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ABSTRACT

We show that the U(1l) gauged Einstein-Maxwell supergravity in six
dimensions, spontaneously compactifies on Minkowski x 82, with a monopole-
valued  Mexwell field on Sg. The hoscnic symmetry of the
background is SU{2} x U{1). The field equations fix the monopcle charge to
be 1, The consequence of this is that the N = 2 supersymmetry breaks down

to N = 1, and chiral fermions emerge,
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1. INTRODUCTTON

In Ref.l it was shown that the spontaneous compactificstion of the
six~dimensional Einstein-Maxwell-Dirac system on Minkowski x Sg, with the
Maxwell field assuming the value of & background monopole solution with
charge n = #1, 12,... on 82 {2], leads to chiral fermions in the four-~
dimensional effective theory. For Minkowskl compactification, it was
essential that the six-dimensional theory hsd a cosmological ceonstant of
magnitude - %—g2/n2xu, g Dbeing the electric charge, n the Sg-monopole charge

and Kk the gravitational coupling constant.

In this note, we consider the N = 2 Einstein-Maxwell supergravity
in six dimensicons which is a special case of the theory constructed in
Ref.3, and show that Minkowski x S2 compactification with U(1l) moncpcle
on S2 occurs also here and that the chirality mechanism of Ref.l is

operative as well,

There are new features in our compactification. Firstly, the
cosmological term is not & constant: instead 4t is a function of the single
real scalar field of the d = 6 theory, Furthermore, it is not introduced by
hend, nor is its sign and magnitude arbitrary. Rather, lccal supersymmetry
requires a very specific cosmological potential term, and it does so because the
Maxwell field is minimally coupled to the gravitino in d = 6. In fact, the

2 -4 —xo

cosmological potential term is given by - %—g K where g 1is the

1)

U(1) coupling constant, and ¢ is the single real scalar field of the 4 = 6

theory. This cosmological term has the right sign, and since it does not involve
2

the g°-monopole charge n, it signels the possibility of fixing that

charge. For compactification, the Dbackground solution necessitates

oy = 9y = constant. Thus we find that the field equations fix the Se‘—monopole
charge n to be 1 ., This means that 82 plus the monopole system

is really the Hopf fibration of the 3-sphere [4]. More importantly,
substituting this background into supersymmetry transformation laws, we
see that, consistency requires the vanishing of either the right-handed

supersymmetry parameter €r or the left-handed one ¢ depending on

L’
whether n = +1 or -l1. Therefore, N = 2 supersymmetry is broken down to

N =1, Accordingly, recalling thet all the fermions of the d = 6 theory
are chiral, and using the mechanism of Ref,l, we find that either the right-

handed gravitino or the left-handed one wuL is massless, hence the

¢uR
chirality in d = 4 effective theory,
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and o 1is a real scalar. BMN and BMN can now be treated as a single

entity, BMN’ with no (anti) self duality conditions.

In order to describe the Einstein-Maxwell system, we finally couple

It should be pointed out that the theory presentad here does not a single vector multiplet
have a realistic spectrum, nor is it anomaly free [5]. It does illustrate, [ . o

RN AN A " b
however certain important phenomena such as Minkowski compactification,chirality f o (b3

and breakdown in supersymmetry te N =1. Conceivably, inclusion of a

nypermultiplet in d = 6, in a suitable way, may lead to a realistic N = 2 where AM ig the real Maxwell field, and A 1is a Weyl spinor with the same
sU{2) x U{1l) theory. We now turn te a more detailed description of the handedness as the gravitino
theory .
) .
', A=A (5)
II. EINSTEIN-MAXWELL SUPERGRAVITY IN SI1X DIMENSICHS A shortcut to build the model is tc make use of the results of Ref.3,where
Supergrevity in d = 6 contains the following set of fields [3,6]- Yang-Mills multiplet, with local gauge group Spin) x Sp(l) and hypermultiplets
containing scalars which parametrise the coset Sp(n,1)/Spin) x Sp(1), were
A + coupled to supergravity in 4 = 6, One can consider the U{l) subgroup of
( En , 'WM R E’MN ) ’ (1) 5p(1), and truncate away the hypermultiplet to obtain the Einstein-Maxwell
system. One more technical point to be taken care of is to switch from =
where e = is the vielbein {M,4 = 0,1,...,5), Yy is the single, complex pair of symplectic Malormna spinors to a single compiex Weyl spinor. This is
Weyl spinor satisfying a matter of convenience. It turns out that the complex spinors are more

