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Abstract

We consider the S-dimensional Einstein-SU(2) Yang-Mills system
when the Yang-Mills system assumes & l-instanton configuration on an
internal Sh with the wacuum solution possessing the gecmetry of

M, x S and the invarisnce group Ph(Poincaré) x S0{5). We demcnstrate

m
the classical stability of the sclution by computing the spectrum

of the physical states and showing the absence of ghosts and tachyons
amongst them. We also discuss the possipility of obtaining S0(S)

multiplets of massless fermicns.
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cpace instead of M . Bince observationally the cosmological coustant
. s L - L
is nearly zcro, to be at all realistic the four-dimensional fackor M

would have to be flat when compared 0 the K-dimensional "internsl" spnce.

Among the c#ses where compactification can occur, little is known
about their stability. To our knowledge only three cases have been analywed:
pure gravity in 5 dimensians 2), Einstein-Maxwell theory in 6 dimensions 3)
and N = 1 supergravity in 11 dimencions *)k) We are therefore encouraged
to examine one moru case: gravity coupled to BU(2) Yang-Mills fields in B-

dimensions.

Tt has long been realized that topolegical considerations are central
10 the question of stability., For this reason nodels wvhich couple gravity
to gauge fields are particularly favoured. If the vacuum gauge field assumes
a topeologieally non-trivial configuration with respect to the internzl space

then one might expect this wvacuum to be stable. The solution by Horvath et azl.
5)

to the six-dimensional Einstein-Maxwell system was prompted by this ides
The Mexwell field in this case takes the form of & magnetic monopole on the
internal 2-sphere, More recently it was verifisd that the solution is indesd
stable - against amall fluctuations at least 3‘. To prove its stability
agalnst vacuum tunneling phenomens one would need something akin to a

#x
"nositive energy theorem” but this remains to be discovered ).

#) A supersymmetric ground state is necessarily statle owing to the structure
of the superzlgebra which implies non-negative energies. Unfortunately, in all
known cases the ground stakte geometry takes the form AdSh ® BK where the anti-
de Sitter and internal curvakures are of comparable magnitude. This precludes

the identification in any meaningful way ot a low energy sector.

¥%) The importance of the topological criferion is fortified by the examples

of instability which srise when it is not met. The five-dimensional pure gravity
solution of Kaluza, although classicaly stable, succumbs to vfcuumqtunneling 2 .
The gix-dimensionsl Binstein-Yang-Miils cowmpactilication on M % 5% is not even
classicrlly ~hable since the possible Yang-Mills conrigurations on 82 are

necessurily trivial .

. . - . TERRe)
T Lnin patfltr owe ronsluer Lhe nenzional Zinstoin=0Uil) Yapp-

The vacuum sosution to be analyzed here has the geometry of

i

it w27 and the Yang-Mills field assumes the l-instanton confipuration on
Li internal L-sphere. The invarisnce group of this vacuum is P{L)} x 50(5)
where P{4), the four-dimensional Poincare group acts on M]" and S0(S}, the

five~dimensional orthogonal group acts on S .

The non-vanishing second Chern class of the instanton ensures the non=-
4 R .
triviality of the vector bundles over 5 on which the instanton acts as a2
connection form. We therefore expect Lthe proposed vacuum solution to be at

least classically stable. In the following sections this will be established.

Our method for proving the classical stability of the vacuwm solution
iz to compute the spectrum of physical states -~ those which eouple to
appropriately conserved {on-shell) currents —and show that this spectrum
contains no tachyons or negative-metric states. We do this by linearizing the
field equations on the vacuum solution and evaluating the prepagator in a
cheosen gauge. EHach pole which persists when the propagator is sandwiched
between conserved currents corresponds to 2 physical state and its metric
is determined by the sign of the vesidue. In this way it 1s found that the
spectrum ineludes the helicity &2 graviton, ten helieity +1 massless states
corresponding to the 30(5) Yang-Mill~ symmetry of the vacuum, and several

towers of massive states with spins 0, 1 and 2.

In Sec,II we discuss the vacoum solution and its symmetries. We then
derive the linear equations for fluctuations on this background, Sec.III is
devoted to the solution of the linear problem. This invelves definipg harmonic
expansions for the fluctuations on Sh and, at this point, & good deal of
kinematic discussion is unavoidable. The soluticns are classified into
irreducible pieces with respeect to the vecuum symmetry P(4) % 0(5) and, in
esch piece a number of poles are identified. To distinguish those poles
which correspond to physical stabes we sandwich the propagator between conserved
source currents. This is done in Sec.IV. Finally, in Sec.¥ the results

are discussed and the cutlook considered.

-




Conslder tne action integeal

1 2 ,F,J\m 1

(8 izl 1
5 A _J dz g / [ 5 R+ i— . + AJ . {1)
K

2 . , o .
where Kk 1s the four-dimensionsl Newtonian coupling constant. S desccibes

the imteractlon of gravity with an SU{2) gauge rield fMN in eight-dimensions.
A is an eight-dimensional cosmelogical constant * )
The field equations following from (1) are
2
1 . K
Fan "2 Map® T Ty - dmgg) s (22)
AB
A= s {2v)
-7 ,%¢C¢_1 = 20D
Tan = Fag Py "% "ap Fop ¥ (2e)

The latin indices A4,B,C,.... refer to the orthonormal frames in the eight-

dimensional manifold and WA signifies a covariant derivative with respect

to both Riemannian as well as the Yang-Mills connections.

