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1. LRTRODUCTTur

Ic/82/230
Calculations have shown that the N = L extended super.yr  fric Yang—
il 3 ; . . 2 - .
Tnternational Atomic Erergy Agency Mills ) theory is ultravivlet finite up to three-loop order ). Sugpestive
LB gL o
argument. e due to Ferrars and Yumine 3), Sohnius and West 4l and Stelle 5),

and

. . indicate finpi ess to all orders, A i ased © = er-
United Nations Fducational Scientific and Cultural Organization cate finiten proof of this (based on N = 2 sup

fields) has been advanced by Howe, Stelle and Townsend 6). Recently,

INTERWATIONWAL CENTRE FOR THECRETICAL PHYSICS Mandelstam T invented & light cone gauge formulstion of the N = L theory

and used it to argue finiteness to all orders: in this formulation the off-
shell Green's functions appear to be ultraviolet finite (although it is not
yet clear that the light cone gauge does not introduce pathologies in the

form of unphysical singularities, operator ordering ambiguities, etc.).

FINITENESS OF BROKEN N = 4 SUPER YANG-MILLS THEORY * Such a remarksble theory would therefore seem to merit further in-

vestigation. One of the main obstacles to its being used as a realistic model

is of course the absence of any scale. There are no masses in the super-

M.A. Nemszie symmetric Lagrengian and there would appear to be no dimensional transmutation.

International Centre for Thecretical Physics, Trieste, Italy, It is a truly scale invariant theory. How can this scale invariance be broken?
Cne possibility would be simply to assume that one or more of the scalar fields
Abdus Salam in the system develop vacuum expectation values, The vacuum is metastable,

. . . however, and the minimization of the effectiv otential does not determine
International Centre for Theoretical Physics, Trieste, Italy * e potentl

and these values: they have to be regarded ns constants of integration. Although
Imperial College, London, England, sale of the gauge symmetry would be breken in such a vacuum, the resulting
spectrum would contain many massless states. The infra-red behaviour would be

and very singular, so meking the theory difficult to interpret.

OQur propesal is to break explicit the secale invariance, the super—
J. SBtrathdee prap XP ly cale , D

. . symmetry, and the global SU(4) which the theo sses, by adding mass
International Centre for Theoretical Physics, Trieste, Italy. YImeTry & (k) 1 e0ry possesses, Dy a 4

terms to the original Lagrangian. We shall argue that this can be done without

disturbing the ultraviolet behavicur. It is not evident, of course, that

ABSTRACT breasking supersymmetry sof"_c.ly by means of mass terms can be achieved without
reintroducing at least logarithmic divergences into the theory. And in fact we do
Using & light cone gauge formulation for N = 4 extended super- find that it is necessary to include trilinear interactions smong the scalars,
symmetry, it is shown that an explicit breaking of the supersymmetry by together with the mass terms, if finiteness is to be preserved. (Similar
gddition of mass terms does not disturb off-shell finiteness to any order trilinears appear in massive N = 1 supersymmetric theories,)

provided the sum of fermion masses equals the sum of scalar masses and In order to demonstrate finiteness we shall use & light cone gauge

appropriate cubic interactions between scalars are included. formulation of the N = L theory due to Brink, Lindgren and Nilsson (BIN) 8,

{This formulstion is presumably eguivalent to Mandelstem's but we find that it

MIRAMARE - TRIESTE is easier to work with.) The strategy is strepightforward. TFirstly, tc the
November 1982 conventionally formulated, N = 4 supersymmetric Lagranglan, in component notation,
-

% To be submitted for publication.



we add a fermion mass term. We then transforn the comporont Lagrsnsis.  to the

. F = 3 A -3 A +tg A xA
light cope gauge, a step which involves eliminaiion of the dependent {or non- o oV Vo - v
propagating) components. We then attempt to express the resulting lascungian
; vV oy o= 3 ¢ +g A x3p
in terms of the BLN superfields. At this poin. i. tooom:s ~lear thet the ¢ L H =
light cone gauge Lagrangian must be augmented by asppropriate scalar mass terms 7 H 5 H . A H

