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ABSTRACT

We show that the U(l) gauged Einstein-Maxwell supergravity in 3ix

dimensions, spontaneously compactifies on Minkowski x S 2, with a monopole-

valued Maxell field on S2. The bosonie symmetry of the

background is SU(2) x U(l). The field equations fix the monopole charge to

be ±1, The consequence of this is that the N = 2 supersymmetry breaks down

to N = 1, and chiral fermions emerge.

I. INTRODUCTION

In Hef.l it was shown that the spontaneous compactificatioa of the
2

six-dimensional Einstein-Maxwell-Dirac system on Minkowski x S , with the

Maxwell field assuming the value of a "background monopole solution with
2

charge n = ±1, ±2,... on S [2], leads to chiral fermions in the four-

dimensional effective theory. For Minkowski compactification, it was

essential that the six-dimensional theory had a cosmological constant of
1 2 2 k p

magnitude - — g /n K , g being the electric charge, n the S -monopole charge
and < the gravitational coupling constant.

In this note, we consider the N = 2 Einstein-Maxwell supergravity

in six dimensions which is a special case of the theory constructed in
2

Ref.3, and show that Minkowski x S compactification with U(l) monopole
2

on S occurs also here|and that the chirality mechanism of Ref.l is

operative as well.

There are new features in our compactification. Firstly, the

cosmological term is not a constant: instead it is a function of the single

real scalar field of the d = 6 theory. Furthermore, it is not introduced by

hand, nor is its sign and magnitude arbitrary. Rather, local supersymmetry

requires a very specific cosmological potential term, and it does so because the

Maxwell field is minimally coupled to the gravitlno in d - 6. In fact, the

cosmological potential term is given by - — g K~ e , where g is the

U(l) coupling constant, and <J is the single real scalar field of the d = 6

theory. This cosmological term has the right sign, and since it does not involve

charge. For compactification, the background solution necessitates
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^ a ^ = a = constant- Thus we find that the field equations fix the S -monopole
2

charge n to be ±1 . This means that S plus the monopole system

is really the Hopf fibration of the 3-sphere [h]. More importantly,

substituting this background into supersymmetry transformation laws, we

see that , consistency requires the vanishing of either the right-handed

supersymmetry parameter e or the left-handed one eT, depending on

whether n = +1 or - 1 . Therefore, N = 2 supersymmetry is broken down to

0 = 1 . Accordingly, recalling that a l l the ferraions of the d = 6 theory

are chiral, and using the mechanism of Ref.l, we find that either the right-

handed gravitino ill or the left-handed one d; i s massless, hence the

pit — uL
chirality in d = k effective theory.

To be submitted for publication.
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It should be pointed out that the theory presented here does not

have a realistic spectrum, nor is It anomaly free [5]. It does illustrate,

however certain important phenomena such as Minkowski compactification.chirality

and breakdown in supersymmetry to H = 1. Conceivably, inclusion of a

hypermultiplet in d = 6, in a suitable way, may lead to a realistic N * 2

SU<2) x U{1) theory. We now turn to a more detailed description of the

theory .

II. EINSTEIN-MAXWELL SUPERGHAVITY IH SIX DIMENSIONS

Supergravity in d = 6 contains the following set of fields [3,6]'.

(1)

where e is the vielbein (M,A = o , l , . . . , 5 ) , i|iM is the single, complex

Weyl spinor satisfying

and B is a real antisymmetric tensor field with self-dual field strength.

Note that this multiplet unlike i ts d = U, H = 2 counterpart does not contain

a vector field. As is well known, fields with self-dual field strengths

do not admit a manifestly Lorentz invariant action formulation, in dimensions

2 mod U [6], This problem in our ca.se can be circumvented by coupling a

single antisymmetric ten3or multiplet [61

X (2)

to supergravity, where B~ has anti-self dual field strength, x is a

single complex Weyl spinor obeying the relation

and o is a real scalar. B and B~ can now be treated as a ninglo

entity, B , with no (anti) self duality conditions.