. suitable for studying the mass spectrum of the theory,
Ty W = Y

After carrying out the procedure briefly outlined avove, we obtain

+ . i . . *) . i . - - G-
and BMN is & real antisymmetric tensor field with self-dual field strength. the following Lagrangian for the Einstein-Maxwell system in 4 = 63

Note that tl_ﬂis multiplet unlike its a4 = L, N = 2 counterpart does not contain e_‘ v R \ b 1 . "u(a‘G GmNF \ e\f.ﬂ'F Fr.ml L act e"“"
a vector field. As is well known, fields with self-dual field strengths b= ?K_" - ? M T} h Ffe mvf oA " B j
do not admit a manifestly Torentz invarient action formulation, in dimensions © - N‘I-lﬂ _f}
— Sy ~ 7 oM T
2 mod 4 [6]. This problem in our case can be circumvented by coupling & + Wy FMNP Dy I"F XM K)Mx + AT Om A+ I(BM r)(?( F N
single antisymmetric tenscr multiplet [6]
— N Ko —R M S — nunf nR
+WN|"PN/()7-‘—$6 Gumf(’i’ fee T s1t + e T rex -
(B, X, & (2) 7 T X AP
MN » » mXPRPNNP q‘rp\ - xr‘ ;{:+ ;\P ;‘ )
- — — _ s o IMA
to supergravity, where BMN has anti-self dual field strength, x is a L x éf/z rMN’ ('LI"Q PMNFQ ;{ + :l PQ PN” IVQ + X Pnﬂ/‘ - AF X)
single complex Weyl spinor obeying the relation L
. e - a™ T oo = B
+J_5w.'e h("‘f}mr A AT Hw—~%A + 7\1) (6)
T . (3) v
)
*) Q Q t
th t -ttt = LT .
L We use the signature ( } &nd R BMQ,N = aO,rMN s X = x AT,
=l
T VT AT g

H . I . .

L - e .



The action of this Lagrangian is invarient under the following locel super-

symetry transformations (modulo the trilinear fermion terms);

PY R 3 LETNE - LY

So= Ex + X ¢

8Buw=2Atn Shuy 4 3 € ( ETuy = Tl - Flutly+ Tl & o
+Efmwy - X Tuw & )

§ = -2 Rue) MME 158 Guwe Mg

W= L + Z‘Jq"em Crea I7°" T £

§hx =€ (ETud AT e)

LR SLLY -f;_ga“’" £

2 N (1)
The field strength GMENP is defined as follows:
GMNP = 3 dubBuey + 3 F\'.uu AP] (8)
All the spinors carry the same charge, g. The covariant derivative

of the gravitino, for example, is

QQMWN :(jh *%t‘w-\u\a PAG -;3 AM) LVN ) )

In addition to the local U(l), the action also has the antisymmetric gauge

invariance

5?)\'«»1 = LD[NI\NJ—\L/\ lFNN ’ (10}

where A is a U(l) parameter, as well as a global scale invarience given by

OUO— v x C
=Cf1
Alﬂ - 2 }\w

B
E)mu—" ¢ Bun
cf2
-—
& e 3 (1)
where ¢ 1is an arbitrary constant.

A noteworthy aspect of this Lagrangian is thet it has a positive
definite potential. As we shall see in the next section, this positivity is

crucial for the spontanecus compactification to four dimensions.

I1I, SPONTANEOUS COMPACTIFICATION ON (MINKOWSKI)h X 52

Assuming that the background fermion fields are vanishing, it

suffices to censider the bosonic field equations for compactification.

