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ABSTRACT

We construct an S = 1 locally supersymmetric o-model with a

Wess-Zumino term coupled to supergravity in two dimensions. If one

takes the a-model manifold to tie the product of d-dimensional Minkowskl

space Md and a group manifold G, and if the radius of G is quantized

In appropriate units of the string tension, then the model describes a

Neveu-Schwarz-Ramond (NSR)-type string moving on M x G. (Our model

generalizes earlier work of Ref s.£_,2jwhich do not contain a Wess-Zumino

term and that of Refs.f5j,P} which is not locally supersymmetric. ) The

zweibein and the gravitino field equations yield constraints which

generalize those of the HSR model to the case of a non-Abelian group mani-

fold. In particular, the fermionic constraint contains a nev term trilinear

in the fermionic fields. We quantize the theory in the light-cone gauge

and derive the critical dimensions. We compute the mass spectrum of a

closed string moving on M x G and for the "bosonic case we show that it

coincides with that of the string which compactifies on r-tori where r

is the rank Of a simply laced G. We also show that massless fermions do

not arise for non-Abelian G for the spinning string.

Some tine ago, Beser and Zunino [l] and Brink, di Vecchia and Howe [2]
constructed the coupling of ten scalar super syramet ri c multiplets to d = 2

supergravity. They showed that the theory is conformally invariant and describes

the a = 10 Heveu-Schwarz-Ramond [3] string model,[15]. Freau the d = 2 point of view

this theory is - a locally supersymmetric a-model in which the scalar manifold

is a d - 10 flat Minkowski space-time, M = IS0(o ,l)/S0(9 ,1). In this

paper we consider the generalization of this model in which the soalars

parametrize an arbitrary Riemannian manifold. In such a generalization, a Wess-

Zumino term [U,5,6] is coupled to d = 2 supergravity. This model furnishes a.

covariant description of a string moving in curved space, provided that this

space is M^ x G where M is d-dimensional Minkowski space-time and G is

a. compact group manifold. The characteristic size of G is quantized in units

of the string tension [7,8b],while restrictions on d arise,due to the require-

ment of Lorentz invariance in M , of the quantized theory.

These results are relevant for the reduction of the critical dimensions

in which the string theory can he consistently quantized. Recently, in Eefs.[7]

and [8b] it was shown that the critical dimension for the tjosonic string is given

L l& -
1 +

2. Ik |

(k. sh;*. (1.1)

where d is the dimension of the group G, k is an integer and c is the

eigenvalue of the second Casimir operator of G in the adjoint representation

(see Eq.. (U. 8)). Extending this result, in Refjflit was conjectured that the

crit ical dimension for the fermionic string is given by

3
1 + "J (1.2)

- 1 -

In th is paper, starting from our locally supersymmetric action (see Eq.(2.1))

we quantize the theory in the light cone gauge, rederive ( l . l ) and verify

(1.2).

The case of k = 1 is special, since, as was shown by Witten [9], in th is

case the scalars of the non-linear c-model become equivalent to free fermions.

For k = 1, the solution to ( l . l ) includes G = SU(n), S0(2n), E,/Z , E_/Zp, Eg or

any product of these groups with

*) More precisely k is an integer for SU(N), SO(N), SP(n), Eg/Z , E /Z

and Eg, 0 mod 3 for j and 0 mod h for

.... _,£.-



(1.3) II. A LOCALLY SUPERSYMMETRIC ACTION VflTH THE ¥SSS-2UMIH0 TERM

where r i s the rank of G. -

As we sl-alX see, one relevant example of (a semi-simple) G i s

<U G = F8 (l.U)

J /

is

For k = 1, assuming that G is simple, the unique solution to (1.2)

JU « , (, ? Sod)

A* i , G = 5 4 (.3)

cU 5 , G = sots) X '"*"*' / (1.5)

cJ = 3 , G = suit)

(Note that d = H is not included for any simple G.) Possible applications of

these solutions vill "be discussed in the conclusions.

This paper is organized as follows. In Sec.II we construct the IJ - 1

locally supersjrmmetric action with a Wess-Zumino term. In Sec.Ill we derive

the field equations and constraints following from the action. In Sec,IV we

quantize the system and derive the critical dimension formula by the require-

ment of Lorentz invariance in M.. In See.V-we discuss the spectrum of a closed

String moving on M^ x G. Finally in SeciVT we discuss some.of the open problems.

