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Abstract

We consider the 8-dimensional Einstein-SU(2) Yang-Mills system

when the Yang-Mills system assumes a 1-instanton configuration on an

internal S, with the vacuum solution possessing the geometry of

M. x S. and the invariance group P^Foincare) x S0(5). We demonstrate

the classical s tabi l i ty of the solution by computing the spectrum

of the physical states and showing the absence of ghosts and tachyons

amongst them. We also discuss the possibili ty of obtaining S0(5)

multiplets of massless fermions.





I. INTRODUCTION

• . ' ) ! v..-..1 '••', • - m-.. v, r •

fcur—-iiraeissionu"] Minkov'-.'r.i. ;;u!t< ctfinctes K-.!in,;nE Lonrd

manifold, i-fore generallys there tiiiv arise four-dimensional anti-de ,,Ler
k

space instead of M . b'ince obnervationally the cosmological constant
L

is nearly zero, to be at all realistic: the four-dimensional factor X

would have to bo flat when compared to the K-dimensional "internal" space.

Among the eases where compactificatioii can occur, little is known

about their stability. To our knowledge only three cases have been analyzed:
2) -3)

pure gravity in cj dimensions , Einstein-Maxwell theory in 6 dimensions

and M = 1 supGrgravity in 11 dimensions . We are therefore encouraged

to examine one moru case: gravity coupled to SU(2) Yang-Mills fields in 8-

dimensions.

Tt has long been realized that topological considerations are central

to the question of stability. For this reason models which couple gravity

to gauge fields are particularly favoured. If the vacuum gauge field assumes

a topologically non-trivial configuration with respect to the internal space

then one might expect this vacuum to be stable. The solution by Korvath et al.

to the six-dimensional Einstein-Maxwell system was prompted by this idea .

The Maxwell field in this case takes the fonm of a magnetic aonopole on the

internal 2-sphere. More recently it was verified that the solution Is indeed

stable - against small fluctuations at least . To prove its stability

against vacuum tunneling phenomena one would need something akin to a

"positive energy theorem" but this remains to be discovered

*) A supersymmetric ground state is necessarily stable owing to the structure

of the superalgebrs which implies non-negative energies. Unfortunately, in all

known cases the ground state geometry takes the form AdK * B where the anti-

de Sitter and internal, curvatures are of comparable magnitude. This precludes

the identification in any meaningful, way of a low energy sector.

**) The importance of the topological criterion is fortified by the examples

of instability which arise when it is not met. The five-dimensional pure gravity
2)

solution of Kaluza, although classical? stable, succumbs to vscuum tunneling
h 2

The ^ix-dimensional Einatein-Iang-Hills compactirication on M " B is not even
2

classically stable since the possible Yang-Mills configurations on S are
6)

necessarily trivial

Mi.1.: E r;y:iten. Trie vacuum, solution to uu analyzed hero has the ge.-ometry of

i' y S4 a:'.;] the Yang-Mil Is field assumes the l-instanton ronficuration on

ire internal It-sphere. The invariance group of this vacuum is P(M * S0(5)

where P(M , the four-dimensional Poincare group arts on M find S0(5), the
1,

five-dimensional orthogonal group acts on S .

The non-vanishing second Chern class of the instanton ensures the non-
1,

triviality of the vector bundles over S on which the instanton acts as a

connection form. We therefore expect the proposed vacuum solution to be at

least classically stable. In the following sections this vill be established.

Our method for proving the classical stability of the vacuum solution

is to compute the spectrum of physical states ~ those which couple to

appropriately conserved (on-shell) currents - and show that this spectrum

contains no tachyons or negative-metric states. We do this by linearizing the

field equations on the vacuum solution and evaluating the propagator in a

chosen gauge. Each pole which persists when the propagator is sandwiched

between conserved currents corresponds to a physical state and its metric

is determined by the sign of the residue. In this way it is found that the

spectrum includes the helicity ±2 graviton, ten helicity ±1 massless states

corresponding to the S0(5) Yang-Mill- symmetry of the vacuum, and several

towers of massive states with spins 0, 1 and 2.

