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ABSTRACT

Using a light cone gauge formulation for N = I4 extended super-

symmetry, it is shown that an explicit breaking of the supersymmetry by

addition of mass terms does not disturb off-shell finitenese to any order

provided the- sun of fennion masses equals the 511m of scalar masses and

appropriate cubic interactions between scalars Eire included.
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indicate finiteness to ai: orders. A proof of this (based on N = 2 super-

fields) has been advanced by Howe, Stelle and Townseno! . Recently,

T)
Mandelstam invented a light cone gauge formulation of the N = k theory

and used it to argue finiteness to all orders: in this formulation the off-

shell Green's functions appear to be ultraviolet finite (although it is not

yet clear that the light cone gauge does not introduce pathologies in the

form of unphysleal singularities, operator ordering ambiguities, etc.).

Such a remarkable theory would therefore seem to merit further in-

vestigation. One of the main obstacles to its being used as a realistic model

is of course the absence of any scale. There are no masses in the super-

symmetric Lagrangian and there would appear to be no dimensional transmutation.

It is a truly scale invariant theory. How can this scale invariance be broken?

One possibility would be simply to assume that one or more of the scalar fields

in the system develop vacuum expectation values. The vacuum is metastable,

however, and the minimization of the effective potential does not determine

these values: they have to be regarded as constants of integration. Although

some of the gauge symmetry would be broken in such a vacuum, the resulting

spectrum would contain many massless states. The infra-red behaviour would be

very singular, so making the theory difficult to Interpret.

Our proposal is to break explicitly the scale invariance, the super-

symmetry, and the global SUf*) which the theory possesses, by adding mass

terms to the original Lagrangian. We shall argue that this can be done without

disturbing the ultraviolet behaviour. It is not evident, of course, that

breaking supersymmetry softly by means of mass terms can be achieved without

reintroducing at least logarithmic divergences into the theory. And in fact we do

find that it Is necessary to include trilinear interactions among the scalars,

together with the mass terms, if finiteness is to be preserved. (Similar

trilinears appear in massive N = 1 supersymmetrU- theories.)

In order to demonstrate finiteness we shall use a light cone gauge

formulation of the U = It theory due to Brink, Lindgren and Nilssan (BLN) .

(This formulation is presumably equivalent to Mandelstam1s but we find that it

is easier to work with.) The strategy is straightforward. Firstly, to the

conventionally formulated, H = k supersymmetric Lagrangian, in component notation,

-2-



we add a fermion mass term. We then transfers the '̂,.rii|.>or.unt Lagt-Li.:,;--;i •'•••.•- to th-

light cone gauge, a step which involves elimination of the depended: {or non-

propagating) components. We then attempt to express t:it: re;;ultin.̂  I-Hf-rung-ian

in terms of the BLW superfields. At this poin,, i-. L,c••:•;•.;>•;:. •••lear that trie

light cone gauge Lagrangian must be augmented by appropriate scalar mass terns

and trllinears. Although the mass-dependent terms explicitly break the II = k

supersymmetry , the superfield notation is important and .jsetMl teoause it permits

a relatively simple analysis of the ultraviolet convergence cf the broken theory.

The paper is organized as follows. In Sec.II, to establish notation,

the symmetric theory in the light cane gauge is revieved together with the

superfields of Brink et aX. Sec.Ill is devoted to an explanation of the

finiteness arguments for the symmetric theory. We believe that Mandelstaitt's

idea can be expressed more clearly, and with some improvements, by means of the

BLK superfields. Mass terms are introduced in Sec.IV where, also, they are

expressed in superfield notation together with the light cone gauge interactions

which they generate. Scalar mass terms and trilinear interactions are in-

troduced at this stage. It is shown by treating the mass terms and mass

dependent interactions as insertions that the ultraviolet convergence of Green's

functions is preserved. There are seven masses in the theory (four for fermions

and three for complex scalars) with one relation (sum of scalar masses = sum

of fermion masses, formula {U.I)) among them. Finally, it is observed that

the potential for the scalar fields in this theory now has a stable minimum.

This means that the infra-red problem is reduced to the effects of the (unbroken)

gauge symmetry - a phenomenon familiar in QCD.