We shall look for solutions of (2) such that

Ry =0 I
and J’ a=0,1,2,3, A=0,,.3,5...8
F . =0
ah (3)

By substituting this into Eq.(2a} we get

1 122
:5 R+ E-F +A=0 (La)
2
_ K . C
T T 7 e ﬁs - (ko)

*) N

Sign Nag = (-1,+1,...,+1). The Riemann tensor is defined such that
K K K .
HLMN = BM FLN - BN FLM v and the Ricel tensor is RLM = RK MK

—3-

ML e b lens

vata looeoriooduen By Do wihere M denoer o s Toi- s
L - 1 4 i

e nrwl B0 18 the four-dimensional suvhers,  Thus Lhe isometry

group of cur ansavz for the metric is Ph x H50{5). IV we demund that the
ansatz for the SU{2) gauge potential A = AM(X,y)dZM iz also Ph x 80{5)
invi~iant then our problem has a unique solution. This is given by Aa =0,
a = 0,1,2,3, with Au(x,y), W= 5,...,8 describing a single instanton on 5,

To exhibit the S0(5} invariance (up to a local SU{2) gauge trans-
formation) as well as the uniqueness let us consider the intrinsic (projective)

co—ordinates yu s On Sh defined by

" .
a H—EEX—— b= 5,...,8 . (53)

b2 . y2

w(y)

5 " 2
(y) = a _5_:_x5 . (5b)
kY

a2
where y2 = (Y1)2 +oeen 4 (yh)L and ' + wn® = a® . Here = <y¥ <o

and b 1is an arbitrary const, The co-ordinate functions yp on Sh
: \ L
asscciate with any point of Sh a unigue peint in R . However they do not

5

cover Sh fully, The south pole, i.e. (uu =0, u’ = -a) on sh should be con-

tained in a different co-ordinate patch. {This point would have corresponded
to y2 + w irrespective of the direction of approach to oo in mh . There-
fore it cemnnot be put in correspondence with a unique point of ® .) Let
U denote the domain of definition of the co-ordinate functions yu , and

+
consider the local section L : U =+ S0(S} defined by

S 27ty 2oyt
v b2 . y2 b2 . yE
Liy) = R (6)
ony” -
b?' + y2 b2 + Yz

L{y) is clearly a 5 * 5 orthogonal matrix, We mey construct the matrix of
the l-forms L_l(y} aL(y}. This is 2 5 x 5 antisymmetric matrix which may
be decomposed inte any convenient basis of the Lie algebra of 50(5). We
choose a basis @us’ QaB} GyB,.vayl,..0 ., such that {QaB} constitute

a basis of the O(h) algebra generating the isotropy subgroup SO{4) in

_ 80{s5) ;
v = S0l Then we may write

L_l(y) L, =%e Q +~§-A » (7a)
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where

0
et = M gyt . (7b)
o+ oy
aB 1 3
AT s = (y* & - yB S N (Te)
b

The {wB] are sntisymmetric O(4) indices. Projecting out the self dual

. @B . . .
part of A yiglds the instanton, t.e.
i 1 i B
— A E—
g 2 naB A
i a
2 Y
= 5 5 d i=1,2,3 . (&)
bT + ¥

T

where g is the SU(2) coupling constant and nl are the 't Hooft symbols
a T

g
The A" defined by Fq.{8) is aa instanton of "size" b on an 5,

of radius a. The 50(5) invariant metric on this sphere cen itself be con-

structed from (Tb)., As is clear from (7b), the ceefficients euu of day"
given by
-
Qup = Ehab = auu {92)
o+ oy

+
are non-singular 4 x 4 matrices everywhere on U . Therefore e (y) can be
+
regarded as a basis of the cotangent space of U at the peint y. Now the
. . . . . o
50(5) invariant metric of Sh is clearly the one relsbive 0 which e are

erthonorpal, i.e.

B tah

= & e - —a2 b ,

gw(y) e, % 8. ; e dw {9b)
(" + 57)

This way of constructing the instanton links it intimately with the Riemannian

structure of Sh' It makes its 50(5) invariance manifest and conssquently
simplifies Lhe problem of mode decomposition {<f. Sec.III). Tc summarize

our ansatz for the solution of Egs.{2z) and (2b) consists of

o & L 2 2 3 2 ] 2 i 2\
43" = - dx + dx + rx + dx (dy FARRE TN :
1200

A= = ar® S P

The substitution of this ansatz into Eqs.(2a) and (2b) - or equivalently
inte Eq.{lL) reduces these equations into the following algebraic relations

between w, 8, g and A

= Nz (1is)

35 = A . (11n)

Notice that this solution is independent of the instanton scale parameter b.

