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1. INTRODUCTION

it was observed hy Wittenl) that the minimum dimeénsionality for a mani-
fold whichadmits SU(3¥xSU{2¥xU(1} as a group of motivns is seven, Such a manifold
might arise by virtue of spontaneous cumpactificationz) in an eleven-dimensional
theory of gravity. It therefore seems appropriate to search for such compactifying
solutions in the most well Kknown theory, N = 1 supergravity in eleven dimensions3).
The Lagrangian of this system is completely specified in terms of one coupling
parameter: the ll-dimensicnal analogue of Newtun's constant.

An interesting class of solutions was discovered by Freund and 'Rubin4
in which the vacuum geometry facturs into the product of 4~dimensional anti-de Sitte
spacetime with a 7-dimensional Einstein space of Euclidean signature. The most
well-studied examples from this class are the cases where the 7-dimensiovnal Einstein

space 1s a seven-sphere, either "round” or "squashed"S). Bath of these are examples
0{5)x0(3)
0(3)x0(3)
1t was Witten's idea to examine all possible quotient spaces of the form

6)
of quotient spaces, 0(8)/0(7) and respectively .

SU3)xSU(2)xU{1}/SU(2)xU{1)xU{1) with a view to Finding a pussibly realistic
explanation for the symmetries of the strong and electroweak interactions, based
in eleven dimensional supergravity. There are seriuvus cbstacles to the realizatiovn
of this propusal. In particular, it dees not seem possible to get light fermions
with realistic quantum numbers. Huwever, our understanding of this theory is, at
best, sketchy and we believe that, in spite of the negative outlook, a careful
analysis of the Witten propusal is worth undertaking.

Witten has arrived at a 3-parameter sat of manifold Mpqr’ where the
integers p,q and r characterize the embedding of SU(2)xU(1)xU{1) 1into
su( 3y xsulodxull ). However in assigning a metric tensor to these spaces, three
additional parameters become availsble. The 6 -parameter family of Riemenmiun space
Mpqr(a,ﬂ,y) - with o, and ¥y as the three metrical scales - all have
SU(3)x8U(2)xU(1) as isometries. We shall redesignate these parameters and
denote the spaces as MSt(u,B,y). This new characterization has been done in
Sec.IT and has the advantage that the components of the curvature appear more
naturally in terms of them. The relution of s and t to the parameters p,
7 and r is discussed in Sec.III (ef. Eq.ﬁ}.l?)).
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In Sec.II] we examine the SU(B)beTE)xU(l) content of harmeonic expansions and shg%%§1
is sensitive to the parameters s and t, only. One conclusion which emerges from this
analysis is that no choice of s and t will yield fermions with reatistic guantum
numbers. It was pointed out by Witten that chiral fermions are not tu be expected:
the 4-dimensicnal effective theory is necessarily vectorlike. Our observation is
that the theory is not only vectorlike but also, that not even one full generation
of guark and leptons can be realized, so far as their SU(2)xU{1) guantum numbers are
concerned.

In Sec. IV we consider the vacuum sclutions of the Freund- Rubin class. It
turns out that the Riemannian spaces MSt(u,ﬂ,y) are restricted to be Einstein

gpaces with curvature scalar

where /A denotes the (negative) cosmological constant of the A-dimensional anti-
de Sitter spacetime., The scale parametersa , g and y are specified in terms of

s,t and /A which are themselves unrestricted.

II. THE RTEMANRIAN STRUCTURE

pqr

Witten compiled a list of manifolds, M , labelled by triplets of

integers p,q and r. These manifolds are quotient spaces G/H where G=SU({3}xSU(2)xU{(1)
and H = SU(2)xU(1}xU(1}. The labels p,q and r correspond to different embeddines
of H in G.

