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1. INTRODUCTION

ABSTRACT

An attempt is made to balance the negative vacuum energy associated

with the Freund-Rubin compactification of the 11-dimensional super;;.-avity

theory against the contribution from vacuum fluctuations. We do this in

order to obtain a ground state geometry which has four physical (flat)

dimensions and is of the form , (Minkowski)4 x B ? where B? is one of the

7-dimensional manifolds: S , S x S , s" x S3, IP2 x S3, S 3 x S 2 x S 2 or

a 5-parameter family of SU<3) x SU(2) x U(l) invariant spaces M P Q r S t.

We find that all of these solutions are unstable. As a Hide-issue the

facility for computation of the particle spectra, which results from the

use of lightcone gauge is emphasized.

A major problem with supergr&vity models in more than four dimensions

is the large vacuum energy which always arises in the spontaneously compactified

phase. For example, consider the Freund-Hubin classof compactifying solutions

to eleven-dimensional supergravity . These solutions to the classical field

equations take the form of a product geometry, AdS x B^ where B denotes

a compact internal, 7-tiiraensional Einstein space whose Eicci curvature is of

comparable magnitude to that of the l*-diraensional anti-de Sitter spacetime,
it

AdS . This curvature is generated by vacuum stress energy associated with
2)

a non-vanishing Cremmer-Julia-Scherk (CJS) field strength .

To overcome the vacuum energy problem it is necessary to find a

solution in which the non-vanishing components of the stress energy tensor

are essentially confined to "internal" directions so that the l*-dimensional

geometry becomes Ricci flat. This effect can be achieved in non-supersymmetric

models by including an adjustable cosmolo^ical parameter in the higher

dimensional Lagrangian . Super gravities nowever do not allow such an

adjustable parameter and this probably means that there is no chance of solving

the problem at the strictly classical level.

Some thought has already been given to the contribution of non-

classical mechanisms. In particular, the appearance of a fermionic vacuum

condensate may drastically modify the stress energy and it has been argued

that the U-dimensional vacuum geometry could become Ricci flat . Such

mechanisms are of course not perturbative and hence somewhat conjectural.

In this paper we attempt to formulate a simple kind of self-consistent

computation of the vacuum energy in which at least some non—perturbative

effects are allowed for.

Our approach is to assume a radiatively induced cosraological parameter

which is large enough to effectively flatten the U-dimenstonal geometry.

-1/2
More specifically, we add a bare cosmological term, X (-g)~ to the 11-

dimensional Lagrangian and compute the 1-loop correction, X = X + <SX ,

where

SA ~ (A) in
(1.1)

n_ is the volume of B , and M(X) denotes a mass in the (flat) effective

It-dimensional theory. The spectrum of masses, M(X), is computed in the
1/2

usual way except that a cosmological term
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1/2
) is present and is
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assumed to take a value appropriate to the background geometry M x B ,

where M denotes Minkowski spacetime. Since the original supergravity

theory includes no bare cosmological term, we must have ). = 0, i.e.

6* = X

. .- defines a programme for the self-consistent computation of X , This

•.-.put at ion certainly envisages the dynamical breakdown of supersymmetry

siince the sum in (l.l) is assumed not to vanish. - •

Unfortunately, there are some difficulties which may be mentioned

before we state our results. The rather symbolic expression (l.l) does not

do justice to the realities of the 1-loop contribution to the effective

action functional

= ±r In Det G(g,A)

(1.3)

where G(g'A) denotes the classical propagator on a "background configuration

specified by the classical fields g, A. The determinant in (1.3) can be

evaluated for the more symmetrical configurations which are presumably

appropriate to the ground state,

6k n 2 (l.k)

The "potential" V depends on the parameters of the background geometry

(scales of B ). To go beyond the 1-loop approximation to a self-consistent

one, i t is necessary to allow for some influence of V on the propagator

G used in (1.3). Our proposal is to make the identification,

where

<v x> = SJ7 x , (1.5)

( O denotes the ground state value of V-, . The parameter X
1/2

is used in a cosmological term, -l(-g) to be adjoined to the classical

Lagrangian and hence carried into the expressions for G, M and, ultimately,

V, itself.

-3-

But leaving these difficulties aside, in eleven dimensions the

ultraviolet cut-off cancels from the sum (l.M and the self-consistent

computation of A envisaged in (l.l) and (1.?) could be feasible. However

in all the cases we have considered, we find that the solution appears to

he unstable. That is, the propagator G(\) includes tachyonic states - at

the el-iMica] level. These might be corrected by one-loop self-energy

effects. We have not tried to discover vhether this happens since such a

1-loop computation vould be vexed and perhaps unpersuasive.