IiT. FLUCTUATIONS AND GAUGE FIXING

To define the low-energy four-dimensional theory we have to study
the spectrum of the small perturbationsarcund the configuration (10}. Tor
this, we write an arbitrary metric gMN(x,y) of the eight-dimensional

space-time as

gMN(x,y) = <gm> + KhMN(x,y) M,N = 0...3, 5...8 {12a)

where “y are the metrical components defined by {(10a) and hMN(x,y]

<
NEMN
are the small perturbaticns which depend - in a completely arbitrary but

continuous way - on the all eight co-ordinates (xm,yu). We similarly write

A:ﬂ h <A131 7 ‘J;(x,y} M=0,...,8, i =1,2,3 - {12}

N i .
whers <A§ 7 should be read off Eg.{10b) and Vi ere the perturbations.
The next step 1s to substitute (12a) and {12b) into ¥q.{1l) and expand it in

a power series of h and V. This ylelds

. { B
CRERIE }TJ ads g”‘“‘{y}hw ¥ n . -Ln vih +

Pl




A1l the tensorial indices in Eg.{13)} refer to an orthonormal frame

of Mh X Sh , and ¥V, is a coveriant derivative containing both the Riemannian

A

connection o, of M, x Sh and the Yang-Mill connection given by (10b),

To study the stability of the configuration (10) one must study the responze
of the system to some external physical disturbances. This is done most

convenientiy by coupling the perturbaticns h,, and ?A to appropriaste sources

AB
TAB and JA’ respectively. Thus 52 should be replaced by
1 - 1/2 T 2
se(h,v) =8, + [ dz g JL 5 Thp Sap * 9 VA} {1k)

The source term is required to respect the symmetries of S

82 is

P Thus, since
invariant under the following iocal gauge transTormations:

Mg = 45 " S5 : (15a)
> >
= + 15b
s¥, Fpp * 0., , (15b)
where EA(x,y] and ﬁ(x,y) are erbitrary, we must have
1 3
BT <FAB> Y (16a)
>
= €b
Foop = 0 (160
We choose %o Tix the gauge by imposing the conditions
1
(Bpy =5 Tpg Bel*®=0 - (17a)
=
- . 1To
Voen =0 (175}
The equations of motion then take the form
2 1 2
T - + -
o Pap = T Map Yo Ppp * Ry Bge * Rac Pac!
- (VY - v
* [<FBC> gy = ¥+ LFyey - (9T - %l
x5 = . - =0 18a
$E Ny LFpe 7 Gty - vi =0 (182)
2 = r
Ve LELY

>
and V

Eqs.(l'T) and (18) should be solved for hup , in terms of T, and
JA .
IV. SOLUTION QF THE LINEARIZED EQUATICONS

Eq.(18) are & set of linear inhomogeneous partial differential
equations. To solve them one has to look for & romplete set of basis
functions which can be used to expand hAB and ﬁA . In our case this set

should be chosen to be the eigenfunctions of an appropriately defined
Laplacian, Such & Laplacian must be an invariant operator of the symmetry
group of the background fields. For our problem this group is P) x 50(5).
2
VA

PR

Since the manifeold is a product Mh x Sh’ therefore the Laplace operator
will also decompose into ve.*vu , where Vﬂz = BEQ is the usual Ph in-
variant Laplacian and Ui is an 50(4) invariant operator on 8),-

In the formalism of Gel'fand and Zetlin an irreducible unitary

)

representation of the group 30(5) is characterized by two numbers (nl,n2

)

both integers or half an odd integer. Then for a given value of (n

n
1°2
the basis vectors of the representation space are written as

2’;
k)

By Ba

J oz Aax-d

n

1 1

zm -n

» 2

1

>:[>’

2

(19)

— =

) characterize the S0(4) content of the given S0(5) representation.
A specify the 50(3) and the U(1l) contents, respectively.

where (m

Slmllarly j and

Now we can follow the prescriptions for harmonie expansion discussed
in detail in Ref,9. 'The first step is to decompose the fields in Eg.(18)

intc their Mh x Sh components, i,e.

h h h
hAB {ab’ an’ af ,
[ a=0,1,2,3 ;
To- 4 ,9- l @ = 5,6,7.,8 )
A [T
e onmews otet 00 he decoomese ke (e,iY-veir inte whe irreducible represen-
i Sodvadh ) hecified by {m;_’m?_"" Erery s vrines of (ml,mz) W o
b mliowed vanges of (no,n_ ) for each leld, We give tie resulbs
S ol
[ ‘oricwiny Tt les
-bim
— ——— e ————— e S e —
IR A mﬂumwm A R R . oA '



Iediu J Lih) CREEGSL0LGLITY ) \HL WE ) Loy e )
thu_-.“___%___n._n“mnﬂ.,“,TWV,ﬁﬁi S - e
5 : 1 , (o, f,0) e
huB ? I ‘ (1,0} {1:,1),1n,0) no> 1
R 1 (0,0} (rn,0) n>0
t
haB g (2,0) (n,2),{n,1),{n, 0] =n>2
va[a5+1 3 (1,1) {n,1) nx»1
Valgy+ 8 (2,1) (n,2),(n,1) n 2
v, 1 (1,0) {n,1),(n,0} m 1
Table T
The list of fields to be expanded into S0(3) harmonics
Tn this table the following definitions have been used:
t 1
h = -
es = Pag E’éua hYY (20a)
i i_ 1
Valagt] = s Ya TV 3 Cativd Talyse! (2cb)
L o110 i
Vo * T Mgy Vg . (20c)
L i i 1 t
v = Vo o- -5 + vl =+ = v
al8y+] "8y Yo T |CapVy ay'B T Cagys Vs Z “tyew alewt]
(204)
vh =0 - (20e)
alay+] ¢