II. LIGHT CODE GAUGE FORMULATION OF N = 1* SUPER YAJIG-MILLS THEORY

The Lagrangian,in U-dimensional space-time, for the unbroken N = h

theory can be expressed in the form

4 u Vie

3-1)

where the Yang-Mills vector A , the chiral spinors IJJ and the scalars H

are all in the adjoint representation of the gauge group. Gauge covariant

derivatives are defined such that

-3-

) tv a

V H = 3 H + g A * H

The indices a, 6, take the values l , . . . , ! t corresponding to a global SUCt)

symmetry with r

a real sextet,

symmetry with respect to which A is a singlet, ty a quartet and E „

( 2 .2 )

The fields A, ty and H span a single multiplet of the N = k extended

supersymmetry and the Lagrangian (2.1) involves one parameter, g, which is

dimensionless.

The theory appears to be ultraviolet finite in the sense that all

gauge invariant quantities computed from it are ultraviolet convergent.

Mandelstam has given an argument whereby this convergence extends to off-

shell Green's functions in a particular type of gauge, the light cone gauge.

We now review some of the features of this gauge.

With the co-ordinates

x+ = ̂  (x0

(2.3)

one can associate the covariant components

(2.It)

and similarly for the components of the gradient operator, 3 . In these co-

ordinates the line element takes the form

dxu dxW = 2dx+ dx" - 2 dv dv . (2.5)

The light cone gauge is defined by the condition A = A , or

A_ = 0 . (2-6)

-it-
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We shall regard x as the "time" co-ordinate so that those equations of

motion which do not involve 3 will be treated as constraints. It is

possible to formally solve such constraints thereby eliminating "unphysical"

components of the system. The first component to eliminate is A . One

can do this by solving the equation

J = V
U P "

= 3 F - V F . - V - F
- +- v v~ v v

where, since A = 0, we have F = -3 A Thus

! f
A = - ± - V 3 A - + V - 3 A - J
+ ^2 I v - v v - v (2.T)

The current, J , can itself be expressed in terms of H and the physical

parts of iji . To separate the unphysical fermionic components, choose a

basis which diagonaliaes y and write

One easily finds the constraint part of the Dirac equation and solves it to

obtain

* ( '
(2.8)

It is then possible to give the current J of (2.7) in terms of physical

components

-2ig
x - x 3 H (2.9)

where and Ha

The unphysical fields A and z, can now ~ae eliminated from the

Lagrangian (£.1). The Lagrangian for Av> xa and H^ which results, is

rather complicated. Its explicit form has been given in the paper of Brink,

-5-

Lindgren and Kilsson . We shall not reproduce it here in component form,

because these authors have succeeded in developing a superfield version which

is much more compact (see (2.l8)) below) and which we now motivate.

The light cone gauge condition (2.6) breaks the Lorenta group S0(l,3)

to the subgroup SO(l,l) x S0(2) defined by

±o ±
e x

0. „< B. < 2it (£.10)

However, and this is the main point, i t i s possible to erect an extended

supersymmetry on this subgroup. Introduce the anticonnnuting co-ordinates

fl^ and their complex conjugates 5°, a - 1,2,...,H, such that , under

) x S0(2),

l/2(a - 13)

IS) (2.11)

Define the supertranslations

e + e +
ct a

x + TT - c6) + i ' (2.12)

with x , v, v invariant. One can define superfields in the usual way and

explore the consequences of this supersymmetry. In particular, with the

Lagrangian for H = h super Yang-HillB, in the light cone gauge, expressed

in terms of such superfields one can exploit the properties of superfield

Feynman rules to show that the Green functions are finite.

It was shown by Brink et al. that all the physical components of the

K = k theory could be accomodated in one self-conjugate multiplet of the

symmetry (2.10)-(2.12). The multiplet is realized by a single "chiral type"

superfield,

= exp(- i 86 13 K) i3

_
3!

3- V x )j ( 2- 1 3 )
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It is chiral in the sense that 6 appears only in the combination

z = x~ - |- 96

which transforms under the action (2.12) according to

Z + ! - I £8

This transformation does not involve S explicitly.

It is useful to define the differential operator

oc " ~^a + 2~ a - ' (2.1U)

where 3/3 9 is Interpreted as a left derivative. The conjugate operator is

(2.lit')

where 3/98 is a right derivative. This means

D F(x,6,8) = Da F(x,9,F)

where the bar denotes complex conjugation together with a reversal of the

order of anticommuting quantities. With these definitions one can establish

the algebra.

= 0, 0, ' = -&* 13

The superfield {2.13) is annihilated by D ,

= 0

(2.15)

(2.16)

It also satisfies a reality condition,

(2.17)

Both of the properties (2.l6) and (2.IT) are important and useful in treating

the ultraviolet convergence question.

