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Harmonic expansions on
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quantum numbers of even a single generation of quarts and leptons. This is in
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I. INTRODUCTION

1)
It was observed by Witten that the minimum dimensionality for a mani-

4)

fold which admits SU(3)xSU(2)xU(1) as a gruup of motions is seven. Such a manifold

might arise by virtue of spontaneous compactification in an eleven-dimensional

theory of gravity. It therefore seems appropriate to search for such compactifying

3)
solutions in the most well known theory, N - 1 supergravity in eleven dimensions

The Lagrangian of this system is completely specified in terms oi one coupling

parameter: the 11-dimensional analogue of Newton's constant.

An interesting class of solutions was discovered by Freund and Rubin

in which the vacuum geometry factors into the product of 4-dimensional anti-de Sitte

spacetime with a 7-dimensional Einstein space of Euclidean signature. The most

well-studied examples from this class are the cases where the 7-dimer\sionai Einstein

space is a seven-sphere, either "round" or "squashed" . Both of these are examples

0<5)x0(3) 6)
of quotient spaces, 0(8)/O(7) and T J — "- respectively .

It was Mitten's idea to examine all possible quotient spaces of the form

SU(3)xSU(2)xlJ(l )/SU(2)xU(l )xU(l) with a view to finding a possibly realistic

explanation for the symmetries of the strong and electroweak interactions, based

in eleven dimensional supergravity. There are serious obstacles to the realization

of this proposal. In particular, it does not seem possible to get light fermions

with realistic quantum numbers. However, our understanding of this theory is, at

best, sketchy and we believe that, in spite of the negative outlook, a careful

analysis of the Witten proposal is worth undertaking.

Witten has arrived at a 3-parajneter set of manifold M , where the

integers p,q and r characterize the embedding of SU(2)xU(l)xU(l) into

SU(3)xEJlJ(.'i)xU(i ). However in assigninfi a metric tensor to these spaces, three

additional parameters become available. The 6 -parameter family of Rinraiinirin space

M (a,B,T) - with a,8 and y is the three metrical scales - all hove

SU(3)xSU(2)xU(l) as isometries. We shall redesip;nate these parameters and

denote the spaces as M (OI,8,Y)' This new characterization has been done in

Sec.IT and has the advantage that the components of the curvature appear more

naturally in terms of them. The relation of s and t to the parameters p,

q and r is discussed in Sec.ITI (cf. Eq.(3.17)).
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In Sec.Ill we examine the SU(3)*GU(2)xU(l) content of harmonic expansions and shdwTH

is sensitive to the parameters s and t, only. One conclusion which emerges from this

analysis is that no choice of s and t will yield fermions with realistic quantum

numbers. It was pointed out by Witten that chiral fermions are not to be expected:

the 4-dimensional effective theory is necessarily vectorlike. Our observation is

that the theory is not only vectorlike but also, that not even one full generation

of quark and leptons can be realized, so far as their SU(2)xU{l) quantum numbers are

concerned.

In Sec. IV we consider the vacuum solutions of the Freund- Rubin class. It

turns out that the Riemannian spaces M (a.P,^) are restricted to be Einstein

spaces with curvature scalar

9 = ~ A ,

where A denotes the (negative) cosmological constant of the 4-dimensional anti-

de Sitter spacetime. The scale parametersa , 6 andy are specified in terms of

s,t and A vhich are themselves unrestricted.

II. THE RIEMANHIAN STRUCTUKE

Witten compiled a list of manifolds, M , labelled by triplets of

integers p,q and r. These manifolds are quotient spaces G/H where G=SU(3)xSU(2)xll(l)

and H = SU(2)xO(l)xU(l). The labels p,q and r correspond to diffprent embedriinos

of H in G.