The dimensionslity of an S0(5) representation defined by (nl,n ) is given by

2

. L1
G(nlsneJ =7 (nl+n2+2) (nl-n2+l)(2nl+3)(2n2+l) . {21a)

Similarly for the S0{L4) representation

d(ml,mE) = (ml+m 413 (ml-m2+l) . (21b)

2

For the mode decomposition on Sh we use the matrix elementes of

non

£0(5) in the basis (19). We denote them by Dplqg(byl) wnd assume the
.

following orthogonality relations:

HE :
g .

ey S futa AT

Ly
o
<<
"

{(21e)

where d(mrm2) is the dimensionality of the 30(4) representation denoted by

the index 1i.
) Pafe, -1 )
Dp (Ly) are the eigenfunctions of the

It can be shown that to

2
Laplacien Va

L (TN
Here Czlmz and CZIME are the second order Casimirs of $0{5) and S0(h4}
respectively. They are given by
C:l‘na = nl(nl+3) + n2(n2+l) ’ (21e)
Cmeg = ml(ml+2) + mg . {e1f)

The representation (ml,mzl is associated with the index p of Egq.(21d).
With these conventions vwe can now expand the fields in Table I in the basis

Mts, -1
of D 2 (L}r ). For further details see Ref.9.

Ds
—_— R h,0 N
fmab(mﬂ = PR ( \ld_cn.o] "Lu.ln(x]n\ -B-hﬂ (Lﬂ} {22a}
Ny o
)
g (T et 10 (3 0 B b D)
hop (1) = o \ Y 5 abedg Vgl 4 = e TR T o)
ﬂ
- ~ e Lo n I~
hu,l_u‘*) = Z ( id(n.o\ h(){}“ D"\(Lﬂ{\‘) (22¢c}
nxie
ﬁ e
t 7 —(l: AL L MY - F(m‘\ , nt LD':“ [y
hop 1) = T J‘l—q“‘} by Deaga (3 )[40 heg Decelly
g

dnd o, tD(q;n.J‘“‘) {224)
61




Va,f‘f-n - ( J_"l_“'_}i Vm.m;. D'T”-E’i]"ff‘i'f);

e

t

Vn«[?‘f-\](“ﬂ-—-z (J-J(ml} V MR (L:\“)
)

Gy Dagpeny iy
p

) v fooe
,+ AU‘ V(x\ Dﬁ I‘[“:-],ﬁ )

—_—

—— n ny . - "0 A
“Zﬂ ({-{if:‘ﬁu V(*]n' Dﬂ(,1 (L‘| ) + JA[:\‘U) V(\t)1 Dn(.c% (L'T)) (228)
5

Az is easily seen only three series of S0(5) modes enter these

Vu (1\1\

expansions, They are characterized by (n,0), (n,1) and (n,2). The mode
decomposition of the linearized equations wnich are obtained from the
substitution of Bgs.{22) into Egs.(18) will alsc be classifled into three
separate classes. In substituting the above expansions into Eqs.(18) one
has to employ all the relations (20), {21). Here we shall omit the details
and give the result after Fourier transformations to the p-space. We shall
also suppress the label gq, as it pleys no role in the spectrum. We also

separate the trace part of hab’ i.e.

t 1 t
B T Bap T F Map hcc 3 Bgg =0
Similarly for T °
¥ ab ”
(r,0) sector
Y . Y he 1 no

(\’+ ne f))\ﬂ-ah = T (23a)

O

—_—

(\’x_\. M) h::x . 1(‘1"1'.:'. fﬂi}’—)f\nu Jln(n+3) Vn;_'—f,:o
o [

{23b)
" -6 RN = e
(v's 1@3*_&_..% IEY(ULLER D (230)

~11=-

(Pa—r
ny
(r1+ h(mraz}—l]\/aL +___ {1(0“1 ntel) )ha. = Ta {24p)
a a

(p*

(v's

(v

.. i

T

i

{23d)

J tnilna) t\ +_.— fin(ny3) Tan,__, Tnd(23e)
J'i(’\-\“'ﬂ‘fl}:l

A
O-.
—r"" (23f)

(n-1) sector

nl L1
Jz(nq{ml)\/ S eyt

ane)+ L ) “
AR S N Lt
[N

a?—

. ny

m*_lli.)‘/"‘ G ohhe _ 2 {(1tacdiy) B o= 37 {ake)

ot ] 1a®

i n
*\(“"3\‘1) "" + L J (n+| r\+ﬂ - .z-. )“”““"‘*”') v, T e
k3 'l-
a CL
" ni ~ w

BATECAY S RO A | (e

q-"l. ﬂ/L 3

" r 0 nL
M) k = .%-—1: Kﬂ‘\'\‘“\“‘\' l) V - T {258a)

at a

10w
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(p* 202 WY 2 ) b o T
® a
{251}

In writing these equations we have used the harmoniec expansion of the gauge
conditions (17) to simplify some of the expressious. If we expand Bq.(17)}

we get

. Lone
Py kou. LIS N InL,L, _._.Lt’o L l“(“*) kﬁ\ = O {26a}
)