- . B = g x

end trilinears. Although the mass-dependent terms exnlicitly break the N = L vk v of ¥ ob
supersymmetry, the superfield notation is Important and userul because it permits
a relatively simple analysis of the ultraviclet convergence of the oroken theory. The indices a, B, take the values 1,...,4 corresponding to & global SU{L)

N s symmetry with respect to which A  1is a singlet, ¢a a quartet and HaB
The paper is organized as follows. In Sec.II, to establish notation, v

. a real sextet,

the symmetric theory in the light cone gauge is reviewed together with the

superfields of Brink et al. Sec.III is devoted to an expianation of the

finiteness arguments for the symmetric theory. We believe that Mandelstam's HuB = % “apys A vhere ﬁYﬁ = (Hyé)* ° (2.2)
idea can be expressed more clearly, and with some improvements, by means of the

BLN superfields. Mass terms are introduced in Sec.IV where, also, they are The fields A, ¢ and H span a single multiplet of the N = L extended
expressed In superfield notation together with the light cone gauge interactions supersymmetry and the Lagrengien (2.1) involves one parameter, g, which is
which they generate, Scalar mass terms and trilinear interactions are in- dimensionless.

troduced at this stage. It is shown by tresting the mass terms and mass The theory appears to be ultraviolet finite in the sense that all
dependent intersctions as insertions thet the ultraviolet convergence of Green's gauge invariant quantities computed from it are ultraviolet convergent.
functions is preserved. There are seven masses in the theory (four for fermions Mandelstam has given an argument whereby this convergence extends to off-
and three for complex scalars) with one relation (sum of scalar masses = sum shell Green's functions in a particular type of gauge, the light cone gauge.
of fermion masses, formula (L.7)) emong them. Finally, it is observed that We now review some of the features of this gauge.

the potential for the scelar fields in this theory now has a stable minimum. .
i With the co-ordinates
This means that the infra-red problem is reduced to the effects of the (unbroken)

gauge symmetry - a phenomenon familiar in GCD. - . = 1 -
i F ¢ F =20 x3), == (P x3), v = —l_(xl + 1x2), 7= =zt - 1x%)
2 2 2 /2
(2.3)
II. LIGHT CONE GAUGE FORMULATION OF N = L SUPER YANG-MILL3 THEORY one can assoclate the covariant components
The L ian,in 4-di ional —ti for ti brok =5 = = L - = L - i .=t + 1
3 e Lagrangian,in imensional space-time, for the unbroken I A, = (AO + A3)’ A (AO AS]' Av - (Al i4,), A? J@‘(Al 1A2) R
thecry can be expressed in the form N7 JE
(2.4)
O T~ ). 1 =ufd .
£ = - in Fuu - b by * E'vu H Vu Ha 7 and similarly for the components of the gradient operator, au. In these co-
ordinates the line element takes the form
- ~ 2 _ =
- wz x ¢t g *hee.| - l 7ob . gvs8, g X Hog o (2.1)
8 6 ! ax ax” = 2ax* axm - 2 av &v (2.5)
where the Yang~Mills vector Au , the chiral spinors wu and the scalars HuB The light cone gauge is defined by the condition AO = A3, or
are all in the adjcint representation of the gauge group. Gauge covariant
derivatives are defined such that A =0 ’ (2.6)
-3~ . =ha
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We shall regard %8s the "time" co—ordinate so that those equations of
motion whiech do not involve 3+ will be treated as constraints. It is
possible to formally solve such constraints thereby eliminating "unphysical"
coauponents of the system. The first component to eliminate is A+ . One

can do this by solving the eguation

J = ¥ _
- H
= 3 F, =V Fm_=¥9=F s
-t v oV v o

vhere, since A = 0, we have F+_ = —8_A+ . Thus

L rV 3 A v
= —= - + V- -

A, ;2 l oA T3 A - J . (2.7}

The current, dJ_, csn itself be expressed in terms of H and the physical

parts of ¢ . To separate the unphysical fermicnic components, choose a
basis which disgonalizes y5 and write
;a
b, = 2l/h Xy
o]
o |

One easily finds the constraint part of the Dirac equation and solves it to

obtain

S N rgH, x 3 (2.8)
T [ v Xg T8 Hgp T X - .

o

It is then possible to give the current J of (2.7) in terms of physlesl

components
J_ = -2ig ok oy - % E" x 3 H . (2.9}

where ¥° = (xa)* and T%F = (HGS)* .