-7-

, it was shown by Brink et al. that the light cone version of

the Lagrangian (2.1) can be expressed in the form

where

l g Jj »^i-

Ti- = .18)

and the integrals over 9 and 9 are normalized (our definitions differ In

detail from those of Ref.8) such that

d91 = 0, 61 = -1, 61 1 etc.

It is not difficult to verify that (2.18) is an invariant with respect to the

residual symmetry of the light cone gauge expressed in formulae (2.10)-(2.12).

In particular, we have

a-ifi 5

3 ->• e " 1 6 3 , 3- - e 1 B 3-
V V V V

(2.19)

under (2.10), (2.11).

To compute amplitudes corresponding to the Lagrangian (2.18) one

needs the free propagator for the real chiral superfield, + . One can show

that it is given by

where t (5(x^-Xg)

(2.20)

6(&1-62) . Equivalent forms are

-8-



*
i

12

(2.21)

The 3-point vertex is associated with the action term

.k it- f l 1

•H
f L k
| d x d 8 h . c . ( 3 .2 )

III. OFF-SHELL COHVERGENCE

A demonstration of the ultraviolet convergence of off-shell amplitudes

in the unbroken H = h theory is easily arranged. The first point to observe

is that the BLH superfield (£.13) has canonical dimension equal to zero. The

same is true of the coupling constant, g, and the superspace measure, du =

d x d 6 d 6 . This suggests that the necessarily dimensionless coefficient

functions which would arise in a functional Taylor expansion of the effective

action, r U ) , should all be logarithmically divergent, at the worst. That

is, on writing

j (3.1)

where u = (x,e,8), we know that the functions r(u.,...,u ;g) are

dimensionless. They are associated with connected, one-line irreducible

supergraphs with E external lines and it is not difficult to set up

Feynman rules for them. If naive power counting can be trusted - and we

shall assume that it can - then only logarithmic divergences are to be

expected. However, a more detailed examination of the 3- and It-point vertices

to which the external lines are attached shows that the true situation is

better than this. The main point of Mandelstarn's argument is that the

external line wave functions, 4>(SJ ), necessarily have at least one derivative,

Do , D or 3 , acting on each of them. In other words, the dimensionless

coefficient functions ["(u^..^) are in fact given as derivatives of

functions with negative dimensionality and so are superficially convergent.

This means that there can he no ultraviolet infinities at any order. The

proof depends on the detailed structure of the vertices implied by (2.18).

We consider the "i- and U-point vertices in turn.

The reduction to chiral form is achieved here by means of the reality

condition,

and write

2
= 3 if . Consider an infinitesimal variation of

j dUx d**e 4*.J3(x,e h.c.

where J, is chiral (but not real).

- j ig
1

3 - (3 4 x $)

- ig J3_ (4, x 3- #) + S- O j x •)] (3.3)

The latter identity results from the antisymmetry of the vector product. Mow,

an external line which attaches to a 3-point vertex couples to the operator

J, . This effective coupling therefore takes the form:

J3(x,e) =

ig f xt a_ J {3.U)

and one sees that one power of 3 or 3 is associated with each such

external line.

At l*-point vertices the situation is more complicated. From the

action term

d^x d^e d^S

one obtains the variation

« Si. = f dl

1

(3.5)
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* U * *) • (3-6)

where

However, the variations 6<(i and 6$ are not independent. In order to get

tSS, into it;; most useful form, write

k L K
d x d e d P - u = I

•J

=1

d x d 8 d 6
rC D ) "

1

A

It follows that the effective coupling of an external line to a 14-point vertex

can be expressed in the form

4>ext(x,e)- J^fx.e) + h.c.

where the chiral operator <L is given by

k '

(B]b

(3.7)

(3.8)

We !:;:vu used the fact thM, thu external line vnvr- function mu;-;t .-?ili:;.ry the

reality condition, (D)' tj;
CXti = 3 ^eXt . In (j.10) the second term exhibits

one I) acting On the external wave function. Successive terms, no I shown

explicitly, would have more powers of D (or 3 ). Only the first term is

potentially dangerous in that it might lead to log-divergences. To show that

this does not happen we must examine the structure of (D) U , From (3.6)

i- (0 x 3 J) +3J5 (J x 40

3_ 123%

= 3 - a • * r=-3

t 3 t « (• » 5 •) -

•)-) + x i-
3

x a I) t I »

Hence, one power of 9 comes out to act on $ in (3.10). The claim is

therefore proved: every external line is associated with at least one

derivative, 3 or D. All vertex functions are superficially convergent

and the theory must be ultraviolet finite.