In order to describe the Einstein-Muxvell system, we finally couple

a single vector multiplet

I A * 'A j (h)

where A^ is the real Maxwell field, and A is a Weyl spinor with the same

handedness as the gravitino

r, "A * a • (?)

A shortcut to build the model is to make use of the results of Ref.3,vhere

Yang-Mills multiplet, with local gauge group Sp(n) x Sp(l) and hypermulliplets

containing scalars which parametrise the coset Sp(n,l)/Sp(n) x Sp(l), were

coupled to supergravity in d = 6. One can consider the U{1) subgroup of

Sp(l), and truncate away the hypermultiplet to obtain the Einstein-Maxwell

systeffl. One more technical point to be taken care of is to switch from a

pair of symplectic Majornna spinors to a single complex Weyl spinor. This is

a matter of convenience. It turns out that the complex spinors are more

suitable for studying the mass spectrum of the theory.

After carrying out the procedure briefly outlined above, we obtain

the following Lagrangian * ' for the Einstcin-M."utwell system in d = 6;

r, K = - x (3)
(6)

-3-
' We use the aignature (-+++++} and
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The action of th is Lagrangian i s invariant under the following local super-

symmetry transformations (modulo the t r i l inear fermion terms);

?<r = IX + 5 £

The field strength G 1 M is defined as follows:

IK. rr».«/ A i

(T)

(8)

All the spinors carry the same charge, g. The covariant derivative

of the gravitino, for example, is

(9)

In addition to the local U(l), the action also has the antisymmetric gauge

invariance

i,n ~ t ~it<* Awj- * A f w N ' do)

where A is a U(l) parameter, as well as a global scale invariance given lay

-5-
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"

where c is an arbitrary constant.

(ID

A noteworthy aspect of this Lagrangian is that it has a positive

definite potential. As we shall see in the next section, this positivity is

crucial for the spontaneous comp&ctification to four dimensions.

III. SPONTANEOUS COMPACTIFICATION OH {MINKOWSKI)^ X S 2

Assuming that the background fermion fields are vanishing, it

suffices to consider the bosonic field equations for compactification. From

(6), they are

TK<r ?0
(12a)

(12b)

(12c)

(I2d)

It is remarkable that the trace terms in the energy momentum tensor of

all the fields have been absorbed to the - g ^ a <J term in (12a). Assuming

that none of the background fields depend on the four dimensional space time

(BO as to preserve a maximally symmetric space time), and assuming that the

scalar field is a constant, Eq.(12a) forces on us (no fine tuning)

a Eicci flat (e.g. Minkowski) space time. Furthermore, in order to have a

compact internal space, from (12a), it is clear that the background Maxwell

field must be non-trivial. Thus, it is natural to consider (MinJtnwski), x S2

•with an S -monopole field of charge n = +1, +2,... [1,2]. Accordingly ve

characterize the background as follows:

-6-



Ax" (13a)

(13b)

(13c)

nothing but S 3 in disguise * ) . One wonders: Does our theory have a seven

dimensional (space time) origin which admits S compactification?

Where the index m labels the extra two dimensions; B.,<j> are the usual
2 ?

spherical co-ordinates on S ; a is the radius of S , and the sign in (13b)

refers to the two patches of S , on which A is defined. From (13) it

follows that

IV. SUPEESYMMETRY OF THE BACKGROUND

In this section ve show that our solution preserves U = 1 supersyrametry.

In the next section we will come back to the relevance of this to the

chirality problem.

(Ilia)
The condition for the supersymmetry of the background is the vanishing

of the supersymmetrie variations of the fermionic fields, since the background

fermions were assumed to be vanishing themselves. From Eq.(7)« we see that

Sx = 0 automatically, while in view of Eq.(lU), 6X = 0 gives

R is the Hicci tensor on S % F
nm < mn mn is the3 A - 3 A , andm n n ID

= e = 1 . F ie ld equations (12c)

vhere

antisymmetric BO(2) invariant tensor, e

and (I2d) are trivially satisfied by this background, while Eq.(12a) yields

the single relation

*• *r°
(15)