Following Wltten we shall take the SU(2) factor in H to be embedded as

the isospin subgroup of SU(3). let A ,..., * be the antihermitian generators of
1 o

SU(3), T ,T , T those of SU(2), and Y the generator of U(l). Then the Lie algebra

of G is as follows,

[» ,k | - f *
o B aBv T

[T ,T ] = E. T
k I kirn m

A ,T ] = [A ,Y] = [T V ] = 0

= f1f123 f147

Now we identify the subgroup H. The SU(2) factor in H is generated by

* ,> ,* . Among the generators of G there are three linearly independent combinations

which commute with each other and with X ,A_ ,* . These are linear combinations of

* , T and Y. Two such combinations can be adopted as generators of the U{l)xU(l)
8 3

factor in H. The third can then be identified with a vector in the tangent space of"

G/H.

The group G is not semi-simple and there is therefore no natural definition

of orthogonality in the Lie algebra. Because of this it is not sufficient to specify

merely the combination which goes into the tangent space of G/H. The UO)xU(l)

generators must be linearly independent of it but they cannot be said to be

orthooonai. For this reason we choose to specify the generators, Q_, of= a

H = SUU)xU(l)xll(l) as follows ,

0- = * k , k = 1, 2, 3

Q- = X + s Y
A S

% = T3 (2.2)

where i = (2/ / 3) x is the SU(3) hypercharge. The parameters s and t are free.
8 8

The remaining seven generators, Q , are given by

- 3 - - A -
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The required frames are given by

e = dy e (y)
V

(2.8)

(2.3)

and they are to be associated with the tangent space of G/H. We must make the

association more precise.

8)
A convenient device for discussing the geometry of the factor space

G/H is the mapping into G described by the "boosts", L ,

L : G/H * G

y - L

These expressions generally depend upon parameters, s,t. Motice in

0
particular that the choice of Q , Q- and Q- governs the definition e as a

0 4 5 83
particular linear combination of the 1-forms associated with X , T and Y.

Under the action of G the frames transform according to

e° (,') = e6 (y) D° (h"1) . (2.9)

(2.4)

where D (h ) is an orthogonal matrix. It is defined by
&

h 0 = D B(h"1) Q (2.10)

Here y indicates a point in G/H while L is itself an element of G. It can be

parametrized in many ways. For example, in an open set containing the identity

element we could take

L = exp (y Q )
y a a

and regard y as coordinates on a patch of G/H

(2.5)

Under the action of left translations by G the elements L transform

according to

-1

y y'
(2.6)

where g £ G and h = h(y,g)£H. The explicit form of h(y,g) depends upon the

particular choice of the boost elements L .

A set of frames for the tangent space of G/H is obtained from the 1-form

L dL which belongs to the Lie algebra of G.
y y

-1 a 5
L dL = e Q + e Q_
y y a a

(2.7)

")Regarding G as a principal H-bundle on the base space G/H, we see that L^

represents a local section. Under the projection IT: G-*G/ll we have

TTL = y. In general, more then one patch will be needed to cover G/H.

and serves to specify the embedding of H in the tangent space group of G/H. In

our problem this group is 0(7). Under the action of SU(2)xll( 1 )xU( 1) the tangent

space 7-vector branches as follows^

\o
(2.11)

i.e. two doublets and three singlets of SU(2) with U(l)xU(l) quantum numbers

indicated by subscripts. The corresponding pieces of the 7-vector Q are exhibited
a

in (2.3) where the doublet 2 is represented by the pair Q , Q , the singlet

] by 0 , their conjugates 2 and 1 by Q-, Q- and Q-, respectively. The
0,1 3 —1,0 0, — 1 1 2 3

neutral singlet 1 corresponds to Q .

We now introduce a G-invariant metric on G/H. The action of G upon G/H

is defined by the formula (2.6) which fixes the mapping y*y' = gy and the tangent

space rotation h(y,g) corresponding to each element gfeG. The most general

symmetric tensor g (y) with the invariance

g (y') = D Y(h) D 6(h) g (y)
oB a 6 Y«

reduces, in the basis (2.8) to three parameters

33

g00 (2.12)
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where a, Band y are independent of y , This results from the tangent space

decomposition (2.11).