Following Witten we shall take the SU(2) factur in H to be embedded as

the isospin subgroup of SU(3). let A ,..., A _ be the antihermitian generators of

1 8

sU(3), Tl.T , T. those of SU(2), and ¥ the generator of U(1). Then the Lie algebra

23
of G is as follows,
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T = T .
[Tk, E] Eklm m
A LT = {a ,¥] =T , ¥ =0
{ak] [Ag¥) = [Ty ] J (2.1)
W € = f =1, f = f =+3/2 and T = -f =f =F =7
here 1.3 = '2a 458 ~ ‘678 / 147 156 © 246" 257 34%
= - f = 1/2.
f367 = 1/
Now we identify the subgroup H. The SU(2) factor in H is generated by
ll,lz,la. Among the generaturs of G there are three linearly independent combinations
which commute with each other and with Al.lz,ka. These are linear combinations of ;
18. T3 and Y. Two such combinations can be adopted as generators of the U{1)xU(1) ‘\

factor in H. The third can then be identified with a vector in the tangent space of
G/H.

The group G is not semi-simple and there is therefore no natural definition
of orthogunality in the Lie algebra. Because of this it is not sufficient to specify
merely the combination which goes into the tangent space of G/H. The U{1)xU(1)
generators must be linearly independent of it but they cannot be said to be

grthogonal., For this reascn we choose to specify the generators, Q_, of
a

H = S0(2)xU(1)xU{1) as folluws , ,

(2.2)
where 1 - {2/ v 3} Aa is the SU{3) hypercharge. The parameters s and t are free.

The remaining seven generators, Qq , are given by

o
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Q=Y

0 = gl ’ U =rg T 1A,

U= Ayt iy ' Ry =3y~ thg

Q3=T1+i.'l‘2 , Qﬁle—iTz (2.3)

and they are to be associated with the tangent space of G/H. We must make the
association more precise.
8) .
A convenient device for discussing the geometry of the factor space

G/H is the mapping into G described by the "boosts", L ,
¥

L G/H + G

y o+ Ly B (2.4}

Here y indicates a point in G/H while Ly ig itself an element of G. It can be
parametrized in many ways. For example, in an cvpen set containing the identity
element we could take
Ly = exp (y°l Qc) (2.5)
and regard ya as coordinates on a patch of G/H *).
Under the action of left translations by G the elements Ly transform
according to

g: L +L =gL h (2.6}

where g& G and h = h(y,g)€ H. The explicit form of h(y,g) depends upon the
particular cheoice of the boest elements Ly.
A set of frames for the tangent space of G/H is obtained from the 1-form

-1
L dLy which beleongs to the Lie algebra of G.
Y
1
LdL =e Q +e Q_ - (2.7)

*)Regarding G as a principal H-bundle on the base space G/H, we see that L
o
represents a local section. Under the projection TF: G-+G/il we have

WL =y. In general, more then one patch will be needed to cover G/H.
Y

The required frames are given by

[+

e = dyu e (y) - (2.8)
¥
These expressions generally depend upon parameters, s,t. MNotlce in
. O
particular that the choice of QO, Qa and Qg governs the definition e as a

B 3
particular linear combination of the 1-forms associated with x, T and Y.

Under the action of G the frames transform according to

-1

e (y') - et (y) 0% (W) (2.9)
B )
-1
where DBu (h ) is an orthogonal matrix. It is defined by
-1 -1

ne ht =0 fnTy e (2.10)

[ o B

and serves to specify the embedding of H in the tangent space group of G/H. In
our problem this group is O(7). Under the action of SU(2)xU(1)xU(1) the tangent

space 7-vector branches as follows,
7 =2 + 2 + I +1 + 1 (2.11)

i.e. two doublets and three singlets of SU(2) with U(1)xU(1l) gquantum numbers
indicated by subscripts. The corresponding pieces of the 7-vector @ are exhibited
[+

