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ABSTRACT

Assuming the compactification of L+K-dimensional specetime
implied in Kasluza-Klein type theories, we consider the case in which the
internal manifold is a quotient space, G/E. We develop normal mode
expansions on the internal manifold and sﬁow that the conventicnal
gravitational plus Yang-Mills theory (realizing local G symmetry) is
obtained in the leading approximation. The higher terms in the expansions
give rise to fleld thecries of massive particles. In particular, for
the original Kaluza-Klein b+l-diuwensional theory, the higher excitations
describe massive, charged, purely spin-2 particles. These beleng to
infinite dimensional representations of an 0{1,2).
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1. INTRODUCTION

The motivation for studying generally covariant Field theories in space-
time of more than four dimensions is to obtain a geometrical interpretation of
internal quantum numbers such as electric charge, l.e. to place them in the same
context as energy and momentum [1,2]. The latter cbservables are assoclated
with translational symmetry in b-dimensional Minkowski space; the internal

observables would be associated with symmetry moticns in the extra dimensions.

In theories of the Kaluzs-Klein type one starts with the hypothesis
that spacetime has U+K dimensions. One assumes general covariance and adopts
the k+X-dimensional curvature scalsr as the Lagrangian. Next, one supposes
that because of some dynamical mechanism, the ground state of this system is
partially compactified [3], M' x BE
4-dimensional Minkowski space and B* s & compact K-dimensional space [4].

rather than Mh+K, where Mh denctes

The size of BK must be sufficiently small to render it unresolvable at the
currently available energies. For example , wlth the size of BK < 10-17 cm,
it would be invisible to probes of energy < 103 Gev, this being an upper

limit.

Models have been constructed which illustrate thls phenomenon of
spontanecus compactification {5,6]. In general, it is necessary for the
aystem to include non-geometrical (matter)} fields, coupled to the metric
tield, for this effect to be triggered. The presence of such ad hoc matter
fields detracts from the simplicity of the purely geometrical theory and
perhaps indicates that the geometrical component is not truly fundemental.
An interesting exception, however, could be the extended supergravities
where certain matter-like fields are Justified by an underlying super-
symmetry [7] and possibly the related gecmetry of superspace.

Assuping that the compactification is achieved, what are the
implicaticne of teking the extra dimensions seriously? By expanding the
fields in a Kaluza-Klein theory in terms of normsl modes on the compact
space BK, the extra dimensions meke their appearance as massive multiplets
of the associated symmetry group. In this paper we wish to examine these
multiplets and the higher massive excitaticns.

To illustrate the emergence of messes, consider the original
theory of Kaluze and Klein which involves one new co-ordinate, y. The
S~dimensional line element was assumed to take the form
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dsa = (@™

a 2 m 2
e “(x)) - (ay - ax < (x))°
where m,n,a,b,.,. %take the velues 0,1,2,3 and e;‘(x) represents the
vierbein field on b-dimensional spacetime, The u-vector Am(x') is to be
interpreted as the electromagnetic potential. Gauge trensformations here take

the form of co-ordinate transformations

with

A +A+l'-‘dA
m m K m

which leave the l-forms, ax™ ema’

invariant coupling to a complex scalar fieid, ¢(x,¥), would be described by
the Lagrangian

and dy - ax"™ ncAm, invariant ~ The

m 2 e _ 2 2]
det el]ea (qu: + kA BYO)I - HY“ wlel

If one supposes that the y-dependence of ¢ 1s such that

then this Lagrangian reduces to that for a charged scelar,

. 2
det e[lea“‘(anp ~ie Amwl?‘ - [u‘2 + :—2] N!] s

where the charge is given by

@
1
==

The electric charge is hereby understood in terms of the radius, R, of the

extra dimension, interpreted as a circle. Conver_gely, given e, this

equation fixes R (the size of the manifold) as xk/e where k 1s lii_anck 9
length. This also implies that the masses are in Planck units s~k = & 1077 GeV.
Recause of this one is naturally interested to discover any exceptional

cases where, for reasons of symmetry, the mass contribution is suppressed.

An example is the vector Am itself which describes a massless particle,
the photon. The gauge symmetry here associated with the transformation

y +y + A(x) prevents it from acquiring any mass.