The unphysical fields A+ and ga can now be eliminated from the

Lagrangian (2.1). The Lagrangian for A,y x, and Hy which results, is

B8
rather complicated. Its explicit form has been given in the paper of Brink,

-5-

8 :
Lindgren and Nilsson ). We shall not repreduce it here in component form,
because these authors have succeeded in developing a superfield versicn which

is much more compact (see (2.18)) below) and which we now motivate,

The light cone gauge condition (2.6) breaks the Lorentz group S0{1,3)
to the subgroup 50(1,1) x 80{2) defined by

+

1+

e
+

X L X N il
v o+ By 0. <B g 21 . {2.10)
7 o» B3

However, and this is the maln point, it is possible to erect an extended
supersymmetry on this subgroup. Introduce the anticommuting co-ordinates
G“ and their complex conjugates 5“, a=1,2,...,H, such that, under
so(1,1) = so(2),

0 - el/2(u - ig) o
o o
; B {2.11}
® s el/2(d + i) 5
Define the supertranslations

B+ B +¢

o o a
7 s 7% 40

- - i ,= - i -
X+ x +3 (8e - €8) + 5 e (2.12)

with x+, v, Vv invariant. One can define superfieids in the usual way and
explore the consequences of this supersymmetry. In particular, with the
Lagrengian for N = 4 super Yang-Mills, in the light cone gauge, expressed
in temms of such superfields one can exploit the properties of superfleld
Feynman rules to show that the Green functions are finite.

It was shown by Brink et al, that all the physical components of the
N =4 theory could be accomodated in one self-conjugate multiplet of the
symmetry {2.10)-{2.12). The multiplet is realized by a single "chiral type"

superfield,
= _Lgs 1 < I 3 3
IS exp( 5 @8 i3 _} Ep Av(x) + o B, % (x) + E'Gu GB 78 () -
1 adyd 1 aByé . Y
T E emeﬂeY xa(x) tiT e ameﬁevadi i3 _ A\-r(x)J-(2.13)

wbm



It i8 chiral in the sense that @ appears only in the combination

which transforms under the action (2.12) according to

z + z -1 E®

This transformation does not involve & explicitly.

It is useful to define the differentisl operator

D = 24

8 2 » (2.14)
3 0L

@]
|-
Q

1

where 3/35“ is interpreted as & left derivative. The conjugate operator is

s 2 _1ga
= aaa‘zé 3 , (2.1h)

ﬁa

where a/aea ig a right derivative. This means

5% F(x,0,8) = D, Flx,8,8) .

where the bar denctes complex conjugation together with a reversal of the
order of anticommuting quantities. With these definitions one can establish
the algebra,

: -0, . “Ip .5 B,

{Du,DB} =0, {D°,0°}=¢, {D,0%} = -6, 13_ - (2.15)

The superfield {2.13) is snnihilated by D, s

D ¢ = 0O - (2.16)

1t also satisfies a reality condition,

Finally, it was shown by Brink et al. that the light cone version of
the Lagrangian (2.1) can be expressed in the form

x:;fz+x3+xh ]

where

- by gtslz B
IE-Jded82¢32¢

_ R R T I
13—Jd9d§§g!}-::L-a-*:(¢xa‘-r¢)+h.c.]

2 - -
zh=thB d's (- &) E%‘-:(¢xa_¢)-%t($xg$)+-;—¢x¢-¢*¢] (2.18)

and the integrals over € &nd 8 are normalized (our defipitions differ in
detail from those of Ref.8) such that

Jael = o, J(dal o, = -1, [dél o=1,..., etc.

It is not difficult to verify that (2.18) is an invariant with respect to the
residual symmetry of the light cone gauge expressed in formulae (2.10)=(2.12).
In particular, we have

o ea-iB o, p eu+iB$
dha N e—2rx+2iB dhe , dha » o028 dhﬁ
ai + em Bt
R T A (2.19)

under (2.10}, (2.11).