In Sec,II we discuss the vacuum solution and its symmetries. We then

derive the linear equations for fluctuations on this background. Sec.Ill is

devoted to the solution of the linear problem. This involves defining harmonic

expansions for the fluctuations on S and, at this point, a good deal of

kinematic discussion is unavoidable. The solutions are classified into

irreducible pieces with respect to the vacuum symmetry P(!i) x 0(5) and, in

each piece a number of poles are identified. To distinguish those poles

which correspond to physical states we sandwich the propagator between conserved

source currents. This is done in Sec.IV. finally, in Sec.V the results

are discussed and the outlook considered.
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2
where K is the four-dimensional Kevtonian coupling constant. S describes

the interaction of gravity with an SU(2) gauge field ? in eight-dimensions.

X is an eight-dimensional cosmological constant .

The field equatioas following from (1) are

(2a)

T
AB nAB F CD ( 2 c )

The lat in indices A,B,C refer to the orthononoal frames in the eight-

dimensional manifold and .A signifies a covariant derivative with respect

to both Riemantiian as well as the Yang-Mills connections.

We shall look for solutions of (2) such that

and

R = 0aA

F a A = °

a » 0 , 1 , 2 , 3 , A = O . . . 3 . 5 . . . E

By substituting this into Eq.(2a) we get

(3)

R - i_
AB " " 2

FAC

*)
Si

RLMH

n ^ = C-1,+1,... ,+l). The Riemann tensor is defined such that

K
FLM ' and the Eicci tensor is R „ = R • ,

LM LMK
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ansatz for the SU(2) gauge potential A = A ,(x,y) dzf'" is also P, x S0(5)

inv^"iant then our problem has a unique solution. This is given by A = 0 ,

a = 0,1,2,3, with A (x,y), ]i = 5,...,S describing a single instanton on S, .

To exhibit the S0(5) invariance (up to a local SU(2) gauge trans-

formation) as well as the uniqueness let us consider the intrinsic (projective)

co-ordinates y , on S. defined by

u5(y)

= 5,.-.,8 (5a)

(5b)

2 , 1.2
where y = (y ) + VI VI 5 5 = 2 Here H+ (y ) and u u + u u =

and b is an arbitrary const. The co-ordinate functions yr on ui

associate with any point of Ŝ  a unique point in 1R . However they do not

cover S. fully, The south pole, i . e . {v^ = 0, u = - a ) on Ŝ  should be con-

tained in a different co-ordinate patch. (This point would have corresponded
2 ^

to y •* •» irrespective of the direction of approach to co in (R . There-

fore i t cannot be put in correspondence with a unique point of (R .) Let

U denote the domain of definition of the co-ordinate functions y , and

consider the local section L : U •+ S0(5) defined by

L(y) = (6)

L(y) is clearly a 5 x 5 orthogonal matrix. We may construct the matrix of

the 1-forms L-1(y) dL(y). This is a 5 * 5 antisymmetric matrix which may

be decomposed into any convenient basis of the Lie algebra of S0(5). We

choose a basis fo () J a, B , . . . , 1 , ...,h, such that {Q } constitute

a basis of the 0(1*) algebra generating the isotropy subgroup SOCt) in

S. = ;?f . Then we may write

L (y) dL = r - e Q + - A Q •> (7a)

-It-



where

a£ 1 , a 3 j aA = ~ (y e - y e )

(7b)

(7c)

The [ag] are antisymmetric Old) indices. Projecting out the self dual

part of A yields the instanton, i.e.

I ̂
(8)

where g is the SU(2) coupling constant and are the 't Hooft symbols

The A1 defined by Eq.{8) is an instanton of "size" b on an S,

of radius a. The S0(5) invariant metric on this sphere can itself be con-

structed from (7b). As is clear from (7b), the coefficients e a of dyH

given by

.2 2
b + y

are non-singular k x h matrices everywhere on U . Therefore e (y) can be

regarded as a basis of the cotangent space of U at the point y. Now the

30(5) invariant metric of

orthonormal, i.e.