Substituting (13) and (lU) into Eq.(l2b), we find

(16)

Comparing (15) and (l6), we discover that the monopole charge is fixed to "be

rS(

Using (15), as well as n = 1 , this implies

£ - o

In conventions of Ref.l

P V i

y-v* r

(18)

(19)

(20)

n = ± 1 (17)

It is remarkable that the field equations fix the S -monopole charge to be ±1

This will have interesting consequences for the residual supersymmetry as

well as the chirality of the fermions, as we shall see in the next section.
2

Moreover. S with a singly charged monopole field defined over it_, is

"*) In general^ if there are a number of U(l) fields A , each coupling with

constant g. /etch carrying background S2-monopole charges ni, we wouia obtain
2,

n. /

-7-
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the celebrated example of Hopf fibering. See for example, Bef.U.



and thus

(21)

The Weyl condition T t = e implies

<r3 i » £

Using Eqs.(2l) and (22) in (19) we find that

(22)

(v\ + is) £ (23)

Since n = ±1, this equation clearly shows that the right or the left handed

E will be vanishing, but not both . This signals, but not yet proves

H = 1 supersynanetry. The crucial check now is to examine the gravitino

transformation law. From (7) we have

The background values of m c<; and A are given by [l]^ m5o m

(25)

where e is the canonical SU(2} invariant U(l) connection obtainable from
m

the Maurer-Cartan form and is given by [l]

(26)

») If n 4 ±1, this equation also shows that both left and the right-handed

£ would have to vanish, in which case the background could not have been

supersymmetric.

-9-

Substituting (25) into (alt) we find

S = 0

Again, employing Eqs.{2l) and (22) yield

[-&„ + i. [n + Vj) ew ] f =0

Consistency with (23) implies that

(27)

(28)

(29)

Obviously e = constant is a solution of this equation. This corresponds to

a singlet of the isometry group SU(2). Thus, we have shown that our background

indeed has N = 1 supersymmetry. If n = 1, then ^(1 + Y_)s a 0 while

|{1- T ) -1, then |<1 - 1 )e •> 0

Y_)

while0, {and if n

both cases the surviving supersymmetry parameter is a constant.

i<l + Y 5 ) E 5* 0 ). In

V. CHIRAL FERMIOHS

The fermion spectrum splits into two parts. The spin — sector which
d 1

involves the gravititii 4i D has no mixing problem. In the spin — sector

there are mixings among five right and left handed fields, which in

a suitable gauge, can be chosen to bo (x, X, 3 V , — (̂ c + djlp̂ ) . Here

we will consider only the spin — sector, which will %& sufficient to illustrate

the emergence of H = 1 supersymmetry and chirality.

The mass term for the gravitino is

(30)

As before, substituting (25) into this equation and using (£1), and recalling

that a to = 4> , we obtain

(31)

For n = +1, Eq.(3l) can be written as

(32)
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We see that, ^ has a vanishing effective charge [l], while * has an

effective charge -1. Therefore, the harmonic expansion of J, ^involve the

(21+1) dimensional representations of S0(3) with I = 0,1,2,... while for the

expansion of ^ £ = 1,2,3,... Hence for 1 - 0, we have an S0(3) singlet,

*pR, which is evidently massless (see Eq.(32)). For I > 0, Eq.(32) yields

the mass terra

We acknowledge helpful discuasions with H. Nishino, A. JJamazie and

S. Randjbar-Daemi.

(33)

This is in accord with N = 1 supersymmetry. In the massless sector in addition

to the graviton and one spin 3/2, we expect four gauge vector mesons of

SU(2) x U(l) and their four spin 1/2 companions. For the massive sector, in

addition to the massive spin 3/2 tower exhibited in Eq. (33), we have also

computed the bosonic spectrum. The spin 1/2 sector then follows from N ~ 1

superaymmetry. The final result is summarized in the following table. (The

label i is integer and it labels the {21+1) dimensional representations of

SU(2). The entries in the table are the degeneracies of states with a given
,~~ In

M 2mass and spin. Mas3es are in units of 2 ge Planck'
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