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ABSTRACT

An attempt is made to balance the negative vacuum energy associated
with the Freund-Rubin compactification of the ll-dimensional Supelsravity
theory against the contribution from vacuum fluctuations. We do this in
order to obtain a ground state geometry which has four vhysical (flat)
dimensions and is of the form , (Minkowski)a X 37 where B is one of the
7-dimensional manifolds: ST, 55 X SZ, 54 X 53, EP2 X SS, 83 x 52 X 52 or
a S-parameter family of SU(3) x SU{2) x U(1) invariant spaces Mpqut.

We find that all of these solutions are unstable. AS a aside-issue the
facility for computation of the particle spectra, which results from the

use of lighteone gauge, is emphasized,

1

1. INTRODUCTTON

A major problem with supergravity models in more than four dimensions
is the large vacuum energy which slways arises in the spontaneously compactified
phase. For example, consider the Freund-Rubin ©12sSof compactifying solutions

1)

to eleven-dimensicnal supergravity . These solutions to the classlical field

7

equations take the form of a product geometry, AdSh X BT where B denotes

& compact dinternal, T-dimensional Einstein space whose Riecci curvature is of

comparable magnitude to that of the Y-dimensiconal anti-de Sitter spacetime,
4

Ads” . This curvature is generated by vacuum stress energy associated with

a non-vanishing Cremmer-Julisa-Scherk {CJS) field strength 2).

To overcome the vacuum energy problem it is necessary to find a
solution in which the non-vanishing components of the stress energy tensor
are essentially confined to "internal" directicns so that the bedimensional
geometry becomes Ricei flat. This effect can be achieved in non-supersymmetric
models by including an adjustable cosmological parameter in the higher
dimensional Lagrangian 3}. Super gravities nowever do not allow such an
adjustable parameter and this probably means that there is no chance of solving

the problem at the strictly classical level.

Some thought has already been given to the contribution of non-
classical mechanisms. In particular, the appearance of a fermionic vacuum
condenfate may drastically modify the stress energy and it has been argued
that the b-dimensional vacuum geometry could become Ricci flat h). Such
mechenisms are of course not perturbative and hence somewhat conjectural.
In this paper we attempt to formulate s simple kind of self-consisztent
computation of the vacuum energy in which at least some non-perturbative

effects are allowed for.

Our spproach Is to assume a radiatively induced cosmological paremeter
which is large enough to effectively flatten the 4-dimensionsl geometry.
More specifically, we add a bare cosmological term, AO(-g)-l/E to the 11-

dimensional Legrangian and compute the l-loop correction, A = lo + &),

where

EA o~ n;l I Mh(A) o w22,
(1.1}

QT is the volume of B?, and M{X) denotes a mass in the (flat)} effective

b-dimensional theory. The spectrum of masses, M(a), is computed in the

1/2

usual way except that a cosmological term A{-g) is present and is
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assumed to take a value appropriate to the background geometry Mh 4 BT

»
b X ; N
where M denotes Minkowski spacetime, Since the original supergravity
theory includes no bare cosmological term, we must have . = 0, i.e.
4 = a . {1.2)

«. defines a programme for the self-consistent computaticn of X . This
mputation certainly envisages the dynamical breakdown of supersymmetyy

since the sum in {1.1) is assumed not to vanish. -

Unfortunately, there are some difficulties which may be mentioned

Lefore we &tale our resultse The rather symbolic expression (1.1} does not

do justice to the realities of the 1-loop contribution to the effective
action funectional .
Fl(g,A) =57 In Det G{g,A) B

(1.3)

where G{g'A} denotes the classical propagator on a barkground configuration
specified by the classicel fields g, A. The determinant in {1.3) can be
evaluated for the more symmetrical configurations which are presumably

appropriate to the ground state,

oy
El = - J a4 x Vl
[ b 2
=~ a'x IM ZaM .
J G i {1.%)

The "potential" V, depends on the parameters of the background geometry
(scales of B7). To go beyond the l-lcop approximation to & self-consistent
one, it is necessary to allow for some influence of V. on the propagator

1
G wused in (1.3). Our propossl is to make the identification,

<vl> = 8, . {1.5}
vhere ¢ Vlf7 denotes the ground state value of Vq- The parameter A
is used in a cosmological term, —A(-g)l e to be adjoined to the classical
Lagrangian and hence carried into the expressions for G, M and, wltimately,

Vl itself.

