

construct a superconformal invariant action. After imposing appropriate gauge

conditions these actions lead to matter coupled Poincare' supergravity.

By adding a tensor multiplet to the Weyl multiplet of section 2 and im-

posing constraints necessary for closure of the algebra, we came to another

version of the Weyl multiplet. This version resembles the Weyl multiplet in

d=10 supergravity [26] . There one has introduced differential constraints on a

scalar and a spinor. Here we started with fields D and x which were determined

by these constraints such that the independent fields have no differential con-

straints.

The fields of this 40+40 multiplet contain the physical fields for super-

gravity coupled to a tensor multiplet. To obtain a Lagrangian we have to add a

.second compensating multiplet. In N=2, d=t we had 3 possibilities at this stage.

The first one used a non-linear multiplet [11 ] . This does not help us here

because it does not offer an action (In d=4 the action came from the first com-

pensating multiplet and the non-linear multiplet could make the field equation

consistent). The second possibility SID makts use of a scalar multiplet. This

is the most useful choice for the construction of hypermultiplet couplings and

considerations on their symmetries {}?.}. M-3 can use that also in d=6 as ve

explained at the end of section ".!. As th; scalar multiplet is not an off-shell

multiplet this does nut give us an auxiliary i"ield formulation of N=2 d=£i super-

gravity. Such a formulation !<= oDtained hers only using the third possibility

[22 J which has a'linear multip.et as second compensator. It is an auxiliary

field formulation which is comper-hle with the new minimal form of N=l d=4 in

the sense that it has a S0(2) irvar i..ucs and an auxiliary antisymmetric tensor

field.

The general action which we obtains! can be written as

- 39 -
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*-_ or t- contains a compensating multiplet ac discussed above, and the action

describes at 1 east supergravity and a tensor multiplet. •£ can contain an ar-

bitrary number of hypermultipletsand describes their kinetic terms and gauge

interactions. We obtain in this sector quaternionic Kalher sigma models [23, 24.

In particular by its field equation the SU(2) gauge field V y ^ of the Weyl

multiplet becomes the composite SU(2) connection of this manifold. eC contains

the.kinetic action for the vector multiplet. These vector multiplets are in °ty

also coupled to the tensor multiplet, e.g. we obtain a term

£. can describe also physical linear multiplets, probably equivalent to hyper-

multiplets . <£. v, which we have used previously to construct c&. and<*^ can

also be added as an extra term with independent fields of linear and vector

mutliplets to describe interactions probably equivalent to U(l) gauge interactions

of scalar multiplets . g in (5,1) is a coupling constant.

As an example of the possibilities in (5.1) we mention the gauged N=2

supergravities. In the formulation with the compensating scalar multiplet we

can gauge an SU(2) or S0(2) acting on the a,a,... indices of the compensating

multiplet by physical vector multiplets as in (3.5). The gauge condition (4.11)

implies then that the Poincare' theory is invariant under a diagonal subgroup of

this gauge group and the SU(2) automorphism group of the supersymmetries acting

on the i, j,... This invariance is gauged by the vector multiplets.A cosmological

term is generated by the Y. .field equation (see the last term of (3.10) inserted
a

in (4.1) and using the nonzero values of the field A., compensator of dilatations).

In the off-shell formulation (with the linear multiplet compensator) we

can gauge only the S0{2) group acting on the gravitinos. This is done by adding

X, v for the compensator tensor multiplet and a U{1) vector multiplet. The field

equation of £ then implies
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- •••.-'."; i . c o u p e s co ;?;:• q.-fi11 it ino,, «•/ :•• the 'ji^~<i "ecvor if the ^Oi?j

-i.'jtoinorpniaci --.r-oup after the field e a u a t i o i s . V as-'? aaain a constant tern1

clue to tn. nrst terms in i4.i5). It imp 1 ies a cosdic'cglcdl constant. Obbp^^j

that ir "> the costnological constant in gauged supergravity ,:s a positive

constant Jn the potential as it originates from Y... In fact Y,^ getting a

constant term is like a Fayst-Iliopoulos term, breaking supersymmetry sponta-

neously.

Throughout this work we found much the same mechanises as those in d=4

N=2 superconformal tensor calculus. However, some new aspects arose especially

concerning the tensor imHtiplet, Apart from the intrinsic value of the construc-

tion of 6 dimensional matter couplings in view of compactifications (see intro-

duction), this construction can shed some light on the structure of 10 dimensional

conformal supergravity.