B,JV) =

is clearly the one relative to which e™ are

(b2
uv

(9b)

l?his way of constructing the instanton links it intimately with the

structure of S, . It makes its £0(5) inva-riance manifest nnd consequently

simplifies the problem of mode decomposition (of. Sec,III). Tc summarize

our ansatz for the solution of Eqs.(£a) and (2b) consists of

2 0 r
- •

± V.i_.:-^

5

1,'-. ':̂

The substitution of this ansatz into Eqs.(2a) and (2b) - or equivalently

into Eq.CO reduces these equations into the following algebraic relations

between K, a, g and X •'

ga
6 = X

(lla)

(lib)

Notice that this solution is independent, of the instanton scale parameter b.

III. FLUCTUATIOHS AND GAUGE FIXIHG

To define the low-energy four-dimensional theory we have to study

the spectrum of the small perturbations around the configuration (10). For

this , we write an arbitrary metric g^.(x,y) of the eight-dimensional

spac e-t. ime as

(12a)

where g are the metrical components defined by (10a) and

are the small perturbations which depend - in a completely arbitrary but

continuous way - on the all eight co-ordinates (x ,y ). We similarly write

M = 0,...,8, i = 1,2,3 (12b)

where <̂ A?, *? should be read off Eq.(lOb) and Y^ are the perturbations.

The next step is to substitute (12a) and (12b) into Eq.(l) and expand it in

a power series of h and V. This yields

,-,' V?

AB



All the tensorial indices in Eq.(13) refer to an orthonormal frame

of M, x S^ , and VA is a covariant derivative containing both the Riemannian

connection W^ or M^ x S^ and the Yang-Kill connection given by (10b),

To study the stability of the configuration (10) one must study the response

of the system to some external physical disturbances. This is done most

conveniently by coupling the perturbations h and V to appropriate sources

T and J., respectively. Thus S should be replaced by

(HO

The source term is required to respect the symmetries of S . Thus, since

S- is invariant under the following local gauge transformations:

<5h
AB

where E.(x,y) and &(x,y) are erMtrary, we must have

AB-B

(15a)

(16a)

We choose to fix the gauge by imposing the conditions

VA-A = °

(17a)

(17b)

The equations of motion then take the form

7C hAB " F nAB VC hDD + (HBC hAC + RAC

(18a)

J.c

• F="7T

Eqs.(lT) and (18) should be solved for and in terms of T and

IV. SOLUTION OF THE LINEARIZED EQUATIONS

Eq.. (18) are a set of linear inhomoganeous partial differential

equations. To solve them one has to look for a complete set of basis

functions which can be used to expand h,^ and V. . In our case this set

should be chosen to be the eigenfunctions of an appropriately defined

Laplacian. Such a Laplacian must be an invariant operator of the symmetry

group of the background fields. For our problem this group is Pi x S0(5).
4 2

Since the manifold is a product Mi x S. , therefore the Laplace operator v
2 2 2 2

will also decompose into V +? , where V = 3 is the usual P, in-* „ a a ' a a It
variant Laplacian and 7 is an SO(H) invariant operator on S, .

In the formalism of Gel'fand and Zetlin an irreducible unitary

representation of the group S0(5) is characterised by two numbers (n ,n )

•both integers or half an odd integer. Then for a given value of (n ,n?)

the basis vectors of the representation space are written as

3 >.m2 (19)

where (m ,m ) characterize the SO (10 content of the given S0(5) representation.

Similarly j and X specify the S0(3) and the U(l) contents, respectively.

How we can follow the prescriptions for harmonic expansion discussed

in detail in Ref.9. The first step is to decompose the fields in E'

components, i.e.into their Mi *

"AB {hab'
a = 0,1,2,3
a = 5,6,7,8

rc:.id owt'U runges

!>." Vn,? I t i . i i - t s i ! ' into '.,he i r r educ ib l e renresen-

'V i m.. ,rr..*. Hrc,< x:\cz^ values ol' (m ,iri ) ve c;in

<jt' (n. ,ri^l for each f ie l i i . We give t:.e r e su l t s



n. ,mo) U'., ::i. )

Va[aB+J

V

(1,0) (risl),(n,0)

(0,0) (n,0)

(2.0) (n,2),(n,l),

(1.1) (n,l)

(2,1) Cn,2),(n,l)

(1,0) {n,l),(n,0)