We therefore conclude that the Riensannian manifolds G/H with frames

e* (y) given by (2.8) and metric g by (2.12), depend on five independent

parameters s,t and a,£,Y- To clarify their geometrical role we have

computed the components of the Riemann tensor. Details are contained in

the Appendix. The results are,

3 2
R ( ^ ( * S ' b 1 Z

3 2
~ s t * 6^

2 s t T
2
 s .

4 ac

Ra3c3 =

Ra3c3

corresponding to the SU(2) triplet form in the last line of (2.13). Two more

eigenvalues could be obtained by dlagonalizing the 2x2 matrix

2 ,tY.2

^ a t (
4 aB

3 , T ,2

~4 st (^r»

2 2 4

(2.11))

but we shall not pursue this. Suffice it to say that all eigenvalues of the

Riemann tensor are constructed from four algebraically independent scales:

2 2 2 2
I/a , 1/B , sy/a and t y/ 6 • Out of our five parameters, only four combinations

are significant for the local geometry.

To clarify the global significance of our parameters we shall examine

the SU(3)xSU(2)xll{l) content of harmonic expansions.

"3333

R33cd 5cd

ab cd
(2.13)

where the components refer to the basis e with metric given by (2.12).

To obtain quantities with an absolute significance we shall extract from

(2.13) the eigenvalues of the Riemann tensor considered as a 21x21 symmetric matrix

acting on the space of rank 2 antisymmetric 7-tensors. We shall also rescale the

components (2.13) so that they refer to an orthonormal basis. The distinct eigen-

values are

(-. Sy/J)2, - (t T/B
2) 2, - 7 B t (y/aB)2.

4 4 t

^ P I P ?
- S t (Y/oB) . - (j S y/a )
4 4

corresponding to the first five lines of (2.13), and

III. HARMONIC EXPANSIONS AND SPECTRA

T)
Elsewhere a general scheme for developing harmonic expansions on

quotient spaces was discussed. If the functions ^(y) belong to an irreducible

representation IP of the stability group H then

f.(y) = 21 \\ — D, (L )• (3.1)

where D denotes an irreducible unitary representation of G. It has dimension

d and the columns of this matrix are labelled by the index,p. The rows, labelled

by the index i, correspond to a sector of dimension d which is invariant with

respect to the subgroup H. This sector supports the irreducible representation H>

to which 41 belungs. Naturally, the sum in (3,1) must include only those D which

contain E on restriction to H. The coefficients $ are given by
P

IT 1 ) du D" .(L ) *.(y) ,
}% G/H P|1 y l

(3.2)

where denotes the invariant measure on G/H normalized to volume V.

The harmonic content is controlled by the embedding of H, both in G and

(I/a)2 - (̂

- e -



in the tangent space group of G/H. In our case the embedding of SU(2)xU(l)xU(l)

in SU{3)xSU(2)xU(1) is given by the formulae (2.2) and thereby depends on the

two parameters s and t. On the other hand, the embedding in the tangent space

S0(7) is given by (2.10) which does not involve any parameters. In particular,

the SU(2)xU(I)xU(l) content of the 7-vector is given by

7 = 2 + 2
O

2 + 1 + 1° 1 ° + 1 (3.3)

From this it follows that the 8-spinor decomposes as follows

B = 2 +2 tl +1 +1 +1
0,1/2 0,-1/2 1,1/2 ^1,-1/2 1,-1/3 -1,1/2

(3.4)

other multiplets of S0{7) can be similarly reduced.

If the manifold admits a spinor structure then it should be possible to

expand, say, the 8-spinor in irreducible representations of SU(3)xSU(2)xU(l).

But from the general discussion above we know that this requires one or more of

the SU(2)xU(l)xU(1) pieces listed in (3.4) to be contained in representations of

SU(3)xSU(2)xU(l). According to (2.2), the simplest representations of the latter

group decompose as follows,

( 3 ' l ) 0 = 2 l / 3 , 0
+ 1 - 2 / 3 , 0

V-l/2

(3.5)

(where the subscript on the left corresponds to the U(l) quantum number, ¥ ) . In

order to find, say the lepton doublet in the harmonic expansion of the 8-spinor

(3.4), since

(1,2) = 1 +i (3.6)
-1 -s,-t + 1/2 -s,-t-l/2

(1,1), (1,0), (-1,0), (-1,1)

(-1,-1), (-1.O), (1,0), (1,1) .