To consider non-Abelian symmetries one has to interpret the new
co-ordinates y‘ s M E L2,k as & parametrization of the manifold of
a compact non-Abelian group, G. The line element is now assumed to take

the form [4]

&
]

2
2 M m o B
(ax™ e *(x - A u
n 1)) {dy" - dx & L (x) K () < (¥)|
where the auxiliary functions euB(y) constitute an orthonermal K=bein on the

group manifold G, and the functions !(uu(Y) are Killing vectors on G ., This
formalism will be reviewed in some detall in the following sections,

A further generalization is possible where the new co-ordinates are
taken to parametrize some homogenecus space, G/H, on which € can act [8,9],
A novel aspect of this kind of scheme concerns the problem of embedding, In
order to give a G-invariant meaning to the ground state it is necessary to
associate the motions of G/H with frame rotations (or tangent spare trans.
formationa), This requires that the stability group, H, be embedded in the

tangent space group, SC(K), 3n such a way that the K-vector of SO{K) has the
H-content of G/H.

In all these theories the metric field carries an infinite number of
new degrees of freedom corresponding to the propagation of excitations in the
new dimensions. As a rule these excitations are ignored because of their large
masses. However the massive excitations are not always ignorable: their
contributions to a typical scattering mmplitude are comparable to those due
to graviton exchange., To see this, consider the seattering of charged scalar
particles with the interactions represented schematically by

] L d
iint ~ Khm 3m¢ 3n¢+ieAm¢' am¢ + vy

vhere hmn dencotes the graviton field and Am one of the massive
excitations. The amplitude for graviton exchange is of order K2E2,
while that for A-exchange iz of order e2E2/M2, where F represents
the energy scale of the scattering process. Since M a.e/k these
contrivutions are of the same order Only in the region of low momentum

transfer, t << E2, does the graviton amplitude, «vK2Eh/t, become dominant.
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The purpose of this study is to deal with some of the general

features of Kaluza-Klein theories. These include the gecmetry of homogenecus

spaces, the trensformations of fields defined over them, the struecture of
nermel mode expansions 2) on G/H, the embedding of Yang-Mills gauge trans~
formations in the group of general co-ordinate transformations, and the
extraction of an effective 4-dimensionsl lLagrangian. Such an effective
action willl be particularly useful for lov energy effects ascribable to

the existence of the microscopic and as yet unresolvable structure on space-
time. Since much of the recent work in this field has been couched in

the terminology of fibre bundleas [10] it is not accessible to those without
expertise in such matters. We shall therefore adopt a less scphisticated
approach and express results in the more genernlly familiar component
notaticn.

The plan of the paper 1s as follows. Some definitions, notational
conventions and a brief description of the W+K-dimensionel Einstein theory
are given in Sec.II. There follows in See.IIl a discussion of symmetry
axpects of the compactification of the extra K dimensions. Harmomie '
expanaions on G/H are introduced to describe the excitations. An important
ingredient here 1s the embedding of the stability group, H, in the tangent
space group, SO{K). Integration over G/H is used to reduce the Lagranglan
to effective Y-dimensional form. Some of this 18 illustrated in Sec.IV
where the low energy sector of the L+K-dimensional theory is shown to
contain the Y-dimensional Einstein and Yang-Mills terms. Much of the
pedagogicel detail is confined to the Appendices, except for Appx.5 which
deals with the spectrum of b+l Kaluza-Klein theory.

IT. EXTENDED GRAVITY

Let the L+K-dimensional spacetime be parametrized, at lesst in some
local region, by a set of co-ordinates, zM. On this space let there be
defined at each point a local frame of reference in the form of btk

linearly independent covariant vectors, EMA .