. noe } "o T
'L?o. hu - —%:' l}i (h=v)n) N _—*\_—L— ‘c\_l.'— nkn-\ﬂ( \“ *l"“) {26b)
L
¢h he - A m E™ =0 (26¢)

~ h
N Vo.m - _c\'_f \!%(nul}(’l\-l'l“ v ——}:— (nan}in42) Vo o0 (o6}

As a check on our calculations we have substituted from Egs.(23)-(25) into

the harmonic expansion of Egs.(16) end shown that they are satisfied by
virtue of Egs.(26). The harmonic expansion of Eq.(16) iz given by

N Lone . ne e
P (" P 4 l‘{. N U N j’“k“‘*‘s) Ta = O (27a}
i _ o :

ES——_ ) 7\6 - ~ na L
P —To:‘u - A ‘] _%;: [a-)lnaud T A —:‘_\-; nlard) TV L 3‘{%‘ J=0 {270}
o

my A nYy i
(P Tan\ b {eeitnat) T - 3”{7:_ J e 0 (57¢)
&
) - e T I, :; T e
' O PR _\(: ( Lo i M\ boo- {(n+ 1)t

Now we can solve Egs.(23)-(25). The results are as follows:

{n,0) sector

p ne _T: wa

#n’mo T b N {28a)

e & "M,

wo (P’- h‘H ) [ (P"+’“H5‘)jh° _ clﬁ. J_\T (w1 {nan) T l
v o ‘ —

("5 “? AN )(\’ +'°ﬂ )

I'z.v\(nﬂ (\’l "°ﬂ ) ( .T&:u - JI :r:‘:)

+
(o™l ) (p 4™ (e ny)
(28b)
[E no
W T« ey
o __
(?14—“*’\1:) {28c}
AT A T AT A
- x 8
(? mM") (284)
ne T \lv'_:,{ﬁ—-\“w\%l-*) VA

h = > (28e)
(pmam™mag )

{281)




*
o
MD - v\(h-\-i}
o {2%a}
A wlnx3})- 6
Y o (29b)
19
h“Ml niny 3}t - Jlnlh-\}\-\-\
o - — (29¢)
a
ho M * \r\(h-\?:) 1 4 Imh\vx—n) X\
3 - (294)
[}
““'ML ninyd) 41 (29e)
o
wm, T -1
M. nin+l) {291)
L
We notice that for n = 1,{nQMl)2 = -‘% corresponds to a tachyonic mass.

a
This could be & sign of instability, We shall show however that the residue

at the simple pole 92 = no@ vanishes for all n. Thus this pole is a
gauge artifact and has no physical significance.

We shall show thst there are alsc several massless poles
corresponding to n = 0. However except for graviton the rest are illusory

and non-physical.

f{n,1) sector

In this sector there is a massless spin-1 pole at n = 1. It is
convenient to handle these modes separately. We choose a Lorentz frame
in which
p, = (Bya0.0,p,)

2

Then the sclutiors are glven by

h wo (30m)

J
Vo o= C (30m})
¥ -
* 3
~ _‘i_\\ {30¢)
L 2
Y 4=
a w PR W 3 v
o WBamasaraaw
V(o 2) 304
* o
eyt ofi b o Je T
V"' (‘—k—;;)—da, - -;‘:.‘Tm - TTeE vy
[N {30e})

1 r 3
P (v +-;-1-)

For n » 1 we only have massive modes. They are described most conveniently

in the rest frame

r, = (pgs

nh "
o £ J’(“")(""’“) 37 5 (I’L-\-"M”TM--J% J_‘.(nn){nn] UM
b @ a” 3

= y y {31a}
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The spectrum of masses is given by
+
"M, = nbo+3) - 4 (32a)
at
S
m z
", = “(“*3);* {32B)
¢ 8
1 T
Ny nint 3) ~ (32¢)
3 at
Myt J {n™ o
ﬂ,f = nnx3)y (2004 3nay) (300)
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In this sector there are no tachyonic poles.

Finally we give the sclutions in the {n,?) sector

1 oninadiay nt
V“‘ (?—\-‘—"‘;T—)j "f‘: l(n-\-\)(n—xl) T
(e m) Cphemnd) (332)
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The masses are given by

22 _aln 1) , (3ka)
S 2
.
n2, 2 nf{n +5) + 6&
Moo= 2 . (34n)

For all n » 2 the masses are non tachyonic,.

Thus except for the n = 1 tachyonic pole in the (n,0) sector given
by Bq.(38t) all of the T are positive., In order to complete the proof of
stability we have to compute the residues at p2 = —M2 for all M2 and show
that all these residues are non-negative. The residue at the tachyonic pole

shounld vanish in order for the theory to be stable.