Tabl_e I

The list of fields to be expanded into S0(5) harmonics

In this table the following definitions have "been used:

" k \ Y

n > 1

n > 0

n >. 2

n > 1

n >, 2

m >. 1

= 0

(2Oa)

(20b)

(20c)

(20d)

(20e)

The dimensionality of an 30(5) representation defined by (n ,n ) is given by,n )

d(n1>n2)

Similarly for the SOd) representation

(21a)

^+m +1) (m -m^+l) " (21b)

For the mode decomposition on S. we use the matrix elements of
n n _,

S0(5) in the basis (19). tfe denote them by D ! 2 ( L 7 ) n.nd assume the

following orthogonality relat ions:

(21c)

where ddnjn ) is the dimensionality of the S0(M representation denoted by

the index i.

It can be shown that D 1 2{L') are the eigenfunctions of the
p,q v

Laplacian

_ C;
(21d)

Here C 1 2 and C p are the second order Gasimirs of S0{5) and SO(U)

respectively. They are given by

n£(n2+l)

m ja

(21e)

(21f)

The representation (a^^) is associated with the index p of Eq. (21d).

With these conventions ^e can no>r expand the fields in Table I in the basis
n, n. ,

of D (L ). For further details see Hef.9.
p.q y

(22a)

(22c)

-10-



(22e)
(23d)

. -r

(23e)

(23f)

As , is easily seen only tliree series of 50(5) modes enter these

expansions. They are characterized by (n,0), (n,l) and (n,2). The mode

decomposition of the linearized equations vhich are obtained from the

substitution ofEqs.(22) intoEqs.(l8) will also be classified into three

separate classes. In substituting the above expansions into Eqa.(l8) one

has to employ all the relations (20), (Si). Here we shall omit the details

and give the result after Fourier transformations to the p-space. We shall

also suppress the label <i, as it plays no role In the spectrum. We also

separate the trace part of h . , i.e.

ab
h , - f n
ab k

h
ab cc

h* = 0
aa

Similarly for T
ab

(n,0) sector

(23a)

(23b)

(23c)

(n-1) sector

(2lta)

* 1

(n,2) sector

(2ltd)

(She)

V (25a)

- 1 1 -
- 1 2 -

• J^.a. .:,b...,«» * • I . . » • * •!» ' U1
* •



(251=)

In writing these equations we have used the harmonic expansion of the gauge

conditions (17) to simplify some of the expressions. If we expand Eq.(17)

we get

h° •= O

"I (26b)

CK , *\ (26c)

As a check on our calculations we have substituted from Eqs.(23)-(25) into

the harmonic expansion of Eqs.(l6) and shovn that they are satisfied by-

virtue of Eqs.(26). The harmonic expansion of Eq.dfi) is given by

la = O (27a)

= 0

(27c)

ffow we can solve Eq.s. (23)-(£5). The results are as follows:

(n,O) sector

(28a)

s-̂ n (

(28b)

(28c)

(28d)

T"* ^ -ij-
(28e)

1V=

(28f)



K =

^

'"M,

-V\

(29a)

(29b)

(29c)

(29d)

(29e)

(29f)

¥e notice that for n = l . t " ^ ) 2 = ^ corresponds to a tachyonic mass.
a

This could be a sign of instability. We shall show however that the residue

at the simple pole p 2 = ° ° ^ vanishes for all n. Thus this pole is a

gauge artifact and has no physical significance.

/ « _Z.

)

(30a)

(30b)

(30c)

(30d)

(30e)

For n > 1 we only have massive modes. They are described most conveniently

in the rest frame

Pa = (Po» 0.)

(31.)

We shall ahow that there are also several massless poles

corresponding to n = 0. However except for graviton the rest are illusory

and non-physical.

(n,l) sector

In this sector there is a massless spin-1 pole at n = 1. It is

convenient to handle these modes separately. We choose a Lorentz frame

in which

p a = Cpo,c,o,P,)

Then the solutions are giTen by

..M
V

S<x.

(31b)



t-\,:

U -us

(31c)

Old)

v: -i!i

In this sector there are no tachyonic poles.