9 is represented by the pair Ql, 02, the singlet

1 b thei njugates 2 and 1
o.1 y 03 f eir conjug ) o

neutral singlet 1 corresponds t .
g 0,0 p o QO

We now introduce a G-invariant metric on G/H. The action of G upon G/H

in {2.3) where the doublet 21

0,-1 by Qi' Qé and Qé' respectively. The

is defined by the formula (2.6) which fixes the mapping y +y' - gy and the tangent
space rotation h{y,g) corresponding to each element g&G. The most general

symmetric tensor g . (y) with the invariance
o

Y §
') =D h) D h
gOlB (y") i (h) o {h) EYs(y)

reduces, in the basis (2.8) to three parameters

2
Bif "By T o
2
.= 8
2
Bog = v ) (2.12)



where a, Band y are independent of y“ + This results from the tangent space
decomposition (2.11}.
We therefore conclude that the Riemannian manifolds G/H with frames

e® (y) given by (2.8) and metric g . by (2.12), depend on five independent
[+

parameters s,t and a,8,y. To clarify their geometrical role we have

computed the components of the Riemann tensar, Detalls are contained in

the Appendix. The results are,

Rabé& = (3 sY)z(Ga& Spe ~ %4 6ba)' a,b,.. = 1,2
Ryodo = = (¢ v/8)°

3 2
a3t =7 2SSty 8¢

3 2
RaééS = 28 ty Sa¢
Rooso =~ Gev?rar®s
Biaay = 2 8° - att )

2

Rdca = - : sty &4
Raied ™ 500 - 1¢ GvDag 64+ 2 - 2 e 6" g 5 2a3)

where the components refer to the basis e with metrie given by (2.12).

To obtain quantities with an absclute significance we shall extract from
{2.13) the eigenvalues of the Riemann tensor considered as a 21x21 symmetric matrix
acting on the space of rank 2 antisymmetric 7-tensors. We shall alsou rescale the
components (2.13) so that they refer to an orthonormal basis. The distinct eigen-

values are

2 2.2 3 2
(% 31‘/02} . - (ty/s ), - a5t (y/ap) ",

3 2 3 2.2
Zﬁt(rfuﬂ) --(ES‘{/u)

corresponding to the first five lines of (2.13), and

3 2
(1/a)” - svla 2

corresponding to the SU(2) triplet form in the last line of {2.13). Two more

eigenvalues coculd be obtained by diagonalizing the 2x2 matrix

2 ty. 2 3 Y .2
S- 3 (= - —
& 32) 2 St %)
{2.14
4 T2 4 2
2a a

but we shall not pursue this. Suffice it to say that all eigenvalues of the
Riemann tensor are constructed from four algebraically independent scales:
2 2 2 2 .
1/a , 1/8 , sv/a and ty/g . Out of our five ,arameters, only four combinations
are significant for the local geometry.
To clarify the global significance of our parameters we shall examine

the SU{3)xSU(2)xU{1)} content of harmonic expansions.

111, HARMONIC EXPANSIONS AND SPECTRA
it
Elsewhere a general scheme for developing harmonic expansions on
quotient spaces was discussed. If the functions oi(y} belong to an irreducible

representation P of the stability group H then

n n -1 n
o_‘(y) = n}:é'\‘ dp Di'p(Ly Te o (3.1)

where Dn denotes an irreducible unitary representation of G. 1t has dimension
dn and the columns of this matrix are labelled by the index,p. The rows, labelled
by the index i, correspond to a sector of dimension %D which is invariant with
respect to the subgroup H. This sector supports the irreducible representation I
to which ¢ belungs. Naturally, the sum in (3.1) must include only those Dn which
contain D cn restriction to H. The coefficients ¢2 are given by
n IZdHS
® = = =§— du D

v d
P T o

") ety (3.2)
pyi oy i

where du denotes the invariant measure vn G/H normalized to volume V.