=3

But leaving these diffieculties aside, in eleven dimensions the
ultraviolet cut-off cancels from the sum (1.1} and the self-consistent
computation of A envisaged in {1,1) and {1.2) could be feasible. However
in all the cases we have considered, we find that the solution appears to
be unstable. That 1s, the propagator G{A} includes tachyonic states - at
the cls=nsical level. These might be corrected by one-loop self-energy

effects. We have not tried to discover whether this happens since such a

l-lcop computation would be vexed and Perhaps unpersuasive.

The tachyonlc difficulty may originate in an oversimplification such
as (1.5) or it may be reflecting the familiar resistance of supersymmetries
to spontaneous breakdown — in this case Yo a breakdown of anti-de Sitter
geometry in four dimensions to a Ricci flat one. For some of the cases
studied in this paper, the correponding anti-de Sitter x BT do not give

7

rise to instability though whenever B

in- 5) . Alternatively, the appearance of tachyons could be an indication

is a product space, instability sets

that stable Minkowskian compactification must be motivated through a
mechanism for which a non-zero topological number associated with external
Yang-Mills fields exists. In this sense this paper is imconclusive. In
writing it, however, one of our aims has been to mske known some of the
virtues of working with the light-cone gauge. Alfhough not Lorentz invariant,
this gauge is wvaluable in that unphysical modes and cther gauge artifacts

such as Faddeev-Popov ghosts do not arise. The extraction of particle spectra

from the Lagrangian is more direct than in other gauges.

2A. THEE LIGHT CONE GAUGE

To establish notation and remind the reader of scme of the properties
of the light cone gauge, we consider briefly the coupling ¢f a u(l) gauge

field, Au , to a complex scalar, ¢ . The Lagrangian is
pa 2 2
= - - -V 2.1
£ T ¥ - Tl (¢ + cm A (2.1)

where C is & Lagrange multiplier whose role is to give the light cone gauge

condition
nd =0 5 (2.2)

where n is lightlike, TIn (2.1} ¥{¢) 1is & potential and Vu¢ = (Su - ieAu)¢.

Suppose that the background scaler field, g, is a non-vanishing and
real constant. Write
= X :
e J?(c“ oot o (2.3)

e

LY
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where the real components :1:1

as small fluctuations, The bilinear terms in & are then given by

ang ¢2 are to be treated, along with Ap

z L \?’
A N N A B AL A PR NCRE ARy WY
1 1 1 1
, n‘iz‘#&r‘ _ _“_‘i-; 3+ Cnpghp (2.4)

vwhere mi = agv/a¢§ at ¢1 = ¢2 = 0, ete, These bilinears determine the

"masses" as functions of the background field % . The physical masses are

obtained by setting @ equal to the value which minimizeg V.

Subseguent analysis is greatly facilitated by the use of light cone

co-ordinates, In these co-crdinates the scalsr product takes the form

AB = AB_ +AB vA B {2.5)

vhere 1 = 1,2, We shall convenlently regard ¥ as "time" 5o that equations

which involve the derivative a, are dynamical, while those which deo not
are mere constraints. Such censtraints are to be used freely in simplifying
the Lagrangian. The vector nu which determines the light cone gauge is

now chosen such that (2.2) reduces to

A =0 . ; (2.6)

Use of {2,6) in the expression (2.4%) causes the bilinears to take
the form

2 >
11 = —.‘.é-(g‘.cA\)z-‘(—\-i' (a_ A.\, -\—31'\\) - '\TZ" (QP‘Q) -

\ 2 M‘l 1 M1L¢p1
T O E A O D e i

(2.7}
Ohserve that the equation of motion for A+ s
0=~ 3_{3_A+ + aiAi) + e?a_¢2
is in faet a constraint. It can be solved for A, »
A= 2 [eqmn-a.A.] (2.8)
+ 3_ 2 i1 )

-5-

where 1/3 represents a non-local operator, viz.