The basic symmetries of the theory are twofold. Firstly, there

must be general covariance under the co-crdinate transformations,

t
zM-+ z M. Being covariant vectors, the EhA transform according to

f N
B M) 45 ) « B Bl (2.1)

'Y

Secondly, there is to be covarlance under a group of z-dependent linear

transformations emong the vectors of the reference frame,

BMe) 2 5he) = 5200 afla) - (2.2)

In order to establish a pseudo~Riemannian geometry on the L+K-space it 1s
ugual to assume that these transformations belong to the pseydo-orthogonal
group, S0(1,3+K). We shall adhere to this cholce,

With frame rotations belonging to 50(1,3+K) one is led to consider
the frame-independent combinations,

oy " nu‘ zn” My (2.9)

vhich define the covariant components of the metrie tenscr. By an appropriate

choice of basils, the 80{1,3+K) invarlant tensor, n
by the diagonal matrix,

AB® can be represented

" < dlag(l, -1, =1,...,-1} . {2.%}
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Indices are ralsed and lowered in the usual way. The contravariant
quantities EAM and gMN are defined as matrix inverses of EMA and S
respectively., (We employ the alphabetic convention that letters M ,N,...
from the middle alphabet will be world indices while those from the early

glphabet, A B,,., shall be frame labels.)

The coupling of extended gravity t¢ matter is conveniently illustrated
by the case of the fundemental spinor of S0(1,3+K), This spinor, ¥(z), has
22*“{/2] components where [K/2] denotes the largest integer < K/2, Under

frame rotations the components of ¢ transform as an S0{1,3+K) spinor,

w(z) » wi(z) = s(a™) w(z) (2.5)

but, wnder general co-ordinate transformations they are scalars,

wlz) + Yrlze) = glz} | (2,6}

The partiasl derivatives aMw make a covariant world vector but they do not
tranaform homogeneously under frame rotations, The latter defect is cured
by introdueing the spin connections, BM(z) , which constitute a gauge fleld
with respect to frame rotations,
~1 -1
By * SB,S + 8, s (2.1
and a coveriant vector with respect to co-ordinate transformations. The

covariant derivetive is then defined by

o= (B tBY Y (2.8)

The spin connections belong to the infinitesimal algebra of S0{1,3+K) 1In

the spinor represemtation cne can write

1 A B -
BM = EBM{AB] [T »Y 1 * (2'9)

where YA is a generalized Dirac matrix, i.e

AB

{Y-A,YB} = 2n {2.10)

With these fields it is possible to construct a sultable Lagranglan density,
one vwhich iz invariant under frame rotations and a scalar density under co=-

ordinate transformations

:fw = ;—det(E)ﬁ v EAM L hoe. {2.11)

This much is nothing but a straightforward generaiization to 4+K
dimensions of the well known k-dimensional structures. However, when one comes
to look for the Yang-Mills potentials among the components of E and B, one
will find some less familiar things, TFor example, the "minimal coupling" of
the vectors is contained partly in the term $YAEAMBMUJ and partly in
IEYAEA Y. The latter term may also contain a non-minimal, Pauli type of
coupling,

Cat of E and B end their first derivatives it is possible to
construct two dlstinct covarlant objects, or *field strengths», Thede are the
torsion,

T " ey T Bt By P B P (2.12)

and the curvature,

Ronias} = “uPulas] ~ Ku[aB] - Pu{ac1®w(ce] * BulacIBM[cB)

o {2.13)
{vhere early alphabet labels are raised, lowered and contracted with Man
derined in (2.1)),
The curvature scalar (density) is glven by
det{E)R = det(E)E Mgl {2.1k)
2 s Riap] e

and can serve as & Lagrangian density for the extended gravity flelds, The
flelds FE and B may be varied independently or, alternatively, one may
impose the torsion comstraints, TMNA = 0, and eliminate B as an independent
varisble, The constraints T = 0 are algebraic in B and can easily be

solved:. One finds

B = rgph lfn -0 +0 } (2.15)
wiac) ~ 2 B¢ |®ramle T %mcda * %leals) o .

