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I . INTRODUCTION

ABSTRACT

Assuming the compactification of U+K-dimensional spacetime

implied in Kaluza-Klein type theories, we consider the case in which the

internal manifold Is a quotient space, G/H. We develop normal mode

expansions on the internal manifold and show that the conventional

gravitational plus Yang-Mills theory (realizing local Q symmetry) is

obtained in the leading approximation. The higher terms in the expansions

give rise to field theories of massive particles. In particular, for

the original Kaluza-Klein k+l-d Linens ional theory, the higher excitations

describe massive, charged, purely spin-2 particles. These Delong to

infinite dimensional representations of an 0(1,2).

The motivation for studying generally covariant field theories in space-

time of more than four dimensions is to ottain a geometrical interpretation of

internal quantum numbers such as electric charge, i.e. to place them in the same

context as energy and momentum [l,2l. The latter observables are associated

with translational symmetry in l(-dimensional Minkowski space; the internal

observables would be associated with symmetry motions in the extra dimensions.

In theories of the Kaluia-Klein type one starts with the hypothesis

that spacetime has U+K dimensions. One assumes general covariance and adopts

the it+K-dimenslonal curvature scalar as the Lagrangian. Next, one supposes

that because of some dynamical mechanism, the ground state of this system is
h K li+K" li

partially compactified [3], M x B rather than M , where M denotes

^-dimensional Minkowski space and B is a compact K-dimensional space ft].
if

The size of B must be sufficiently small to render i t unresolvable at the
K —17

currently available energies. For example , with the size of B < 10 cm,

it vould be invisible to probes of energy < 10 GeVj this being an upper

limit.

Models have been constructed vhich illustrate this phenomenon of

spontaneous compactification [5,6]. In general, it is necessary for the

system to include non-geometrical (matter) field3, coupled to the metric

field, for this effect to be triggered. The presence of such ad hoc matter

fields detracts from the simplicity of the purely geometrical theory and

perhaps indicates that the geometrical component is not truly fundamental.

An interesting exception, however, could be the extended supergravities

where certain matter-like fields are Justified by an underlying super-

symmetry [7] and possibly the related geometry of superspace.

Assuming that the compactification is achieved, vhat are the
Implications of taking the extra dimensions seriously? By expanding the

fields in a Kaluza-Klein theory in terms of normal modes on the compact

space B , the extra dimensions make their appearance as massive multiplets

of the associated symmetry 6rouP- In this paper we wish to examine these

multiplets and the higher massive excitations.

To illustrate the emergence of mosses, consider the original

theory of Kaluza and Klein which involves one new co-ordinate, y. The

5-dimenaional line element was assumed to take the form
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(dxm - (ay -

where m.n .a .b , . . . take the values 0,1,2,3 and em
a(x) represents the

vlerbein field on It-dimensional spacetime. The tt-veetor *m(x) is to he

interpreted as the electromagnetic potential. Gauge transformations here take

the form of co-ordinate transformations

inx

An example is the vector A itself which describes a. raassleas particle,

m
the photon. The gauge symmetry here associated with the transformation

y •+ y + A(x) prevents i t from acquiring any mass.

To consider non-Abelian symmetries one has to interpret the new

co-ordinates y* , u - 1 , 2 , . . . , K as a parametrization of the manifold of

a compact non-Abelian group, G. The line element is now assumed to take

the form [It]

y •* y + A(x)

with
e a - e a

m m
A + A t - i / 1m nL K ID

which leave the 1-forms, dxm e * and dy - dx KA^, invariant. The

invariant coupling to a complex scalar field, +(x,y), would be described by

the Lagrangian

det

If one supposes that the y_dependence of 4> i s such that

y - - i •
then this Lagrangian reduces to that for a charged scalar,

ds

where the charge is given by

The electric charge is hereby understood in terms of the radius, R, of the

extra dimension, interpreted as a circle. Conversely, given e, this

equation fixes R (the size of the manifold) as K/e where K is Planck ^

length. This also implies that the masses are in Planck units ~ K * 10

Because of this one is naturally interested to discover any exceptional

cases where, for reasons of symmetry, the mass contribution is suppressed.

GeV.

i ^ m= (dx - dxm

where the auxiliary functions e ^ y ) constitute an orthonormal K-bein on the
group manifold G, and the functions K^fy) are Killing vectors on G . This
formalism will he reviewed in some detai l in the following sections.

A further generalization is possible where the new co-ordinates are
taken to parametrize some homogeneous space, G/H, on which G can act [8,9],
A novel aspect of th is kind of scheme concerns the problem of embedding. In
oraer to give a G-invariant meaning to the ground state i t i s necessary to
associate the motions of G/H with frame rotations (or tangent space t r ans -
formations). This requires that the stabi l i ty group, H, he embedded in the
tangent space group, SO(K), in such a vay that the K-vector of SO(K) has the
H-content of G/H.

In a l l these theories the metric field carries an infinite number of
new degrees of freedom corresponding to the propagation of excitations in the
new dimensions. As a rule these excitations are ignored because of the i r large
masses. Hovever the massire excitations are not always ignorable: their
contributions to a typical scattering amplitude are comparable to those due
to graviton exchange. To see t h i s , consider the scattering of charged scalar
particles with the interactions represented schematically by

- K hm V

where h denotes the graviton field and A
mn m

one of the massive

excitations. The amplitude for graviton exchange is of order K E ,
while that for A-exchange is of order e ir/M> where E represents

M thesethe energy scale of the scattering process. Since

contributions are of the same order . Only in the region of low momentum

transfer, t << IT, does the graviton amplitude, v K E A , become dominant.
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The p urpose of this study ia to deal vith some of the general

features of Kaluza-Klein theories. These include the geometry of homogeneous

spaces, the transformations of fields defined over them, the structure of

normal mode expansions on G/H, the embedding of Yang-Mills gauge trans-

formations in the group of general co-ordinate transformations, and the

extraction of an effective It-dimensional Lagrangian. Such an effective

action will be particularly useful for low energy effects ascribable to

the existence of the microscopic and as yet unresolvablestructure on space-

time. Since much of the recent work in this field has been couched in

the terminology of fibre bundles [10] i t is not accessible to those without

expertise in such matters. We shall therefore adopt a less sophisticated

approach and express results in the more generally familiar component

notation.