On the other hand, in order to find the lepton singlet

(3.7)

(3.8)

we must have

1 1
- 2s = 1 or - 1 and -2t = - or - - ,

and this is clearly not compatible with (3.7). This means that fermions with the

SU(2)x U(l) quantum numbers of left and right handed leptons, i.e. doublets and

singlets of the standard kind, cannot both exist in any one of these manifolds.

We have examined here only the 8-spinor of S0(7) but it is not difficult to persuadf

oneself the argument extends to all spinors.

We must conclude that the seven dimensional SU(3)xSU(2)xU(1) invariant

internal spaces cannot give rise to quarks and leptons with appropriate quantum

numbers. This problem is in addition to the chirality difficulty.

To discuss the harmonic expansions in general we shall make use of

Gel'fand Tseytlin patterns to label the basis vectors of the irreducible

representations of SU(3). In this notation the vectors are characterized by arrays

of integers , positive and negative,

ni "2 "3

(3-9)

where

we must have

-s = 1 or -3 and -t + — - — or - ~ ,
- 2 2 2

i.e. the pair (s,t) must be one of eight possibilities

(3.10)

These labels are appropriate for representations of U(3) and therefore contain

some redundancy in B O far as SU(3) is concerned. To remove this we shall suppose

that a uniform shift of all six numbers by the same integer, n • n + r, n + r,..

- 10 -



k * k +r, leaves the state invariant. The numbers in the first row,n ,n ,n
Jo 1 2 3

which characterize the irreducible representation may therefore be restricted

Such that

"l + "2 + "3 = 0 > 1 ° r 2 (3.11)

and the labelling is thereby made unique. The numbers in the second row label the

irreducible representations of SU(2)xU(l) which are contained,

(3.12)

where k denotes the SU<2) spin and x the U(l) charge. Finally, in the third row,
o

k labels the U(l) representations contained in SU(2). The value of this spin

component is
R3 = k3 " I '"I + "I2) ' (3.13)

Basis vectors for irreducible representations of SU(3)xSU(2) xll(l)
T Y

may be taken in the form

n m
1 2

k

(3.14)

where 2T are Integers.

Now consider the harmonic expansion of an irreducible multiplet of the

isotropy group SU(2)xU(l)xU(1) with SU(2) spin k and U(l)xU(l) charges 0 - and Q~.

9) 4 5

According to the general rule we must include all those representations of

SU(3)xSU(2)xU(l) which contain states for which

m - m = 2k,
1 2

SY = Q-

tV = Qg , (3.15)

- 11 -

where Ag is given by (3.12). Since, according to (3,3} and (3,4), 0- is necessarily

an integer while Q- may be an integer or half-integer, it follows from (3.15) that

3sY and 2tY must be integers,

3sY = N
1

and 2tY = N
2 (3.16)

These equations imply

3s = v a and £t = v &„ ii.ll)

where a and ao are relatively prime integers and v is rational. Mo

generality is lost by taking v to be an integer since this can always be

achieved by an appropriate resealing of the spectrum of Y values. The

integers a , a and M presumably correspond to Witten's p, q and r,

respectively.

We can solve Eq. (3.15> for n^, BS-2 and T^. Making the substitutions

from (3.12) and (3.17) into (3.15),

rr + m - 0- -
1 2 4 3 I - ,

m - m = 2k

2
T = 0- -—t—
3 5 2

(3.19)

Since a and a are integers, it follows that T takes integer or haJf-integer

values, as it should, but m and m can be integers only if the triality,

n +n +n , is chosen appropriately. In other words, these equations serve to

determine the triaiity as well as m ,m and T . One finds,

v a Y
mod 3, Q + 2k even

v ix Y - 3
mod ? Q + Pk odd



Notice, in particular, that if a is even it will not be possible to satisfy (3.19)

for odd values of Q + 2k, Inspection of (3.3) and (3.4) shows that spinors all
4 ,

carry odd values of this quantum number. This means that manifolds with a even do

not admit a spinor structure.

