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ABSTRACT

We construet en N = 1 locally supersymmetric o-model with a
Wess-Zumino term coupled to supergravity in two dimensions. If one
takes the o-model manifeld to be the product of d-dimensional Minkowski
space Md and a group manifold G, and if the radius of G 1s quantized
in appropriate units of the string tension, then the model describes a
Neveu-Schwarz-Ramond {NSR)-type string moving on Md x G. {Our model

generalizes earlier work of Refsﬂl,2]which do not contaln a Wess-Zumino
term and that of Refs.fE],[é] which is not locally supersymmetric.) The

zweibein and the gravitino field equetions yield constraints which

generalize those of the NSR model to the case of a non-Abelian group mani-

fold. In particular, the fermionic constraint conteins a new term trilinear

in the fermicnic fields. We quantize the theory in the light-cone gauge
and derive the critical dimensions. We compute the mass spectrum of a
closed string moving on Md x & and for the bosonic case we show that it
coincides with that of the string which compactifies on r-tori where r
is the rank of a simply laced G. We also show that massless fermions do

not arise for non-Abelian G for the spinning string.

_1-

Some time ago, Deser and Zumino [1] and Brink, 91 Vecchia and Howe [2]
constructed the coupling of ten scalar supersymmetric multiplets to d = 2
supergravity. Thney showed that the theory is conformally invariant and describes
the 4 = 10 Neveu-Schwarz-Ramond [3] string model[15]. From the d = 2 point of view
this theory is . a locally supersymmetric J-~model in which the scalar manifold
is a d = 10 flat Minkowski space-time, MlO = 180(g,1}/80(9,1), In this
paper we consider the generalizetion of this model in whieh the scalars
perametrize an arbitrary Riemannian manifold, In sueh a generalization, a Wess—
Zumino term [L,5,6] is coupled to d = 2 supergravity. This model furnishes =
covariant description of & string moving in curved space, provided that this
space 1s Md x G where Md is d-dimensicnal Minkowski space-time and & is
& compact group manifold. The characteristic size of ¢ 1z guantized in units
of the string temsion [T7,8b],while restrictions on 4 ariSE,due to the require-

ment of Lorentz invarisnce in Md ,of the quantized theory.

These results are relevant for the reduction of the critical dimensions
in which the string theory can be consistently quentized. Recently, in Refs.[T]
and [8blit was shown that the critical dimension for the bosonic string is given

by

d= 24 - ds (Lnsaﬂic Sh"nj) (1.1)
C 2
1+ A
21k
*)
where dG is the dimension of the group G, k is an integer and cA ias the
eigenvalue of the second Casimir operator ¢f G in the adjoint representation

(see Eq.(4.8)). Extending this result, in RefJ7]it was conjectured that the

critical dimension for the fermionic string is given by

d=1o - %_JLM -+ 4 (rr%“m;)

Lt C! .r+r‘\r|j
2 [kl

In this paper, starting from cur locally supersymmetric action (see Eg.(2.1))

(1.2)

we quantize the theory in the light cone gauge, rederive (1.1) and verify
{1.2).

The case of k = 1 is special,éince, as was shown by Witten [9], inthis
case the scalars of the non-linear go-model become equivalent to free fermions.
For k = 1, the solution to (1.l) includes ¢ = 3U{n), s0{en), Es/Z3, FTIZE, Eg or

any preoduct of these groups with

*) More precisely k 1is an integer for SU(N), S0(N), 5P(n), E6/Z3, ET/Z

and Eg, 0 mea 3 for Fh and O mod 4 for Gy -

2
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X (1.3)

r = 26 -4 (b(-u"um'c 57"!’“'? ?)

vhere r is the rank of G&. **)
. . . ***)
As we shall see, one relevant exsmple of {a-semi~simple) G is
d= 4§ R G = E-.!)\ Eg oL ME3) x SU{z)x uit) 8oivenic (1.1}
shire
o,
For k = 1, assuming that O is simple, the unique soiution to (1.2}
NRER
is ;
d= 8 s 6= 50(3)
Spica:
dag§ , 6= 54(3) frory
-"\'u'wq‘ "
d=s , 6= s0(5) ; (1.5)
d=13 , 6= suly)

(Note that d = % is not included for any simple G.} Possible applications of

these solutions will be discussed in the conclusions,

This paper is crgenized as follows, In Sec,II we construct the N = 1
locally supersymmetric action with a Wess-Zumino term., In Sec,III we derive
the field equations and constraints following from the action. In Sec,IV we
quantize the system and derive the critical dimension formuia by the require-
ment of Lorentz invarience in M,. In Bec.V.we discuss the spectrum of a closed

d
string_mcving on Md x G, Finaglly in Sec,VI we discuss some of the open problems.