The plan of the paper i s as follows. Some definitions, notational
conventions and a brief description of the It+K-dimenslonal Einstein theory
are given in Sec.II . There follows in See.Il l a discussion of symmetry
axpeets of the compactification of the extra K dimensions. Harmonic
expansions on G/H are introduced to describe the excitations. An Important
ingredient here is the embedding of the s tabi l i ty group, H, in the tangent
space group, SO(K). Integration over G/H is used to reduce the Lagrangian
to effective ^-dimensional form. Some of this Is I l lustrated in Sec.IV
vhere the low energy sector of the li+K-dimensional theory is shown to
contain the It-dimensional Einstein and Yang-Mills terms. Much of the
pedagogical detai l is confined to the Appendices, except for Appx.5 which
deals with the spectrum of U+l Kaluza-Klein theory.

I I . EXTENDED GRAVITY

Let t h e U+K-dimensional spacet ime be pa rame t r i zed , a t l e a s t i n some

local region, by a set of co-ordinates, z . On this space let there be

defined at each point a local frame of reference In the form of k+ln

linearly independent eovariant vectors, Ey .

The basic symmetries of the theory are twofold. Firstly, there

must be general covarianee under the co-ordinate transformations,
u ru A
z -» z . Being eovariant vectors, the E, transform according to

-5-

(2.1)

Secondly, there is to be covariance under a group of z-dependent linear

transformations among the vectors of the reference frame,

(2.2)

In order to establish a pseudo-Rlemannian geometry on the It+K-space i t Is

usual to assume that these transformations belong to the pseudo-orthogonal

group, SO(l,3+K). We shall adhere to this choice.

With frame rotations belonging to SO(1,3+K1 one is led to consider
the frame-Independent combinations,

(2.3)

which define the eovariant components of the metric tensor. By an appropriate

choice of basis, the S0(l,3+K) invariant tensor, n,_. can be represented

by the diagonal matrix,

diag(l, -1, -1 -1)
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Indices are raised and lovered in the usual way. The contravariant

quantities E, and g are defined as matrix inverses of 1^ and g ^ .

respectively, (We employ the alphabetic convention that l e t te rs M,N,,..

from the middle alphabet will be world indices while those from the early

alphabet, A fi,.., shall be frame labels.)

The coupling of extended gravity to matter is conveniently i l lus t ra ted

by the case of the fundamental spinor of 30(l,3+K). This spinor, <\i(z), has

2 components where [K/2] denotes the largest integer- ^ K/2. Onaer

frame rotations the components of lp transform as an S0(l,3+K) spinor,

(£.5)

but, under general co-ordinate transformations they are sealars ,

I|I(I) + i|)'(z') » t(z) (2.6)

The partial derivatives 3Mt make a covariant world vector but they do not

transform homogeneously under frame rotations. The latter defect is cured

by introducing the spin connections, Bj,(z) , which constitute a gauge field

with respect to frame rotations,

S BH S " 1 + S (2.T)

and a covariant vector with respect to co-ordinate transformations. The
covariant derivative is then defined by

V = (3M + V * (2.8)

The spin connections belong to the infinitesimal algebra of SO(l,3+K). In

the spinor representation one can write

BM =

where y is a generalized Dirac matrix, i .e

With these fields it is possible to construct a suitable Lagrangian density,
one which is invariant under frame rotations and a scalar density under co-
ordinate transformations

a; +h.c;- (a.n)

This much i s nothing but a straightforward generalisation to h+K
dimensions of the well known t-dimensional structures. However, when one comes
to look for the Yang-Mills potentials among the components of E and B, one
will find some less familiar things. For example, the 'tainimal coupling" of
the vectors i s contained partly in the term ipy E 3M<li and partly in

coupling.
ls*ter term may also contain a non-minimal, Pauli type of

Out of E and B and their f i r s t derivatives i t is possible to
construct two dist inct covariant objects, or ' f ield strengths". These are the
torsion,

HC (2.12)

and the curvature,

V N [ A B ] " VM[AB] "

(where early alphabet labels are raised, lowered and contracted with n
defined in (2.U)).

The curvature scalar (density) i s given by

det(E)R = det(E)EA
M

(2.13)

AB

(2.lit)

and can serve as a Lagrangian density for the extended gravity fields. The

fields E and B may be varied Independently or, alternatively, one may

impose the torsion constraints, T = 0, and eliminate B as an independent

variable. The constraints T

solved. One finds

0 are algebraic in B and can easily be

BM[BC]
(2.10)

-T- -8-



where

EA \ (2.16)

III. COMPACTIFICATION

Having s e t up an a c t i o n p r i n c i p l e i n U+K dimensions one might i n q u i r e

into the nature of the solutions to the resulting equations of motion_ In a

purely geometrical theory one would expect the ground state, or vacuum, to

exhibit maximal symmetry. Indeed, one should find the k+K-dimensional

Minkowski space , Hovever, in the presence of matter fields - scalars and

vectors _ the situation is more 1. Mpiicated and i t i s possible to imagine

that the ground state will manifest some lover symmetry. In particular, if

the theory is supersymmetrie the fields which accompany E and B may trigger

a conpactification of some of the dimensions in the ground state. We shall

assume that this happens and that the ground state geometry factorizes into

the product of ^-dimensional Minkowski space with a compact homogeneous space,

G/H, of K dimensions. This space is invariant under the action of some group

0 which will be interpreted as an -internal" symmetry. We shall further

assume that the compact space is small enough (size «\,>0 to Justify, for

most purposes, the neglect of any excitations associated vith i t ( i . e .

that such excitations would be too massive to be accessible at present

energies). As mentioned in the Introduction tlie excitations may not

always tie negligible. Their contributions are generally comparable to

those of gravitons and they would certainly be important if the gravitons

are quantized. The aim at this stage, however, is to develop an effective

^-dimensional theory for the long range degrees of freedom.

One way to obtain the ^-dimensional theory is to expand al l field

variables in complete sets of harmonics on the homogeneous space G/H. The

expansion coefficients are ^-dimensional fields belonging to a sequence of

representations of G. Their dynamics is governed by a ^-dimensional

action functional obtained by integrating out the G/H-dependence and using

the orthogonality properties of harmonics on G/H. The resulting masses

and couplings are necessarily F-invariant. The scale of the masses is

determined by the size of the compact manifold, and we shall assume that

a l l non-vanishing masses are therefore large. One wculd like to be able

to extract the zero modes and discard the rest. We shall consider some

aspects of this problem in the following but do not obtain a general

aolution. We now develop the necessary formalism.

To distinguish the compact dimensions from the remaining four of

ordinary spaeetime i t is convenient to adopt some notational conventions. For

the co-ordinates write

M
z =

(3.1)

with middle alphabet Latin suffic.es, m,n,... taking t ie values 0,1.2,3 and

their Greek counterparts, u,\i , . . . taking the values 1,2,,..K. The compact

manifold, G/H, is parametrized by yv. The early alphabet frame labels are

likewise divided into lower case Latin and Greek,

To implement the parametrization of G/H there are available standard

group-theoretical techniques [ l l ] , one version of which we outline briefly.

