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ABSTRACT

We couple d = 8 , R = 1 supergravity to n vector multiplets. The 2n

scalars of the theory parametrize the Kahler manifold S0(n,2)/S0(n) x S0(2).

The n+S vector fields are used to gauge(SO(1,£) x H)subgroup of S0(n,2)

where H t^SO(n-l) and dim H = n-1. It is shown that the theory compactifies

to (Hinkowski)- x S by a monopole configuration which is embedded in S0(l,2).

The field equations fix the monopole charge to fee +1, which implies a stable,

chiral N = £ supergravity in d = 6.
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I. INTRODUCTION

It is well known that if quarks and leptons are elementary, the

maximal supergravities, d = 11, H = 1 [1], or the chiral d = 10, H = 2 [2]

or their direct descendants in lover dimensions, are inadequate as physical

theories. To remedy this, one must consider additional matter couplings.

Two examples are (1) d = 6, H = 2 chiral anomaly-free supergravity inter-

acting with (Eg I E, K U{1)) Yang-Mills plus hypermultiplets [3,k] and

( 2 ) d = 1 0 , S = l , chiral, anomaly-free supergravity interacting with (SO(32)

or Eg x Eg) Yang-Mills multiplets [5,6]. The first theory exhibits classical

Minkowski eompactification (M i S ) to d = t, and is the only theory known

to do this [7]. It gives rise to two tachyon-free families of SO(lO) [3].

It is not a direct descendent of d = 11 or d = 10 theories mentioned

above.

The purpose of this paper is to provide a third example of matter

coupled even-dimensional supergravity. This is N = 1, d = 8 supergravity

coupled to an arbitrary number of vector multiplets,<For H = 2, d = 8 super-

gravity, see Bef.[8].) Our results are as follows. The 2n scalars

contained in the n vector multiplets parametrize the Kahler manifold

S0(n,2)/S0(n) x 30(2). The n-vectors of the vector multiplets together

with the two vectors of the supergravity raultiplet form the n+2 dimensional

representation of S0(n,2) [9]. As in d = h analogs, it turns out that the

theory has a Kahler invariance provided that shifts in the Kahler potential

are accompanied Toy chiral U(l) rotations of the fermions [10]. We can

gauge a subgroup of S0(n,2), using all the (n+2) vector fields of the theory.

The gauge group is S0(l,2) x H where K c S0(n-l] and dim H = (n-l).

(The supersymmetry of the action is compatible with a gauge group which has

the Cartan-Killing metric of the form (—++...+) = (—+) (++...+).) Mot-

withstanding non-compactness, there are no ghosts [ll].

The two non-compact generators of S0(l,£) are realized non-linearly.

Using the corresponding non-compact gauge transformations one can gauge away

two scalars, thereby giving masses to the two vector fields of the super-

gravity multiplet [ll]. In this vay, S0(l,2) breaks down to U(l) which is

the chiral U(l) symmetry mentioned above. Its presence is important for

it gives rise to a positive-definite potential which in turn triggers

eompactification to (Minkowski),- x S , leading to a chiral N = 2 super-

gravity. (This prompts the conjecture that our d = 6, N = 2 theory [7]

may be descended from the gauged d * 8, N = 1 theory.)

*) In this note we formulate these transformations in a way which does not

involve the Kahler potential explicitly. For this see Ref.flO] which discusses

them in d = k. Our approach is equivalent to that of Ref.[10].

Any anomalies in the theory arise due to the chiral U(l) and its

mixings with Lorentz and other gauge groups. However, since the theory has

a two-form field, the Green-Schwarz mechanism [6] for cancelling such

anomalies is available. This and the physical models which maybe constructed

will be discussed elsewhere.

II. FIELD CONTENT AMD THE SCALAR MANIFOLD

The field content of d • 8, H » 1 supergravity is

ry.
1,1

where the gravitino ifj , and x are pseudo-Ma,]orana spinors, that is to

say, [12],

cT- c (2)

B = -B , A and the scalar a are real. Taking n vector multiplets

of the form (A,A ,$ ) and combining them together we obtain

(3)

where I = l,,,,,n+2, a = l,...,n and a = l,...,2n. How from the known

examples of matter couplings [9,13,11*] we expect that the real 2n scalars

<f>a must parametrize the Kahler manifold S0(n,2)/S0(n) x S0(2). In the

ungauged theory, the vectors transform as the n+2 dimensional representation

of the global S0(n,2) while the gauge fermions transform as the n-dimensional

representation of the local composite S0(n). The S0(2)S U(l) chiral

transformations will be discussed below.