1 - - 1 - -
5—_'6(x—y)=ae(x—y)(—tl) . (2.9)

If {2,8) is used to eliminsate 4, from (2.7) then the bilinear term simplifies

to read

_ 1 2 1 227
12 = -E(BuAi) s
1 2 1 2 22 2
-5(3u¢2) —E(m2+8?)¢2
1 2 1 27
-5 (au¢1) - WY . (2.20)

Now ai and mg are in general dependent on o . The value of g which
minimizes V, also causes m, to vanish (Goldstone theorem) and it is at
this point that ¢2 is seen to represent the helieity O component of a
magsive yector. The helicity +1 components are represented by Ai. (of
course, if the minimum occurs at P = 0 then Goldstone's theorem does not
apply and one finds m, = ml.) Values of @ which do not minimize the
poﬁential will yield masses m, and m, which are not compatible with
Poincaré invariance, This merely confirms the non-covariance aof off-shell,
gauge dependent gquantities in the light cone gauge. Notwithstanding this,
it should be noted, that the l-loop effective potential

__%E 2 2.2 22 h 2
V'I(Q)—gjﬂ—e' [2{6?) Ine’y +m11nml+

+ (mg + e2?2)2 An (mg * eavg)]

is manifestly Lorentz invarisnt for arbitrary < . BEach term in this sum
represents the zero-point energy 0f a field in the light cone Lagrangian
{£.10). No Faddeev-Popov contribution would be needed in the non-Abelian

case,.

It can certainly be argued that our use of the light cone gauge in
the above example has yielded simplifications which are, at best, only
marginal, But, as we shall show, in the case ¢f 11-dimensional super-
gravity, the advantages are significant. We shall consider the bosonie
sector of the Cremmer-Julia-Scherk (CJS) Lagrangian, with the significant

mogification of an added cosmological term.
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cB. THE ELEVEN DIMENSICHAL SUPERGRAVITY IN THE LIGHT CCNE GAUGE

The fluctuation field, hAB and VABC of the ll=bein and CJS

fields are defined by

N8 e
(2.11)
Appe = Emac*""mac !

where the background basis, §MA , is orthogonal and the fluctuation field

hAB is symmetric, hAB = hBA . The bilinears are

= df‘tE ‘ﬁvkhbc Vﬁhbc -+ éVAHVAh

+ 3 (g - ithch hep - -;Veh)

o o
. W i e ;
44(R+ 2 )y by -2 1)
1 - : g
o+ -2(— hachpcRug + WhpgRpg + haghey k“w>
0 :
- & FanA, Foapa, (hone hge =4 Ry
@ 0 o
- '-% Facan, Fooan, L hep

o o

+ % K Fmacn hAE V[n Vsco] - -% FABrD h Va ‘/a(n

o
L Y v,V - 7,V Y
3 '1a Yeco) Vra ncw) Tp AR TROAAA T Ay g A
(z.12)
where
h = hAA = 2h+_ + hll + omee + th,lo
. . . (2.13}
FABCD W[AABCD] VAAECD + 3 terms

Covariant derivatives sre with respect to the Riemannian connection of the
*
background ). We shall be concerned with background geometries which are

the product of lL-dimensional Minkowski spacelime with compact T-dimensionsal

- £} [~
Einstein space, The field strength, FABCD’

only in the Minkowskian directions, and is independent of position,

has non-vanishing components

Q

Flop. = T . (2.1h)

. 9
The Riemann tensor RABCD

directions and the Rinci tensor satisfies

has non~vanishing components in the compact

o

p———

Rag = Ay - (2.15)

If the background field equations are satisfied then the constants f and

A are given by

<26 = oA and  kZh = -6A . (2.16)

The expression (2.12) becomes somewhat unwieldy when the background
flelds (2,14} and (2.15) are substituted, However, if the light cone
gauge conditions
h, =0 snd V, =0 (2.17) !