Suppose the co-ordinates, y , label the cosets of G with respect to the

subgroup, H, That i s , from each coset let there be chosen a representative

element, L . Multiplication from the left by an arbitrary element g6G

will generally carry L into another coset, one for which the representative

element is L This defines the so-called left translation

\
(3.2)

where h is an element of H. Both y and h are determined by this

equation as functions of y^ and g. The explicit form of these functions

depends, of course, on the choice of elements L which represent the coseta.

Such details are not usually important and, here, we shall be able to manage

with some general properties of the parametrization. Among these, the most

important is the notion of a covariant basis on G/H.

To define a covariant basis consider the 1-form, or differential,

e(y) = (3.3)

This object belongs to the Infinitesimal algebra of G and therefore can be

expressed as a linear combination of the generators, Q* ,

e(y) - e°(y) (U

The generators Qj fall in tvo categories: the set Qj which generates the

subgroup, H, and the remainder, Qa , a = 1,2,...,K associated with the coseta,

G/H. Correspondingly, one writes

-9-
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e(y) " eaCy) a + ea(y) a- • (3.5)

Of special interest are the coefficients e (yO which constitute a non-

singular K x K matrix. The columns of this matrix provide the covariant

components of the K linearly independent vectors of the covariant basis The

contravariant components of the reciprocal basis, e y , are defined by

inverting the matrix e

The behaviour of e(y) under left translations can be deduced from

(3.2) and (3 3). Thus, quite generally,

e(y) - > e ( y ) = h L~ g"1 d(P L h"1)

• h e(y) h"1 + h d h"1 + h L'1 g~l dg Ly h"
1 . (3.6)

On substituting the expansion in terms of generators and introducing the

matrices, D^ , of the adjoint representation of G, defined by

the formula (3.6) gives

g"1 Q-. g = Ds
B(g)

(h d h"

(3.7)

(3.3)

The components, (h d h ) and (g~ d g) , of elements in the algebra are

naturally defined by

g"1 d g = (g"1 d g) a Q-.

h d h 4 = {h d h " 1 ) 3 Q^ = (h d h"1)" Q- (3 9)

Since h d h belongs to the algebra of H, we must have ( h d h ) a = 0.

^A more detailed discussion of the properties of the -boost" elements ,

L , together with some i l lus t ra t ions is given in Appendix I. Curvature and

torsion formulae for G/H are derived in Appendix I I , and various implications

of the transformation formula (3.8) are derived in Appendix I I I . )

Mow consider the luestion of harmonic expansions on the internal space. To

begin with^f the internal space were simply the group G i t se l f ( i . e . H = 1)

i t would be natural 10 enrloy the full set of matrices of the unitary

irreducible representations of G, For the function, "Kg), one would write

C 3- 1 0 )

p,q

vhere Dn is a unitary matrix of dimension d and the sum includes all
PI n

matrix elements of all the unitary irreducible representations, g->D n(g).
The coefficients, $ m , are projected out by integrating over the group,

T? L
where dp is the invariant measure normalized to volume V^ .

For functions on the coset space G/H the expansion is somewhat

restricted. Typically, one is concerned with functions ^(g) that are

subject to the auxiliary symmetry

(3 12)

where hftH and D(h) is some particular representation of H_ This means

that $(g), though not s t r ic t ly constant over the points in a coset, is related

by a linear rule , i . e

for g, and g- in the same coset. The appropriate restr ict ion of the

expansion (3 10) i s clear. I t must include only those terms for which

tDn{hg) - D(h) Dn(g)

For irreducible C(h) one should write

(3.13)

-11-
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vhere the sum includes all unitary irreducible representations of G for

which D̂ makes sense, i.e. all those which Include O(h) on restriction

to H. If D(h) is contained more than once in a given D (g) then a

supplementary label, £ , is needed to distinguish them. The dimension of ID(h)

is denoted <L . The coefficients, $ n

integrating over the coset space ,

, are projected from the sum (3-13) by

This expression can be derived from (3.11) by resolving the general element

g into the product of appropriate elements L and h Such a decomposition

is unique once the form of the representative element L has teen chosen.

From (3.12) it follows that the h-dependence factorizes,

(3 16)

where e a i s the covarlant basis on G/H defined above. The expression (3 .16)

i s invariant under the product of the U-dimensional Poineare group.and the local

(x.dependent) transformations of G . The Poincare invarianee is exactly as in

the familiar It-dimensional theory of general re la t iv i ty . The local G-invarianee

is compounded of the x-dependent left translations on G/H, y + y"(x,y) and the

induced tangent space transformations, DJW, with h defined by (3,2). To

see t h i s , consider the action of the combined transformations on Ê  (x,y)

vhere D.° is a K-dimensional orthogonal matrix. In order to have
P

Integration over the subgroup H can be carried out explicitly and leaves the

result (3.1*0.

Thus, for a set of fields *±(x,y)the general fora of the harmonic

expansion on G/H is given by

Z (3.15)

Here n labels the excitations
,nThe coefficient fields

(3.I
Vi (x) are obtained by integrating over G/H as in

If the representation C(h) to which iK belongs is reducible then

it would be necessary to separate I|J. into irreducible parts and make an

expansion of the form (3.15) for each. This raises the important question of

how the H ̂ content of i|iU,y) is to be determined. It will be settled by

invoking the ground state symmetry.

The full set of fields in k+K dimensions is supposed to be governed

by an action functional which is invariant with respect to both the general

co-ordinate transformations and the frame rotations. These symmetries will

not be manifest in the ground state, however, Ey assumption the ground state

geometry is M x G/H, where G/H is a compact K-dimensional manifold In the

ground state we therefore have

I t is only necessary to choose < E y
a > = ey° and

from (3.8) which contains the formula

* D ^ h ) This follows

ay"11 ey°(y') e^Cy)

Thus the embedding i s fixed. With the left translation, y + y t , must be

associated the SO(K) transformation, D^th) , where h«H . This implies that

the K-vector of SO(K) has the H_content of G/H. More precisely, the
g e n e r a t o r s , Q- , of H can be expressed in teraB of the generators,

of SO(K) by the formula

£
~\

(3 17)

where the coefficients c-o a are taken from the set of structure constants

c •* o f G.

yaB
The Yang-Mills group of transformations described here, vhich leaves

the ground state invariant also preserves the form of the expansion (3-15).