*) For Ts.fl, some of the solutions to (l.l) are: d = 7, E_ (k = 3);

d = 8, SU(5) (k = 15); d = 6, su(7) (k. = 5).

••) For a complete discussion see Goddard, Hahm arid Olive (and other papers)

in Ref. [8a]. (It has recently been shown [10] that for arbitrary k the 0(H)

cr-model is equivalent to free particles obeying parastatistics of order k.

Regarding the question of parastatistics in strings see also Ref.[11] where
n

it is shown that d = 2 + — for a free fermionic theory exhibiting para-
q /

statistics of order q. For q = £ this gives d = 6).

***) Note that here the Eg x Eg refers to a U96 dimensional group manifold,

and not to a l6—dimensional torus which arises in the heterotic string models [12],

Other rank £0 groups which might "be relevant to the bosonic string in d = 6

are: Eg x Eg x. SU(3) x SU(2) x SU(2) and SU(3) x [U(l)l10.

****) For k > 1 , the unique solution (for simple G) is; d * 8, SU(2) (k = 2);

d = U, 50(5) (k = 2 ) , SU(3) (k = 5); a = 2, S0(5) (k = 7).

We construct the action of an M = 1 locally supersymmetric a-model

coupled to supergravity in two dimensions, where the scalars of the a-model

parametrize an arbitrary Riemannian manifold M. N" = 1 aupergravity in tvo

dimensions contains a zweibein e and a gravitino iji . As is well known,

in two dimensions these fields do not describe physical degrees of freedom.

Nevertheless they play an important role in that their field equations yield

constraints on the scalars and spinors of the c-model.

The full action reads as follows:

~

Sir \lir

HST

and is invariant under the following transformations:

(2.1)

- l i ê

- (y-i -/'̂yi
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where E (<J,T), H(O,T) and A(O,T) are the supersymmetry, conformal super-

symmetry and Weyl scale transformation parameters, respectively. In (2.1) and

(2.2) we have used the following de f in i t i ons and conventions. The sca la r s

<f ( i = l j . . . d i m M) parametr ize a Riemannian manifold, M, with metr ic g. . (<t) .
i *l 1J

The spinors x an<i <!> a r e two-component Majorana . The parameter a'

is the coupling constant of the c-model and the coefficient k in front of

the Wess-Zumino term i s defined such that the path integral^corresponding to
(2.1) is well defined [9] (and last reference in [6]). Thus k i s an integer
(see footnote p.2). Our Riemann tensor is defined as R = ^ f j ^ + . . .

Mote that yV = ya * ( )

curl of a second-rank antisymmetric tensor

of the scalars 4;

(u,a = 0,1). The 3-form a ^ is closed and is the

U) = - c ^ U ) . which is a function

The spin connection, u , contains the contorsion tensor K = 2iA liî ik. The

± V . uab ra *»
term in fix containing the Christoffel symbol r, has been added so that
when it is taken to the left-hand side (fix + r,C <S * X ). it transforms as a

Jk

vector on M, as i t should since the remaining terms on the right-hand side have

the same transformation property. Finally, the notation ; is standard for

Riemannian covariant derivatives.

In order to derive (2,1) and (2.2) we proceed in two steps. First

we generalize the action and transformation rules given in Refs.[l] and [2] to

the case of an arbitrary Riemannian manifold, H, with metric g j . U ) , as

follows:

(2.1*)

•) We use the following conventions. Our metric is diag (-1.+1). The

= -oy We

In two dimensions the following Fierz

t1 ~ Lox andd = 2 gamma matrices V (a = 0,1) are
01 - T O

take E = -1, eQ1 = +1 and x = X Y .
relations hold: p, = _ -(!(, + (Xyr((i) yc - (Xy <l/)y ) and

u u 1 a
Some further useful relations are: y y = -g + e~ E y (e = det e ) and

—5—

(2 .5)