Finally, we observe that the harmonic expansions generally take the form

(3.20)

where T , m , m and n + n + n are fixed in terms of N.
3 3 2 1 2 3

With the harmonic expansion problem solved we now have available some

useful indicators of global features of the spaces M (a,p,y). in particular,

spectra of invariant operators such as the Laplacian and Dirac operators, which

are sensitive to global aspects of the space, can be extracted by algebraic methods.

We can shov that the eigenvalues of r.uch operators depend upon the pairs s and t

which were shown above to govern the local geometry.

The simplest operator to evaluate is the Laplacian,

(3.21)

where the various Casimir operators are given by

= Y = S-
v

2 1 2
C - C = T(T + 1) - T
T T 3

= T(T+1) - (Q

- c' . I [,„,-„ 2 2 2
+3) + (n - n +3) + ( n - n ) - 18

2 2 3 13 ]-
- k (k+l ) - ^ (Q- — j - N)2 {3.2k}

and the ranges of N,n ,n tn and T are as determined above.

Evaluation of the l^laclan p^[ associated with the Riemannian connection

is considerably more laborious and we shal1 not attempt i t here. The magnitude

of the general problem can be guessed from the expressions we have constructed

for the case of a 7-vector A ,

^-(>-*(#]
constructed from the canonical connection,

c _B
ay

li.22)

which differs from the Riemannian connection by an invariant tensor (see Appendtx

for details)* The spectrum of (3.21) is given by

V v
3 2 1

( C - C - C )

( C C > Q
2 T T 2 0

B Y

- 13 -

(3.23)

It would be straightforward, thuugh tedious, to use the harmonic expansions of

A , A and A to reduce this problem U> the diagonalization of finite dimensional

matrices.

We conclude that the eigenvalues of Q a r e sensitive to all parameters

characterizing



IV. SOLUTIONS

The Freud-Rubin class of solutions describes vacuum geometries in which the 1 ]-

dimensional spacetime factorizes into the product of 4-dimensional anti-de Hitter

spacetime and a compact 7-dimensional Einstein space. In a suitable basis the

•)
Ricci tensor R reduces to the form

AB

Rab

H = 0
B

, a.b = 0,1,2,3

afl 2 ga6
a,6 = 4,5,...,10 (4.1)

where the (negative) cosmological parameter A is related to the vacuum value of

the Creamer-Julia gauge field

3 - |

2 - 2(t Y/ B)

2 ~ (4.4)

which can be solved for the three scale factors a ,B and Y . It is convenient ti.

replace these variables by three new ones.

.2 A
y = -

a2 A 2
= - t

The equations for x,y and z are then

(4.5)

abed 2 abed 11-dimensional - (4.2)

Newtonian constant

,,st,
A subset of the Witten-type spaces, H (Q,P,Y) can be Einstein spaces and

therefore fall into the Freund^Rubin class. From the expressions (2,13) for the

Riemann tensor one easily extracts the Ricci tensor. In the notation of Sec. IT

9 2
B j. = (-3 + - (s y /a > > « tab 8 ab

H • = - 2 + 2 (t Y / B ) 2

2 - 2 t

2 x

2 z
= Y

Of these the first two are solved by

y - 1 i \ 1 - 2 t

(4.6)

(4.7)

On setting H

Hoo = " cf s

g we obtain three equations
2 aB

Eliminating x and y I'runi the third equation we obtain(4.3)

*)The Ricci tensor used here is defined by R - R where the Riemann tensor
ABC AC

is defined in the Appendix.