Finally we give the solutions in the (n,2) sector

The masses are given by

T
(33a

(33b)

(31e)
n(n + 5) + 6

The spectrum of masses is given by

-V

(32a)

(3£b)

(32c)

(32d)

For all n >, 2 the masses are non tachyonic.

Thus except for the n = 1 tachyonic pole in the (n,0) sector given

by Eq..(38b) all of the Nr are positive. In order to complete the proof of

stability we have to compute the residues at p = -M for all JT and show

that all these residues are non-negative. The residue at the tachyonic pole

should vanish in order for the theory to be stable.

V. COMPUTATION OF THE RESIDUES AT p 2

In this section we shall present the result of the computation of the

residues of the poles of the propagators sandwiched between conserved sources.

Let us start with (n,0) sector. In this sector there is a massless pole at

n = 0. It is convenient to start, from Bq.s,(23) for n = 0 and solv*

The result is given by

-17- -18-



. 0 0
aa

2
3

- j

aa

P

aa
?

+ 2
2a
~00

- h

for the massles pole at p =0

«°°- + i h O O T ° o ! < l .o aa ac f

If we choose a Lorentz frame in which

•pa • (po,0,O,p3)

Then the conservation laws (STa) yield

00 ~ 30 ¥ aa

03 33 + ¥ aa

(35b)

(35c)

(36}

(37)

(38a)

(38b)

(38c)
Or X3r

With the help of these identities one can compute the right-hand side of

(36). This result is

C -t 00
11

(39)

This is clearly positive and it corresponds to the two degrees of freedom

of a graviton which is a singlet of S0(5).

2 2One can similarly show that the residue at p = - —^ is given by

H =

IIuw let us consider the rast of the modes in the (r.,0) sector. We

can assume n f 0. There are six simple poles as listed in Eq.(29). We must

compube the following six residues:

V mo *

<!*})

Here i = 0,1 5 and n°M? are given by Eqs.(29). After a tedious

calculation and numerous applications of the conservation laws (£7) we

obtain the following result:

K0 = 1 Tij 3 ij kk i,J = 1,2,3

f\ (r^Vn:.

Similarly

-30-

-19-



V* \
tl (--

4, \
a1

» ft \

where

TT C^+V)-
/,"*•«

(l*2f)

It is interesting to note that the only propagating massive modes

with (massp = n°M 0 are spiri-2. Although the vector field h n o exhibits

this pole it does not contribute to the residue. Similarly the contributions

of °MT, M£ and M are all zero. We recall that the tachyonic pole

was at M = - — . Therefore its residue is also zero and it is not
1 fid

relevant for the stability of our background solution.

(n,I) sector

Mow we consider the (n,l) sector. In this sector we have to compute

the.1 following residues;

Kere also it is convenient to f_-ULaiyse the rariosie-Es states corresponding to

n = 1 separately. For tricue 5T,ate;; we- have v.o consider

fh10 10*
I a a

It is again convenient to choose a frame such that,

p a= (PO,O,O,P3) P O = P 3 .

Then the conservation laws (27c) and (27d)

T0 " T 3
 = (Jo - J3) •

Withthe help of (1*5> and (30) one can show that the value of (W) is

given by

R = 10 10 (1*6)

This residue corresponds to the two degrees of freedom of a massless spin-1

field belonging to the 10-dlraensional (adjoint) representation of S0(5).

These are the S0(5) gauge fields resulting from compactification. As is

seen clearly from Eq.{l*6) they consist of well defined linear mixtures of

the perturbations of the metric as well as the instanton. This confirms

our previous result in 6 dimensions.

Now we consider the massive modes for which we choose the rest

frame

Again with the help of the conservation laws (E7c), (27d) and (31) and (32)

we can evaluate the value of (^3). After a very long and a very tedious

calculation one obtains the following gratifying result:

l*7b)

P = =

(l*7d)

-f 1!-



Thus all the non-vanishing residues are manifestly positive, tfote that the

only physically propagating spin-zero mass is n lH . We also note that

5^ and H indicate the propagation of massive spin-1 particles belonging

to the representation (n,l) of S0(5).