Thus , with i|i transforming according to

-13-
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* (x,y) (3'18}

i t is a simple matter to derive the corresponding rule for the expansion

coefficients

They belong to the various irreducible representations of G which contribute

to the expansion (3 ,15).

In order to express the full it+K-dimensional theory in i ts equivalent

hjUmensional form, one should substitute expansions like (3'15) for all of

the fields in the system. The !i-dimensional Lagrangian is then obtained by

integrating the lt+K dimensional one over the compact manifold, G/H_ Integration

of products of matrices Dn(L"1) reduces, in principle, to an algebraic

problem. Although i t is difficult to obtain results without going into

the details of particular eases, the most important feature, orthogonalityf

can be illustrated by an example.

Consider the invariant integral

where the label, i , is understood to be summed. Since the measure, dy = d y

det e, is invariant under left translations, one can write

where d and d», are the dimensions of D11 and <D. , respectively. Thus

(3.21)
Tnn'

'PI U '

n
nn'

This result is needed for inverting the expansion (3.15)-

The argument leading to (3.21) generalizes. For example, one can write

dy c (L (L (L
yG/H

i3e3.

where e is an invariant tensor of H and the 3-n symbols are

essentially Clebseh-Gordan coefficients for the unitary representations of G,

The factor a depends on normalization conventions for the 3-n symbols.
nln2n3

1*)
Having given, in outline , the general form of the expansions to be

used, we shall in the following section restrict our considerations to the

leading terms. The Justification for this restriction is Bimply that, in

the regime of low energies, only zero-modes are important.

•I

because the dependence on h cancels. Hence I is an invariant tensor of G.

By Schur's lemma i t must take the form

I n n ' =6 6 k"
p ; , p V nn1 pp1 5? '

To evaluate kn , , set n = n 1, p = p' and sum over p. One obtains

IV. EFFECTIVE LAGRAHGIAHS

It is guaranteed that the graviton and a set of Yang-Mills vectors are

included among the zero-mass fields of the H-dimensional effective theory. This

results from the gauge symmetries of the U+K-dimensional theory and the assumed

symmetry of the ground state. It can be proved as follovs.

consider the ansatz [9]

For (x,y)

(U-i)

- 1 5 -
- 1 6 -



where the y-dependenee is specified. This ansatz is compatible with subgroup

of the lt+K-dimensional symmetries: the li-dimensional general co-ordinate

transformations,

and the Yang-Mills transformations, or x-dependent left translations

VV

•* y

with associated frame rotations, D (h) ,

{k.2a)

Vth"1' (h,2c)

Of these rules, (l*.2a) requires no comment and (h.2c) has been dealt-with

already in Sec.III. There remains (It.2b) which implies, in view of the ansatz,

With the help of formulae derived in Appx.3 this rule reduces to the form

where A = A Q~ This is precisely the rule to be expected for a Yang-Mills
m m QL

potential .
The zero torsion spin connections corresponding to the ansatz (U,l) are

obtained by substituting in the formulae (2.15), (2.16)

Ba{BY]

In these expressions the following notations are used:

Er[a
Km E °

D a

= a A a - 3 A a

n n m

and the structure constants of G are defined by

QgJ

On substituting the expressions (U.U) into tbe U+K-dimensional
curvatiire scalar one obtains

where Rĵ  = Rv(E) i s the usual U-dimensional cuTTature scalar, expressed in
terms of the vierbein E a ( x ) , and R^ i s the constant curvature of G/H (see
Appx.2). On integrating yU the Yang-Mills Lagrangian emerges, since

K
det e(y) DjT

where k • dlm(G/H)/dlni(G). Thus, the above assertion that the system contains
the graviton and msssless Yang-Mills fields i s verified.

-17-
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There may also be zero mass scalars in the system, like the Brans-Dieke

scalar in the K = 1 theory. This point is sensitive, however, to the matter field

couplings which are generally needed to force the compactification. We shall

not therefore discuss the scalar modes.

Finally, to illustrate hov the ansatz described above can be combined

with an analogous one for a spinor field to give an effective 4-dimensional

term,, ve consider the expression

= | det det e(y)

+ g"

and it remains only to Integrate over y. Since y must commute with D(L ) ,

the result takes the form

= | det E(x,y)

with i(x,y) represented by the ansa+.z,

t.8)

.This la a typical term from the harmonic expansion of tfx,y). The spinor

of SO(1,3+K) must of course be decomposed relative to the subgroup

S0(l,3) * H; each piece in the decomposition will yield + (x) and the

details of labelling are ignored here. One must substitute the expressions

(St.l), {k.h) and (It.8) into (it.T),

| det EC.) det e(y) * (x) Y
B C}

\ - VBC] ̂

| VK det EC*)

- MJ + h . c .

where r and M are matrices defined by

i- f dv DtL ) r" D(L -1) D!(L, -1)VK JG/H 7 Y 7

(It.11)

(U.12)

(It.13)

Note that the "Pauli-moment term" implied by non-zero r i s a necessary

consequence of our fonsalism, and the precise numerical expressions for r

and M are the hall-marks of the expansion on G/H.

To simplify this expression It is necessary to eliminate the derivative 3 by

means of the formula

which follows from the definition (3-3). Multiplication by e^1 then gives

-1\
D ( l >

where TT is defined in Ct.5). It turns out that the w-containing terms are

cancelled by similar terms in the spin connections. This cancellation is

ensured by the embedding of H in the tangent space group (see Appx.lt). After

some tedious calculations i t is found that (4.9) reduces to

-19-

y. COHCLUSIOH&

In this study we have attempted to analyze in some detail various

formal aspects of Kaluza-KLein theories in which the ground state geometry takes

the form M * B K, where B K is a K-dimensional quotient space G/H. The

symmetries of this ground state are used to classify the excitations of the

system, and these excitations are found to Include particles of spins zero, one

and two, in general. In particular, there are a set of k vectors belonging to

the adjoint representation of G contained among the components of the metric

tensor and spin connection which serve as Yang-Mills potentials.

Harmonic expansions on B are used to define sequences of component

fields, defined on M and belonging to irreducible representations of the

Tang^Mills group, G. An important feature in determining the content of these

expansions is the embedding of the stability group H in the tangent space

group SO(K). This embedding is discussed in detail. Considerable use is

made of the "boosts", L , in setting up the formalism. The transformation

properties of L are used to define the action of Q on the manifold G/H,



and the derivatives of L give the covariant "basis vectors on this manifold.

They als o are used in the construction of integral formulae for mass matrices

and coupling parameters for Pauli-moment-like terms in the It-dimensional

effective theory (formulae (U.12) and (U.13)).