APPENDIX A

NOTATIONS AND CONVENTIONS

Throughout this paper we use the Pauli metric L v = diag(+,..., + ). The

8x8 Dirac matrices y a (a= 1.....6) are defined by the property

and are hermitian. A complete set of 8x8 matrices 0 satisfying trO 0. =

is given by

, • / • :

where we have used the following notation

(A.I)

U

(A.2)

v
n!

where S means summation over all permutations. The matrix V f which is defined

by

allows one to express y in terms of y n . This duality relation reads

(A.4)

The charge conjugation matrix C in six dimensions satisfies [27]

cT--C, c f(M VJ=-CAC" 1 ar?
T=C

{A.6)
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Our spinors carry an SU(2) index i (i = 1,2). This index can be raised or lowered

by means of the ••. symbol e :

/= f'jV O li r..

J d (A.7)

Spir.ors in six dimensions can satisfy an SU(2)-Majorana and Weyl condition

respectively: _ .

where "6" denotes the time component and e.g. for a left handed spinor (A.8)

It follows that ~X %, is a real scalar quantity if c.c. (includes the change
* -i -i

of order of fermionic quantities . Tensors x-^V ,\ TJJX,,, are real except for

timelike components. When SU{2) indices are omitted,a northwest-southeast con-

traction is understood, e.g.

(A.9)

Changing the order of spinors in a bilinear leads to the following signs:

t n = + : n = 0,3,4
(A.10)

t n = - : n = 1,2,5,6

An additional sign is needed if the SU(2) indices are not contracted, e.g.

The completeness relation trO 0 = 8 s (see A.2) leads to the following
l j u

Fienz rearrangement formulas:

* l =~*[- i 6 Q J

For fermionic operators as in appendix B one should realise that we insert

only a sign whereas the order of the operators is not changed: (Q. Q. )* =
; • la J S

= - (QT T 6 )
a <QJ Y 6 )

e .

if 'if and ^ are both negative chiral and

(A.lib)

if 'V is positive chiral and A is negative chiral.

One of the more freqeuently occurring calculations with

the product [28]

y (A) -O C«) O ^ ffvi)

The coefficients C(n,m) for n,m £ 3 are given in Table 7

Products of Jf -matrices are given by:

-matrices is

(A.12)

Throughout this paper the dual T of a tensor T is defined by

(A.14)

which means that T = T. Positive and negative dual parts are defined by:

(A.15)

Differently then in d=4 (anti)selfdual tensors can be real in the sense that

the component with abc^6 are real. We remark that T T = JT T is non
abc abc

zero but the product of two tensors of the same duality vanishes

Other useful identities for (anti Iselfdual tensors are

- 44 -
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e*. = T— c
APPENDIX B

(A.17)

The 3-K tensors (IS "2(j )y, are ± self-dual, respectively. Although we usuallyaDc
omit spincr indices we still need them for general formula as (2.1), (2.4), (2.5).

The conventions are then the following. Spinor indices a , e ... are raised or

lowered with the symmetric tensors C or C which are each other inverse

and complex conjugate

(A.18)

(A.19)

(A.20)

(A.21)

The usual *-matrices have their indices in SW-NE direction, so e.g.

The~tf-matrices are antisymmetric in their spinor indicts

and satisfy

Cy .&-

Fir-ally reraj'"t th.it our (anti )&ynrietrizations are with weight one

- \ (ab (A.22)

THE SUPERCONFORMAL ALGEBRA IN SIX DIMENSIONS

The 28-parameter conforrnal group in six dimensions consists of the 21-

parameter Poincar^ group (translation P and rotations M , ) , dilatations 0
a ao

and special conformal transformations K . The algebra is given by
3

UD.PJ. P.,
(B.I)

We next introduce two supersymmetries Q1 (i = 1,2). The spinor generator Qn

c< a

are SU{2)-«ajcrana-Weyl

(B.2)

The i K,Q ] commutator produces two other "special" supersymmetries S a . The

spinor generators S are SU(2)-Majorana~Weyl and positive chiral. The Jacobi
and moreover an SU(2) tripletidentities demand that ( Q! , SJi contains D, H

• a fl
generator U... which satisfies U.. - U.. - (U1 J ) *

commutators are

0. The new (ant1)



We next apply the Fierz relation (cf. eq. (A.lla))

SJ\ = a be *

on the second and third terms at the r.h.s. of ( B . 5 ) . Then the ? terms |

cancel between each other and the f d terms cancel against'the first term at

the r.h.s. of (B.5). This proves the Jacobi identity (Q,Q,S) = 0. Thus we

have obtained a parametrization of the supergroup 0sp(6,?|l).