V. COMPUTATION OF THE RESIDUES AT p2 = -M?

In this section we shall present the result of the computation of the
residues of the poles of the propagators sandwiched between conserved sources.
Let us start with (n,D) sector. In this sector there is a massless pole at
n=0. It is convenient to start from Eqs,(23) for n = 0 and solve tiwe

The resuwit is given by
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Ba = 2 2h (35¢)

¥or the massles pole at pE =0

RO = lim p h T

Q0 : l tOO DD
5 ab aa ~ac
p 0

*
+ 5000 %8 } (36)
If we choose & Lorentz frame in which

Ty ® (0gsCs0,05) by =Py - (37)

Then the conservation laws {27a) yield

TOO = T30 + E-Taa (38a)
t - t 1 38b
Tz T T3 * T Taa (380)
t t (38e)
TOr = TSr

With the help of these identities one can compute the right~hand side of
(36). This result is

2 2
00 _ 1 |n00 00 00 3
By =3 |Tqp - Top| * ‘Tle . (39}

This is clearly positive and it corresponds to the two degrees of freedom

of a graviton which is a singlet of S0(5).

One can similarly show that the residue at p2 = - 25- is given by
a
» * *
R = lm (p2+_2){'§ Boa Top * %hT}
(p2+-§—)+0
a2
i 1= 2
6% 2T - (ko)
~]9-

L . _h.mmmz

G T Wi A ()

i

-qv*m nltcu-n et A, el aln <. e R prit AT

How let us consider the rest of the medes in the (n,0) sector. We

can assume 1 # 0. There are six simple poles as listed in Eq.{29). We must
compute the following six residues:
»
t wo i ne
. T 1 \ ‘T
?L = \m (P ﬁ‘“onl' ) i—i‘ \L&b —T“’ \\f.\ﬁ; oo
t |
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Here i =0,1,...,5 and nDMi are given by Bqs.(29). After a tedious
caleulation and numerous applications of the conservation laws {27) we

obtain the following result:
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It is interesting to note that the only propagating massive modes
o
with (mass)® = “°M§ ave spin-2. Although the vector field .~ exhibits
this pele it does not contribute to the residue. BSimilarly the contributions

of nDM';',_, noMf and nOM2 are all zero. We recsll that the tachyonic pole

5
was ab noMi = - —-S— . Therefore its residue is also zero and it is not
a

relevant for the stability of our background solution.

{n,1} sector
Now we consider the (n,l) sector. In this sector we have to compute

the following residues;

Rim b 4T W

P (¥3)

Here also it is convenient to analyze the massiess states corresponding to

n = 1 separately. Feor thcse states we have te consider

" * *z

2 o J ANCE R

E o= iimp {h‘l 1"1‘ + 0 (- Lb]
eI a a a a

ol

- a \F;Ln L)

It is again convenient to choose a frame such that

By = (2a0,005) Pp =Py -

Then the conservation laws {27c) and (27d) become
Ty - Ty = ERN G Iy - (45}

Withthe help of (k5) and (30} one can show that the value of (4k) is
given by

2 2
_ 1 10 10 1 190 no
R=g |7y - /3 Iy l Ay |T2 - ./3‘J2 . (L&)

This residue corresponds to the two degrees of freedom of a massless spin-l
field belonging to the 10-dimensional (adjoint) representation of S0(5).
These are the S0(5) gauge fields resulting from compactification. As is
seen clearly from Eq.{46) they consist of well defined linear mixtures of
the perturbations of the metric as well as the instanton. This confirms

our previcus result in 6 dimensions,

Now we consider the massive modes for which we choose the rest

frame

= ¢
By \pG,E))

Again with the help of the conservation laws (PTc), (27d) and (31) and (32}
we can evaluste the wvalue of {43). After a very long and a very tedious

calculation one obtains the following gratifying result:

R=o=% (47a)
" ny +
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Thus all the non-vanishing residues are manifestly positive. Note that the 0(5) ~ Rep. MAsS oPIN
only physieally propagating spin-zerc mess is nl M2 . We also note that
R), @nd RS indicate the propagation of massive spin-1 particles belonging 0. o ( 3)
: n{n +
to the representation {n,l) of 80{s). (n,0) n>a i MO =TT 2
a
{n,2) sector Moy 2 _nln +3) +1 - /on(n+3) %1 0
2 2
Finally we compute the residues for the {n,2) sector. Here we have &
to substitute from Eq.(33) into 0y 2 nln +3) 41+ Von(n+3)+1 o
- ]
3 8
n2 2 22 2 2* 2 *
By = um (P .m0 s v ) 3o, ()
2 2 _n{n+3}+2
(P ) R .
no, 2 . . .
where Mi) , 1=1,2 are given by (34}, The results are
n1M2_n(n+3)+l’2(n2+3n+1&) 1
LT 2
o a
R‘{E = 511+—3 o+ e 3% o /n el T2 (%9a) ' SiZ s — o
: nly 2 _nin + 3) - 72(n” + 3n + b) 1
5 - a®
2
n2 _ 1 Ty on2 n2
B =3 |l 7 vz (hgb)
(n,2) n>2 2y 2 _ nin + 1) 0
’ 1 2
a
We conclude that there is no ghost in the (n,2 tor.
g n the (n,2) sec n2M2=n(n+5)+6 .
Thus our vacuum solution is stable under small perturbations., As 2 a.2
the result of these computations we can list the masses of the physical

states in the following table:

Table I

The list of all propesgating messive modes. The massless graviton in the
(n,0)-sector with n =0 and the ten massless S0(5) Yang-Mills spin-1
particles in the {n,1)-sector with n = 1 are not contained ir this

table.
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veoproved Shot She solulion fiu,i0d o0 tie counled

R VI

EBinstein-Yanp-Mills equations in 8 dimensionzs 1z classicaily shable. Therefors
fore this solullicon is u ressonable candidate for the ground state of the eight-
dimensional theory. it Jdescribes the spontaneous compactificatiocn of “ie eight-

)
dirensional manifald into WM x 3

Due to the non-trivial topology of the varicusvector bundles associated
with the instanton bundle over 3 we had anticipated the stability of our

1)

solution earlier . and apalyzed the zero mode patterns of an eight-
dimensional Dirac ouperator acting on an 8 component spiner of 50(1,7). It
wag shown that if this splnor belongs to a 2%+l dimensional representation
of 5U(2) then in Mh there will be an 80{5) multiplet of left-handed {Weyl)
fermions. These massless (Weyl) fermions transform according to a real

representaiion of Keluza S0{5} gauge group.