We remark that the ansatz for the ^-dimensional fields associated
with massless particles - graviton, Yang-Mills vectors and Brans-Dicke type
scalars - can be seen to arise as leading terms in the harmonic expansions.
The complete spectrum for the lt+1-dimensional theory is discussed in Appendix V.
I t is shown there that the massive excitations are purely of spin-2 and that
they can he assigned to infinite-dimensional representations of the non-compact
group 30(1,2). Such non-compact symmetries are spontaneously "broken and may-

be viewed a a spectrum generating symmetries. I t is interesting that , viewed
in this l ight , Kaluza-Klein theory seems to constitute an example of a
consistent theory of massive, charged spin-2 part icles .

Information drawn from the structure of the harmonic expansions would
be useful in testing the classical s tabi l i ty of Kaluza-Klein type solutions.
We have not dealt with this type of investigation (except for the simple
example of 1*+1 theory) since i t is generally necessary to introduce matter
fields of some sort into the system to generate non-vanishing curvature in
G/H. ^ Such matter f ields, which must affect the stabil i ty considerations,
represent a non-geometrical element in the theory (except, perhaps, in the
case of extended supergravitities[7]) and are particular to specific models.

APPEHDIX I

Non-linear realisations

To supplement the discussion of Sec.III we give here a somewhat more

amplified description of the properties of non-linear realizations of continuous

groups. The concepts were thoroughly exposed in the physics l i t e r a tu re a few

years ago when t h e i r appropriateness in t rea t ing spontaneously broken symmetries was

noticed [12]. In that work the space on which the group acts i s a set of scalar

fields and the non-lineari ty can be expressed through algebraic constraints on

these f i e lds . Because of such constraints i t I s impossible for a l l components

to vanish simultaneously, hence the absence of an invariant ground s t a t e , and

hence the relevance to spontaneous symmetry breaking. Prom a more abstract

point of view, the set of scalar f ields consti tute a vector space which supports

a l inear representation of the symmetry. The constraints serve to pick out a

subspace, generally curved, which i s carried into i t s e l f by the action of the

group. On such a subspace the group 1B said to be realized non-linearly.

Indeed, to characterize the fields belonging to such a curved subspace i t i s

generally necessary to adopt a curvilinear co-ordinate system and so to express

the group actions by the transformations which they induce in thes.e co-ordinates.

The class ic example of non-linear real izat ions i s the treatment of

ehiral SU(2) x SU(2). This group haB the infinitesimal structure of SO(U)

and the scalar f ields (o,%) are assumed to transform as a It-vector. If they

are subjected to the constraint

°e + £ = ^ . (i.D

where F i s a fixed number, then the number of independent components is
reduced to three: they belong to a 3-sphere of radius F. This 3-sphere i s
of course carried into i t se l f by the transformations of SO(lt). I t i s Invariant.
To parametrize the points of the 3-sphere one could simply use the 3-vector £
and write c - ± tflT - JJ, . For some purposes, however, i t is more useful
to define a set of boosts, L̂  , which are SO(lt) transformations that carry
a given reference point, say

into a general point. In terms of the U * U orthogonal matrices D n(g)
op

of the vector representation one writes

- 2 1 - -22-



(1.3)

Of course there i s a great deal of la t t i tude in the choice of L^ and I t
will generally be necessary to use at least two co-ordinate patches i f the
sphere ia t o tie covered without generating a r t i f i c i a l s ingulari t ies .

To i l lus t ra te the parametriaation of the sphere we give the example
of spherical polar co-ordinates,

» F cos8

« F sine cosv>

« F sine slny

» F sine sincp ( I .

which corresponds to the choice of L ,
IT

Here the operator
in the aB-plane

(1.5)

-Q_ is the generator of the infinitesimal rotations

On applying an S0{10 transformation, g, to the sphere, the point whose
co-ordinates are (6,<p,i|0 wil l "be carried into one with co-ordinates (9' ,f>',<>').
A rotation through the angle ID in the lU-plane, for example, gives

cose1

sin9' cosy'

COBU sinu)

-sinu cosu

cose

sine costp

By solving these equations one can discover the transformed hoost, L ,

In general the co-ordinate transformation is given by

-23-

From this it follows that the precise relation hetveen L and 1 , must take
IT TT1

the form

g 1, • t , , 1 , (1.7)

where h is an orthogonal transformation in the 123-subapace, i . e .

D«U ( b ) (1.8)

Since L¥, is known once the angles (e1 ,<jp' ,i|i') have been computed, the S0(3)

transformation, h » L ,~X g L , is well defined.
n IT

To compute the 'basiB vectors on the 3-sphere consider the differential

- -de Ql(1 - dftfQ^ cos6 + Q̂ g sine) - di|)(Q23 coa<p +

» -dO Q., - d<f> sinS QL_ + di|i sin6 sintf Q. ,

-d<p ft-2 - di|i cos<p IL, + at cos6 sln<p L

From this expression one extracts the coefficients

cose - sinf)

•tl.9)

a
?
*

e

*

hi

-1

0

0

12

0

- 1

0

1*2

0

-sin9

0

23

0

0

-costs

1*3

0

0

sine

31

0

0

cose
(I.10)

where the labelling of rows and columns is indicated. The metric tensor on

the 3-sphere is given by

-au-



sin29 (I.11)

a3 would be expected in spherical polar co-ordinates. The spin connection

B T o . i s constructed out of the quantities
<*LBY J

1*3

12

O

sine

0

23

0

sine

31

0

0 0

eot» c o t S (1.12)

as discussed in the text, (k.h) (and further in Appx.S).

The case discussed above is an example of a non-linear realisation in

which the group G = SO(l») is made to act on a 3-sphere. The points of the

3-sphere are put Into correspondence with the left cosets S0(M/S0(3) through

the parametrization of the bsoosts, L . The procedure generalizes directly to

manifolds of the form G/H where H is some subgroup of G. (Bight cosets

can also be used. One writes

" 1g : ^ + y = h Ly g

On the manifold of G itself one can define the action of G * G

-1

In all such cases the mapping y •* y1 is determined once the form of L has

been specified.)

Global properties of a quotient space G/H are often made transparent

by embedding in a flat space of higher dimension, i.e. by viewing the non-

linear realization as obtained from a linear one with constraints applied.

A simple illustration of this is provided by the case of SU(3)/SU(2) * U(l)

which we consider briefly.