To compute amplitudes corresponding to the Lagrangian (2.18) one
needs the free propagator for the real chiral superfield, ¢ . One can show

that it iIs given by

1 - £ ()"
¢ = = D.DD.D - (2.17) =0 > .20
FER - T olxygo)) olx,0,) ) =246, {2.20)
Both of the properties (2.16) and {2.17) are important =nd useful in treating vhere & . = 6(xl—x2) 6(91-62) 6(51-52) . Equivalent forms are
the ultraviolet convergence question. 8
7
T A T T IR T T Y [ r— R —-'-'_-’ o Py — = 7-'_ T T’ T '77'<'_'Wiww*'_'__'*"' B " | --—:4‘.:“_ : ; ‘l;w'— b ’ “1‘
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koo b
. g () (D)
Croalxys) Bx0) ) = 7 T

-

s (Bt (o)

-2 . W (2.21)

3 D
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III. OFF-SHELL CONVERGENCE

_ A demonstration of the ultraviolet convergence of off-shell amptitudes
in the upbroken N = 4 theory is easily arrenged. The first point to observe

is that the BLN superfield (2.13) has canonical dimension equal to zera. The

same is true of the coupling constant, g, and the superspace measure, dy =

dhx dl‘e ahé .

This suggests that the necessarily dimensionless coefficient
functions which would arise in a functional Taylor expansion of the effective
sction, T[(¢), should ali be logarithmically divergent, at the worst. That

is, on writing
f
r(¢) = E } duy ee dug Fluyseeeupsal olig) oo ¢Gug) »  (3.1)

where u = (x,0,0), we know that the functions r(ul,..-,uE;s) are
dimensionless., They are assoclated with connected, one-line irreducible
supergraphs with E external lines and it is not difficult to set up

Feynman rules for them. If naive power counting can be trusted - and we

shall assume that it can - thern only logarithmic divergences are to be
expected, However, a more detailed examination of the 3- and b-point vertices
to which the external lines are attached shows that the true situation is
better than this, The main point of Mandelstam's argument is that the
external line wave functions, w(yd), necessarily have at least one derivative,
Du s 5“ or au , acting on each of them. In other words, the dimensionless
coefficient functions F(ul...pE) gre in fact given as derivatives of
functions with negative dimensionality ané sc are superficially convergent.
This means that there can be no ultraviclet infinities &t any order. The
proof depends on the detailed structure of the vertices implied by (2.18).

We consider the 3= and LY-point vertices in turn.

The 3-point vertex is asgociated with the action term

_e2 S R Vi (. T )
53 = 5’5 J d'xd8 da6b L— ia_ G- % BV ¢ + h.c.j

- R BN e

—§1ngxd83_¢-¢13;¢+h.c. (3.2)

The reduction to chiral form is achieved here by means of the reality

condition, D1D2D?Dh$ = Bf¢ . Consider an infinitesimal variation of f
and write

& 8y = { dhx dl’e 6¢-J3(x,e) + h.e,
where J, is chiral (but not reel),

2,
g, = -3ig [a_(¢xa;¢)+a_¢xa;¢+a;(a_¢x¢)]

= -ig [a_ (0 x3z0) +0- (3 9 ¢)] . (3.3)

The latter identity results from the antisymmetry of the vector product. Now,

an external line which attaches to & 3-point vertex couples to the operator

J3 . This effective coupling therefore takes the form:

ad'x a9 ¢

J Looh EXt(x,B)- J3(x,9) -

ext

= ig J a*x a [a_q;ext. 4 xdz 8+ as T e x ¢] (3.4)

and one sees that one power of 3_ or Bv is associated with each such

external line.

At 4-point vertices the situstion is more complicated. From the

action term

. ‘
- (R S AR W L R S |
Sh——-E—dedBdB@j(¢xa_¢)-5?(¢xa_¢)+2¢x¢.¢ ¢_J

{3.5)

one obtains the variation

58, = J a¥x a¥e oY [6¢-u . sm] ,

—10-



where

"o

R S . (R o .
P x sz Bea®) v [w;—w{wa_wJ-w(wa-(3.6)

o=

However, the variations &¢ and &3 are not independent,. In order to get

68& into its most useful form, write

1
f a*x a%e a8 8- = J a*x a oz [ﬂ aq;J -4
2

= b
=Jduxdedh§ 5¢-(D; T
3
b ook
=Idhx dhe 5¢..(.D_)_.2(D_) 3
)