Ba o . Weo. o wem e " . v

e

[P

C e =



where

M_X
%alc = Ba B OuByo ~ e’ - (2.16)

111 COMPACTIFICATION

Having set up an action principle in 4+¥ dimensions one might inquire

into the nature of the solutions to the resulting equations of motion—_— In a
purely gecmetrical theory one would expect the ground state, or vacuum, to
exhibit maximal symmetry. Indeed, one should find the 4+K-dimensional
Minkowski space, However, in the presence of matter fields - scalars and
vectors . the situation is more ¢ aplicated snd it is possible to imagine
that the ground state will manifest some lower symmetry, In particular, if
the theory is supersymmetric the fields which asccompany E end B may trigger
a compactification of some of the dimensions in the ground state, We shall
assume that this happens and that the ground state geometry factorizes into
the product of b-dimensional Minkowski space with a compact homogeneous space,
G/H, of K dimensions, This space is invariant under the action of scme group
G which will be interpreted as an “internal" symmetry. We shall further

mrssume that the compact space is 5;11 enough (size -~.x) to jmi?or

most purposes, the neglect of any excitations associated with it (i.e.

that such excitations would be too massive to be accesaible at present

energies). As menticned in the Introduction tHe excitations may not

always be negligible. Their contributions are generally comparable to

those of gravitons and they would certainly be important if the gravitons

arée gquantized. The aim at this stage, however, is to develop an effective

Y-dimensional theory for the long range degrees of freedom.

One way to obtain the 4-dimensionml theory iz to expand all field
variables in complete sets of harmonics on the homogenecus space G/E. The
expansicn coefficients are 4-dimensionsl fields belonging to a segquence of
representations of G. Their dynamics is governed by a Y-dimensional
action functional cbtained by integrating out the G/H-dependence and using
the orthogonality properties of harmonics on G/H. The resulting masses
and couplings are nec essarily F-inveriant. The scale of the masses is
determined by the size of the compact manifold, and we shall assume that
all non-vanishing masses are therefore large. One wold like to be able
to extract the zero modes and discard the rest. We shall consider some
aspects of this problem in the following but do not cbtain a general

solution. We now develop the necessary formalism.
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To distinguish the compact dimensions from the remaining four of

ordinary spacetime it is convenient to adopt some notational conventiomns. For
the co-ordinates write

zM = (xm,yu) (3.1)
with middle alphabet Latin suffices, m,n,... tsking the walues 0,1.2,3 and
their Greek counterparts, u,v,... taking the values 1,2,...K. The compact
menifold, G/H, is parsmetrized by y'. The early slphsbet frame labels are
likewise divided into lower case Latin and Greek,

To implement the parametrization of G/H there are available standard
group-theoretical techniques [11], one version of which we outline briefly,
Suppose the co-crdinates, yu, label the cosets of G with respect to the
subgroup, I, That is, from each coset let there be chosen a representative
element , I‘y Multiplication from the left by an arbitrary element g€G
will generally ::f.rry Ly into ancther coset, one for which the representative
element is T..y, This defines the so-called left translation

gL = L., ,h ., (3.2)

where h is an element of H, Both y'" and h are determined by this
equetion as functions of yu and g. The explicit form of these functions
depends, of course, on the choice of elements Ly which represent the cosets,
Such details are not usually important and, here, we shall be able to manage
with some general properties of the parametrization, Among these, the most

important is the notion of & covariant basis on G/H,

To define a covariant besis consider the l-form, or differential,

~1
ely) = 1.y L, . (3.3)

This cbject belongs to the infinitesimel slgebra of G and therefore can be
expressed as a linear comhination of the generastors, O,a s
a
ely) = e(y) qg
w8 -
= & e (¥) @ . (3.4}

The generstors Qg fall im tvo categories: the set Qg which generates the
subgroup, H, and the remainder, Q{, s @ = 1,2,.4.,K associated with the cosets,
G/H, Correspondingly, one writes

=10w




ely) = *y) q, + 7y o - (3.5)

0f specisl interest are the coefficients eua(y) which constitute a non-
singular K x K matrix, The columns of this matrix provide the covariant
components of the K linearly independent vectors of the covariant basis  The
contravariant components of the reciprocal basis, eau , are defined by

inverting the matrix euu

The behaviour of e(y) under left translations can be deduced from
(3.2) and (3-:3), Thus, quite generally,
-1

-1 -1
h L d N
v 8 {» y )

ely) »elyr)

1

he(y) it +hants+n L et ag L, Rt (3.6)