The infinitesimal transformations of SU(3) are generated by the eight

operators

- 2 5 -

-s,1a t a,b = 1,2,3 = 0) (1.13)

The boosts may be given by

L exp(ya - h.c.) (Lib)

where the co-ordinates y , a = 1,2, are complex. The l i t t l e group in this

case, H = SU(2) x U(l), i s generated by Q^. With this choice of L the

procedures discussed above could be used to find the mapping ya + y a

and the induced SU(2) * U(l) transformation, h, corresponding to an SU(3)

transformation, g. However, we shall not pursue this .

The manifold SU(3)/SU(2) * U(l) clearly has two complex dimensions.

In order to see that i t i s , in fact, CP one can proceed as follows. Let

the hermitian, traoeless matrices, Y , be the co-ordinates of a flat space

on which SU(3) acts linearly

-1
(1.15)

An invariant subspace can be picked out by requiring the co-ordinates to

satisfy the matrix equations

3 Y + f Ci.16)

where R is a constant. Since Y is hermitian, it can be diagonalized by an

SU(3) transformation and one finds easily that its diagonalized form must be

-H/3

-R/3

2R/3 .

(LIT)

In other vords, the general solution of the constraints is given by

Ly ? V 1 11.18)

with appropriate SU(3) boosts, L . On the other hand, it is possible to

express the general solution in the form

-26-



where is a complex t r ip le t and Since Y is unchanged by the
complex scaling n •+ A n , th is means that the manifold parametrized by La a y
can be identified with the 2-dimensional complex projective space, IP

As a supplementary remark we note that i t is possible to define the
action of a. non-compact group on a compact manifold. A t r i v i a l example of this
is provided by the group of displacements on the real l ine . By factoring out
a discrete subgroup corresponding to displacements which are integer multiples
of some unit , 2TTB, one obtains a compact quotient space. Formally, one -writes

l y - eJ<l , 0 < y « 2irB

where Q i s the generator of infinitesimal displacements. Applying an

arbitrary displacement, g =• expuQ, on the l e f t , one obtains as usual,

(1.20)

where

= L y t h

y ' = y + ui - 2wRn

h = (e2*RV (1.21)

and the integer n is determined such that y' lies in the interval (0,2irR).

If the points y = 0 and y = 2irR are identitied.then the quotient space

is a circle of radius R.

A less trivial example is the realization of the non-compact S0(l,2)

by its action on the projective cone, a compact 1-dimensional manifold. That

such a realization should exist is easily seen by embedding the cone in

3-limensional Miokovski space. The null cone

(1.22)

is clearly invariant under the action of S0(l,2). But it is a 2-dimensional

space. However, the cone is also invariant under the scaling transformation

X Y

A 1-dimensional manifold is obtained by identifying those points which are

related by scaling. (In practice one would be dealing with functions on the

-27-

cone which are homogeneous of degree zero.) A possible parametrization of

the manifold would involve writing

1

siny

cosy

{I.2M

To find the mapping y •* y1 corresponding to an hyperbolic rotation in the

02-plane, for example, one would write

chu + shoi cosy

siny

to obtain the relation

siny1

+ ehus cosy

X siny'

X cosy1 J

siny
chio + shu cosy

(1.25)

This kind of realization can be formalized In the manner used previously.

The generators, Q = -i , of S0(l,2) satisfy the commutation rules

V %A - V S,d + nad Sc "

It is possible to pick out two of these,

(1.27)

which are to be Identified as the generators of the (non-compact) stability

group, H. They satisfy

The boosts are defined by

Ly

(1.23)

(1.29)

-28-



Since any element of S0(l,2) can be represented unambiguously in the form

(1.30)

It will always Tie possible to solve the mapping relation

for y1 and h as functions of y and g.

Another example is the flat group of Scherk and Schwarz [13]. In its

simplest version, the generator <L is distinguished from the others,

Q,» J • 2,3,...,K. The commutation rules are

(1.31)

where M ia antisymmetric, i . e . Q generates orthogonal tranaformations
while the Q generate tranalations. (For K=3 this ia simply the 2-
dimenatonal Poincare' algebra.) To construct a compact manifold for the group
to act on, consider the elements

Ly

y \ yJ

'i (1.32)

where y ranges from 0 to 2ir/nL (nL • smallest non-zero eigenvalue of
and the y° are restricted to the ranges

4 y3 4 2irRJ , 2 N (1.33)

The action of the group on L is easily found. Firstly, the action
1

of ezpu ^ is given by

e L = L ,
y y

(I.3U)

whi;re y « y" and y = y + to (mod 2ir/m-). Secondly,

J T• = T * , (1.35)L = L , h
y y'

1 1vhere y • y and

-29-

y J - y3 + Ce'y ") ^ - 2nHJ
n
J (1.36)

with the integers xJ chosen Buck that y'1' falla in the interval (0,2TTR^).

The little group transformation associated with this ia then

(1.37)

The covariant basis is defined as usual by the 1-form

V1 d \
dy1

i.e.

ik

0 4,

(1.38)

To construct failing vectors the matrices D of the adjoint representation

are needed. These are given by

h

v<v

-iV y

Mik

-1

i.e.

(1.39)

The Killing vectors for left translations are then

-30-



' 1

0

(This matrix was denoted U(y.) in the wort, of Scherk and Schwara.)

We close with the observation that the zero-torsion spin connection
g

B (see Appx.2) is given for this manifold by

= - B. -dy1 M, (I.1U)

and the curvature 2-form vanishes, i . e . the manifold i s indeed f la t .

-31-

APPEHDIX 2

Curvature and torsion on Q/H

Because of their high degree of symmetry, quotient spaces have rather

simple geometrical properties and it is possible to derive a number of explicit

formulae to describe these. In this appendix ve give derivations for such

of these formulae as have been referred to in the text. All of them arise

out of manipulations of the boost elements L which ve use to characterize

the manifold G/H.