It follows that the effective coupling of an external line to a l-point vertex

can be expressed in the form

J dhx a‘o ¢en(x.9)-Jh(x,e) + h.c. (3.7)
where the chiral operator Jh is given by

. e B (3.8)

This eppears to be singular. In order to show that this singularity is harmless

we reverse the order of (D)h and (ﬁ)h, using the anticommutater {D,D} = -id_.
Schematically,
b, =3 ,.3
g =B g )T g, (3.9)
4 52 id_
where the terms indicated by dots are regular at 3_ = 0. Inserting {3.9)

into (3.7) and integrating by parts, with respect to 6, gives

M=.b b =43 3
J dhx dhe ¢e)ft1-_.,_,_(D) E(D) + —H—(D)ia(D) T+ ...
3_ -
= J d'x a's [cpe"t. (D)h T+0 o7 5. ] . (3.10)
~11-

T g TR AT S TE T
.

We beve used the fact that ithe external liuwe wove function must salisfy the

.1 o
reality condition, (D) %" = 3 &%

To (3.10} the second term exhibits
cne D acting on the external wave function. Successive terms, not shown
expliritly, would have more powers of D (or 8 ). Only the first teru is
potentially dangerous in that it might lead to log-divergences. To show that

this does not happen we must examine the structure of (D)  u ., From {3.6)

.

o' Eewt pFx Lo ra [Tkl ex @
g a® - - a® - ]
=22 x Lo (o xa_e) + a_[af.» x s (g x a_w] -0 x (2% x 8

a 3
f 1
=a_[eafw%(wa_m-afwj—(wa_wwx(agww
N ; -
=3 rzazwi—wxaw-acwl—wxaw *
- |2C A2 - 5 -
+o g% (dx2_0) =g x (350 x 9)
=a_[2af¢xlg—(¢xa_¢)-a_¢x§—(¢xa_¢)+¢>«(¢xa¢)J.
N : -
Hence, one power of & _  comes cut te act on ¢ext in {3.10). The claim is

therefore proved: every external line is associated with at least one
derivative, Bu or D. All vertex functions are superficially convergent

and the theory must be ultraviolet finite.

Iv. MASS TERMS

Cur purpose is to bresk the extended supersymmetry by introducing
masses for the spinor and scalar components. Of these the more problematical
are the spinor masses because, in the light cone gauge, they induce new
interaction terms. (Tt will turn out that new scalar interactions are
implied as well, but their form will be fixed by the finiteness requirement . )
In order to discover the new fermionic interactions it is necessary only to
introduce the mass term in Lorentz invariant component form, and then to
eliminate unphysical components as in Sec.II. The new interactions can then

be seen &s necessary for on-shell Lorentz invariance.

12
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To the Lagrangian (2.1) we add the mass term

1,08

T -1
-2 P

+ h.e. L,
o0 ¥yt hec 4.1}
where M“g is & symmetric matrix, It then follows that the equation of
constraint (2,8) must be replaced by

= _.]_-._ i ....;. 78 7B
Yo T Ty [1 V¥ T 7 BeX +&Hg X } : (k.2)

When the unphysical components [ are eliminated from {2.1} the following

mass dependent terms appear:

MY %y 2. ﬁ- x, * |/ [ﬁ- xu].M"B[HBY U XBJ + h.c] - (%.3)
To show that these terms are compatible with ultraviolet convergence
it is natural to look for a superfield expression of them so that the BLY
formalism, with these additions, cen be used ag in Sec.III. Our strategy is
then to examine the component structure of some terms which are bilinear and
trilinear in ¢ and which contain explicit 6-dependence. These terms, which
explicitly break the N = 4 supersymmetry (and the global SU{L4)) will be
chosen so 23 to include fermionic pieces like (4.3). In addition we must
engure that no vector mass terms are implied and that the scalar masses and
interactions are compatible with a stable, non-negative potential. If the
form (L.3) is respected, and if there is no vecter mass term then we can
be sure that we are dealing with a Lorentz invariant and gauge invariant
theory. The finiteness question regquires the use of light cone gauges but,

once this has been settled, there should be no obstacle to using any other

kind of gauge.