The tachyonic difficulty may originate in an oversimplification such

as (1.5) or it may be reflecting the familiar resistance of supersymrnetries

to spontaneous breakdown - in this case to a breakdown of anti-de Sitter

geometry in four dimensions to a Ricci flat one. For some of the cases

studied in this paper, the correponding anti-de Sitter x B do not give

rise to instability though whenever E is a product space, instability sets

in- . Alternatively, the appearance of tachyons could be an indication

that stable Minkovskian compactification must be motivated through a

mechanism for which a non-zero topological number associated with external

Yang-Mills fields exists. In this sense this paper is inconclusive. In

writing it, however, one of our aims has been to make known some of the

virtues of working with the light-cone gauge. Although not Lorentz invariant,

this gauge is valuable in that unphysical modes and other gauge artifacts

such as Faddeev-Popov ghosts do not arise. The extraction of particle spectra

from the Lagrangian is more direct than in other gauges.

2A. THE LIGHT CONE GAUGE

To establish notation and remind the reader of some of the properties

of the light cone gauge, we consider briefly the coupling of a U(l) gauge

field, A , to a complex scalar, The Lagrangian is

-VU) * C nA^ (2.1)

where C is a Lagrange multiplier whose role is to give the light cone gauge

condition

nyA = 0 , (£.2)

where a is lightlike. In (2.1) VC«t>) is a potential and V ^ = (3^ - ieA^)

Suppose that the background scalar field, tf , is a non-vanishing and

real constant. Write

* = -tf ^ + *1 + 1*2) ' (2-3)

- I t -
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where the real components 4> and <tg are to be treated, along with
as small fluctuations. The "bilinear1 terms in X. are then given by

+ C TV A,. , (2.1*)

where 1/3 represents a non-local operator, viz.

~ a(x" - y") = i s{x" - y") (= ±
(2.9)

If (2.8) is used to eliminate A+ from (2.7) then the bilinear term simplifies

to read

2 2 2
where HI = 3 V/3$ at <Ji = $ = 0, etc. These bilinears determine the

"masses" as functions of the •background field cp . The physical masses are

obtained by setting <p equal to the value which minimizes V.

Subsequent analysis is greatly facilitated by the use of light cone

co-ordinates. In these co-ordinates the scalar product takes the form

A-B A+B A_B+ (2.5)

where i =1,2, We shall conveniently regard X as "time" so that equations

which involve the derivative 3 are dynamical, while those which do not

are mere constraints. Such constraints are to be used freely in simplifying

the Lagrangian. The vector n which determines the light cone gauge is

now chosen such that [2.2) reduces to

A = 0 • (2.6)

Use of (2.6) in the expression (2.k) causes the bilinears to take

the form

2 2Nov BL and m are in general dependent on sp . The value of cp which

minimises V, also causes m^ to vanish (Goldstone theorem) and it is at

this point that <p- is seen to represent the helicity 0 component of a

massive vector. The helicity +1 components are represented by A.^. (Of

course, if the minimum occurs at <P = 0 then Goldstone's theorem does not

apply and one finds m,, = HL ,) Values of <p which do not minimize the

potential will yield masses m. and nu which are not compatible with

Poincare invariance. This merely confirms the non-covariance of off-shell,

gauge dependent quantities in the light cone gauge. Notwithstanding this,

it should be noted, that the 1-loop effective potential

In ml*

2.7)

Observe that the equation of motion for A ,

0 = - 3_(3_A+ + 3 ^ ) + SfiJ2

is in fact a constraint. It can be solved for A+ ,

A+ . i - (2.8)

is manifestly Lorentz invariant for arbitrary ^ . Each term in this sum

represents the zero-point energy of a field in the light cone Lagrangian

(2.10). No Faddeev-Popov contribution would be needed in the non-Abelian

case.

It can certainly be argued that our use of the light cone gauge in

the above example has yielded simplifications which are, at best, only

marginal. But, as we shall show, in the case of 11-dimensional Super-

gravity, the advantages are significant. We shall consider the bosonic

sector of the Cremmer-Julia-Scherk (CJS) Lagrangian, with the significant

modification of an added cosmologies! term.