#) For k » 1, some of the solutions to (1.1) are: d =7, E. (k = 3}3
& =8, 8U(5) (k=15); a4 =6, su{7) {k=75). ‘

*#) For a complete discussion see (oddard, Nahm and Olive {and other papers)
in Ref. [8al. (It has recently been shown [10] that for arbitrary k the O{N)
o-model is equivalent to free particles obeying parastatistics of order k.
Regarding the question of parastatistics in strings see also Ref,[1l] where
it is shown that & = 2 + S for a free fermionic theory exﬁibiting para—
gtatistics of order q. Forg = 2 this gives 4 = 6},

#%%) Note that here the Egq x E8 refers to a 496 dimensional group manifold,
and not to a l6-dimensional torus which arises in the heterotic string medels [12].
Other rank 20 groups which might be relevant to the bosonic string ind = 6
are: Eg x Bg x SU(3) x 5U(2) x 8U(2) and =U(3) x [U(l)]la_

#*#%) For k » 1, the unique solution (for simple G} is: 4 = 8, su(2} (k = 2);
a=1L, 50(5) (k=2},80(3) (k=5); d4=2,50(5) (k=T

-3-

II. A LOCALLY SUPERSYMMETRIC ACTION WITH THE WESS-ZUMINO TERM

We construct the action of an N = 1 locally supersymmetric o-model
coupled to supergravity in two dimensions, where the scalars of the o-model
parametrize an arbitrary Riemannian manifold M. N = 1 supergravity in two
dimensions contains a zweibein e: and a gravitino ¢u . As ig well known,
in two dimensions these fields do not describe physical degrees of freedom,
Nevertheless +they play an important role in that their field equations yield

constraints on the scalars and spinors of the o-model.

The full action reads as follows:

2mra’

-1 _ Vv L ] . Coxt ‘ } k
e L R L AL SR

v 37 : J’ . vy v = J_, ..
+‘?}.8 Eﬂx BY? jl& - —‘I'F Y}Y X}\ ’Ll),, X X JIJ
-5 R Tt geat
. . - ] k
N T W W ik AR 2t A GO

- - £ n -, k= £
v AW FAk T X E__g"‘ Wik Wign X V5K TIUR
g4 Sitn*

: o = k
PO T A YA XA X

ST SR d
(2.1)
and is invariant under the following transformations:
a = La a
%C,‘_ Y R 1}}(_ - {"\67‘_
ak
S¢l - EX‘
5%’ (0 e Y e T, %fP‘;l ek iﬂwl-k(iiw;xk)a,(e.z)
Po VAR ) vt it
+1 A xe

L



where e (0,1}, a{o,1) and Alg,1) are the supersymmetry, conformal super=-
symmetry and Weyl scale transformation parameters, respectively. In {2.1) and
(?.2) we have used the following defTinitions and conventions, The scalars

¢l {i= l,...dim M} parsmetrize a Riemannian manifold, M, with metric gij(¢).
The spinors xi and wu are two-campornent Majoransa * The parameter o'
is the coupling constant of the ¢-model and the coefficient k in front of
the Wess-Zumino term is defined sgch_that the path integral corresponding to
{2.1) is well defined [9] (end last reference in [6]). Thus k is an inbeger
(see foctnote p.2). OQur Riemann tensor is defined as ngi = agrzk + ..

Note that ' = ¥ e’ (u,a=0,1). The 3-form #yy, 1o closed and is the
curl of a second-renk antisymmetric tensor aij(¢) = —aji(¢), which is a function
of the scalars ¢
Wik = 2L+ W ><;d- MIETREY . {2.3)
s = . ab . -
The apin cofnection, wu ., contalns the contorsion tensor X v = 2iy wuwb. The
N . Ha a
term in le containing the Christoffel symbol Flk has been added so that
when it 1s taken to the left-hand side (x> + T j; & ¢9x™), it transforms as a
vector on M, as it should since the remaining terms on the right-hand side have
the same transformation property. Finally,the notation 3 is standard for

Riemannian covariant, derivatives,.

In order to derive (2,1) and {2.2) we proceed in two steps. First
we generalize the action and trensformation rules given in Refs.[1] and [2] to

(81, as

the case 0f an arbitrary Riemannian manifold, M, with metric 813
follows:

€\il =

2’

! v ‘ ‘ LT o ' : oy
_.2_.3/* };,_\t? 3.;4’" 3 - _;_.;( ¥ ().\}{'}1- rjslf ?»‘f’)f )g'J

4
4

(2.4}

*]) We use the following conventions. Our metric is LI diag (-1,+1). The
d = 2 gamma matrices Xa (a = 0,1) are go =95, 31 = icrl and ‘a’S = =04. We
0l
take € = -1,

€y = *1 and X =X%XY . In two dimensions the following Fierz
relations hold: §A = - %(iw + (iysw) ¥