A- AB- "

are used, then a number of constraints emerge,

33 h = ©
- o ‘k;* = 63 ﬁ.z + VP h‘P - .;.. B‘- h,
- 3__ hm. = 't), h‘} + VP h,F - % Yy o _ K'f‘ Van.

- a— VFT.'. = aa'l VJ P" +Vd V

Ui i
-0 Ver = 9, Vir.j *Vy Vu” - ik wf h,!ln. 12 T T E
f1 T Bpp T O
Vi T VeV + kg hy
(2.18)

*) OQur conventions for the Riemsnn and Ricci tensors are

M M M M _K _M_K P
= _ 3 _ =
Feg =% Ton = %qfer * Tex Tan = T Ton By = F o

sign g . = (=5 +yeunystis



If these are used as well, then the simplifications are very substantial.

The Lagrangian IE separates into sectors mecording to the transverse G{2)

quantum number of the fields,

0 _ q T b ¥ V
£ - Z lfl‘; (B +V %]SA + KA -_Q'_;“l{’\.}lj;

4 _& de (311 v + 5A 1"};\ - %‘P)T‘tda -+ ! A"‘u'n ]:

/ 1 "‘"pi h ¥

-

oyy

v(!l: (,’}'PV‘ + A . k?-P‘) v
+ ®f Vu' v T‘- + by k)
n ( ] u{s 5 'd N

+ 4V ? 2 2
o epy (3 + v +3/\)Vdp), + i prt Rw’pg vy:;

- & ¢ v
2 ofy - ot., oy Vu't u,yq Vdru‘ #7
(2.139)

i_*f

L

!
%_ L‘ui. (3]-& Vi 5A . A L "f’_j’) I'Lai
a0 v“(auvnm)v | 3
b i+ G Vi Koy Vo

- K Voo g5 v h

i (2.20)
£2 ~ .
L = 2 ki;’ Tev v an e o )T (2.21)
i < T

2 L2 2 ., .
where 35 = 28+B__ toay T 3,, 1s the Minkowski part of the Laplacian and
5 2 .
v o= Va\?a is the compact part. The traceless parts of h'j and ha
i.

B

3 respectively.

. o~ ™~
are denoted by h,. and h
ij [+
The spectrum of the internal Laplanian can be found Ly algebraic

. ) ) &) .
methods iT the internal space is & coset space ), In particwlar, 1€ G/H

ig symmetrie then the eigenvalues take the form

-9

-3
&

-V

where C,(G) and O {H} are second order Casimir operators.

2
If the spectrum of V?' is kuown then it is possible to compute the
1-loop potential from {2,19)~(2.71) as a function of the paremeters A and
£ . It will be manifestly Lorentz invariant., No Faddeev-Popov contrvibution
iz needed. On the other hand, to see that the spectrum of states is Poincaré
invariant it i3 necessary to use the or-shell values (2.16) for fE and  A.
When these values are substituted, the expressions reduce to
4] Ty

L = 1 h. "/37+VI+EI\)}\-'

i \ 3 #

M

]

v g ohg (V) Ry o hop Rarys R
Vﬂuz {3!¢V;13/\)Vun

-
|

o

v,

1 ?
1+ - Vwr’r (aﬁf + 3’\) Vo‘,‘f + e RC‘-‘)F‘; Vﬁe

iz

[T

- VIA E ‘
..;25‘\ B A';r vu‘ szsy.‘ V‘ﬁ‘jusﬂ'?
T ‘\" P -
tuan Y, LY » ¥ "‘,;'Vm l‘[i ) (2.197)
i«ﬂ = 1 i”gt {‘ ’BI + Oi'!‘ A) ku‘
fmd o
I Eli Vu‘?; ?‘3 il ez f\) Vd‘.,; + i Vu‘f"" Rufp!‘, Vﬂ;

!

_{2A chpi E.-‘-} v, }lf‘j (z.20")

+7 {

~ ey B ~
S ’?1&"5 M4 s (2.227)

The massless graviton states evidently must correspond to the zero mode of
.