Consider the bilinear term

(b b he 1 w2 - 1 =1

a — =

J xdgds 6319921)1"’13_9“’

_ L -1 1 -2 1 =31 =h1

wIdx ['5?)(1+ X g Xy - EHy -8 -th] . (L.1)

Notice that it makes no contribution to the vector mass and that it is

symmetric under the interchange L «— 2 {the scalar components are of course
=32 =l2 :

self-dual, Hul = 0", H3l ==H ", etc.}. This suggests that = suitable

candidate for the mass terms would be

~13-

U R I 1 o B .1 58
S, =|daxdaeaqd Ta_ 808 B .=
12 J E 2 %p " %0 " % gt D (h.5)
o,B N
wvhere a'uB is a symmetric matrix with vanishing disgonal eleménts. It

yields the following masses:

M2(A)

n
<

o
-
It
]
+

1 e T By ey

=
1]
=
na
i
0
@
+

o1 T 82 oy,

=
w
—
-
w
]
P
+

31 7 %30 * 8y,
W) = ay + oy, + 83
2 -
M (th) = 8, 8 3 + By, *+ a,.

ME(th) T Sy tay tagtay,

&
0
+

a, +

31 "3 v Ay, ta

(g, ve . (4.6)

The six parsmeters, 8gg » 8re independent. Among the eight masses we have,
in additien to MQ(A) = 0, the relation 9)

ME{xl) + ME(XQ) + Mz(x3) + ME(xu) = ME(HH) + Mg(th) + M2(H3h) . (k)

More general mass terms could be imagined but we have not pursued the matter

further.

To obtain the interaction terms of (L.3) consider the trilinear

expression
1 oL b - -
EdededBBhDhgt-ttx;'—:dJ:
- bed| 2 o Ll x4 g
= - J d x{[ia- th'LHhu Xy + 1 Av x Xh:l - th'HZh x HEJ-G} - (h.B)

Since our fermion mass matrix is diagonal, according to {L.6), we can take

CaE O Mo Fas ey (4.9)



ete. It then becomes clear that the interaction part of (k.3) is contained
in the trilinear
P U TS - 1 -
Suz = - 3ngxdeda_ Mu(a)BBDa¢-¢x§—¢+h.c. (4.10)
o

which must be added, together with {L4.5}, to the BLN action (2.18). Note that
(4,10} includes interactions among the scalar fields as shown in {4.§).

To summarize, the total action is given by

1 =, =8 T, L =B

+ Z EauﬁeeuBeBD5¢ i D" ¢
af

-E Z e eunﬁ-w;}—ﬂ 5 (4.11)
a

where a . is a real, symmetrie matrix and Mm(a} is given by (4.9}, The
expression (U.11) is the form taken in the light cone gauge by the

manifestly geuge invariant and Lorentz invariant action

Ja“x [—%Fui - 1Yy, +11:vu H“B.vu A+

af
£ g8, T ¢ty +ne. -2 M(a)rT-G—lw s hoe.| - v
- ME‘ X \uu q,-B “C. 2 . lwu M «Ce J ]
[+
(L.12)
where V(H) is given by
2 2 2 2 2 2
VH) = M(Hy) B |7+ MOG0 (i, |7+ MO ) [y
afyd
- Z Ma(a) e H%-HYu * He o o+ h.e.
a
2 =B _ =vy§ L
+%H x H -Hm'ﬁxH"“s . {4.13)
_15-

It is not immediately clear that the potential (4,13} is an acceptable
one, In view of the well-known property of the original symmetric theory,
that its (purely quartic) potential vanishes in certain directions (in the
space of Huﬂ)‘ one might suspect that the presence of cubie terms in (L,13)}
would cause it to be unbounded below. To seitle this doubt it is useful te
express V in terms of three independent complex scalarsg,

b =My a % = Hy s #3 = Hy o ' (3.14) i
k
The potential now reads .
g 2 2 2 2 2 2
V= deg 1T My Lepl” + My, [4g]
* * ] ) *
. + . . .
v 2 (Mydymey X 0y T Myt dy X g+ Mydyrdy X g+ My by X g+ hece
2 * * . %
+ . .
tg E [¢i T A PR L ¢J] (k.15)
i, .
The quartic term vanishes if and only if |
1
» k
¢i x ¢J = 0, ¢i * ¢J =0, i, = 1,2,3 {4.16)
otherwise it is positive, However, if (4.16) is satisfied, it is clear that
the cubic terms in {4.15) also vanish so that the potential reduces to its
quadratic part in these directions. Stability is therefore ensured if the
three mesges Mlg’ Mai and M3ﬁ are positive. This would seem to rule cout
the possibility of spontaneously breaking the gauge symmetry, but radiative
corrections could alter the picture.
Finally, we come to the question of finiteness. As in Sec.TII, we
use the dimensional argument. Integrals which are ultraviolet convergent §
by virtue of the structure of vertices to which external lines are attached l