5 = (Ry vy} end w(3y) = -aGw) - x(9A),
Some further useful relations are: T, T By, * e e v. (e = det ei) and

uv HV 5
[N u
e =
Y, Y v

) . ‘ L ¢
le :—i)"‘('D/.(Ptfu/gx')E- TJk S?JZ +;_ A;( +
(2.5}

Remarkably we find that without any further modifications the covariantized
asction (2.L) is already fully invariant under the local supersymmetry and scale
transformationsgiven in {2.5). In fact a large class of variations are those

which arise in either the model of Refs,l and 2 (guv #n ) provided

wot Bi3 T My

that in the variation of the action the derivatives are covariantized with

i

Jk

g=-model [13] (g =n ,g..#mn.,,). Therefore one only has to check the
v we T i i

respect to M {e.g. Bux1-¢ auxl + T au¢dxk) or the globally supersymmetric
cancellation of the new variations which do not fall into these two classes.
Most cancellations are trivial, the only non-trivial ones being Y
those arising from the variation of the zweibein and xl in the Ry
term. These variations give a vanishing result:
Lo | B R S ¢
-5 8 ﬂ‘&” R LR, +‘7R:Ju A Gve Boat)

+-;— YZ:JH ot (ive Hat) =0 . (2.6)

Te prove this, one must Fierz rearrange Y and xg in the

second and third term and use the fact that

£

R.‘J'kf P COA B Kipee it Tyt

B
[~ ]
L

(2.T)

This identity is easily proven by noting that Rij iz symmetric, whereas the
X terms are antisymmetric in the pair interchange (ij) e {kf). We thus

conclude that the action given in (2.4) is invariant under (2.5).
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We now consider the extension of (2.4), (2.5) by adding a Wess-Zumino
term in a locally supersymmetric manner, A globally supersymmetric Wess-Zumino
term has been constructed in Refs.[5,6].In the case of local supersymmetry we

leave the transformation rules (2.5) intact except for 5)(1 which we medify
to read

At =i vr (hpts Hoaie - Gk spd 2"
+ X 3'1

L Ty gk
lew w[Jk (x Yo X ) £ .

(2.8)
Note that the k-dependent term in gy s precisely the one which ceccurs in
the globally supersymmetric model. To obtain an action which is invarient
under the leocal supersymmetries (2.5), {2.8), we first covariantize the

globally supersymmetric Wess-Zumino action [5,6] with respect to the two-

dimensicnal space-time. This yields

y ! N Sega s . k
od,- - ¢ ?k_ I e L X g e
T

- — 1 —t -1 ks 4
+_‘5__.w;1-.k i‘xkxla‘,)(l._ k 9 W ke W XhA XA X
t4r b Sianwt 4 (2.9)

We now consider the new variations in ;Cl + 22, given in (2.L4) and

(2.9}, which do not arise in the globally supersymmetric Wess-Zumino term of
2
4

Refs.[ 5)and [6 1. One class of varistions are the terms proporticnal to w
coming from the variastion of the determipant e and of xl in the mzx

term., These variations are

L s o ¢ .
"‘L; k w;\hw‘tm Xt?.r?(kXJ Y X {2l EXAT-YA)
AW 5"__“_1. J
b " T T (e B )
irew” ¢ (2.10)

The Fierz rearrangement of xg"x"j in the second term yields two terms one of

which cancels the first term. The final result is

I C A S S o : T TR LT T

L Wikw Wig ™ iiﬁsxkﬂ' ‘o’)xf Fya 1y

512 '3 4 (2.11)
In order to cancel this we add to the acticn the following new term!
- Ky x T X
e 3 T —— w'Jk qu.\ ’ (2.12]
v

Cne can easily show by appropriate Fierz rearrangements that all the y's in
(2.12) contribute with the same weight to 6 ;(3. In particular, the w-

dependent variation of the x's in (2.12) gives

3 x _L.'k_
94T’

which exactly cancels (2.11).

(W:Jk ;ﬁ;w/‘)( %F W X Ve X iJYﬂ;Xk‘E), (2.13)

Remarkably we now find that with the .addition of 'IB given
in (2.12) the full Lagrangian o = :fl A A 23 given in (2.4}, {2.9),
(2,11) or (2.1} is invariant under the local supersymmetries (2.5), (E.’,a) or
{(2.2) without any further modifications. We have checked this by a straight-

forward btut tedious calculstien which ' will not be reproduced.

IIT. FIELD EQUATIONS AND CONSTRAINTS

We now study the field equations which follow from the action, (2.1).
As mentioned in the introduction the sealar manifold is taken to be M‘1 x G.
We shall see that for a particular relation among the parameters of the thecry
(see Eq.{3.7')s the

integrable. The field equations for e

field equations for :pi and )(i will he completely
?  and q.!;_l lead to constraints on

¢1 and xl which generalize those of the Neveu-Schwarz-Remond model, These
constraints will play an important role in determining the critiecal dimension

for strings in curved space, as we shall show in the next section.