- 5 -



i-B. THE ELEVEN DIMEHEIOHAL SUPERGRAVITY IK THE LIGHT COME GAUGE

The fluctuation field, &,„ and V of the 11-bein and CJS

fields are defined "by

ft = S + V )
ABC ABC ABC

(£.11)

where the background

h ^ is symmetric, h

S A
E^ , is orthogonal and the fluctuation field
. The bilinears are

Covariant derivatives are with respect to the Riemarmian connection of the
*)background . We shall be concerned with oackgroiuid geometries which are

the product of It-dimensional Minkowski spacetime with compact T^dlmensional
o

Einstein space. The field strength, ^Vgrii) has non-vanishing components

only in the Minkovskian directions, and is independent of position,

12 +-

The Hiemann tensor R«RrT, ^
a s non-vanishing components in the compact

directions and the Bicci tensor satisfies

Ka - A S » " (£'15)

| - JL

If the background field equations are satisfied then the constants f and

A are given by

K 2f 2 = -2A and = -6A (2.16)

The expression (2.12) becomes somewhat unwieldy when the background

fields (2.It) and (2.15) are substituted. However, if the light cone

gauge conditions

hA- V-
are used, then a number of constraints emerge,

(2.1T)

V . V.

where

+ h
1 0 > 1 0

(2.12)

(£.13) *) Our conventions for the Riemann and Ricci t ensors are

R LPQ " 3 P PQL " V P L FPK rQL ~ FQK FPL M̂

E22

(2.18)

MHP

sign = (-, +, +,...,+



A [ C ? ( G ) - CH)

If these are user] as well, then the simplifications are very substantial.

The Lagrangian dt sopary-tes into sectors •according to the transverse 0(2)

quantum number of the fields,

A -

I "«/> «"/i* " • «

4 1

- K f

"of 11

i k i li+*. 5A

(2.19)

(2.20)

where CO(C) find C^H} are second order Casimir operators.

i r the spuclrum of V " is known then i t is possible to compute the

1-loop potential from (2.19)-(2.?1} as a function of the parameters A and
f . Iz will be manifestly Lorentz invariant. No Fadd.eev-Popov contribution

is needed. On the other hand, to see that the spectrum of states is Poincare

invariant i t is necessary to use the on-ahell values (2.l6) for f1* and X.

When these values are substituted, the expressions reauce to

3 A ) V m

4 y

i V Ĉ V i V

T y S '
(2.21)

2 2 2

where 3 = 23+3 + 3 + 3y is the MinkowskI part of the Laplacian and

V = V V is the compact part. Tho traceless mrts of li . and h „

axe denoted by h.. and h . respeotively.

The spectrum of the internal Lapl^nian can be found by algebraic

methods if the internal space is a coset space ' , In particular, if G/'l:

is syjnnetric then the eigenvalues take the form

-9-

(2 ,21 ' )

The massless graviton states evidently must correspond to the aero mode of

S2 acting on h . The non-zero eigeniralues must give the helicity +2

states of massive spin 2 multiplets. The helicity +1 and 0 partners of these

states will have to be found in the systems X and X . To see in a

general way how the components must arrange themselves, it is useful to

resolve the various fields into transverse and longitudinal parts as follows:

-10-



lit - V<*n •*

V.,; - V\ +

(
ft

zV1
-i-n\

~ A J

K;

V + 2.22)

where hffl* = 0, V^jj = 0, V Q H * = 0, etc. If these expressions are sub-

stituted into (2.19r)-(2.21') the various bilinears will be found to comprise

the following ,T sectors :

K i ' hii> S ' T12 = 2 + +- 0 + +> 0 +

where

5 =• V2v and n = (y V2 -A) H (2.25)

The spectrum of 3^ is given by the zeros of the determinant of (2,2k), i . e .

by the roots of a cubic equation. The roots are

3 2 = -7
(2 .26B)

(2.26*)

<-- +_
( 2 - 2 3 )

We have confirmed this in detail for an arbitrary internal Einstein space

in sector 1) and for the 0(8) invariant 7-sphere in a l l sectors.

Because of the 3x3 mixing 'between h . . , H and T , sector 1) is
the most complicated, and i t is here that a 0++' tachyon seems always to
arise. In fact, a lengthy computation is needed to get these bilinears
into the form

(2.26c)

g
where V is the internal space Laplacian, acting on scalars. The root

(2.26a) had to he present since it corresponds to the hellcity 0 component
PC ++ *~

of the J = 2 multiplet, whose other components are carried "by h., .

and H i . The root (2.26b) is clearly not tachyonic; it describes a series

of massive 0 states. The root (2.26c) is potentially dangerous. In order

for the spectrum to be non-tachyonic we must have

We are associating C-parity with reflections in the tangent space of

i.e.