will clearly remain convergent when masses are introduced into the propagators.
However, there are new mass-dependent vertices to be considered. These are

characterized by the last term in (b.11)

f - - -
'-j%’g J a'x a%s a3 Z M_(a) 8D 3¢ x ;—¢ } {(4.17)
8 -
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With this interaction it can happen that 1/8 acts on an external line wave
function, thereby raising the superficial degrec of divergence of the
associalad graph. Such a potentizlly dangerous contribubion can be re—

arranged as follows:

T TR S T -
- e | dx o as jgii M (a) 8, D Fp x5 55
= -
M (a) D 1 -
- Jg g J dux a“a dhe E:: ua a $ext <8, % x 9 (4.18)
- -

on integrating by parts with respect to Ea. Now the operator, MuDu,a_,
which acts on the external wave function has dimension + 1/2. This mesans
that the vertex is not dangerous: the convergence arguments of Sec.III
therefore apply also to the broken theory. Offwshell amplitudes are

ultraviolet convergent in the light cone gauge.

The Legrangisn (4.11) has no unbroken supersymmetry: all four 8's
appear expliecitly. It is evident though, that W = 1 supersymmetry can be
recovered by removing some of the mass-dependent terms. Thus, for example,

the explicit dependence on @ and gl is removed by taking

1
Fp T 3 T oAy < 0
There results an N = 1 supersymmetric 10) theory with the following
multiplets:
(8.x,) ME = o
2
(X2’H3h) M= 423 + aEh
(xs,H,, ) M2 =a.,. +a
3> 2L 32 3k
(xy,5H,,) M2 =a,_ +a
L) L2 L3 :
By eliminating 92 as well, i.,e. taking
a23 = ey, = Q0

one obteins ¥ = 2 theory with the multiplets

~17-

(A: Xl’ Xopo H3h) ) M= 0

(x3, Xy th, HQhJ , M o= dyy -

V. DISCUSSION

We conclude that, barring technical difficulties with the light cone
gauge, the explicitly broken N = 4 super Yeng-Mills theory is ultraviolet
finite. The technical questions are not trivial, of course. The presence
of a non-local operator, 1/3_, could perhaps give rise to unacceptable
singularities in physical amplitudes. We have nothing to say about this,

It can also be argued that operator ordering problems might render higher
loop calculations ambiguous. But if we suppose that all such problems can be
overcome then we appear to have a non-trivial 4-dimensional theory which

ig free of ultraviclet singularities.

The infra-red behaviour, though simplified by the introducticn of
mass terms, is not trivial. 8Since our potential has a stable minimum which
preserves the local symmeiry, the theory has massless non-Abelian vectors,
like QCD. Perhaps the ususl confining mechanism would operate here as well.
However, it must be emphasized that we do not have a "running coupling constant,
in the usual sense. The bare coupling constant of this theory should be
thought of as an observable quantity since one must be able to expressg physical
amplitudes in terms of it, in a cut-off independent way. (It may be worth
pointing out that the partieular type of regularizatlion employed in any cal-
culation is not important now since there will never be a need to separate
divergent parts and cancel them with counterterms.) Of course it is
possible, and perhaps desirsble, to replace the bare coupling constant with
some "effective" parameter which relates more directly to observable
quantities, The megnitude of such an effective parameter would of course
depend on the energy scale E, used in defining it. However, it would

presumably not vary es (4n E)_1/2.

Can such a theory be fundamental? AL present there are too many

arbitrary parsmeters and we have no prescription for choosing them. It is

tempting to speculate that the mass terms are on the Planck scale end that
an appropriate cheice of them would casuse this theory to generate massless

helicity 2 bound states, the graviton, and that the Elnstein theory {or even

-18-
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