Cn s.ubstitut;.\ng the expansicn in terms of generators and intyroducing the

matrices, Dae , of the adjoint representation of G, defined by

8
g & = Dylg)ag (3.7}
the formula (3.6) gives

Siy) = ) pfn ™ s man ™™ 4 (5 a g pfn, 0 H T 59

The components, (h d h‘l)u and (g'l a g)%, of elements in the algebra are

naturally defined by

-1
g dg

(gl ag)® Q

-1

hdh 1

-1, L -1\&
han™)"q =(hdn Q . (3.9}

Since h d h—' belomgs to the algebra of H, ve must have (h @ B +)® = o,

(A more detailed discussion of the properties of the +boost™ elements |
Ly, together with some illustrations is given in Appendix I, Curvature and
torsion formulae for G/H are derived in Appendix II, and various implications

of the transformation fermula (3.8) are derived in Appendix III,)

—11-
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Now consider the juestion of harmonic expansions on the internal space. To
begin withif the internsl space vere simply the group & itself (i.e, H =1}
it would be patural tc emloy the full set of matrices of the unitary

jirreducible representations of G, For the function, ¢{g), one would write

T Z Z Wi O le) o (3.10)

n Pyq

where D;q is a unitary materix of dimension dn and the sum ineludes all
matrix elements of all the unitary irreducible representations, g-— Dn(g).

The coefficients, ¢m , are projected out by integrating over the group,

P4a
d
n 'J n n -1
45 7, [G au o (e Y oeleg) {3.11)

where dp is the invariant measure normalized to volume VG .

For functions on the coset space G/H the expansion is somewhet
restricted-_: Typically, cne is concerned with functions ¢i(g) that are
subject to the auxiliary symmetry

b;(hg) = D, (B) o,(a) (312)
where heH and p(h) is some particular representation of H This means

that ¢(g), though not strictly constant over the pecints in a coset, is related
by a lipear rule, i.e

0 (e) = 08,5500 9,(e,)

for gl and By in the same coset, The appropriate restriction of the
expansion (3-__10) ig elear. It must include only those terms for which

p*ng) = bln) 1{g)

For irreducible ©{h) one should write

we =y ) ey . e
n L

-12-
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where the sum includes all unitary lrreducible representatiomns of G for
which D]:;.lc,q_ mekes sense, i_e._ all those which ineclude D(h) on restriction
to H, If D(h) is contained more than once in a given D™(g) then a
supplementary label, § , is needed to distinguish them_  The dimension of D(h)

is denoted 4§, The coefficients, ¢

a? =© projected from the sum (3.13) bty

integrating over the coset space,

’a‘
no. L 1 -
far WNp L;,H aw 0 (1) ety (3.14)

This expression can be derived from (3.11) by resolving the general element
£ 1 into the product of appropriate elements LY and h—: Such a decompositicn
is unique once the form of the representative element Ly has been chosen,

From (3.12) it follows that the h-dependence factorizes,

b8) = o7t LY

-1 -1
Dij(h )¢J(LJr 3

Integration over the subgroup H can be carried out explicitly and leaves the
result (3 14)

Thus , for a set of ftields wi(x,y) the general form of the harmonic
expansion on G/H is given by

_ - )
nion = 20N R N (3115

n [
Hlere n labels the excitations.

The coefficient fields wgc(x) ere obtained by integrating over G/H as in
(3.1}, If the representation D(h)} +to which ¥; belongs is reducible then
it would be necessary to separate wi into irreducible parts and meke an
expansion of the form (3.15) for each, This ralses the important guestion of
how the H content of ¥{x,¥) 1is to be determined, Tt will be settled by
invoking the ground state symmetry,

The full set of fields in 4+K dimepnsions is supposed to be governed
by an action functional which is invariant with respect to both the general
co-ordinate transformstions and the frame rotations, These symmetries will
not be manifest in the ground state, however, By assumption the ground state
geometry is M x G/H, vhere G/H is s compact K-dimensional manifold__- In the

ground stete we therefore have

~13~

[ &2 o
m

Mxyly L l
N l 0 eua(y‘) !