The harmenic content is controlled by the embedding of H, both in G and



in the tangent space group of G/H. In our case the embedding of SU{2)xU{1)xU(1)
in SU{3)xSU{2)xU(1) is given by the formulae {2.2) and thereby depends on the
two parameters s and t. On the other hand, the embedding in the tangent space
S0{7) is given by (2.10) which dues not involve any parameters. In particular,

the SU{2)x{1)xU(1} content of the 7-vector is given by

7 =2 + 2 + 1+ 1 + 1 (3.2)

From this it follows that the 8-spinor decomposes as follows

=2 +2 11 1 1 1 (3.4)
0,1/270,-1/2 1,02 L mae 2t o e

other multiplets of SO{7) can be similarly reduced.

If the manifould admits a spinor structure then it should be possible to
expand, say, the B-spinor in irreducible representations of SU{3)xSU{2)xU(1}.
But from the general discussion above we know that this reguires one or more of
the SU(2)xU(1}xU(1) pieces listed in {3.4) to be contained in representations of
SU(3)x5U(2)xU(1). According to (2.2), the simplest representations of the latter

group decompose as follows,

3e1)y =230 " Yo30
(L2 =15 170 * g, 172
(1,1)l = 15't , (3.5)

{where the subscript on the left corresponds to the U(1) quantum number, Y). In

order te find, say the lepton doublet in the harmonic expansion of the 8-spinor
(3.4), since

{i,2) =1 3.6

17T Tes,ot w172 *lg,otaase (3.6)

we must have

1

-5 =1 or -1 and -t + = = or - 1 s
- 2 2

N =

i.e, the pair (s,t) must be vne of eight possibilities

(1.1)' (1,0)| (—llo)l (_1;1)

(-1,-1), (-1,0), (1,00, (1,1) (3.7)

On the other hand, in order to find the lepton singlet

(1.1}_2 = (3.8)

1
-25,-2%
we must have

1 1
- 25 =1 or - 1 and -2t = 5 or - 5 .

and this is clearly not compatible with (3.7). This means that fermions with the
50({2)x U{1) guantum numbers of left and right handed leptons, i.e. doublets and
singlets of the standard kind, cannot both exist in any one of these manifolds.

We have examined here only the B-spinor of S0{7) but it is pot difficult to persuade
oneself the argument extends toe all spinors.

We must conclude that the seven dimensional SU(3)xSU(2}xU(1) invariant
internal spaces cannot give rise to gquarks and leptons with appropriate quantum
pumbers. This problem is in addition to the chirality difficulty.

To discuss the harmonic expansions in general we shall make use of
Gel'fand Tsevfliﬂ(g%tterns to label the basis vectors of the irreducible
representations of SU(3)., In this notation the vectors are characterized by arrays

of integers , positive and negative,

MM M
m m
1 2 b
(3.9)
k
3
where
nl >m.o> n2 2 m_ o2 “3
m oz k_ »m Y {3.10)

These labels are appropriate for representations of U(3) and therefore contain
some redundancy in so far as SU(3) is concerned. To remove this we shall suppose

that a uniform shift of all six numbers by the same integer, nl. n1 +r, n2+ |

10 -



k., + k,_ +r, leaves the state iovariant, The numbers in the first row,n y0, 4N

3 3

L2703

which characterize the irreducible representation may therefore be restricted

such that

(3.11}

and the labelling is thereby made unique. The numbers in the secend row label the

irreducible representations of

2k =

where k denotes the SU{(2) spin

SU{2)x(1) which are contained,

1 2
m m 2 (n )
+ - = +
1" ™2 73 T2 ¥ 137
and
a8

(3.12)

the U(1) charge. Finally, in the third row,

k3 labels the U{1l) representations contained in SU(2). The value of this spin

component is

{3.13)

Basis vecturs for irreducible representations of SU(3)xSU(2)TxU(1)Y

may be taken in the form

where 2T are integers,

{3.14)

Now consider the harmonic expansion of an irreducible multiplet of the

isotropy group SU(2)xU(1)xU(1) with SU{2) spin k and U(1)xU(1) charges QE and Qg'