We First choose co-ordinstes appropriate to the product structure

deG N

-0-



Xt
¢t ) : { 1%\
) .IlI | x ) L I) D’{:a‘li"’d-‘
¢ A Tz, .-, o‘c., .
(3.1a)
Correspondingly
; f
[ 0 |0 0 \
(M - ' O(id: W ()
0 3::(3) o] e Ty 3
(3.1b)
where nuB is the usual metric in Md and gIJ iz the gx¢ invariant metric

on G. Note that we have introduced an sdditicnal parsmeter R, which is
sssociated with the characteristic size of the compact group manifold G. In
terms of the co-ordinates x and yI the Lagrangian (2.1) splits into two
parts which are separately inveriant. One part, ;f(Md), depends only on x%

end hes exactly the same form as the Lagrangian given in Refs.[1] and [2]

- - 1 RS ol x o - ry P
ST N e
N SO I EPY
+ HAVTAT( ) ) tf%gnraf ¥y AT g (3.2}
The other part Jf(G) depends only on the group co-ordinates yl, On a group
manifold G we can take wIJK to he

. by o€ a b«
UJI]'K = lﬁ ‘S:Q\Ic LI LJ’Lkz%_}q\gc R]’ RJ- RKSJE,)(IJK,(3-3)

where fa; are the structure constants of the group G and L?(rp) are the

left invariant basis elements on the group manifold G, which are defined by

T }31 - T (3.4)

< \ o
T3yt T =2 T 3

Here g is a group element and ™ are the antihermitian generators of

the Lie algebra of G. From (3,3) it follows that is an invarisnt

“1JK

3-form on O and hence that o__ is an invariant 2-form {up to = total

17
derivative).

Using (3.3) and the following relations [14,13] .

Risr :f*—;it {rr " Feum (3.52)
RIIKL }1 XK ?TXL - 3 frrys ilﬁsiﬁk i’y_‘_ ZL (3.50)

the Lagrengisn J£(G} now reads

-2y qan s B t)

HTe ! R’

_ T , K b
el (- )yt © g

S"IT " fKLH (L' i-l—'l(:;—:-) iIfs xK i'ri;z‘-

T Rrler
g e - e VR T g
* wal A 3 J ! e
sk fore ﬁ&#"l"lr PR (3.6)
wgwe? !

We see that for

* k F
R = ‘—15?— (3.7)

L
the quartic y terms in (3.6) cancel. Without less of generality we shall
always take k +to be positive. Using (3.7}, in the superconformal gauge

%: = 'F(",‘)S/? ' 'tl;\:;n,A("',T) (3.79)

the field equations following from (3.2) and {3.6) are

~10-



A= 7™ o =0 AR =0 (3.82,5)
Ry =7/w?/\?v " }'JJ?‘JJK (gﬂrzi -i-!ﬂ_- Z”fnl): o, (2.8¢)
Ay = 3" }\}lIJr ([ - I‘T‘{;KI)’;)}.(’T XK: o . (3.84)
YIS A W WL o (o & ‘v}j’ A

Forx 3V Fups 15 =0, (2.8e)
Ag = ?.ff(-%x*y‘,xh %7f,7f")rx°‘a,xf) - £ %A

I . o= J
w e R by g ey ) - A TR K e
(3.81)

£ (- % ™) 350 9 =0 .

Note that Al = A2 = A3 = Ah = 0 are the physical field equations, while A5 = A6 =q

are constraint equations. The field equation A3 = 0 corresponds to the
variation GlféyI - P];J (61/5XK) XJ = 0 +to ensure covariance, This
variation gives the result (3.8c) plus a term which vanishes upon use of the
)(I field equation. Note that the resulting eguation, A3
on &%, Also in (3.8f) the %' field equation has been used.

= 0, does not depend

It is convenient to rewrite (3.8¢) in terms of the bosonic part of
the currents assceciated with the right and left translations on the group

manifold, These currents are defined by
b =1 (e &) Yy Lz (3.9a)

r ,%
Jcls{(7/‘v'tﬂi)‘bv3 R: f

(3.9v)

~11-

Furthermore, the following relations will be useful in simplifying the field
equations [14]

A o,

v Lily - RIR]

=T
Pre

u

& T T Y T
—-LK):LQ“’ ;"E‘gIK E—RK )J'F(-:_—{l;{. ;JK
& o r, % a q
Bly dly w lﬁ'fIT bk =0 = %% —‘BJR:- R’-fr:rKRK (3.20

Using (3.9) and {3.10), we can rewrite {3.8¢} as

(3,11a,b)

To simplify AL = A5 = A6 = 0 we now define the components of XI in the left

and right invariant basis elements as follows:

a T, ™ ~a I a
A = X Ly ) X = K R, (3.12)
It is not 4ifficult to show that the supersymmetry variation of J;a’ contains
a_1 a ua : ~8
== d - .
X, =3 (1 + 75) X and that of J. contains XH 2 (1 Ys)x Thus

it is natural to express equations A = A5 = Ag = 0 in verms of XL .and XR
Again using {3.9) and (3.1Q), from (3.8d,e,f) it now follows that

a
1”}-.2,‘ =0 (3.13a,b)

UL =0

U]N* £ )(Amhx‘ . ”K:J’,: - ﬂ fn.bc- 1/‘_ XL Wi, ).—.o (3.1ka)

v ~ - ~a Ml
(?jﬂdé} )( lﬂ«%f«- x;JVt - \‘lR }‘-\’C ZR x,g B)v Xﬁ ) (3.1kb)
q,(F ( I hyIP 1-17/04 f (I 3,—3:/5)-*—,1,_ HV AL“