(3 16)

where e * is the covarlant basis on GfH defined above-_- The expressicn (3 16)
is invar';ant under the product of the Y-dimensional Poinearé group?a.nd the locel
(x_dependent} transformations of G . The Poincaré inveriance is exactly as In
the familiar L-dimensional theory of general reletivity K The local G-invariance
is compounded of the x-dependent left transletioms on G/H, ¥ + y"x,y) snd the
induced tangent space trensformations, DGB(h), with h defined by {3 2) To

o
see this, consider the action of the combined transformations on Eu (x,¥}
a L1+]
E, (xy) > B {x,y+)
va 8 o
- E\) (X'Y) b »
w' 8

where DBG 15 s K-dimensicnal orthogonal matrix, In order to have

By = (BMED D

@ a a a
it is only necessary to choose (Eu ) =e, and Dg” = Dy (nh} This follows
from (3.8) which contains the formula

a' e Xy = o e fl3) D) -

Thus the embedding is fixed. With the left translation, y + ¥4, must be
associsted the SC(K) transformation, Due(h)', w}’x_ere heH _ This impliea‘tha.t
the K-vector of SO(K) has the H_content of G/H, More precisely, the
generators, QE , 0f E can be expressed in terms of the generators, EuB,
of S0(K} by the formula 3)

e (3.17)

o

%_ = -

where the coefficients c'y'ae are taken from the set of structure constants

Lap

C?a'a\ of G,

The Yeng-Mills group of trensformations described here, which leaves
the ground state invariant slso preserves the form of the expansion {3.15)
Thus , with ¢ transforming according to

-1k




ACSORENCE O IHUYENCRS (3.18)

it is a simple matter to derive the corresponding rule for the expansion
coefflcients

! mn . n n
‘Ppc(x) + rbp;(x} = qu(g) wq,;(x) ) (3.19)

They belong to the various irreducible representations of G which contribute

to the expansion (3?15)?

Tn order to express the full 4+K_dimensional thecry in its equivalent
4 _dimensional form, one should substitute expansions like (3.15) for all of
the frields in the system, The 4-dimensional Legrangian is then obtained by
integrating the L+K dimensionsl cne over the compact manifold, G/H  Integration
of products of matrices L) reduces, in principle, to an algebraic
preblem. Although it is diff?’:cult to obtain results without going into
the details of particular cases, the most important feature, orthogonality ,
can be illustrated by an example.

Consider the invariant integral

nnl‘
I
pL,p'T!

& get o(y) I° L, (LY D, (. hH (3.20)

)G/H p,i{ ¥ IC'sP ¥

where the label, i1, is understood to be summed. Since the messure, dp = de

det e, is invariant under left translations, cope can write

¢
nn' n n -1
= . o(n ) IF L
Torater = ) @ O agfBye) Dipr pe(Bp)
n =1 -1 -1
= h " h L
Jd" Doy1g(8 Ty ) Dipe ot L7580
n nn' n' -1
- T
Doq &) Toz,qrgr Tgiprfe )

because the dependence cn h cancels. Hence I is an invarisnt tensor of G.

By Schur's lemma it must take the form

nn' n
= 8 k
PL.p'g! nn' “pp' gL'

To evaluate k';t, , %t n=n',p=p" and sum over p. OUne cbtains

w]15-

f
n -1
4Gk J av Dlilc'.pu'y ) Dg,ic(l'y)

= Vg dp Sy !

where dn and dl) are the dimensions of D;q and ’D:u’ respectively. Thus

I ’ =V _—38 3§ §
trt T T T -
PL.p's X4 gz’ pp' mn (3.21)
This result is needed for inverting the expansion (3.15).

The argument leading to (3.21) generalizes. For example, one can write

R . § n

n n
awel®3p?t (.t 912; (v,™) p,° L =
Jao/m 1‘1’1“1 ¥y o 2-112 ¥ 3C3,P3 Y
L0y [0, my,  ng ! ful n, o,
= El1'1 n,n v]{ ¢ J l ’
1e3 1%y 158 1383 ey Py B3
11pt4
where ¢ is an invariant tensor of H and the 3-n synhols are

easentially Clebsch-Gordan coefficients for the unitary representations of G,

The factor & an
17273

L)
Having given, in outline , the general form of the expsnsions to be

depends on normalization conventions for the 3-n symbols.

used, we shall in the following section restrict cur considerastions to the
lesding terms. The jJustification for this restriction is 8imply +that, in
the regime of low energles, only zero-modes are importent.