9
According to the general rule )

we must include all thuse representations of

SU{3)x3U{2)}xU(1) which contain states for which

-m_ = 2k,
1 2
8 + s8Y = 05
T tY = Q-
3’ %

- 11 -

(3.15)

where AS is given by {3.12). Since, according tov (3,3} and {(3.4), QE is necessarily
an integer while 05 may be an integer or half-integer, it follows from (3.15) that
3sY and 2tY must be integers

3sY = N1 and 2tY = N2 ‘ (3.16)

These equaticns imply

{3.17)

where a and a
1 2

generality is lost by taking

are relatively prime integers and v 1is rational. No
v to be an integer since this can always be
achieved by an appropriate rescaling of the spectrum of Y wvalues. The
13 32 and v presumably correspond to Witten's p, q and r,
respectively.

integers a

We can solve Eq.(3.15) for m Making the substitutions

from {3.12} and (3.17) into (3.15),

10 By and T3.

va 'y
™o+ m o= Q- —-i_- + —“(n+n_+n)
1 2 3 1 2 3
m -mn_ = Zk
1 2
va_yY
T = Q- - — (3.19)
3 g 2 . o

Since a1 and 32 are integers, it follows that T3 takes integer or half-integer

and m
2

n1+n2+n , is chousen appropriately. In other words, these eguations serve to

determine the triality as well as ml,m2

vaiues, as it should, but ml can be integers only if the triality,

and T3. One finds,

mod 3, Q + 2k even

+ 7k odd {3.20)

P 1 S !

L -



Notice, in particular, that if a is even it will not be possible to satisfy (3.19)
for odd values of Qa + 2k. Inspection of {3.3) and (3.4} shows that spinors all
carry odd values of this quantum number. This means that manifolds with aleven do

not admit a spinor structure.

Finally, we observe that the harmonic expansions generally take the form

5‘1\ z > T' 3 {3.20)

where T , m_, m_and n_ + n_ + n_ are fixed in terms of N.
3 1 2 1 2 3
With the harmonic expansion problem solved we now have available some
useful indicators of gloubal features of the spaces MSt(u,B,Y). In particular,
spectra of invariant cperators such as the Laplacian and Dirac uvperators, which
are sensitive to global aspects of the space, can be extracted by algebraic methods.
We can show that the eigenvalues of such operators depend upon the pairs s and ¢

which were shown above to govern the local geometry.

The simplest operator te evaluate is the Laplacian,

EJ=E. v v (3.21)

r =-e ¢_ (3.22)

which differs from the Riemannian connection by an invariant tensur (see Appendix

for details). The spectrum of (3.21) is given by

F-e e 0
O-ce 2 Y8
1 1 1 2
= SleL0 b S0, 00+ o Q)
a B Y
2 3 2 1
= - 2(C -Cc -C)
a
2 2 1 12
- e -c- =9 3 (3.23)
8 g
- 13 -

where the various Casimir operators are given by

_ vz N
Q= ¥ v
2 1 2
c -C =T -
T (T + 1) T3
82 2
= T(T+1) - (Qé - > N}
3 2 1 1 2 2 2
t -Cc -C = = [(n -n_+3}) + (n_-n_+3) + {n -n_) - 18] -
6 1 2 2 3 1 3
3 # 2
= klkel) — 2 (Qn ——— N} {3.2L}

and the ranges of N,nl,nz,n3 and T are as determined abouve.

Evaluation of the laplacian D associated with the Riemannian connection
is considerably more laborious and we shall not attempt it here. The magnitude
of the general problem can be guessed from the expressions we have counstructed

tur the case of a 7-vector A ,

O = ﬁ—fg—ﬂ)e A

B
+12;’92— (€3A0+6‘0A3)
~ 2 2
DAO =[ D'%?F'et_f;{h— A
+115—§—(€.A -GA.)+211{;—(6’,A - T.AL)
2ul & e c & 8 373 33

It would be straightforward, though tedious, to use the harmonic expansions of
AC. A3 and AO to reduce this problem to the diagonalization of finite dimensional
matrices.