How the fermionic Lagrangian possesses an additional glebal U{1)
symmetry.relativs to which these massless Termions transform in a complex
representation. We could have gmuged this glabal U{1) by introducing ths
appropriate Maxwell field. Our four-dimensional massless fermions would then

have transformed according to a complex representution of such a local
#

gauge symmetry. We have chosen not to gauge this 13{1], ) since the resulting

- - ; L e

theory would exhibit axial ancmalies. 2)

It in worth mentioning that the spectran of small oscillabions around

the vacuum sclutlon exhitits a number of mé

Lo~ among Lhoem ong
spin-zero tachycn., The tachyonic mode, as wsil as z number of other massive
modes, do not appear In the on-shell Born amplitude aud we therefore conclude

that these are gauge artifacts.

Az far as the stability fest is concerncd there is s5till the cubatanding
problem of {inding a more cfficient tecimique - szomething analogous ©o the
positive energy theorem of the fourwdimensional genersl relativiiy - which
would avoid the tedicus process of harmonic expansion and guarantoe
positivity, not just for small amplitude oselillations. Gauged susergravity
may provide such positivity, but apparently not when the cosmological constant

is zero.

¥} The analogy of this global U{1l) is with the {B-L) symmetry which is
present in a grand unified minimal SU(5) model and which within that mecdel

is not gauged.
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ADDENDUM

STABILITY OF INSTANTON INDUCED COMPACTIFICATION IN S-DIMENSIONS

3. Randjbar-Daemi, Abdus Salam and J. Strathdcec

We have investigated the stability of small oscillations around the

7 and Mh % 53 x Sh for the case of 4 = 11

vacuum solutions Mh x B
supergravity thecry where Mh is Minkowski space. These sclutions
apparently 4o exist when supersymmetry Is explicitly broken by the addition
of a cosmological term to the d = 11 supergravity Lagrangian. To our
surprise, for both the cases we have investigated, there exist tachyons

in the spectrum, signalling instebhility.

The boscnic field equations of 1ll-dimensional supergravity, modified

by the addition of a (supersymmetry-bresking) cosmological term are given

in an orthonormal basis by

R -z (R +<®2) = 52— 7 (1)
AB Z "ap =T 27 "aB
v.F + K E F F =0 »
A AB1B233 Bl...Bll Bh"'BT B8"'Bll
where the stress energy tensor is given by
1 1 2
Txp "% Fac o Tacoe, TE M) - (2)

17273 17273

In these equations the indices A,B,... take the values 0,1,...,11. The
cosmologicel constant, A , breaks supersymmetry explicitly.

Assuming that the vacuum geometry is Mh X ST, to be obtained by

solving (1), (2) with

Rgp =0 a=0,1,2,3
R, =-%5 af =5 1 3)
aB 2 Tap s IRERE]
a
and
Fanep * © @5 5,000
Fabea = T Fabed a,b, = 0,1,2,3 . (L)

~1-

The equations of motion reduce Lo Lhe relations

ve3 o= B8 (s)

where & denotes the radius of the T-sphere. Observe that the field strength
parameter, £, which appeared in the Freund-Rublin solution as ar undetermined

consLant of integration, is now related to the cosmological parameter, i (> 0},

To see the tachyons, consider the bilinear part of the btosonic sector

(where h and V indicate the perturbations of grn and A

LB ABC ARG
respectively, RABCD and FABCD are given by the background solutions
Egs.{3.5)):

2 ¢ 3
k- 1 1 .2 1.2
- - e 1 L _iy
se(h,v) J‘d "{L lK2R+A+h8FJ(hABhAB 5 ) o+
L h +h _h,. R
= |- +
* 3 [ achse Ras * PPan Fap * Pas"en Faced
1 1 1 1 1
-5 = = -z -%mn, h
F Pam Papec ¥ 8 Ro Bee 2 Bas - 5 aphn (e - 3 g
2
_%FAA aaTmaaa, (Bachpe - %h“AB)'E_ hyalen Faca a, Tzoa s
1 1Aphg BhyAyA, 1% 14
+2¢n_F VoV L nr v, V
- A A
3 AB AAlAQAB (B AIAEAB] 12 Apeedy A Azgh
‘%V[ VAAA]V[ VAAA]
A 273 h Ay AxRqaRy
+ —= v v

¥
[N res veddl
A2 Ah A A, A

v
(12)3 eAl"‘All A 5 g8 Totttil

1 L 6
+ETABhAB+3:JA.BcVABc} ’ (6)

where h = nABh and FAl"' + cyel.