(n,2) sector

Finally we compute the residues for the (n,2) sector. Here we have

to substitute from Eq.(33) into

lim (P

(P 2
+ Mf 2)

1,2 , (1,8)

where ( M )̂ , i = 1,2 are given by (3s*). The r e s u l t s a re

R l " 2n + 3 T n 2

Rn2
22 2n + 3

j n £

We conclude t h a t the re i s no ghost in the (n,2) s e c t o r .

Thus our vacuum so lu t ion i s s t a b l e under small p e r t u r b a t i o n s . As

t h e r e s u l t of these computations we can l i s t t he masses of the phys ica l

states in the following table:

ammo.

0(5) - Rep. MASS GPIN

(n,0) n > 0

(n,l) n > 1

(n,2) n > 2

n0M £ - "tn + 3)
0 " B2

n{n +

n(n +

3)

3)

+ 1

+ 1

- /2n(n
2

+ /2n(n

+ 3)

+ 3)

+ 1

+ 1

UL, 2 _ n(n + 3) + 2

nL. 2 n(n + 3) * /2(nS + 3n
^ 1 * " 2

- °.(". +. 3).,- Mi? + 3n + U)

a

n(n + 5) + 6
2a

Table II

The l i s t of a l l propagating massive modes. The massless graviton in the

(n,0)-sector with n = 0 and the ten massless S0(5) Yang-Mills spin-1

particles in the (n,l)-sector with n = 1 are not contained, in this

table.

-*•. •>•• -vrimt i r ; ^ ' - * -



Tu t^his pr-i.pcr wo haw- proved that the :H.c-l;rl."lou ( i;..j. 11; ..t t:_^ ;:ou:i|.e!.i

Einstoin-Yattft-Mills equations In 8 dineriS-Loas is clasr;io:a-Ll7 s^b l e . Therefore;

fore this solution is a re-.sonaule candidate for the ground state of the eight-

dimensional theory, it, describes the spontaneous compactific.ition of .'.e eight-

dimensional manifold into M x S

Due to the non-trivial topology of the various vector bundles associated

with the instanton bundle over S we had anticipated the s tabi l i ty of our

solution earl ier """ and analyzed the aero code patterns of an eight-

iHmensional Dirac operator acting on an B component spinor of S0(l,7). It

was shown that if this spinor "belongs to a 2t+l dimensional representation

of SU(S) then in M there will be an S0(5) tnultiplet of left-handed (Weyl)

fermions. These roassless (Weyl) fermions transform according to a real

representation of K&luza S0(5) gauge group.

New the fermionic Lagrangian possesses an additional glcbal ij(l)
symmetry relative to which these massless fermions transform in a complex
representation. We could have gauged this global U(l) T>y introducing tha
appropriate Maxwell field. Our four-dimensional lossless fermions would then

have transformed according to a complex representation of such a local
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A D D E N D U M

STABILITY OF INSTAHTOH INDUCED COMFACTIFICAT1OH IN 8-DIMENSIOHS

S, Randjbar-Daemi, Abdus Salara and J. Strathdcc

We have investigated the stability of small oscillations around the
h 7 !t 1 h

vacuum solutions M * s and M x S x S for the case of d - 11
i,

supergravity theory where H Is Minkovski space. These solutions

apparently do exist when supersymmetry is explicitly broken by the addition

of a cosmological term to the d = 11 supergravity Lagrangian. To our

surprise, for both the cases we have investigated, there exist tachyons

in the spectrum, signalling instability.

The bosonie field equations of 11-dimensional supergravity, modified

by the addition of a (supersymmetry-breaking) cosmological term are given

in an orthonormal basis by

1 n £

AB 2 AB

V F + K e ?

where the stress energy tensor is given by

T — T (F F
AT3 fi AC P P "RP C

(1)

= 0
3"-Dll

AB
(2)

In these equations the indices A,B,... take the values 0,1,...,11. The

cosmological constant, X , breaks supersymmetry explicitly.