VE acting on hiJ . The non-zero eigenvalues must give the helicity +2
states of massive spin 2 multiplets. The helicity +1 and O partners of Lhese
. R +1 IO s
states will have to be found in the systems I and « To see In a

general way how the compeonents must arrange themselves, it is useful to

resolve the various fields into transverse and longitudinal parts as follows:

10—



-3
y
=

-
-
e
—
<
=
T
-
ES
<]
-
éE
‘+
p—
+

P

&

=3

v;ll- = ‘VUJI 0 Ve v,
Vo, = V.o o1 (vl —wat)
" ups LI TR T P

t
= ! t
VUP')’ - Vﬂr)[ + \Va U pf -+ VP 'U}.: 4 v)/ ’U‘U;s )

{2.22)

tt tt
where h =0, ¥ = v
i, - s uhaB 0, VQHG = 0, ete. If these expressions are sube
sti i
uted into (2,19')-(2.21") the various bilinears will be found £o comprise

the following JPC sectors )

1) 5 4
Vo Rggs By, by, Hyv, =27, 0™, 0™
O t 4 t
2 -, i
) hai’ Vai ? Ha ? vulE =1 ,1
3) htt = 0++
of
L t t -+
) Vaps > Vas =1
t e e
5) v =0 o}
C‘BY 2 - (2-23)

W . co s N
e have confirmed this in detail for an arbitrary internal Einstein space

in sector 1) and for the 0(8) inveriant T-sphere in all sectors

Because of the 3x i
3 mixing between hii’ H and MED sector 1} is

the most complicated, and it is here that a 0++'tachyon seems always to

arise. In fact, a lengthy computation is needed to get these bilinears

into the form

*)

We are associating C- i i i
BT g C-parity with reflections in the tangent space of

-1l

{ N ' 1
% -r,) (M BA) A 0 g,
3
I -
IR v SRR A AL BT \ z
7 2wt
v S
o ~y-2A a_iy__iAJ -r]
woonit
C o (2.21)
where
g = V2V12 and n = (%-V2 A H (2.25)

2
The spectrum of &° is given by the zeros of the determinant of {2.24), i.e.

by the roots of a cubic equation. The roots are

2 2

3% = =¥ (2.26a)
{ V2 A
32:-\72-5‘-.’\‘1*‘ l+g-rJ (2.26v)
3
f >
32 = 7 - E—A \1 - 1+2 L ] > {2.26c)
3 A
where V2 is the internal space Leplacian, acting on scalars. The root

(2.26a) had to be present since it corresponds to the helicity O component

++
of the JPC =2 multiplet, whose other components are carried by ?%j

and H; . The root (2.26b) is clearly not tachyonic; it describes a series
of massive o't states. The root (2.26c) is potentially dangerous. In order
for the spectrum to be non-tachyonic we must have
t f z
2 & g ¥
- - = - - 0
v 3 A \l 1+5 n 2
i.e. .
V2 = 0 or --V2 >'£637 {=A) {(2.27}

we find values

1

In all cases where we have evaluated the spectrum of V2

which violate (2.27). Here we shall give the example of 8 =)S in some

detail and then exhibit the tachyonic modes for other cases .

=-]2-
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. 2
For the case in which B7 is u sphere of radius a we have A = -6/a

and it is relatively easy to exhibit the full complement of bilinesrs, sector

by sector. ‘The sectors are now @istinguished by 0(&) quantum numbters and

we find it convenient to follow the usage of Gel'fand and Tseytlin ., The
results are
noo e -
L = | 3; . -( o ninsg) T
= y, y ‘d - NI ],‘l,
at J
+ 2 _L"i; B nnag)etp b
bh Tar i
+4 H \()’ _ ninetd )H
2 .
4
+ _": —le (’a Tlre L7t )'U
2 o 12
Wog e ——
— Pt oqs 12 N )
e L\/ Sgnal H oy _“;fn(me) he.
= /
4! ! nin+p)
Z H‘ (3 s Hi (2.28a)

where Hi, v, and H are absent for n = 0 and B is also absent for n = 1.