— T N
A P P N2 IR S 20 A} y7)

o . . v (3.15)
S WA - kX WA =0



Note that the last terms in (3.84,f) have dropped out, due to the fact that

we have expressed xi R in the appropriate basis.
*

In summary, the field equations following from the sction (3.2), (3.8)
are given by (3.8a,b), {3.11a,b} and (3.13e,b), while the constrainis are
given by (3.14)} and (3.15). In particular, note the presence of the XB terms
in {3.14) which are necessary for the closure of the super-Virasorc algebra.
We will use these equations as a starting point for the quantizabion of the

system in the next section.

v, THE CRITICAL DIMENSION FCRMULA FOR STRINGS MOVING ON Md x G

We now solve the free field equations given in (3.8}, (3.11) and {3.13].
Next we quantize the system subject to the constraints given in (3.14) and (3.15),
The requirement of Lorentz inverience of the quantized theory in Md puts
restrictions on the dimensions 4 and dG of Md _a.nd the group manifold
G, respectively. These restrictions have recently been obtained for the
bosonic string in Refs{7Janduland conjectured for the fermionic string in
Ref.[7]. In this secticn we shall restrict ourselves to closed strings. The
case of open string can be treated similariy.

}

»
The solutions to the Field equations are given by (setting 2a' = 1)

h

o, . = _Uih [Ty} - _u S
x"(q.r}ﬂi-rf)“t»riz —fﬂ—(o(,'e gy Entee

nfo (h.lﬂ.)
T& 7 ‘"Z & Lin {Tee)
Tr= t n=.ee Fn {L.1p}
o oo ~ oo _1‘.n('t-u-')
ousw =>- fre (¥.1e)
il o=

#) The light cone co-prdinates on the string world sheet are defined by

E:l: " (t £ 5), and thase on Md by = A-’-?_]; (xo z xd"l). In this segtion
the index i refers to transverse directions on M..

a
13-

b LoluwiT- )
oy
'X( s Z dn ¢ (k,1a)
LY
- ~ .
¢ (1) =3 = -1w\('tfu-)
A =Z ‘{n € (h.1le)
ns -
a (1) D a _1(y\{"c'-v-')
LT S, e {b.1£)
LERES
,th("_ o= e —l;n(T*'-)
=2 Sn € 2 (4.18)

n= —oa

where Au(l) uu(E)) is the single non-vanishing component of AE {Ag). In (L.14)

and (4,le) the sums are over integers (half integers) if a pericdic (entiperiodic)
boundary ‘condition for A is chosen, and similarly for (4.1f) and (L.lg).
Tc eliminste the gauge degrees of freedom, we use the light cone gauge defined by

+ + +{1) A+(2)

x = P o, A o, o . (4.2)

In this gauge, substituting (4.1) into the constraint equations (3,1h) and ++

end -— projections of (3,17}, we solve for the Fourier components of % and
A . respectively, as follows;

4ty R R P I~

AL E (- 2) dyn A

MaD - g

o
- R CTE S I ) N I
T P {4.3a)
38
o~ - 2 Y - _ - - ¢ ':—Z v
(xh - -?T \"h ’ ? - 2‘(0 :z"°<° ) f ‘*ZO(O xo
A— 2. = % - %‘ [ &
w3 Ayt =S P
P¥ Ao m=— o0
o G L <
R T < - * (h.30)
5“? -ER\’;M‘:—@SH-M—{ Se S"( B F* E
A —~ ’
F =1h-

2

Ty

4]
= |®



“r ~ .
where I.n end Fn ere the same as Ln and Fn with all the osecillators normalized differently than in (L.3}). The resulting (quantum) expressions

replaced by the ones with tilda. We now gusntize this system and compute are

the central extension[7,8al in the commutator algebra of L &nd F_ . o - : o \ . : E
. " i . S oty ola ¢t L > (m-4n ) dhw1i“ ‘
Demanding the closure of the Lorentz algebra requires & special value of this \_h = 1{ T R e TR 2 e
central extension whiech in turn determines the eritical dimension. The e a
i
quantization proceeds by impesing the following {anti) commutator relations | o o v, 1 é (""\ - in ): S‘\"““ SM
:z. F““F“ ’ v
L PP
. - . . . - s e
L =y i i . !
ET;PJ] Sd ' Eﬁu:df]-msﬁw,a SJ (h.ha) ’4 ) g
n o
v (s x e (h.6a)

abe ¢ od

Ted I']_-i
F"‘nFn e f'mn a0 S (h.kv) . ' XZ&, F"u =
{ 0{:‘, d;l i - Sl‘ Smh\, v

,e

(4. ke) L
) ) Sm Sat-w S Sy
{&: S]: %‘ S N“ {,ns — 0o
¥ ~ MMEN o * (h.hd)
P* = h_ (L oL ) - ..—.." (]:‘ ) {L.6n)
) =
Similar relations hold for tilda oscillators, and the letter commute with those F“' P" i /
without tilda. TIn deriving (4.4b) we have used the result of Witten [9] whieh o
where

gives the commutator [J° L J-l-L] . 4 c S N

We now consider the commutator algebra of Ln and Fn given in {4.3). che{ S\' = A * (4T}
First we note that these satisfy the following {anti} Poisson brackets: { o Ad’-‘fuiad: . - for 1 .7