(B.3)

In (B.3) we have used a shorthand notation to denote chiral projections of Dirac

matrices, e.g.

•if ) -T
tB-4) \

and the same for afl other matrices. The superconformal generators satisfy

generalized Jacobi identities. As an example, we prove the (Q,Q,S) Jacobi identity.

First substituting the commutators (B.3) yields:

(B.5)

+ f "it. *•

47 - - 48 - t
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APPENDIX C

THE WF.YL MULTIPLET WITH THE TENSOR GAUGE FIELD B

The Weyl multiplet in the formulation with the tensor gauge field B

can be obtained from the Weyl multiplet given in section Z (see e.g. eq.

2.26-2.28) by substituting for the fields T" , „* and D the solution of

the constraints (3.31), (3.26) ( r = 0) and (3.27) respectively. Note that

since T always multiplies a positive dual expression (or an expression

which can be brought into that form) F always drops out in the substitution

for T . The resulting transformation rules v e the following

-1 fry

Ŝv

= _<, F ^

JL

The properties of these fields are given in Table 8. We emphasize that all

the properties of this multiplet (such as the commutator algebra and curvatures)

can be obtained from sectionrby making the replacements mentioned above for
,- i
a b c * and D.
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TABLE 1

Curvatures of the N=2 d=6 superconformal algebra

(b) »

= 2
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TABLE 2

Massive spin-2 representation of the d=6 super-Poincare" algebra

spin

2

3/2

1

1/2

0

t

(14)

(8)

(5)

(2)

(1)

N =2

1

4

5

4

1

gauge

1

4

3

fields

a
M

• 1
V

v 1. 2

4

1

matter fields

T". B
abc pv

x or t

D <T

The numbers between brackets in the first column represent the

dimensionality of sscii spin. Those in the second column denote

the number of spins contained in a massive spin-2 representation.

The number i(; the third and fourth column indicate the massive

spin states, which sre descried by the superconformal gauge

fields and the added matte- fields respectively.

• 5? -

TABLE 3

Fields of N=2, d=6 conformai supergravity in the formulation with T
abc

Field Type Restrictions SU(2)

a

i
•

V

abc

i
X

D

b
P

boson

fermion

boson

boson

fermion

boson

boson

sechsbein

T, *> " + *
V P

vij = vJi =

Tabc = " 6 e

i i
Y 7 X ~ X

real

dilatational

(V .)

abcdef

gauge

' (u * 6)

Tdef

field

i.

X

-1

-i

0

I

3/2

2

0



TABLE 4

Extension of the superconformal curvatures R to the fully covariant curvatures

of N - 2, d = 6 conformal supergravity

i^

- 55 -

••> K f v '-'• *

Field

W

a1

*!.

0

a

i

a

Type

boson

fermion

boson

boson

fermion

boson

fermion

boson

boson

fermion

boson

boson

fermion

boson

Mey! weight

Restrictions

Non-abelian vector multiplet

real (non)-abelian gauge field

Y, a - + n1

yij s yji . Y *
ij

Scalar multiplet

SU(2)

1

3

A = * JA*P =-(A°) , see eq(3.3-4) 2

Tensor multiplet

real antisymmetric tensor gauge field

Y, • = - *

real

Linear multiplet

real constrained vector; cf.eq.(3.38)

Nonlinear multiplet

element of SU(2), 41 = -{•"}*

real constrained vectorjcf .eq. (3.47)

2

3̂

£

2

1

w

0

3/2

Z

2

5/2

0

5/2

2

4

9/2

5

0

i

1



TABLE

Independ* •'. fields of the off-shell formulation of Poincare1 supergravity coup 1 ed

to the tensor multiplet

number of
components

physica'l graviton field,gauges general coordinate
transformations

physical gravitino; gauge field of supersymmetry

auxiliary SU(2) triplet vector

V .. s gauges an S0{2) invariance
U T J

physical scalar. Singularity at o = 0

physical fermions

physical antisymmetric tensor gauge field

auxiliary antisyimetric tensor with 3 index gauge invariance

IS

-40

2x6

+5

10

5
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TABLE 7

The coefficients C(n,m) defined in (A.

6

-4

Z

0

-15

- 5

1

3

-20

0

4

0
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Fields of N=2, d=6 conformal supergravity in the formulation with B

Field Type

boson

fermion

boson

boson

fermion

boson

boson

Restrictions

sechsbein

*Y (i> = +
7 y

vn*J = v j i =

SB = 23

,y = - *1

real

dilatational

{V ..)
yij
A

gauge

(y **

field

SU(2)

2
•"V

1

-1

-1/2

0

0

5/2

2

0
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