Remarkably we find that without any further modifications the covariantized

action (2.1*) i s already fully invariant under the local supersymraetry and scale

transformationsgiven in (2.5) . In fact a large class of variations are those

which arise in either the model of Refs.l and 2 (g r n > g-, = n-j) provided

that in the variation of the action the derivatives are covariantized with

respect to M (e.g. 3 X1-* 3 X1 + r ^ . 3 i^x ) o r "the globally supersymmetric
U U Jk u

o-model [13] (g =n , E . . r n . . ) . Therefore one only has to check the
uv u\> i j i j

cancellation of the new variations which do not fall into these two classes.
Most cancellations are trivial, the only non-trivial ones being

i
those arising from the variation of the zweibein and x
term. These variations give a vanishing result:

1*
Ex

xl = 0

To prove this , one must Fierz rearrange x'

second and third term and use the fact that

1

= 0 (2.7)

This identity is easily proven by noting that E.,v0 is symmetric, whereas the

X terms are antisymmetric in the pair interchange (ij) *-* (kit). We thus

conclude that the action given in (2.10 is invariant under (2.5).



We now consider the extension of (2.It), (2.5) 'by adding a Wess-Zuroino

term in a locally supersymmetric manner. A globally supersymmetric Wess-Zumino

term has been constructed in Refs.[5,6] .In the case of local supersymmetry we

leave the transformation rules (2.5) intact except for ^x^ which we modify

to read

(£.11)

In order to cancel this we add to the action the following new term;

sr =. y-

(2.8)

Note that the k-dependent term in 5j; is precisely the one which occurs in

the globally supersymmetric model. To obtain an action which is invariant

under the local supersymmetries (2.5)s (2.8), we first covariantize the

globally supersymmetrie Wess-Zumino action [5,6] with respect to the two-

dimensional space-time. This yields

(2.9)

(2.12)

One can easily show by appropriate Fiera rearrangements that all the \'s in

(2.12) contribute with the same weight to <5

dependent variation of the in (2.12) gives
f,. In particular, the (0-

^/f £ jj (2.13)

which exactly cancels (2.11).

Remarkably we now find that with the .addition of ^ 3 given

in (2.12) the full Lagrangian X= given in (2.U), (2.9),

(2.11) or (2.1) is invariant under the local supersymmetries (2.5), (2.$) or

(2.3) without any further modifications. We have checked this by a straight-

forward but tedious calculation which will not be reproduced.

We now consider the new variations in of-. + Jf^, given in (2.1*) and

(2.9), which do not arise in the globally supersymmetric Wess-Zumino term of

Refs.f f0and[6 ] . One class of variations are the terms proportional to IU
i 2 h

coming from the variation of the determinant e and of x i n t n e a X
term. These variations are

2-1r"t

(2.10)

0 1

The Fierz rearrangement of x X in t n e second term yields two terms one of

which cancels the first term. The final result is

III. FIELD EQUATIONS ADD CONSTRAINTS

We now study the field equations which follow from the action, (2.1).

As mentioned in the introduction the scalar manifold is taken to be M x G.

We shall see that for a particular relation among the parameters of the theory

(see Eq.(3.7')» t h e field equations for and X 1 will be completely

integrable. The field equations for e a and ij) lead to constraints on

if1 and x1 which generalize those of the Neveu-Schwarz-Ramond model. These

constraints will play an important role in determining the critical dimension

for strings in curved space, as we shall show in the next section.

We first choose co-ordinates appropriate to the product structure
M, x G
d

-7-
-6-



Correspond!ugly

(3.1a)

- <r-
0

0
C3.1b)

where n . is the usual metric in M and g_.T is the .Gxfl invariant metric

on G. Hote that we have introduced an additional parameter R, which is

associated with the characteristic size of the compact group manifold G. In

terms of the co-ordinates x ° and y the Lagrangian (£.1) splits into two

parts which are separately invariant. One part, Jf(M ), depends only on xa

and has exactly the same form as the Lagrangian given in Refs.fl] and [2]

±
(3.2)

The other part ^f(G) depends only on the group co-ordinates y1. On a group

manifold G we can take ui to "be

; /3 .3)

where f are the structure constants of the group G and Lj($) are the

left invariant basis elements on the group manifold G, which are defined by

Here g is a group element and T are the antihermitian generators of

the Lie algebra of G. From (3.3) it follows that "VT^- i s a n invariant

3-form on S and hence that cc is an invariant 2-form (up to a total
1J

derivative).