We conclude that the eigenvalues of [J are sensitive to all parameters
characterizing Mst(u,ﬁ,y).

- 14 -



Iv. SOLUTIONS

The Freud-Rubin class of solutions describes vacuum geometries in which the 11-
dimensional spacetime factorizes into the product of 4-dimensional anti-de Sitter
spacetime and a compact 7-dimensional Einstein space. In a suitable basis the

*)
Ricci tensor R _ reduces to the form

AB
Rab = —/\gab , a,b = 0,1,2,3
R =0
ap
A
R =— g a,B = 4,5,...,10 (4.1)

where the (negative) cosmological parameter A is related to the vacuum value of

the Cremmer-Julia gauge field

‘l -3A
F = . 1 ¢ = l1-dimensional - {4,z
abcd < abcd U_' ta-21

-g Newtonian constant

st . .
A subset of the Witten-~type spaces, M (u,B,T) can be Einstein spaces and
therefore fall into the Freund<Rubin class. From the expressions {(2,13) for the

Riemann tensor one easily extracts the Ricci tensor, In the notation of Sec, 17

9 2
(-3 + P {(sy/a }} ﬁaﬁ

Rap =
R 242 (ey/8)°
. = - +
33 v
3 2 2.2 2 2.2
Ry = —(551/0 )= 2{ty /B ) |, (4.3)
A h
o] tti = — we cbtain three equations
n setting Rma 5 guﬁ q 8]
B
*) The Ricci tensor used here is defined by RABC = RAC where the Riemann tensor

is defined in the Appendix.

- 15 -

Tt 7wt oy o Weese cmeperib b M ok B g v

9 2 2
3 - P (sy/a) = -« —E“
2o 20ty/e S .opt A
2
3_2, 22 2 2.2 :
sy /o) w20t v7/6%) =_y2% (2.4)

which can be sulved for the three scale factors a,B and Y . It is convenient to

replace these variabies by three new ones,

X = - u2 -AL = - 52 —QL P 72 lﬁ-
5 ¥ = > y 2= = 2 . (4.5)
The equations for X,y and z are then
9 2 z
3 - g s —;— =X
Z
2 -2t _— =
¥ ¥
3 s 2 t.2 1
(= = - == .
2xJ +2(y) . (4.6)
Of these the first two are solved by
1 2
X = = [ 1 £§1 - 5 s z }
2
y = 1_r‘y1-ztz (4.7)

Eliminating x and y from the third eguation we obtain

P

5 \2 t 2 1
2 _ L
(1 1“1_ ez ) ' (1 iql-thz) Tz (4.8}

It is not difficult to prove that this equation has a positive root it

n

and only

if the pusitive roots for x and y are chusen in (4.7)_guppuse tlt;J < Sg

< and write

- 16 -



s 2, (4.9}

Then (4.8) becomes, if positive roots are chosen

-2 2t 4
2 e °0 ( /f.__._.m_.__) -1 (4.10)
3 2 2
che «\[ch“e - at"/s

and, since the left hand side decreases monotonically with#¥ from a value > 1 at

g =0 toQ atg=w«, this equation clearly has one real solution. A similar result

2 2
uvbtains when 4t ~ > 5",
We may therefore conclude that the equations of motion serve to fix the

scale factors a, 8, and y of the internal space in terms of the anti-de Sitter

scale, A
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APPENDIX

RIEMANN TENSOR FOR WITTEN SPACES

To compute the Riemann tensor for the 7-dimensional spaces SU{3)xSU(2)xU{
SU(2}xU(1)xU{1), it is necessary to specify the metric and work out the component
of the Riemannian connectionin a suitable basis. We shall employ the basis defined

by the 1-farms, e , discussed in Sec.ll. In this basis

3 {a.1)

where e denctes the differential operator
[+

W 3
e =-¢ (¥ (A.2)
a a ay”

The metric components g 8 are specified in terms of three independent Constants,
a

- e -y (A.3)
11 T By T % Bag = B By 5 T +
The connection is given by
r - g 2 a, ) (A.4)
al8v] 2 [agly Tlorls [8y]a 3 ’
where
§ 13
% cefe’ia e’ -3 e’ g . (A.5)
(aBly a & wov Vo &y

The metric {A.3) is invariant and we expect the components of the Riemann
tensor in this basis to be likewise invariant. It will therefore be adequate to
compute them at a fixed point in G/H. We shall adapt the coordinate system

accordingly. Thus, we shall adopt the parametrization.