= l/f( Pﬂ'l‘oo“r_ boe. -;-r A
[LM«| L“]P = (1“—‘1) Lm.ﬂq
! (o) AnLIP(rEoJ'\( b.c for A
E‘F«q, Lh‘lp = l““'-‘iﬂ) Fm*\*n Z |/“ P{‘-"nd“; L.C. f.r X .
5 f in (h.6a) in order tc dizcuss all the boundary conditions simulteneously e
- L, is
“,’ EJ p 2 2 b P (k.5) have added a constant term to LO' The value of ) for Lie groups
given by
and similer expressions for L_ and F_ .
- @ m {2n) F, E. E; E
 These brackets define a super Virasoro algebra with no o sufn) So(2n+1) Spin) sc(an) g, " 6 7 g

central extension. In the guantum case one must take care of operator crdering. X ‘ ‘o .
With the normalization of the individual terms given as in (4.3) one finds, ey 2n hn-2 2n+2 bn-L4 8 18 2 3

(L.8)

however, that the (anti) commutator algebra of Ln and Fn does not close.

By demanding closure, we find that the terms in Lm and Fm have to be

=15~
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satisfy the super Virasorc slgebra [16]
Cne can now show that Ln and Fn fy P

\.L“'Ln‘] = (e ) Lowean -‘-:;——- w(u&'-\) Sunru, 0 (4.98)

)

(F Y2 Law vhe (R §)3mme o
"
P {hogc)

EF"\,)—-\]= (== li") Fm+n

where c is the central extension which is given by

d .
C-‘%{J"") * —__(’-T:-—_ "liAG (4,10)
A 4 11

We now require Lorentz invariance in Md‘ The only non-trivial
cormutator is hdi_, MJ’] = 0. We find that this commutator holds provided

8, An = . = 44 & nsion T H
that =_ and ¢ 12, Thus follows the following ritical dime 107 ormula
(o] 2

AG y A ( A ~ho-

" —_ r - [ Spimnin otNﬁ .

d=\o T ol 3 fronieg j) (1)
2K

s i a
In the case of the purely bosonic string where dm and Sm are absent
{and thus F_ = Q), the only surviving commutator is given by (4.5a) with
=

central extension ¢ which nocw reads

de

LA
zk

The validity of (M, 13”1 = 0 now requires that a, =1 and c = 2L

c s d-2 * ( bosenic :+r‘mJ) . (h.12)

which implies the following critical dimension formula:

Ck: 26 = ___2"6_.—-—»
v+ Ca

FA S

( L“‘ﬁ’""c— SJ‘rinj) . {4,13)
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Finslly,we quote the quantum mass formula

T

W = S(Lo-d,)_F:FL .

(4.14)

For the case of semisimple group G = Gl X G, % ceex Gp the formulae

2
(4,11) and (4,13} are replaced by
J"J?nni “g ¥.15)
J*rin_, *

v Clc’u') )
&
( L-J'-nii J‘}r'fnJ) o(h'lﬁ)

Y. MASS SPECTRUM

In this section we study the mass spectrum of a bosonic¢ closed
string moving on (Minkowski)d x ¢, which will illustrate both gravitational
&s well as Yang-Mills degrees of freedom, We shall comment on the spinning

string case at the end of this secticn.
The quantum mass operator in (Minkowski)d of the closed bosonic string

is given by (see Eq.(L.1lh)

1‘?“‘"‘=N4+Ns-i 3 {5.1)

where

d-2 . .
Ng = 2 2 oL, oLy

{5.2)

S

e

' - S Vi
e - Z ol B (5.3)
2(1+ 9_‘4{_ 571 ne-ce
2]
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Nd a?d NG afe the occupation number cperators for the left movers satisfying
ENd,a;J = —n a; , [NG,B:] = . Bi . Analogously one defines the occupation
number operators for the right movers, Nd and NG with o and 8 replaced
by @ and g y respectively, These number cperators must satisfy the
following cles-d string constraint:
By + N, = N+ A {5.4)

To identify the mass spectrum we need to study the representations of
the Kac-Moody algebra [20] of the opersators Bi . (For & review see Refs.[21].}
From now on, we shall specialize to the case of simply laced G. (The more
complicated case of non-simply laced algebras has been treated in RrRef.[22].)
Furthermore we restrict ourselves to k = 1, As for the ordinary Lie algebras
every representation is characterized By a highest welght vector. The basis
of the representation spacé is obtained by successive application of the step

operators on it. A weight vector obtained in this way is denoted by [21]

L=(A" «, §) Ior, -, vk B (5.5)

where AI are the components of a vector on the welght lattice of G, « 1is
the eigenvalue of k (see (4.hb)).and & is the eigenvalue of the derivation

operator d [21] which, in our case, is nothing but (l-NG).