Using (3.3) and the following relations [lU,13]

J K L M (3.5a)

(3.5b)

the Lagrangian 3f(G) now reads

i. XJ

rr

We see that for

K - T

(3.6)

(3.7)

the tiuartic x terms in (3.6) cancel. Without loss of generality we shall

always take k to be positive. Using (3.7), in the superconformal gauge

(3.7')

the field equations following from (3.2) and (3.6) are

-10-



(3.8a,b)

Furthermore, the following relations will be useful in simplifying the field

equations [lit]

L $1 R
(3.8c)

(3.Bd)
3.10

+ vr *
r ^ 7 Using (3.9) and (3.10), we can rewrite (3.8c} as

(3.Be)

(3.8f)

= o

A. = A = A, = A^ = 0 are the physical field equations, while Â . = Ag - 0Sote that

are constraint equations. The field equation A = 0 corresponds to the
T K K T

variation fil/iy - V (61/ix ) X = 0 to ensure covariance. This

variation gives the result (3-&c) plus a term which vanishes upon use of the

X field equation. Note that the resulting equation, A = 0, does not depend
I I

on & . Also in (3.8f) the x field equation has been used.

It is convenient to rewrite (3*Qc) in terms of the bosonic part of

the currents associated, with the right and. left translations on the group

manifold. These currents are defined \>y

To simplify A. = A = Â - = 0 we now define the components of x in the left

and right invariant basis elements as follows:

X = % ftz (3.12)

It is not difficult to show that the supersymmetry variation of J^ contains

x!1 = \ (1 + Y j Xa ami that of J U a contains "T = | (l - y J x * • Thus
' ' ' a ' v a

it is natural to express equations A^ A. Ag 0 in terms of XT

Again using (3,9) and (3.10), from (3.8d,e,f) it now follows that

= A. = = 0 in terms of

- o

(3.9a)

(3.9b) +
(3.15)

-11- -12-



Mote that the last terms in (3.8d,f) have dropped out, due to the fact that

we have expressed Xr D
 i n t h e appropriate basis.

In summary, the field equations following from the action (3.2), (3.6)

are given try (3.8a,b), (3.11a,b) and (3.13a,b), while the constraints are

given by (3.1*0 and (3.15). In particular, note the presence of the x terms

in (3.ik) which are necessary for the closure of the super-Virasoro algebra.

We will use these equations as a starting point for the quantisation of the

system in the next section.

= 2.

a. (0

ih.lt)

IV. THE CRITICAL DIMENSION FORMULA FOR STRIKGS MOVING ON M X G

We now solve the free field equations given in (3.8), (3.11) and (3.13).

Next we quantize the system subject to the constraints given in (3.11*) and (3.15),

The requirement of Lorentz invariance of the quantized theory in Mfl puts

restrictions on the dimensions d and d of M and the group manifold

G, respectively. These restrictions have recently been obtained for the

bosonic string in Refsjj]and(3D]and conjectured for the fermionic string in

Ref.tT]. In this section we shall restrict ourselves to closed strings. The

case of open string can be treated similarly.

The solutions to the field equations are given by (setting 2a' = 1) *}

where A (X ) is the single non-vanishing component of X (X_). In Ct.ld)
L R

and (It.le) the sums are over integers (half integers) if a periodic (antiperiodic)
boundary 'comiltion for X is chosen, and similarly for (l4.1f) and (It.lg).

To eliminate the gauge degrees of freedom, we use the light cone gauge defined by

= P . o 0 = o (It.2)

In this gauge, substituting (It.l) into the constraint equations (3.li) ana ++

and — projections of (3.l5), we solve for the Fourier components of x~ and

X~, respectively, as follows;

U.lb)

U.lc)

±?
U.3a)

*) The light cone co-ordinates on the string world sheet are defined by

Z = — (t ± o ) , and those on

the index

Toy XT = — (x ± x " ) . In this section

I refers to transverse directions on M,.

-13-
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where "Ti and F are the same as I, and F with all the oscillators
n n n n

replaced by the ones with tilda. We now quantize this system and compute

the central extension!?,8a] in the commutator algebra of IJ and F .

Demanding the closure of the Lorentz algebra requires a special value of this

central extension which in turn determines the critical dimension. The

quantization proceeds by Impesing the following (anti) commutator relations

- a

normalized differently than in (U.3). The resulting (quantum) expressions

\

,1.6.)