As has been mentioned in Sec.Ill, the first and most important step

is to construct the vectors of a covariant basis on the manifold. To this

end one must consider the 1-form

-1

(II.1)

where the infinitesimal generators of G are denoted Qg . These generators

satisfy the commutation rules

(II.2)

with structure constants

The differential properties of e(y) needed for the discussion of

curvature and torsion are summed up in the'2-form

d e(r) - -d Ly
-i"A d L

V"1 d Ly V 1* d

e(y>Ae(y) , (II.3)

the Cartan-Maurer formula. On substituting the expression e = e Q,* and

using the commutation rules satisfied by the generators, one can extract the

equivalent form

or, in terms of components,
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3 e a - 3 e a = - e B e (II .5)

As Explained in the text the generators Qg separate naturally into
two sets , Q- belonging to the subgroup H, and Q , the remainder. The
coefficients e , a = 1,2,. . . ,N, constitute a set of N covariant basis
vectors. The reciprocal basis is denoted e v , i . e .

e K e 6 = 6 B , e a e (II.6)

The torsion 2-form, T , is defined by

d e™ (II.7)

where the 1-form B. represents the spin connection. Once the l a t t e r
B

quantity has teen assigned i t i s possible to construct, in addition to T ,
a

the curvature 2-form R defined by

V = d V + V * BYB • (II"8>
One of the simplest possibi l i t ies is to choose B such that the

torsion vanishes,

0 = d ea + e6A B " • {11.9)
p

On comparing this equation with the Cartan-Maurer formula ana noting that

c r - = 0 (because H Is a group) one finds immediately

2 YS

(11.10)

In this last equation we have used

Y Y Y Y V y
e = e ' IT ' = e ' e H e '

Y Y V
(11.11)

From the expression (II.10) for B one obtains the curvature 2-form

-33-

{In deriving this we have used c -.T = 0 vhich is not generally true. See

for example, the discussion of S0(2,l) in Appx.l. In the general case one

would have to keep such terms.)

Another simple possibility is to choose B such that the torsion takes

the form

Comparison vith the Cartan-Maisrer formula this t iae gives

and hence the curvature

„ Y 1
V = 2

(11.13)

(II.lit)

(11.15)

In particular, if the manifold is G itself, i.e. H = 1, then this assignment

gives vanishing curvature. (On the other hand, for some interesting manifolds

such as SO(H+l)/S0(H), the structure constants c 0
Y vanish and the tvo

CLtt
assignments are Identical.)
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APPENDIX 3

Transformation p rope r t i e s

Some symmetry p roper t i e s of the manifold G/H are needed for an

understanding of the transformation 'behaviour of the Yang-Mills f i e l d s . The

purpose of t h i s appendix i s t o discuss the der iva t ion of the necessary formula-

Consider f i r s t l y the transformation r u l e (3.8) for the 1-form e™ .

For an x-dependent l e f t t r a n s l a t i o n , y •*• y ' ( x , y ) , t h i s reads

Under the transformation y -+ y ' ( x , y ) we have

„ v

or, equivalently,

dy • dy -*

Partial derivatives transform such that

dx

= eB(y) d h"1)" 1 ) " d g)B h"1)

g
where IK is a matrix of the adjoint representation, i.e.

The components {g~ d g) and (h d h ) are defined hy

" 1 i g)°

h d h'1 = (h d h " 1 ) "

= (h d h"1)™ .2)

which is possible since g d g belongs to the algebra of G while h d h~
•belongs to the subalge'bra associated with H . In the following we shall
assume that the algebra is fully reducible, i . e .

D p(h) = D_p(h) * 0
a a

{III.3)

This means that (III.l) separates into components from G/H and H, respectively,

dyw 3^ + dxm3m = d y ' p [^4j7 3 1 + dxm [am 3 I
3 X

m

ay 1" dxm 3 '
m

(where 3 denotes differentiation with respect to xm at fixed y " } .

Extracting the coefficients of dy ^ and dxm from the

and (III .5) gives

3y

0 = e>> V ^

3 mx
D^th"1) + (h 31 h"1)" 1 ) ™

The formula ( i l l .7 ) can be arranged in the form

(ill.6)

{III.7)

(111.8)

(111.9)

ea(y') = eety)

eSCy') = e5(y) + (h d h " 1 ) * +

{III.l.)

(III.5)

(III.10)

where Kgr , the so-called Killing vector, is defined "by the expression

(111.11)

-35- -36-
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It3 transformation behaviour is obtained with the help of IIII.6), viz. Since Kg (y1} is a common factor in this equation, it may tie removed. One

is left with, the rule

(III.12)

From (III.10) and (ill.12) it is a simple exercise to derive an expression for

3y'W/3xm - Thus,

- 3yV 3y'U

m , m
X 3x

3 g)9KS
v(y) 22

(III.13)

With the help of (ill.12) and (III.13) one can easily extract the
transformation rule for the Yang-Mills gauge fields A (x) defined by (3.21),

E U(x,y) = Aa
p(x) K-^ty} . (III . l i t)

Since E U is part of o contravariant vector i t must transform according to

E^U.y) •+ Ea
u(x,y')

, 'u 'V
m E v ( > 3 y _ + E n ( x , 3 y _ _ ( i n . 1 5 )

A J U ) ^Cg"1) - E nU> {g a e-
1)

or, equivalently,

vhere Aj.x)

Am(x) - g Am(x) g " 1 - g 3m (in.16)

A more direct construction of the Killing vectors makes reference to

infinitesimal transformations. Thus, the infinitesimal form of the trans-

formation mle L , = g l h reads

Cfe) L y

i.e.

- L. %

to first order in the infinitesimals Syv , 6ga and 6ha . Multiply on the

left by L - 1 and use the definition of e,
y

^"tV
Extract the coefficient of

Substitution of (ill.lit) into this rule gives since 5ha = 0. Hence the Infinitesimal <5yu is given by

(g n 6 ' S

- 3 7 -

= «6 ?y(y) (III.17)

thereby defining the Killing vectors associated with left translations on G/H.
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The same procedure could 'be followed for constructing the Killing

vectors associated with, right translations. One should use the 1-form

For the

A =

" 1 )= L d iT1 instead of e to obtain %$* = D-vS(l> " 1) S*o
u

special ease, H = 1, the result is particularly simple. One finds

-39-
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APPENDIX

Harmonic expansions

The general form of harmonic expansions on the manifold G/H was

discussed in Sec.III. In particular, for the functions ih[x,y) vhich

transform under the combined left translations, y

space rotations, h, such, that

y', and associated tangent

(IV.1)

the appropriate expansion vould be

The sum includes all irreducible representations, IF, of 0 which contain D.

on restriction to the subgroup, H. If D,

then the supplementary label C

The expansion coefficients

is needed.

'ij
occurs more than once in D",

The matrices D n have dimension
qp

are fields on U-dimensional sp&cetlme
which belong to the irreducible representation D ,

They can be projected from '('.{x.y) by integrating over the manifold

Civ.3)

Differentiation with respect to yV of the fields i.(x,y) is

equivalent to an algebraic operation on the components i|in(x). The simplest

covariant derivative that incorporates 2/iyU would be

(IV.5)

In this formula we have used the expression

-Uo-
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6)
which Is one of the possible spin connections on G/H, derived in Appx.2.

We have also used the formula (3.IT) which fixes tlie embedding of H in the

tangent space group, S Q ( N ) ,

Differentiation of the toost L " leads tack to the definition (3.3) of e,

via.