Iv. EFFECTIVE LAGRANGIANS

It is guaranteed that the graviton and a set of Yang-Mills vectors are
included among the zerc-mass flelds of the h-dimensional effective theory. This
results from the gauge symmetries of the L+K-dimensional theory snd the assumed
symmetry of the ground state. It can be proved as follows. For EMA(x,y)
consider the ansatz [9]

g
. E *(x) 45(x)ng(%J}
B, (xsy) = : (k.1)
l 0 eu“(y)
=16-

-

-

-

P



where the y-dependence is specified. This ansatz is compatible with subgroup

of the Y4+X-dimensional symmetries: the Y-dimensional general co-ordinate

transformations,

1]
m
O+ x Mx)

and the Yang-Mills trapnsformaticns, or x-dependent left translstions

t
™oy Yixy)

with associated frame rotations, Dae{h),

E%(x') = e E %x) {4.2a)
' 0% - { .2a

ax B

19y v = axn ay” B ] oy, ~1
B (xy) = [ - E_B(x,7) + ;IX-E e, (y)| D ™) (k.2v)

e Yyt) = X B @ =1 .
v') T (y) Dg" (™) (k.2c)

Of these rules, (4.2a) requires no comment and (4.2¢) has been dealt with
slready in Sec.III. There remains (4.2b) which implies, in view of the ansatz,

- L o - o L F 8 ' B\ ap,-l
Am (x*) Dé\ (Ly,} = [- ax'm An {x) D? (Ly) + ax'm eu (y)) DB (n™") .

With the help of formulse derived in Appx.3 this rule reduces to the form

n
"o 3x -1 _ -1
Axt) = S lg A (x) g E3 & s (4.3)
x
&
where Am = Am Q&‘ . This is precisely the rule to be expected for a Yang-Mills

potential.

The zero torsion spin connections corresponding to the ansatz (4.1) are
obtained by substituting in the formulae (2.15), (2.16)

17~

1 1
adl -+ 3 +=E " E
Batbe] 2 Bla ] whe "2 Bp %) wpa T2 Yle sl ‘mmb

~
a

l.m_n B
Falby] BYI.&'D] 2% % "m u\f( y)

) a 3 a
=4 (of (L) = o (L) w, ) e

Baigy] gy

Bu[Bc] =0

B =i o a( ) e= (4.4)
alBy] ~ 2 TaBy a 7 Spy : )

In these expressicns the following notations are used:

Bla B " By By "B E

-~
g _ & 8 B, T .08
Fan = *m Ay - a.n A Ay A o458
& T o
T, ) = (y) e () {4.5)

and the structure constants of G are defined by

¥
g%l = o3 % -

On substituting the expressioms (4.4} into the 4+K-dimensional

curvature scalar one obtains
1. 8. 8 .y Y
By = Ry =T Fap Fap Dg (L) Dpl(Ly) + R (b.6)

vhere R, = Rh(E) is the usual l-dimensional curvature scalar, expressed in
terms of the vierbein Ema'(x), and BK is the constant curvature of G/H (see
Appx.2). On integrating y" +the Yang-Mills Lagrangisn emerges, since

1
ﬁ J’dxy det ely) na”(Ly) DET(Ly) =k 633

vhere k = aim(G/H)}/dim(G). Thus, the above assertion that the system contains
the graviton and massless Yapg~Mills fields is verified.
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There mey also be zero mass scalars in the system, like the Brans-Dicke
scalar in the K = 1 theory. This point is sensitive, however, to the matter field
couplings which are generally needed to force the compactification. We shall

not therefore discuss the scalar modes.

Finally, to illustrate how the ansatz described above can be combined
with an analogous one for a spinor field to give an effective Y-dimensional

term, we consider the expression

2, = 5 cet Bxy) Tyt g v 0 ene (4.7)
with v¥(x,y) represented by the ansatz,
0y) = DL ™) wx) (4.8)

This is & typical term from the harmonic expansion of ¥(x,¥). The spinor
of 50(1,3+K) must of course be decomposed relative to the subgroup

se(1,3) *x K;
details of labelling are ignored here.