In order to construct an action for this system we first consider

a typical representative of the coset space S0(n,2)/S0(n) x S0(2). A

convenient one is [15]

r
f 0

*)-.
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is a n x 2 rectangular matrix, describing the physical scalarswhere

of the theory. Denoting L

it follows that

ly , and its inverse by L ,, from (U)

L/L,
where I,A - l,...,n+2, and

(6)

Eqa.(5) and (6) are crucial for what follows. {Note especially that ru.

is constant [13], and it can he used for raising and lowering the 30(n,2)

indices.) It turns out that all the interactions of the scalar fields can

be described in terms of L_ , and its derivatives which occur in the Haurer-

Cartan form [16]

b n 'V
(T)

Q, pa cb

shall use the notation

is the composite SO(n) connection, while

is the composite S0(2) connection. Often we

Q =

Cartan form, which satisfy P

= Q .

x =

The off-diagonal parts of the Maurer-

P . a , transform homogeneously under
SO(n) x S0(2). The local supersymmetry of the action, which is constructed

by the Hoether procedure [17] and given in the next section, turns out to

require the following covariant derivatives •.

(8a)

Ob)

(6c)

One then finds that the action is invariant under the following composite

-3-

chiral U(l) transformations

= i
From Eq.(T) it follows that

(9)

In the construction of the ungauged action also important are the following

equations [17]:

= 0 (11a)

(lib)

III. THE ACTION AMD THE TBAHSFORMATION RULES

Using s ° ( n > 2 L l o t a l
 x (SO(n) x 3 0 ( 2 ) ) l o e a l invariance, and the

A i b
objects L̂ . , P , Q and (1 , one Can now construct the coupling of

n-vector multiplets to I » l d « 8 supergravity by the Hoether method.

The result (upto quartics) is (K = 1)

*) To make contact with the formulation of Eef.[10] note that

V w h e r e A«

(Kahler) connection, V* is the 2n-bein and g „ is the metric on
a cip

S0(n,2)/S0(n) x S0(2), and that A and g can be expressed in terms
of the Kahler potential.

••) Our conventions are tirB « (-+++++++), R = R ^ - 3^1 + . . . ,

X t X
T i 0 " Hote that

U. . . . .U . u .



where

x +1; ]
(12)

(13a)

AFû

Km + iJj ri

(13b)

(13c)

(13d)

We recall that r> is constant, (See Eq.(6)). The coefficient of the

Chern-SImons form in G is fixed by the requirement of supersymmetry

in the Boether procedure. Uote also that a is a positive definite

function of sealars. Thus, although the global invariance group is non-

conpact (S0(n,2)) there are no ghosts [11].

Our action'is invariant (upto cubics) under the following local

supersymmetry transformations:

ilk)

At this point since the vector fields are abelian, they are not

obviously relevant for phenomenology. We vill therefore consider the

gauging of an appropriate non-abelian subgroup of S0(n,2) which also would

use all the vector fields of the theory.

IV. GAUGING AN (n+2) PARAMETER SUBGROUP OF E0(n,2)

Consider an (n+2) dimensional Lie algebra, g , with structure

constants f [?].

Define

(Restrictions on these will be discussed below.)

- >A*- AJO: (15)

where the coupling constants of each simple factor in the Yang-Mills group

can be different, and they are absorbed into f 1J
Evidently, one must

also non-abelianize the Chern-Simons form vhich appears in G (see

E4.(13h))

A yhh

Next, we construct the gauged version of the Maurer-Cartan form as follows [18]:

6
E / '

(IT)

Q b(A) [Q .^(A)] transforms as a gauge field of composite local S0(n)

[30(2) ~ Li(l)3 induced by a local g transformation (which generates the

n+2 pafEimeter group) , provided that
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fT T\

1J LK
to ta l ly antisymmetric in UK (18)

This condition ensures that Q y ^ A ) = -Q ̂  (A), and similarly for 0 (A|.