:,- ̂ s;.- ]

Similar relations hold for tilda oscillators, and the latter commute with those

without tilda. In deriving (U.ifb) we have used the result of Witt en [9] which

gives the commutator [J , J ] .

We now consider the commutator algebra of L and F given in (4.3).
n n

First we note that these satisfy the following (anti) Poisson brackets:

L L«* , !_„ I *

, Li, J

L

p -

= 2.

and similar expressions for L and F

mm
These 'brackets define a super Virasoro algebra with no
central extension. In the quantuia case one must take care of operator ordering.
With the normalization of the individual terms given as in (U.3) one finds,
however, that the (anti) commutator algebra of L and F does not close.
By demanding closure, we find that the terms in L and F have to be

m m
-15-

where

$̂ <l

<-\°,

S.i

i.e.

In (It.6a) in order to discuss all the boundary conditions simultaneously we

have added a constant term to LQ. The value of cA for Lie groups is

given by

a SU(n) S0(2n+l) Sp(n) 90(2n) G£ F^ E 6 E ? Eg

2n+2

Eg

18 2k 36 60

(U.8)

-16-



One can now .how that L, and P^ «»ti»fy the super VIMMWO algebra [161

Finally,we quote the quantum mass formula

( L o - • = < . ) - fr
(It.9b)

(h.9c)

where c is the central extension which ia given by

, , , , . <U ^ V ,1, (U.10)
c*

We now require Lorentz invariance in M . The only non-trivial
i— 1-commutator is IM ~, H ] = 0 . We find that this commutator holds provided

that aQ = Tj-. and c = 12. Thus follows the following cr i t ica l dimension formula:

fl'mj Etkinj J .
{It.11)

In the case of the purely bosonic string where d1 and S a are absent
m m

(and thus F^ = 0 ) , the only surviving commutator ia given by (lt.9a) with

central extension c which now reads

Jl 6 /.nic f+fiflj ) , {krl2)

1 +
Z.K-

The validity of [ H^~, M^"] = 0 now requires that aQ = 1 and c = 2k

which implies the fallowing critical dimension formula:

*.13)

2.V.

For the case of semisimple group G = Gĵ  x Q 2 )(

(It. 11) and (U.13) are replaced \sy

G the formulae

o U » o - ̂  ^

71
lt.15)

V.

26 -

MASS SPECTRUM

'iHI )friHI

In this section we study the mass spectrum of a bosonic closed

string moving on (Minkowski) x G, which will illustrate both gravitational

as well as Yang-Mills degrees of freedom. We shall comment on the spinning

string case at the end of this section.

The quantum mass operator in (Minkowski) of the closed bosonic string

is given by (see Eq.Ct.llt)

+ WsWs -

where

J-l

1 ( 1 +

(5.1)

(5.2)

(5.3)
i-.l

-17-
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H, and H are the occupation number operators for the left movers satisfying
d G

[N,,a 3 = -n a , [H,,,Ba] ~ -n B . Analogously one defines the occupation

number operators for the right movers, H and Ji with a and 6 replaced

by of and B , respectively. These number operators must satisfy the

following clor.-.d string constraint:

H, + H = "S, + II - i5M
d G d G

To identify the mass spectrum we need to study the representations of

the Kac-Hoody algebra [20] of the operators B^ . (For a review see Eefs.[2l].}

From now on, we shall specialize to the case of simply laced G. (The more

complicated case of non-simply laced algebras has been treated in Bef.[22].)

Furthermore we restrict ourselves to k = 1. As for the ordinary Lie algebras

every representation is characterized by a highest weight vector. The basis

of the representation space is obtained by successive application of the step

operators on it. A weight vector obtained in this way is denoted by [21]

, £) I - 1, - -, (5.5)

JL.
H f l r ) x ? = ) | L i - (5.7)

Here r is the rank of 0, and a is a vector on the root lattice. From (5.6)

i t f o l l o w s t h a t JT, = p + (a a / 2 ) , Thus

(5.8)

This formula can be compared with the mass formula for the closed bosonic

string compactified on an r-dimensional torus [12,23] which is given by

,i *
(5.9)

Here n is an occupation number operator [23] and p are the internal

momentum components. Since one identifies p with points on the root lattice

of a group G as [23]:

where A are the components of a vector on the weight lattice of Qf K is

the eigenvalue of k (see (It.tb)) .and 6 is the eigenvalue of the derivation

operator d [21] which, in our case, is nothing but (l-lO.