Assuming that the vacuum geometry is M * S , to be obtained by

solving (l), (2) with

and

abed abed

a = 0,1,2,3

a,b, = 0,1,2,3

(3)

(It)

-1-

Tlie equations of motion reduce to the relations

X = 3 f
"2 ?
K a

(5)

where a denotes the radius of the 7-sphere. Observe that the f ield strength

parameter, f, which appeared in the Freurid-Rubin solution as ar undetermined

conatfiiiL of in tegrat ion, i s now related to the cosinological parameter, X (> 0) .

To see the tachyons, consider the "bilinear part of the bosonic sector

indicate the perturbations of g and A

respectively, RaTlrn and Fanr,n are given by the background solutions

(where h.,, and V
A n

S2(h,V) = d"

1̂
2

1

"IT

^ ( i ^ B + X + ^ F2j

RAE + h h A B RAB

hAB-C + \ h-C h-C +

-P>
E ACBD

(hAB " \ \ (hAC " \

2
12

f K
" 3~ nABhCD

" ^ h \ .

(12)-

1
2 AI

V. V,

c} • (6)

where h = "AB
and F. + cycl.

permutations. All tensors are referred to an orthonormal basis of M^ X

relative to which n^g = diag(-l,+l,... ,+l). Also h ^ ^ = vch.AB' e t c -

In order for S (h,V) to be invariant under the linearized gauge

transformations

ABC

6VABC " % A B C ] " FABCD

-2-



the sources must be constrained to satisfy

TAB-B = (T FABCD JBCD

Given a solution of the form M. x G|H to the background field

equations we can expand the fields h and V
ABC into normal modes on

GJH and evaluate the spectrum of the physical masses H . For the two

cases of G|H = S and G|H = S x s , w e exhibit below only those equations

which give rise to tachyonic (masses) , First consider the solution G|H = S .

In this case the fields have to be expanded into harmonics of 0(6). Each

component field will carry four 0(8) labels (n ,...,ni ) and the sector in

question is characterized by (n1 n^) = (n,0,0,0). The spin zero parts

of the field equations in this sector are given by

n(n+6)-l
<"oo - -oo

n(n+6)-12
2

h - 6Kfip V - 2 T..
y-y *a a i = 0

2 1 hO " T Vl(

fa + n(n+b)-12

>• a

(7)

In writing the above we have chosen a Lorenta frame p = (p_,0) and the

a o ~
gauge conditions ' j^^jn - ^ TVR'1) ~ ° ' v

a
VctjvB = ° ' w n e r e a = °i^-i^^ a n

a = 5 , . . . .11* * The field V is
a

dimensional (spatial) trace of h

not write out in detail.)
ab

, ,V. . while h.. is the three-
abed bed ii

(v (n) are constants which we shall

It can be shown that the solution of these equations exhibitsthe
2

following propagating poles in the p plane:

-3-

2 =

-p -

_ ji(n 6) + 8 ± l*V3n(n+6)
(8)

(9)

As is easily checked, for the spin-zero poles exhibited above, M is tachyonic

for n = 1,2,3 and its contribution to the interaction energy — h T is
J c AB AB

non-vanishing.
h 3

The analogous equations for S x S are considerably more cumbersome.

Here again we give only the relevant sector of the spin-0 equations in the

representation of the 0(5) x 0{k) characterized by (n1>n ,ic1,m2) = (n .O.m^O),

where (n ,n ) and (m ,m ) indicate the irreducible 0(5) and 0(!*) representations,

respectively. How we adopt the gauge condition V V ^ = 0 instead of

V V ^ = 0. The relevant equations are:

(p2 (p2
 + M

2
 + K

2f 2) = 0

3(p2 + M2 - (pS . - 3(P2

6<fipQV0 - 6 T.. = 0

+ M
2 - <2f2) (-2 = 0

,a, + 3h. .) = 0

M2) VQ - = 0 .

1;
"'.ifl notation is as before except that a = 1,...,U on S and o1 = 1,...,3

on S . B is an abbreviation for

(11)

where a and a' are the radii of S and S respectively, which by virtue
2 2

of the background equations are now related to K t '

(12)



Propagating tachyons with 0(5) it 0(M quantum numbers (n,m) = (1,0),

(0,1) and (1,1) are found. Their masses are given by

(13)

where the radii are given by (12).

The existence of tachyons in the S solution was confirmed by

E. Sezgin for which we express appreciation.