We shall consider the basic representation [20] which is characterized
by the highest  weight 1, = (0,1,1). This weight corresponds to the ground
atate lo>» . Given the highest weight 244 the remaining bases of the
representation space are obtained by successive application of the appropriate
step operators, Bfn...BEm|O> with pesitive n,...,m. Using the infinite
discrete Weyl group, Q, Frenkel and Kac [20] have shown that the weight
vectors of the states cobtained in this way must have the form (Proposition (2.1)
in Ref.[20]})

(0(, i, .L—F—%o(rqi ) P = 0,142,500 (5.6)

with degeneracy Mp(r) given by
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%
02 ——
—-r 1.

Zmr(f)lF:”(L—x-’,) = Lrrx o4 VOXI) o (5.7)
?'_U F:I - v
Here r is the rank of G, and ol is a vector on the root lattice. Fram {5.6) )
it follows that No=p+ (aIaI/E). Thus

\ O _L“‘qu_- N

L i L (5.8)

This formulsa can be compared with the mass formula for the closed bosonic

string compactified on an r-dimensional torus [12,23] which is given by

VU T G ¢ -
?J M o= n +E P F - 1 5 hzo 1,1, -- - (5.9)

- I :
Here n is an occupation number operator [23] and p are the internal

momentizn components. Since one identifies pI with points on the root lattice

of a group G as [23]:

I
N PI - o , (5.10)
it follows that the +two mass formulae, {(5.8) and (5,9), are
identical. In other words, the mass spectrum of a bosonic string moving on
Md x G is the same as that of a bosonic string moving on Md x r-dimensional
torus, where r 1is the rank of G. It should be emphasized, however, that

the states are obtained in the tofus case by the Carten subalgebra oscillators and

the vertex operstors [20,2&]' while in the group manifeld case all states are

obtained from the Ban oscilletor operstors alone,

To illustrate the details of the spectrum let us consider the case of

M2h x SU{3) as an example, The states Ban [ L Bé
1

—n2 _ni|0> are eigenstates

of d =1 - NG with eigenvalues 1 - (nl + n, + 4o« + n,}. Hence the states
Bfl|o)- have d = 0. These have the weights (a, 1,0) and (0,1,0) where o is
& root of SU(3). The six weigthts (a,1,0) have unit multiplicity each, while

the multipiicity of (0,1,0) is two, Therefore they form an SU{3) octet.
The next set of states (corresponding tc d= -1) are Sal Bb1|0> and

a - s .
8_2|O> - By virtde of the commutation relations satisfied by the B's, the state 4

822]O> is the sntisymmetric part of B?l BEl|O:? . Thus this state is not ‘M
independent.
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The states BleElm) have the weights (a,l,-1) and (0,1,-1) with
multiplicities 2 and 5, respectively. They therefore form the representation
1 @ B8 @ 8 of SU(%i. Note Lhat the states 10, 10 and 27 in the product

8 x 8 are not present because their weights are nct of the form glven in (5.6},

One can show that they have vanishing narm,

To apply this construction te the case of a closed boscnic string
: a i i,
4 x G we need to include B\'n as well as u; and ?;: in

the operator algebra. Since B and —é‘ generate two commuting Kac-Moody

propegating on M

algebras the spectrum has G x G symmetry.

The ground state [0 here i3 a singlet of the Poincaré group of
) - i i & B
Md as well as of G x G. It is annihilated by all an PR T Bn and B a

for which n 1, Hence its mass is given b, . a'yf; -1 and therefore it
2z YT

is a tachyonic state,

The first excited level is massless and consists of the fellowing
statea: ulla-.j:L‘o} containing a graviton, a second rank antisymmetrie

tensor and a dilaton; the states ailgfl[(» and ;;ilg fl oy which have
spin one and transform in the adjoint representation of G x G; and finally
3
For G = 5U(3) in Table I we have given the spin-zerc states obtained by the

there are the scalars g alIO) which transform as (ad}, z2dj) of G x G.