This appears to be singular. In order to show that this singularity is harmless

we reverse the order of (D) and (S) , using the anticommutator iD,B} = -i3 .

Schematically,

(3.9)

where the terms indicated by dots are regular at 3_ = 0. Inserting (3-9)

into (3.7) and integrating by parts, with respect to B, gives

d^x +

-11-

(3.10)

IV. MASS TERMS

Our purpose is to break the extended supersymmetry by introducing

masses for the spinor and scalar components. Of these the more problematical

are the spinor masses because, in the light cone gauge, they induce new

interaction terms. (It will turn out that new scalar interactions are

implied as well, but their form will be fixed by the finiteness requirement.)

In order to discover the new fermionic interactions it is necessary only to

introduce the mass term in Lorentz invariant component form, and then to

eliminate unphysic&l components as in Sec.II. The new interactions can then

be seen as necessary for on-shell Lorenta invariance.

- 1 2 -

a
i



To the Lagrangian (2.1) we add the mass term

a
+h.c.

where M™ is a symmetric matrix. It then follows that the equation of

constraint (2.8) must be replaced by

if I1 v a - j *****H t.2)

When the unphysical components z are eliminated from {2.1} the following

mass dependent terms appear:

Y6 1AT x X, (1+.3)

To show that these terms are compatible with ultraviolet convergence

it is natural to look for a auperfield expression of them so that the ELN

formalism, with these additions, can be used ;is in Sec.III. Our strategy is

then to examine the component structure of some terms which are bilinear and

trilinear in * and which contain explicit (S-dependence. These terms, which

explicitly "break the N = it supersymmetry (and the global SU{lt)) will be

chosen so as to include fermionic pieces like (U.3). In addition we must

ensure that no vector mass terms are implied find that the scalar masses and

interactions are compatible with a stable, non-negative potential. If the

form C*.3) is respected, and if there is no vector mass term then we can

be sure that we are dealing with a Lorentz invariant and gauge invariant

theory. The finiteness question requires the use of light cone gauges but,

once this has been settled, there should be no obstacle to using any other

kind of gauge.

Consider the bilinear term

x2- - (h.k)

Hotice t h a t i t makes no cont r ibut ion t o the vector mass and t h a t i t i s

symmetric under the interchange 1 «-» 2 (the sca la r components are of course

s e l f - d u a l , H ^ - H , H ^ =-H , e t c . ) . This suggests t h a t a su i t ab l e

candidate for the mass terms would be

-13-
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o,B

where a ^ is a symmetric matrix with vanishing diagonal elements. It

yields the following masses:

M2(A) = 0

M3(x3)

-in + ̂ a +

a12 + al3 +

%2

The six parameters, aag , are independent. Among the eight masses we have,

in addition to H (A) = 0, the relation 5^

More general mass terms could be imagined but we have not pursued the matter

further.

To obtain the interaction terms of (U.3) consider the trilinear

expression

Since our fermion mass matrix is diagonal, according to (U.6), we can take

- l l i -



etc. It then becomes clear that the interaction part of (I4.3) is contained

in the trllinear

/ ? f It It It- ^ '
w 3 g d x d 6 d 8 . ) Ma( x i - $ + h . c .

which must be added, together with (4.5), to the B M action (2.18). Hote that

(U.10) includes interactions among the scalar fields as shown in C4.8).

J

To summarize, the total action is given by

4 k k- ft - O
a x d 9 d 8 # + -^ *

" f~ lr~ r~(*

' IT" ^

s M « ( a )

where a is a real, symmetric matrix and M (a) is given by (U.9). The
CLP Gt

expression Ct.ll) is the form taken in the light cone gauge by the

manifestly gauge invariant and Lorentz invariant action

f A f-fJ L UF
2 - t 11

where V(H) is given by

V(H) =

H
a

^ x C"1 * e + h.c.) - \

H . x H

.| - V(H)j ,

(It.12)

(14.13)

-15-

It is not ismnediately clear that the potential (I*.13) is an acceptable

one. In view of the well-known property of the original symmetric theory,

that its (purely quartic) potential vanishes in certain directions (in the

space of E J , one might suspect that the presence of cubic terms in (U.13)

would cause it to be unbounded below. To settle this doubt It is useful to

express V in terms of three independent complex scalars,

(It.lit)

The potential now reads

.c.J

i.J

The quartic term vanishes if and only if

0, 0, = 1,2,3 (It.16)

otherwise it is positive. However, if (4.16) is satisfied, It is clear that

the cubic terms in (4.15) also vanish so that the potential reduces to its

quadratic part in these directions. Stability is therefore ensured if the
2 2 2

three masses M v, M i and M , are positive. Thi3 would seem to rule out

the possibility of spontaneously breaking the gauge symmetry, but radiative

corrections could alter the picture.