We shall consider the basic representation [20] which is characterized

by the highest •; weight iQ = (0,1,1). This weight corresponds to the ground

state . Given the highest'weight i , the remaining bases of the

representation space are obtained by successive 'application of the appropriate

step operators, g_ ...g |0> with positive n,...,m. Using the infinite

discrete Weyl group, W, Frenkel and Kac [20] have shown that the weight

vectors of the states obtained in this way must have the form (Proposition (2.1)

in Ref.[SO])

= 0,1,2,..- (5.6)

with degeneracy M (r) given by

(5.10)

i t follows that the two mass formulae, C5.8) and (5.9)> are

ident ica l . In other words, the mass spectrum of a tosonio s t r ing moving on

M x G is the same as that of a bosonic string moving on H, x r-dimensional
CL d

torus, where r is the rank of G. It should be emphasized, however, that

the states are obtained in the torus case by the Cartan subalgebra oscillators and

the vertex operators [20,2^] while in the group manifold case all states are

obtained from the B oscillator operators alone.
To illustrate the details of the spectrum let us consider the case of

x SU(3) as an example. The states B& are eigenstates

of d =. 1 - N_ with eigenvalues 1 - (nn + n, + ... + n.). Hence the states
G 1 2 i

B_1l0> have d = 0. These have the weights (a, 1,0) and (0,1,0) where a is

a root of 3U(3). The six weights(a, 1,0) have unit multiplicity each, while

the multiplicity of (0,1,0) is two. Therefore they form an SU(3) octet.

The next set of states (corresponding to d = -l) are $ a 0 |0> and

B_2|0^ . By virtue of the commutation relations satisfied by the S's, the state

^ l 0 " ^ i s t h e antisymmetric part of B6^ B l l 0 ^ ' T h u s t h i s B t a t e i s n o t

independent.

-20-
-19-



The states 6^6 i| h a v e t h e weights (a,1,-1) and (0,1,-1) with

multiplicities 2 and 5, respectively. They therefore, form the representation

1 © S © 8 of SU(1J. Note that the states 10, 10 and 27 in the product

8 x 8 are not present because their weights are net of the form given in (5.6),

One can show that they have vanishing nan*.

To apply this construction to the case of a closed bosonic string

propagating on M x G we need to include £ as well as a and ci i

the operator algebra. Since g and B generate two commuting Kac-Moody

algebras the spectrum has G x 0 symmetry.

The ground state (0> here is a singlet of the Poincare group of

all a 1 ,
, _n
j- a'M = -1 and therefore it

M, as well as of G x G. I t is annihilated by all a 1 , a 1 , B& and V
d n n * n

for which n £ 1, Hence i t s mass is given by j
is a tachyonic s tate .

The first excited level is massless and consists of the following

a1,!! , | containing a graviton, a second rank antisymmetric

tensor and a dilaton; the states a ? which have

spin one and transform in the adjoint representation of G i G; and finally

there are the scalars B 0 i'0^ which transform as (adj, adj } of G x G.

For G = SU(3) in Tahle I we have given the spin-aero states obtained by the

operation of B and 0 on | 0 ^ for the first five levels.

For the closed spinning string the mass formula reads:

AV
where

that physical fermions must have periodic boundary conditions in Minkowski

space-time and therefore are contained in the last two rows of Table II.

Thus, supersymmetry in space-time (as contrasted to supersyrametry in d = 2)

is unlikely to arise in such theories* The only possibility for massless

fermions is when d + d = 10, which when combined with Eq.(l.?) gives

the unique solution

(e.g. U(l) for d = 6).

= 0. This would permit only a product of U(l)'s

VI. CONCLUDING- 'COMMENTS

One of our motivations in undertaking this study was to Investigate

the possibility of constructing a string theory in d = 6 which in the low

energy limit could give rise to the anomaly free matter coupled H = 2 d = 6

supergravity with Eg x E x U(l) symmetry [18]. In that theory the anomaly

cancellations are highly non-trivial, while the theory admits a (phenomenologically

interesting) chiral monopole compact if ication down to d = It, Prom (l.U) and

(1.5) we see that there may exist the possibility of constructing a string

model in d = 6 which would consist of both the bosonic and the fermionic

sectors. Evidently,the rani. 20 group quoted in (l.M as an example is large

enough to contain Ij i E. i U(l). For example, we could construct a heterotic

string where the left moving sector is realized with a spinning string in

d = 6 with GT = 30(3) (k = 1) while the right moving sector 1B realize)!
1 ft i A

with GR = SU(3) x U(l) . This U(l) can give rise (through Frenkel-Kac
construction, Hefs. [12,20]) to a. rank 18 group, e.g. Eg j Eg j SU(3).