From
(6}, they are

Kt Ruw = 240300 +e“a-€u eq G T +J_eK°-F,.,Q Fy fzt.c"am,no- {(12a)

i.f‘ a5 = ';e‘rﬁ..,, SN _}.-e?;‘rﬁnms (Cha ;;_a‘m‘" Pl (12%)

Y (e 76" P ) =y (12¢)

2 (e ETF ):Keznrgum FPQ . (124)

It is remarkable that the trace terms in the energy momentum tensor of
all the fields have been sbmorbed to the “Byi O¢ term in {12a). Assuming
that none of the background flelds depend on the four dimensional space time
(50 as to preserve a maximally symmetricspace time), and assuming that the
scalar rfield is & constant, Fq.(12a) forces on us {no fine tuning)

a Ricci flat {e.g. Minkowski) space time. Furthermore, in order to have &
compact internal space, from (12s), it is clear that the background Mexwell
field must be non-trivial. Thus, it is natural io consider (Minknwski)h x S2
with an Sg-monopole field of charge n = 1, #2,... [1,2], Accordingly we
characterize the background as fellows:

6=



tj”, dax™ dx¥ - lz/,.y dxmdx¥ 4 E(dﬁl+-§in"9‘l¢1) [13a)

nething but 53 in disguise *). Ome wonders: Does our theory have a seven

3 . .
c . . P teh admits S compactification?
A'\n gly"‘" = D (s 8 F1) d¢ {131} dimensional {space time) origin which e P
24

o = o, = Cowstant , Buw =0 ' (13c}

where the index m labels the extra two dimensicns; B,¢ are the ususl . SUPERSIMMETRY OF THE BACKGROUND
. : 2 . . 2
gpherical co-ordinates on 8 ; a is the radius of 5%, and the sign in (13b) In this sectlion we show that our solution preserves N = 1 supersymmetry.
2 ; . .

refers to the two patches of S™, on which Am is defined. From (13) it In the next section we will come back to the relevance of this to the
follows that chirality problem.

The condition for the supersymmetry of the background is the vanishing

R'W\V\ = -l.— g“‘" (lha) R . i . A .
ot of the supersymmetric variations of the fermionic fields, since the background
fermions were assumed to be vanishing themselves. From Eq.(7), we see that
Foan » =2 Emn (1h4p) &y = O gutomatically, while in view of Eg.(1L), 6% = 0 gives

'J.;u_"

. . 2 o
where R is the Ricei tenser on 87, an —lgmAn - BnAm’ and em.n is the . o
antisymmetric S0{2) invariant tensor, €, =€ =1 Field equations (12c) P“ E o+ 1] & j‘e‘ TE =0 * (18)
k"
and (124) are trivially satisfied by this background, while Eq,{12a) yields ne

the single relation 2 N
Using (15), a8 well as n° = 1, this implies

N octe”;
A (15) (e +in) & =0 - (9)

Substituting (13) and (14) into Eq.{12b), we find
In conventions of Ref.l ,

o Po-Y
4o et (16) sl

bat {Fn ,l'",,] = Zmw ¥ t20)

Comparing (15) and {16}, we discover that the monopole charge is fixed to be

i
X ol , ]15:75;(0" ["ztxtl""'

n=tl . (17
. : . - 2 *)
It is remarkable that the field equations fix the 3 -monopole charpe to be £l .
This will have interesting consequences for the residual supersymmetry as
well as the chirality of the fermions, as we shall see in the next section.