(4,8)

ft is not difficult to prove that this equation has a positive root if and only

if the positive roots for x and y are chosen in (4.7)_suppose It < s and write

-<*• Wt :.*! "'* V



APPENDIX

1

e

1 2
- * (1.9)

Then (4,8) becomes, if positive roots are chosen

2t/s
2 e

2e / 2t/s \?
+ \ -\f~2~—^T1)

1 chs + \ ch 8 - 4t /s '

= 1 (4.10)

and, since the left hand side decreases monotonieally with i) from a value > 1 at

B = 0 to 0 at 8=»i this equation clearly has one real solution. A similar result

obtains when It ^ s .

We may therefore conclude that the equations of motion serve to fix the

scale factors a, 0 . and y of the internal space in terms of the anti-de Sitter

scale, A .
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RIEMANN TENSOR FOR KITTEN SPACES

To compute the Biemann tensor for the 7-dimensional spaces SU(3)xSU(2)xU(

SU(2)xU(l )xU(l) , it is necessary to specify the metric and work out the component

of the Riemannian connection in a suitable basis* We shall employ the basis defined

by the 1-forms, e , discussed in Sec.II. In this basis

6 6 fi E 6 e 6 e 6
R a e r - e r - r r + r r - n r

a0Y a BY 6 OY OY BE BY a t a0 e t

, ( A . I )

where e denotes the differential operator

e = e v(y> — (A.2)

3y

The metric components g are specified in terms of three independent constants*

g
oo

( A' 3 )

The connection is given by

r
a[ev]

(A. a)

where

u v
= e e (a

a B v
)g
«Y

(A.5)

The metric (A.3) is invariant and we expect the components of the Riemann

tensor in this basis to be likewise invariant. It will therefore be adequate to

compute them at a fixed point in G/H. We shall adapt the coordinate system

accordingly. Thus, we shall adopt the parametrization.

L = e ° (A.6)

a
and attempt to compute the curvature at the point y - 0. Near y = 0 we have

- 17 - - 18 -



= dy" ga 4 ~2 [dy
B 0(y2)

so that, according to the definitions (2.7),

BY
0(y2) (A.7a)

C
P Y

(A.7b)

where the structure constants of SU(3)x SU(2)xU(l) appear.

[ Q , Q ] = C l f g + C T Q _ .
a g oB Y aB T

(A.8)

The generators <} and 0_ are listed inEqs. (2.2) and (2.3).
a o

Using (A.7) in (A.5) and (A.4) gives, at y = 0,

= C (A.9)

r o [ B Y ] 2 C [ Q P ] Y C [ a Y ] S
(A.10)

C

4 CcS
(A,11)

The non-vanishing components of C. , in the basis (2.2),(2.3) are given by
|afs |Y

C [ab]0

[33 )o (A.12)

The non-vanishing components of C, _ , and C. are
l«B |Y I tig |

C - C - - - - ( i ) 2

[ a k ] b [ b k j a 2 k ab a

= " C[b3]a

C[ab]

C[ab]

C[33]] =
(A.13)

where (1 ) • denotes the Pauli spin matrices. The non-vanishing compunents oi

the connection at y = 0 are obtained by substituting from (A.12) into (A.10),

3 2
r [bo ] " " r b [ao Sab 4

"-1 6a
3 2

3[30] (A.

From the l i s t (A.13) i t appears t h a t c r Q | ] = - r r gin> T h l s implies some

s impl i f i ca t ions In (A . l l ) and one finils

( A .

- Pfl -



It is now straigthfurward to compute the components R by substituting into
ODTO

(A.I), The result is contained in Eq. (2-13).

In Sec.lllwe made reference to the "canonical" connection,r , defined

by Eq. (3.23). .

r B
= e 7 C _

ay

T -1
where the 1-forms e correspond to the part of L dL which lies in the algebra

of SU(2)xU(l )xtl(l) contained in 0(7). The Riemannian connection, r , takes its
a

values in the algebra of 0(7). The difference between these two connections,

(A.lg)

defines a tensor, t , which is invariant with respect to SU(3}xSU(2)xU(1).

In the basis employed above, its components are independent of y. Then, in view

of (A.7b) that t coincides with r at y = 0: the components t = t e
Y<x fa Yap Yd SB

are given directly by the expressions r
Y

ag J
y - 0) in Eq. (A.14).
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