Finally, we come to the question of finiteness. As in Sec.Ill, we

use the dimensional argument. Integrals which are ultraviolet convergent

by virtue of the structure of vertices to which external lines are attached

will clearly remain convergent when masses are introduced into the propagators.

However, there are new mass-dependent vertices to be considered. These are

characterized by the last term in (I4.ll)

dS dUe Ha(a) Ct.1T)

-16-



With this interaction it can happen that 1/3 act:] on an external lino wave

function, thereby raising the superficial degree or divergence of the

associated graph. Such a potentially dangerous cootr [tuition can be re-

arranged as follous:

E-.(a) 9a 7ext

=| g | A A
M a D
a a Te (it.

on integrating by parts with respect to 6 . Now the operator, M D /3 ,
a d —

which acts on the external wave function has dimension + 1/2. This means

that the vertex is not dangerous; the convergence arguments of Sec.Ill

therefore apply also to the broken theory. Off-shell amplitudes are

ultraviolet convergent in the light cone gauge.

The Lagrangian (4.11) has no unbroken supersymmetry: all four 6's

appear explicitly. It is evident though, that N - 1 aupersymmetry can be

recovered by removing some of the mass-dependent terms. Thus, for example,

the explicit dependence on 9 and 6 is removed by taking

12 13 0 .

10)
There results an N » 1 supersymmetrie theory with the following

multiplets:

(A,Xl) M2 = 0

(X3,H2 H2 = a.
32

M2 = a,

By eliminating 9 as well, i .e . taking

one obtains H = 2 theory with the multiplets

-17-

U , X ( , X 2 , K 3 l + ) , M" - 0

2

V. DISCUSSION

We conclude that, "barring technical difficulties with the light cone

gauge, the explicitly broken K = k super Yang-Mills theory is ultraviolet

finite. The technical questions are not trivial, of course. The presence

of a non-local operator, 1/3 , could perhaps give rise to unacceptable

singularities in physical amplitudes. We have nothing to say about this.

It can also be argued that operator ordering problems might render higher

loop calculations ambiguous. But if we suppose that all such problems can be

overcome then we appear to have a non-trivial i*-dimensional theory which

is free of ultraviolet singularities.

The infra-red behaviour, though simplified by the introduction of

mass terms, is not trivial. Since our potential has a stable minimum which

preserves the local symmetry, the theory has massless non-Abelian vectors,

like QCD. Perhaps the usual confining mechanism would operate here as well.

However, it must be emphasized that we do not have a "running coupling constant,

in the usual sense. The bare coupling constant of this theory should be

thought of as an observable quantity since one must be able to express physical

amplitudes in terms of it, in a cut-off independent way. (It may be worth

pointing out that the particular type of regular!zation employed in any cal-

culation is not important now since there will never be a need to separate

divergent parts and cancel them with counterterms.) Of course it is

possible, and perhaps desirable, to replace the bare coupling constant with

some "effective" parameter which relates more directly to observable

quantities. The nagnitude of such an effective parameter would of course

depend on the energy scale E, used in defining it. However, it would
-1/2

presumably not vary as (in E) ,

Can such a theory be fundamental? At present there are too many

arbitrary parameters and we have no prescription for choosing them. It is

tempting to speculate that the mass terms are on the Planck scale and that

an appropriate choice of them would cause this theory to generate massless

helicity 2 bound states, the graviton, and that the Einstein theory (or even

-18-



a coirij'Osite supergravity theory) will emerge as an effective field th- r, ...f

the low energy sector. (For example. One migii!. horir thai. c:il'j ul'it i o:,:-; if

the Adler-Zee I-''"' type could be carried out bore, 'iî.;., i;, it air"- "-

possible to compute G unambiguously in teras of M. ;

To conclude, the H = h extended supersymmetry liit-jr'y softly broken

by the addition of mass-containing terms now appears even more of a remarkable

mathematical construction. This is perhaps the only known ultraviolet "inite

field theory with inbuilt mass scales. To explore Its implications is a

challenge that should not be overlooked.
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ADDENDUM

After this paper had 'been prepared for publication we received a

preprint by Brink,Lindgren and Hilsson lil> which gives an alternative proof

of finiteness, using their formalism, when no masses are included.
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