Moreover, S2 with a singly charged monopole field defined over it, is

*) In general, if there are a number of U(1) rields AMl, each coupling with

% i — T i beri L,
constant g, }ne'ach carry%ré% background Se-mmnopole charges n;, we would obtain ) Tnis is the celebrated exampie of Hopf fibering. gee for example, Ref
Y 0 lrgt - ulesaTt e O= (570 2/, 202 -

Py 1 1 i 1
i 5
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and thus

PSC —‘\55 x i 0_'3, F;:YDY‘, \—1‘ = | x !!"3 (21)
The Weyl condition FTE = € implies

0-3 £ = & (22)
Using Egs.(21) and {22) in (19) we find that

(Y\ + ‘6’5 ) £ =0 . (23)

Since n = tl1, this equation clearly shows that the right or the ieft handed

e will be vanishing, but not both '). This signals, but not yet proves
= 1 supersymmetry., The crueial check now is %0 examine the gravitino

transformation law. From (7) we have

D20 = vt M - igAn)E - (24)

The background values of w ¢ and A~ are given by (1]

Wy = Aay = 20 Em (25)

where e is the canonical SU(2) invariant U(1l) connection obtainable from

the Maurer-Cartan form and is given by [1]

dg“ €y =~ df (Corp~ 1) - (26)

#) 1If n # %1, this equation also shows that both left end the right-handed
€ would have to vanish, in which case the background could not have been

supersymmetric.

Substituting (25) into (2L} we find

Emw * %(“‘Lvst\’emJ E =0 {21

Again, employing Egs,{21) and (22) yield

[ 2w + .';,(nws)ew] E=0 (28)
Consistency with (23) implies that

AJm € =0 {29)

Obviously € = constant is a solution of this equation. This corresponds to

a singlet of the isometry group SU(2). Thus, we have shown that our background
indeed has N = 1 supersymmetry. If n = 1, then -(l + 'v Je = 0 while

—{l—T ) €2 0, (and if n = -1, then —(l - )5 = D while —(1 +YS): #£0). In

both cases the surviving supersymmetry parameter is a constent.

V. CHIRAT, FERMIONS
The fermion spectrum splits into two parts, The spin ?23_ sector which
involves the gravitini qu L has no mixing problem. In the spin % sector
3
there are mixings among five right and left handed fields, which in

& suitable gauge, cen be chosen to be (x, A, auwu, (ws + :|.|,p6)R e Here

we will consider only the spin % sector, which wilil %e sufficient to illustrate

the emergence of N = 1 supersymmetry and chirality.

The mass term for the gravitine is

'q"}‘_a’/d r“(‘)vv\ “iwwgs rs‘—ig Am)Wy . (30)

As before, substituting (25} intc this eguation and using (21), and recalling

that 63\1)” = \bu, we cbtain

B 1™ [ v b i) e ¥ (1)

For n = +1, Eq.(31} can be written as

@ALX/.' P“EMWVR * q?u.ﬂ Xﬂv Pw (-3"“ ""‘-em)lﬁ“— ) (32)
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We see that, Yz has a vanishing effective cherge [1], while ¢

uL has an
effective charge -1.

Therefore, the harmonic expansion of R involve the
(22+1) dimensionel representations of 50(3) with ¢ = 0,1,2 "
expansion of wuL’ L =1,2,3,...

s+« While for the
Eence for & = 0, we have an S0(3) singlet,
Vg which is evidently massless {see Eg.{32))
the mass term

- For 2 > 0, Fg.{32) yields

Yr ¥ WL 2 LU R 0 Wl

(33)

This is in accord with N = 1 supersymmetry. In the massless sector in addition
to the graviton and one spin 3/2, we expest four gauge vector mesons of
su(2) x U{1) and their four spin 1/2

addition to the massive spin 3/2 tower exhiblted in Eq. (33}, we have zlso

compenlons. For the massive sector, in

sector then follows from N =2
(The

dimensional representations of

computed the bosonic spectrum. The spin 1/2
superaymmetry. The final result is summarized in the followlng table.
label & is integer and it labels the {2&+1)

su(2}, 'The entries in the table are the degeneracies of states with a given
) —KGO/E o
mass and spin. Masaes are in units of 2 ge M Planck')
Spin
2 3/? 1 1/2 0
Meas
2{241) 1 2 1
{g+1) 1 2 1
(2+1}(2+2) 1 2 1
2{2-1} 1 2 1
-11-
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