V2 = 0 (2.27)

In all cases where we have evaluated the spectrum of V we find values

which violate (2.27). Here we shall give the example of B - S in some

detail and then exhibit the tachyonlc modes for other cases '.

-11-
-12-
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U'iiJJi 0* TACHYOKB

1 p

For the case in which E is a sphere of radius n we have A = -6/a

and it is relatively easy to exhibit the full complement of "bilinears, sector

by sector. The sectors are now distinguished by 0(8) quantum numbers and

we find it convenient to follow the usage of C.el'fand ana Tseytlin . The

results are

n o o o —
4 "j

>lt ft)J ~

J H . 37 _ n(r\tQ-\i \ H

"3 _ •IT.

) H
/

(2.28a)

.where H., v and H are absent for n = 0 and H is also absent for n = 1.

i.

^ - h

V*

1 k4t

(2.28b)

(2.28c)

L

1 I V1
3

s7 -

Vt± yil

(2.26a)

(S.28e)

The Lagrangians (2.28a-e) correspond, respectively,to the sectors l)-5)

indicated in (2.23) but now ttroKetj down into 0(8)-irreducible pieces. The

tachyons referred to above are found in the (nOOO) sectors with n = 1,2,3.

We shall not go into details for cases in which B

space; the tachyonie modes are listed in Table I

is & product

B7

S 5 x s
2

B ^ x S 3

S 3 x CP2

^ r

"It
-|[

- | [

v2

^) Wl)Jn>

2n(n+3)+3j(j+l)]n

n(r.+2)+Y j(j+?)]n

n(n+2)+2j(j+l)+2A

Tachyonie modes

(n=0J=l), (n=l,J-O)

(n=O,j=l), (n=l,J=0)

(n-O,j=l), (n=l,j=O)

(n=l,j=S=0), (J=n=O,
{1= O=n,J=l)

, (n=J-l)

. (W)

, (n=j=l)

Table I

Finally we consider the general case of B = Mptirs (a.e.y) where

p,q,r,s,t are five parameters characterising the family of Sll(3 ) x SU(2) x U(l)
2 2 2

invariant T-dimensional manifolds and a , 6', Y are three metrical scales,
8)

Elsewhere we have given ix detailed exposition of these spaces and

indicated the technique of Harmonic expansions on them. Here we only need

the formula for ¥ acting on a scalar function on

is given "by

s (a,E,Y). This

-13-



2 2 1 1 , ,2 1 , ,2 1 , .2 3 2 2
7 = - _ [ | ( V V 3 ) 2 4 ( V V 3 ) +6(Vn3> - 3 ~ ! 8 V _

- %- [T(T+1) - t2y2]

e
- — (r - ps - qt) y

T

Here n ,np,n (subject to n^+n +n = 0,1, or 2) are integers characterizing

the irreducible representations of SU(3). T and Y are SU(2) x U(l)

quantum numbers.

We now show that the mode n.n - n, = 1, no = 0 and T = Y
^ ? 2

tachyoni''. To see this ve remark that for this mode V = -6/a .

0 is

If we

impose the requirement on the SU(3) x SU(2) x U(l) invariant metric to be

Einstein, then a is related to the cosmological constant A by

A

Here Z is a complicated function of p,q,r,s, and t whose explicit form is

not needed. Clearly,

which

1̂ _
2

ex

2
— A

For a choice, like for examplei — = — A , we would get V =

would violate the bound imposed by Eq.(2.2T) signalling instability.

We had chosen the case of flat M x SU(3) x SU(2) x ll(l)invariant

T-dimensional manifold, since this appeared to us to be nearest to the physical

situation. However, we must remark that the breaking of this symmetry to the

final physical symmetry M x SU(3)*U(l) would in any case have induced a non-zero

cosmological constant. We have found that B = u'(i') u1].) 3 u f f e r s f r o m

the shortcoming similar to the one pointed out in Ref,8, in that one cannot

find a representation for coloured quarks or uncolcoured leptons with

appropriate electric charges among the allowed spinor representations. We

have however not yet checked the particle spectrum for tachyons, whether

here as well as in our approximation, the 11-dimensional supergravity theory

does not wish to break from AdS to flat Minkovski H .
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