3 ~ -"•" « - L ~ 1 3 L L ~1

v y y u y y

and this implies that , in any representation,

3̂  Dn(L"1) = - e ^ D°(Qg

On comparing this with (IV.5) one finds for the covariant derivative of IT,

\ \ ^ <£>
(IV.7)

This formula was used in See.IV to reduce some terms from the U+H-dimensional

Lagrangian to It-dimensional form.

Finally, the expansion formulae are sketched for two relatively simple

(1) SU(2)/U(1)

This is the case of spherical harmonics on the 2-dimensional sphere.

With G = SU(2) generated by Q^ = -Q^ , a,h = 1,2,3 ana H = U(l) generated

by 0^2 ve can take yu = (e,f) with

-1*1-

-fQ12 -
Ly = e e

The covariant basis vectors are contained in the 1-form

= -if cose Q 1 2 + df sine Q 2 3 - de Q 3 1

Expressed in matrix notation, with rows and columns indicated,

(IV.9)

13 23 12
8 f 1 0 0

sine -cos8

12

{IV.10)

The last column gives the components of e 1 2 (= e a in the notation of Sec.III).

The tangent space group, 0(2), in this case coincides with H = U(l)

so the embedding problem is t r iv i a l . The 2-vector ^ resolves into helicity

A = ±1 combinations,

and likewise for higher rank tensors. For a function, ^ (x .y ) of helicity

\ , integer of half-integer, with respect to the tangent space group we have

the expansion

J

where J takes the values |x | , |X|+1, . . . and

representation of SU(2),
denotes the 2J+l-dimensiottal

Civ.

in the notation of Wigner.



Generalization to tile H-dimensional sphere SO(N+1)/SO(N) IS straight-

forward in principle though, of course, complicated in detail. There is no

embedding to be done since H « SO(NJ coincides with tile tangent space group.

Our second example illustrates a case vhere this is not so.

(2 ) SU(3)/SU(2)

With & = SU(3) generated by the octet of charges, ( Q a = 0 ) ,

a,b = 1,2,3 and H generated by the subset

G/H by a complex 2-vector

Q , a,B = 1,2 we can parametrise

(IV.13)
j

This would not be the most convenient choice for practical computations but we

do not intend to present more than a sketch here. The question of interest is

how to embed H = SU(2) x U(l) in the tangent space group, SO(lt). The general

formula for th i s , (3.17), could be applied t>ut i t is simpler in the present

case to work ab in i t i o .

The triplet of SU(3) decomposes under the subgroup SU(2) x U{1) such

that

3 " 2l/3
(IV.

i . e . into an SU(2) doublet with U(l) quantum manber 1/3 and a singlet with -2/3.

For the octet the decomposition reads

(IV.15)

are related by complex

Q a associated with G/H

According to the

I f the octe t i s r e a l then the doublets 2.

conjugation. In p a r t i c u l a r , the generators Q

and 2_
0 ~

2 and 2 ,

general principle expressed in formula (3-17), the It-vector of

SOtU) -* SU(2) x SU(2) must have the SU(2) x U(l) content of G/H,

for the 2-spinors of SO(lt). An exp l i c i t construct ion for the SU(.£) x U(l)

decomposition of a ^-vector , (f , i s eas i ly arranged. From the 2 x 2

matrix

(IV.36)

select the first column. This belongs to the representation 2 , and so we

define the spinor with components

- -11/2 " ®

•-1/2 = i (IV.19)

How the representation 2 is found in the SU(3) multiplets B,1O,27,..., with

t r i a l i ty aero. It follows, therefore, that the harmonic expansion of the

U-veetor, +a(x,y), must take the form

n-8,10,27,...
) ' f I V - 2 o )

where the coefficients ^ n(x) are complex. Expansions for tensors of SO(U)

can be constructed by straightforward generalization of this procedure. It is

interesting to note, however, that spinors of S0(M cannot be represented in

this way. This is clear from the fact that the Su(£} * U(l) content of the

2-spinors, viz. 2 , 1 and 1 . is not to be found in any SU(3) multiplet. In

fact, i t is not possible to define spinora on the manifold SU(3}/SU(2) " U(l).

(2,2) (IV.

This means that the embedding must be such that

U.2) (iv.17)

- J t 3 -



APPENDIX 5

Spectrum of 4+1 Kaluza-Kleln theory

Since the ground s tate of the K = 1 theory i s f l a t , i t can be obtained

as a vacuum solution of the 4+1-dimensional Einstein equations without a.

cosmological term. For K > 1 the manifold G/H has constant curvature and

i t is necessary to introduce non-geometrical (matter) fields to act as sources.

Because of the simplicity of the K = 1 theory one can easily ohtain i t s

excitation spectrum and relate i t to an underlying non-compact symmetry,

SO{1,2).

From the fact that the 4+1-dimensional Einstein theory has five degrees

of freedom one expects that a l l massive states belong to multiplets of spin 2.

This is easily verified. Write the metric tensor in the form

These equations are compatible only if J is conserved,

JMN,M IV.5)

This is a relic of the 5-dimensional general covariance. The usual way to solve

{V.4), subject to the compatibility condition (V.5), is to impose a co-ordinate

condition. For example, in the gauge

they are solved by

(V.6)

JLLj (V.7)

nMH

where M,N = 0,1,£,3,** and n._. is the flat metric,

(V.I)
where 3 rep resen t s the 5-dimensional d 'Alembertian.

On s u b s t i t u t i n g the so lu t ion (V.f) back in to the Lagrangian (V.3) ,

Oiscaoding t o t a l d e r i v a t i v e s , one finds t h a t «L reduces t o

= diag(+l, -1, -1, -1, -1) (V.2)

Treating the components h ^ as small quantities, one obtains the second order

terms in the Einstein Lagrangian

where J,__r is an external source. The connections vanish so that simple
MWi

partial derivatives are indicated,

derived from (V.3) take the form
L

equations of motion

bMN, LL " hJJL,ML + ^LL.MH

h KL, KL

j

\_m MH 3 MM (V.8)

This expression represents the effective interaction between conserved (i.e.

physical)sources due to the exchange of the Kaluza-Klein particles.

2
How consider the pole, 3 = 0, in (V.8). The residue simplifies on

using the conservation of J>™- Firstly, if . ) , ?• 0 ve can choose a frame

in which

In this frame we have

J0M H "

(V.9)

(V.10)

2 2
so that J,_, = -J. . and J._, = J , . It follows that, in the neighbourhood of

MM 1 1 MIf i j
the pole, the effective interaction (V.8) reduces to

}f V I T ̂  1 T t / Tr T i \
*o - r Ji. T. r J_-« > tv.ID
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