12
PR LT A L L
2— * a‘l
e e - & sz £
-1 \‘ll(rm)(ms) (Uf h, - Y, n, )
Ol
‘ :;t f,bz . nin+b)as \ arf
4 L e 4
2 X
e (o moee T )
1 e
—  \t ut
_ \!n(n—x)(nﬂ) ' H
a’L
— 2 nin+6) +17 t
L) Vf? [ - - Vn .
5 al (2.28p)
naeo L ott ! oa? ninss) t (2.28¢)
4. = n ¢ — h
2 L s

E'L,

il

iﬂl!{) _

A T V) ¢\ yt
% \lL Lg _11+L)+ V.—
2 =
T
a'!
{2.284)
B L AR AT R AL
‘ \ ot (2.28e)

The Legrangians {2.28a-2) correspcnd, respectively,to the sectors 1)-=5)

The
tachyons referred to above sre found in the {n000) sectors with n = 1,2,3.

indicated in (2.23) but now brokeu down into 0(8)-irreducible pieces.

We shall not go into details for cases in which BT is a product

space; the tachyonic modes are listed in Table T

B? V2 Tachyonic modes
) 2 Ay . '
5 x 8 - E Lfﬁ(n+h)+uJ(J+l)JH ’tosj %0 (nEO,J=l), (n=l,j=0), (n=,j=l)
Sh 3 A 'y O =0, j= =

x 8 -z Zn{nt3)+33(J+1 ) In 20,5 » ¢ § {n=0,3i=1), (n=1,1=0}, (n=3=1)
3 2 A 4
57 % P - 5 [nlmvalg J(5+2) In» 0,5 %0 | (n=0,5=1), {n=1,3=0), {n=§=1)
g x 8 x5%) - ﬁ— Info+2)+23 (j+1)1+22( 2+1)) {n=1,j=2=0), {(J=n=0,8=1),

(2= Q=n,j=1)

Table I

T _ Mpqrst

Finally we consider the general case of B (a,B,y) where

P,aT,8,6 are five paremeters characterizing the family of SU{3) x su{2) x U{1)
invariant T7-dimensional manifolds and oc2, 62, YE are three metrical scales,
Elsevhere we have given a detailed exposition of these spaces and
indicated the technique of Harmonic expansions on them.

the formula for V2

Here we only need
acting on a scalar function on MquSt(a,B,Y). This
is given by

—1h-



e_ 2 1 2.1 2.1 2 3 227
vVoe-2 [ g (n) = n#3)" + 7 (nymng#3)” + 2 lnpomgd” - 3 - 7877
- & () - 658
)
1 2
-= f(r-ps~at) ¥* .
Y
Here nl,nz,n3 {subject to n3_+n2+n3 = 0,1, or 2) are integers characterizing

the irreducible representations of SU(3), T and ¥ are SU{2) x U(1}

quantum numbers.

We now show that the mede n, = - fg =1,n0,=0and T=Y=0 Iis
tachyonic. To see this we remark that for this mode 72 = -6/‘01‘2 . If we
impose the requirement on the SU(3) x SU(2) x U{1} invariant metric to be

Einstein, then ag is related to the cosmological constant A by

A

o a0
1 + l-l' _S_ z
2 |(r-ps-qt

Here 7 is a complicated function of p,q,r,s, and t whose explicit form is

]
I
wra

not needed. Clearly,

ol
o

A

For a choice, iike for example - 15-: %-A . We would get VE = hp which
would violate the bound imposed Eyfgd.(2.27) signalling instability.

We had chosen the case of flat M x SU{3) x SU{2) x U{1l)invariant
T-dimensional manifold, since this appeared to us to be nearest to the physical
situation, However, we must remark that the breaking of this symmetry to the
fina] physical symmetry Mh x SU{3W¥VU(1) would in any case have induced a non-zero

) 1 T _ SU(3) x Ull)
cosmological constant. We have found that B = (1) % UTL

the shortcoming similar to the one pointed out in Ref,B8, in that one cannot

suffers frem

find a representation for coloured quarks or uncolcoured leptens with
appropriate electric charges among the allowed spinor representations. We
have however not yet checked the particle spectrum for tachyens, whether
here as well as in our approximstion,the ll-dimensional supergravity theory

does not wish to break from AdS to flat Minkowski Mh .

—15-
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