and & and H are given as before with the constraint

Corresponding to periodic (p) and antlperiodic (AP) boundary conditions,

there are nine possible sectors. However to simplify the discussion we

consider only four of these sectors corresponding to the cases where X

and X (idem x and- x ) obey the same boundary conditions. This

will not change our results. In Table II we give A as well as the

trtmsformation properties of the ground state and the masses of the first

few levels. We can infer from this table that if we deaire to have a non-

Abelian group G we cannot have massless fermions. To clarify this, note

-21-

It is perhaps of interest to note that (Eg x SU(3) i (E x U(l)) is

contained in Eo x E Q. Hote also that one may consider the possibility of

a heterotic string with spinning left movers on U(l) while the right movers
1,

are realized through Frenkel-Kac construction yielding 'Eo x EQ x U(l)
" o

although such a model may perhaps be looked upon more simply as arising from

the conventional heterotic string picture in d » 10 where the ten space-time

dimensions have been compactified to six space-time dimensions. These con-

structions have no d = 2 gravitational anomalies. The consistency of these

models must, of course, be investigated with interactions taken into account.

•) Note that there are two possible G-parity [15] operators in the theories
"fi1 V

of this type, (-1) d or (-1) G . These may be useful for suppressing

the tachyons.
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The resul ts of th i s paper can be extended in the following
directions, (a) Generalization of our model to the case of coset spaces}

(b) generalization to extended (H = 2,1*,8,16) supersymmetries in d = 2}
(c) study of interacting strings (d) arid finally and most importantly the
construction of a model in which the spinors x X are replaced by objects
which are spinors of both d = 2 ana the higher dimensional space-time, as
in the superstring model of Green and Schvarz P-8 ] . This may affect
formula (1.2), as well as restore supersymmetry which as noted in Sec.VI,
is lost for non-Abelian tj for the fermionic string treated in this paper.
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Table I

-1

0

+1

+2

+3

States

|o>

«d «.i ̂ 1 "^io>

B-i ».i B-i e-i s-i e_il°>

• *li e'-i eli &'-i x •

- S_l B j B.i 2.1 1°

3U(3) x SU(3) representation

(1,1)

0,8)

(1,1) + 2(1,8) + 2(8,1) + 1»(8,8)'

Ml.l) + 6(1,3) + 6(8,1) + 2(1,10)

+ 2(10,1) + 2(1,10) + 2(15,1) + 9(9,8)

+ 3(8,10) + 3(10,8) + 3(8,10) + 3(10,8)

+ (10,10) + (10,10) + (10,10) + (10,10)

(1,1) + 6(1,8) + 6(8,1) + (l.ax)) + (10,1)

+(1,10) + (10,1) + (1,27) + (27,1)

+ 36(8,8) + 6(8,10) + 6(10,8) + 6(8,10)

+ 6(10,8) + 6(8,27) + 6(27,8)

+ (10,10) + (10,10) + (10,10) + (10,10)

+ (10,27) + (27,10) + (10,27) + (27,10)

+ (27,27}

The scalars obtained by the operation of B and 0 on
-n n

f i rs t five levels for G = SU(3).

|0> for the
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Tatle II

A.P.

A.P.

P

P

a
X

A.P,

P

A.P.

P

A

1
" 2

V8

d-io

d+dg-10

16

ground state

scalar of 14
and G

scalar of M
and spinor of
so(dG)

spinor of M,
scalar of 0

spinor of M. and
SO(dQ) d

dG-B d ( J dQ+8

~TT ' IS ' ~iT ' • • •

d-lo d-2 d+6
16 ' 1 1 ' ifT ' • "

d+dG-XO d+dQ+6 d+d+22

The values of A. , the transformation properties of the ground state

and the mass levels for different sectors, corresponding to periodic (p)

or anti periodic (AP) boundary conditions or the fennions X° and x&-
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