L =-e (4.6}

o
and attempt to compute the curvature at the puint ¥y = 0. Near y = 0 we have

- 18 -




- a 1 & Y 2 -
Ly dLy =dy Q ¢ > [dy QB . Y QY] + 0(y ) The non-vanishing components of C[uE]Y and C[“B]T are
C C Loy f2
e = 2 Ca— = - . a
s0 that, according to the definitions (2.7}, [ak]b [bk]a 2 k'ab
@ a 1 By o 2 Claapp =~ S(bdja "} a6 “2
e =dy +>dy y'C_ s+ o0(y") {(A.7a) [a4] [ba]a &
2 By
by c k il )
a 1 . B o 2 . = b :
== d c 0 [ab] k ab
e Wy & ty ), 3 (A.7D} !
c 4 3
o= - =
[ab) 8ab 2
where the structure constants of SU(3)x SU{2)xU(1) appear,
2
B -
_ ‘13513 £ E R
[, ql=c e +c ¥ o . (A.8) 5
o=@ v Cry3) = -2t , (4.13)
The generators Q@ and Q_ are listed in Eqs. (2.2) and (2.3).
a a
Using (A.7) in (A.5) and (A.4) gives, at y = 0,
§
fQ =C g
[aB]y “aB 8y where (Ik) ; denctes the Pauli spin matrices. The nun-vanishing compunents of
=Y
the connectiovn at y = 0 are obtained by substituting from (A.12) intu (A.10),
=C (A.9)
[aB ]y
r =-r- =18 2 4.2
1 a [Bu ] blao] =~ “aba 77
r = = {C -C -C ) (A.10) 3 2
al BY 2 laply Tlev]s “[sBy]a . T - -
[ev] ro[ab] 16ab 4 5y
r Lo “c C ) “
e === _ - Cr. . = - i -
o s[vs] T 4 Tas [Ev]s T “[es]y e Py
+lCE(C + C ] = -r -'tz (A.14)
4 oy [35]‘5 [3518 ]"3[30] =T 3[JO| = 1 Y . .
- C B (c + C ) (A,11)
ab [eB ]y “[ev]s )
i hat C, — = = =7 . This implies some
The non-vanishing components of C[ [y’ in the basis (2.2),(2.3) are given by From the list (A.13) it appears tha [aBly [vRla ! P
aBly simplifications in (A.11) and one finds
€
- = [ -
Earﬁ[yé] eRru[Yd] Cag [yels . (a.19)
c [ 24 2
[ab |0 Y% 2 Y
i 2t YE
[33] =i (A.12)
- o0 -

e memtr




It is now straigthforward to compute the components Rueyﬁ by substituting into
(A.1)., The result is contained in Eg. (2.13).
In Sec.IlIwe made reference to the "cancnical" connection,T , defined

by Eg. (3.23)..

. ¥ -1
where the }-forms e correspond te the part of L dL which lies in the algebra

of SU(2)xU(1)xU(1) contained in 0(7). The Riemannian connection, T 8 , takes its
[s ]

values in the algebra of 0(7). The difference between these twc connections,
N (a.16)

defines a tensor, tTol , which is invariant with respect to SU({3}xSU(2)xU(1).

In the basis employed above, its components are independent of y. Then, in view
]
at y = G: the components t =t g
yap Ya TR

= 0) in Eq. (A.14).

[}
of {A.7b) that t coincides with T 8
Yo ya

are given directly by the expressions F‘[ B](y
a
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