AB

permutations. All tensors are referred 1o an orthonormal basis of Mh x ET’

A = Vv, A
A, [Al AE...Ah] A Ageeihy
relative to which n,. = diag{-1,+1,...,+1). Also Bypo © Voh,g, ete.

In order for Sg(h,V) to be invarisnt under the linearized gauge

transformations

1
Shyp =5 (%ap* ¥na)

LA & ABC = -ACB arbitrary

8Ysnc = Viatrel ~ Famep fp

oo




the scurces must be constrained to satisfy

K 2 afn 6) # 8 + LaB3n(n+6) + &
T = = F J -p = M2 =
AB-B = & TABCD “BCD L™ 2 (8)
2 n{n+6)
v = . - = e .
¢ azc ” © P 2 (9)
a
Glven a solution of the form Mh * GlH to the background field As is easily checked, for the spin-zero poles exhibited above, M~ dis tachyonie
equations we can expend the fields hAB and VABC MtS nerzal modes on for n = 1,2,3 and its contribution to the interaction energy %hAB TAB is
GiH and evaluateTthe spectrum of tl;e physical masses M . For the twe non-vanishing.
cases of G|H = 8' and G|H = 8§ x 8°, we exhibit below only those equations L N
5 2 x ide .
which give rise to tachyonic (masseS)E. First consider the solution G|H = ST. The enalogous equations for 3 5 are considersbly more cumbersome

In this case the fields have t¢ be expanded into harmonics of O(8). Each Here again we give only the relevant sector of the spin-O equations in the

i i : = 0
compenent field will carry four 0O(8) labels (nl""’nh) and the sector in representation of the 0(5) x 0(4) characterized by (nl’n2’ml ’m2) (nl,O,ml, ),

question is characterized by (nl""‘nh) = (n,0,0,0). The spin zero parts where (nl,nz) and (ml,mz) indicate the irreducible 0(5) and O(4) representations,

of the field equstions in this sector are given by respectively. Now we adopt the gauge condition VAVABC = @ instead of
vavaAB = 0. The relevant equations are:
2 n(n+6)-12]' 2 n(n+6)+12 )
p o+ === [h +h )+ |p°+ ===l h  +2fipV -2 =0 2 2 2.2 2 2.2 . _
[ 22 ( 00 vy a2 94 a a 00 (p° + M5 -~ «°£9) (hDO t Rt hu,u,)+ (p= + ¥+ °10) hy; = 2ekipgVy - 21, =
2 . n{ntbi+12 2 n{n+b)+36 2 nins6)-12 2,2 2.2 2,2 2.2 2,2 262y (n o+ )
3ip +——--§--—-- hOG_p+__-.é._ hii—3p +—-—2—_ 3{(p° + +Kf)h00--(p+ +3K‘f)hii—3(p+ -k T (mu hu|u|+
a a a
h - 6kEip V. -2 7T,, =0 befipVy - 6Ty = ©
Y aa i1
2 M2 2.2 . _
« k") (<2h,. + h__ + 2h + 2h,.) + bekip V. + T =0
2 _ n{n+6}-12 : _ (p” + * 00 ac ato’ ii 00 oo
[p + 5 (-Thoo _ Ty + BhW) - Lukfip vV + 2 Tw =0
& 2 2 2
(p° + M5 = «%%) (w3ny + 30 + b, + 3n,) 4 BkEip V- 20, , = O
2 pln+6}-12 <r 00 1] a'a ii 0 a'ta
p+——-L—h-—-—'v(n)V-T=O
2 Q a 1 ] 0 o 5
_ 8 () (p° + M7} Vg =~ kfipjh,, ~ J = 0. (10)
nin+ N
+ =i ¥ kfip b, = =
PoPe'a 7 Vg T KTipghyy = Iy = 0
( 8 T.e notation is as before except that ¢ = 1,...,4 on 8 end a' = 1,...,3
,lPE * P“(m-gﬁ] h=T . (1) on 8° . M is an abbreviation for
a -
Ao mmE) |, oas) (1)
In writing the above we have chosen a Leorentz frame P, = (po,g) and the a’ a
ps = = =
gauge conditions VA(hAB - nABh) =0 VGVQAB 0, vhere a = 0,1,2,3 and where & and a' are the radil of Sl. and 53 respectively, which by virtue

G = 5,...,11. The field Va ia
dimensional {spatisl) trace of h

1
) o _ ) 22
Z €aved’peg ¥Pile hgy  Is the three of the background equations are now related to k' £

= (\Jl(n) are constants which we shall
i

2 2
not write out in detail.) 1 _ ok r2 1 _ 1
- % Tz T % . (12)
1
It can be shown that the solution of these equations exhibitsthe & a
fellowing propagating poles in the p2 plane!
-3- =h.
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Propagating tachyons with 0{5) x O{4) quantum numbers (n,m) = (1,0),
{0,1) and (1,1) are found. Their masses are given by

2

a at a’ 9

v = m£m+§)+ n(n;-B) . %KEfZ’ - oer /m(mz) +n(n;3)+ K2t
- o
(13)

where the radii are given by (12).

The existence of tachyona in the S-r solution was confirmed by

E. Sezgin for which we express appreciation.
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