Moreover, the supersymmetry of the gauged action (checked by the Hoether

procedure) turns out to require the same condition as well. Now, Eq.(l8}

is satisfied provided that n is the Cartan-Killing metric of the gauge

Lie algebra, g [15], This implies that gQ has two non-compact generators

(see Eq,(6)). Since only 50(1,2) can have two non-compact generators it

follows that the gauge group, G , must be S0(l,2) x H where H is an (n-l)

dimensional compact subgroup of SQ(n,2).

Eq.(l8) is not the only requirement to preserve supersymmetry, To

describe the modifications to be made in the Lagrangian and transformation

rules, it is convenient to define

L l
r , <L (19a)

(19b)

Note that C * = -C..1 is charged, while C & is neutral under U(l). More-

over from (18) and (19) i t follows that

K ,"• o •*" D *• / \
(20)

The functions C and C appear in the modification of Eq..(ll),
a aD

J Li (21a)

(21b)

where Q (A) • 3 Q (A) - 3 Q (A). These equations are needed in proving

the supersynmetry of the action. In terms of the objects defined in (15),

(l6) and (19) the supersymmetric gauged action and the transformation rules

can now be given as follows:

(22)

where is given in Eq.(12) and J? is given by

where "c . = C J + iYn C f . X is invariant under
ab ab °9 ab g

where fi is given in Eq.(lU), and g is given by

(23)

(21*)

(25)

These modifications axe remarkably similar to those which arise in chiral

H = 2, d = 6 supergravity [k]. The most interesting term in £ is the

potential which is positive definite. This fact turns out to be crucial for

the Minkowski coinpactification of the theory, as in the N = 2 d = 6 theory [7].

This ve discuss in the next section.

V. COMPACTIFI CATION

The bosonlc field equations of our theory are (M,N = 0,1,...,7)

t"-

(26a)

5

(26b)

(26c)

(26d)

(26e)



Note that in the Einstein equation a l l the trace terms are absorbed into

e Do- , as in N = 2 d = 6 theory [7]. This fact faci l i ta tes Minkowski

compactification. In this note we focus our attention on (Minkovski)g x S

eompactification and. propose the following ansatz (u,\i = 0 , l , , . . , 5 ) :*)

^ . _£_ (c«-© +1) (27)

.(3)and all the other fields vanishing in the 'background. A (m labels the
g m

co-ordinates of S ) is the monopole field lying in the compact direction

of the SO{1,2) algebra, and g is the coupling constant of S0(l,2). From

(27) one finds

~ r
(28)

Eqs.(26c,d,e) are trivially satisfied (note that since L = S in our

•background, from (19) it follows that C^ = 0, C a = 0 if 8 ^ 3 , and

C 3 = g ) , while Eqs.(26a,b) require

(Einstein equation)

(scalar field equation)

(29a)

(29b)

from which i t follows that [7]

X = i 1 (30)

To see what this implies for the supersyranetry of the background, we f i rs t

fix our conventions for the T-algebra as follows [19]:

The aupersymmetry of the background is ensured provided that

*) See Ref.[19] for a detailed explanation of such an ansatz.
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r O £ =

V* £ - I jla

In the background

(32a)

(32b)

(33}

where dy™ e = -d -1) is the usual SU(S) invariant U(l) connection

form on S 2 [19]. From (29), (31), (32) and (33) it now follows that

C v + V? ) t«-' E ~ O

which is equivalent to {recalling (30))

£ = o (34a)

(35)

For v = +1, e i s a single constant, Weyl spinor ((1 + y )c = 0 ) , which is

equivalent to two Majorsna-Weyl spinors in d = 6. This shows that our

compactification scheme yields an H = 2 chiral supergravity in d = 6.

He are very grateful to H. Nishino for his collaboration at the

early stages of this work.

Note added in proof

After this paper was written we received a Cambridge preprint by
M. Awada and P.K. Townsend, vhere ungauged couplings of n-vector multiplets
to B = 1, d = 8 supergravity are exhibited.
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