-~
operation of B and B on |0 for the first five levels,

For the closed spinning string the mass formula reads:

'g«’n‘=~§+~§f~i+wf+a 5
where o : :
N;(:lz‘g‘::ol_..d“:
NE - L e S5 SN
na-co
and Ng and Ng are given az before with the constraint

d G d G ~a ~G ~a =G
+ N7+ + = .
NB '\IB NF‘ NF NB + N‘P\ + N'F‘ + NF

Corresponding to periocdic {P) and antiperiodic {AP} boundary conditions,
there are nine pessible sectors, However to simplify the discussion we

(1)

consider only four of these sectors corresponding to the cases where A

:\(2) (1) (

and {idem ¥ and ¥ 2)) obey the same boundery ccnditions.  This
will not change our results. In Table II we give A as well as the
trensformation properties of the ground state and the masses of the first
few levels. We can infer from this table that if we desire to heve a non-

Abelian group G we cannot have massless fermions, To clarify this, note

-21-

that physical fermicns must have periodic boundary conditions in Minkowski
space-time and therefore are contained in the last two rows of Table TI.
Thus, supersymmetry in space-time (as contrasted to supersymmetry in d = 2)
is unllikely to arise in such theories, The only possibility for massless
fermions iz when d + dG = 10, which when combined with Eq.(1.2) gives
the unique solution ¢ = 0. This would permil only a product of U(1)'s

L
le.g. U(1)" for a =63, %)

VI, CCNCLUDING. COMMENTS

One of our motivations in undertsking this study was to investigate
the possibility of constructing a string theory in & = 6 which in the low
energy limit could give rise to the ancmaly free matter coupled N =24 = &
supergravity with Eg x ET x U{1) symmeiry [1B]. In that theory the anomaly
cancellations are highly non-trivial, while the theory admits a (phenomenologically
interesting) chiral monopole compactification down to 4 = 4, From {1.h) and
(1.5) we see that there may exist the possibility of constructing a string
model in d = € which would consist of both the bosonic and the fermionie
sectors. Evidently,the rank 20 group guoted in (1.4) as an example is large

encugh to contain Eg x E, % U(l). For example, we could comstruect a heterotic

string where the left moving sector is realized with a spinning string in
4 = 6 with Gy, = 80(3) (k = 1) while the right moving sector is reslized
with G, = sU(3) x 08, mnia u(1)t
construction, Refs.[12,20]) to a rank 18 group, e.g. Eg x Eg x SU(3).

cen give rise (through Frenkel-Kac

It is perhaps of interest to note that (EG x 8u(3) x (ET x G{1)) is
contained in EB % EB' Hote alsc that one may cousidﬁr the possibility of
a heterotic string with spinning left movers on U{1l) while the right movers
are realized through Frenkel-Kac construchion yielding_’ER x E8 x U(l)h
although such a model may perhaps be looked upon more éimply as arising from
the conventional heterotic string picture in 4@ = 10 where the ten space-time
dimensions have been compactified to six space~time dimensions, These con-
structions have no d = 2 gravitational anomalies. The consistency of these

models must, of course, be investigated with interactions taken into account.

#) Note that there are two possible G-parity [15] coperators in the theories

¥ onE
aN-1 | i
of this type, (-1) or (-1) . These may be useful for suppressing

the tachyons,



The results of this peper can be extended in the following
directions. (a) Generalization of our model to the case of coset spaces)
(b} generalization to extended (N = 2,4 8,16) supersymmetries in 4 = 23
() study of interacting strings (d) and finally and most impertantly the
congtructicn of a model in whieh the spinors xi are replaced by objects
which are spinors of both d = 2 and the higher dimensional space-time, as
in the superstring model of Green and Schwarz 8 ]. This may affect
formula (1.2), as well as restore supersymmetry which as noted in Sec.VI,

is lcst for non-Abelian G for the fermionie string treated in this paper.
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Table

I

]]ja('Mz States 80U{3) x SU(3) representation
-1 oY (1,1)
o |8 B o> (8,8)
_1 Py >
I I A S T (1,1) + 2(1,8) + 2(8,1} + 4(8,8)-
a'l » R B
2 |88 B, B, 8, B |0y b(1,1) + 6(1,8) + 6(8,1): 2(1,10)
+ 2(10,1) + 2(1,10) + 2(10,1)} + 9(8,8)
+ 3(8,10) + 3(20,8) + 3(8,10) + 3(10,8)
+ (10,10) + (10,10) + (16,10} + (10,10)
+3 a {(1,1) + 6(1,8) + 6(8,1) + {1,10) + (10,1)

+(1,10) + (10,1) + {1,27) + (27,1)

+ 36(8,8) + 6(8,10) + 6(10,8) + 6(8,10)
+ 6(10,8) + 6(8,27) + 6(27,8)

+ (20,10) + (10,10) + (10,10} + (10,10)
+ (10,27) + (27.10) + (10,27) + (27,10)
+ (27,27}

The scalars obtained by the operation of Ban ahd E: on [O) for the

first five levels for & = SU(3).
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Table IT

T
A% xa A ground state i u'M2
AP, | AP, -% scalar of M -i0, L,
and G 2 2
dG-B scalar of M dG-B dy dG+8
AP, P 16 and spinor of =z % s TRE vees
80(d;)
P AP d-10 apinor of My G-10 d-2 d+6
o 16 scalar of § 16 6 1§ e
d+dG-10 spinor of Md and d+dG—lO d+dG+6 d+dG+22
P P "3 SO(dG) =7 , T T

or anti periodic

The values of A
and the mass levels for different sectors, corresponding to periodic {P)
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» the transformation properties of the ground state

(&P} boundary conditicns or the fermions A% and xa.