(4%.1), (4.5) and (L.8) into (L4.T),

each plece in the decomposition will yield ¥(x) and the

Cne must substitute the expressions

= i T 8, m u 1 BC
X‘p 5 det E(x) det e(y) ¥(x) DIL,) E {Ea Bt EY D - E B Y }+
" Ya{euu % = T Burac) YBCH DL, wix) +hee.  (8.9)

To simplify this expression it is necessary to eliminate the derivative au by
means of the formula

-1y L -1 -1
3, DL, ™) = - pr, 7' 8 p(1,) DKL,
= - ¢, "(y) plag) A, ™)

which follows from the definition (3.3). Multiplication by eau then gives

1) ,

u -1 [ -
e 3, DIL,TT) = =(D(a) + 7 % Dlgg)) DlLy

where 7T is defined in (4.5}, It turns out that the w-containing terms are

cancelled by similar terms in the spin connections. This cancellation is
ensured by the embedding of H in the tangent space group (see Appx.4). After

some tedious caleulations it is found that (4.9) reduces to
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T I N R N WAL Y AR ek R .

a 1 be
{Eam(x) am v Ba[ch(x) LA

=)

¢ L T
v =3 det E(x) det ely) v{x} D(Ly)

S ab g 1
a
F,(x}y "y D, ( v

oojw

- Aau'(x) D(%)} +
a 1 afy ~1
-y D(Qﬁ) * 5 Cagy Y ] D(Ly ) ¥{x} + h.c. (L.10)

and it remains only to integrate over y. Since y  must commute with D(Ly),
the result tzkes the form

Ly aer B0 $0 ({200 5, + E 3,1 00 1 - 8,200 e}

- - -
3 [ ab &
*E T Dy - MJ P{x) + h.c. {¥.11) '.
-~ 1
where I‘ts and M are matrices defined by A
3 1 J V] ~1 3 -1
= 2 du D(L_) v D{L_~) D (L ) s {k.12)
VK G/H ¥y ¥ a ¥
1 I a 1 aBy -1
M == au DL Yty Dl@)=Fc .y )DL ).
Y& o/ ¥ o’ 8 Caby . ¥

(b.13)

]

Note that the "Pauli-moment term" implied by non-zerec ¥ s neceasary
§
consequence of our formalism, and the precise numerical expressions for T

and M are the hall-marks of the expansion on G/H.

e

Y. CONCLUSIONS

In this study we have attempted to analyze in some detail verious
formal aspects of Kaluza-Klein theories in which the ground state geometry takes
the form Mh x BK, vhere BK is s K-dimensionsl quotient space G/H. The
symmetries of this ground state are used to classify the excitations of the
system, and these excitations are found to include particles of spins zerc, one
and two, in general. In particular, there are a set of L veetors belonging to
the adjoint representation of G contained among the components of the metric

tensor and spin connection which serve as Yang-Mills potentials.

Harmonic expansions on EuK are used to define sequences of component
fields, defined on Mh

Teng-Mills group, G. An lmportant feature in determining the content of these

© g - =

and belonging to irreducible representations of the

expansions is the embedding of the stability group H in the ftangent apace
group SO(K). This embedding is discussed in detail.
made of the "booats”, Ly, in setting up the formalism. The transformation

are used to define the action of ¢ on the manifold G/H,

— .k

Considerable use is

properties of Ly

s

e — .



and the derivatives of Ly glve the covariant basis vectors on this manlfold.
They als ¢ are used in the construction of integral formulae for mass matrices
and coupling parameters for Pauli-moment-like terms in the lL-dimensional

effective theory (formulse (4.12) and (L.13)).

We remark that the ansatz for the Y-dimensional fields associated
with massless particles - graviton, Yang-Mills vectors and Brans-Dicke type
scalars — can be seen to arise as leading terms in the harmonic expansions.
The complete spectrum for the 4+1-dimensional thecry is discussed in Appendix V.
It is shown there that the massive excitations are purely of spin-2 and that
the}If can be assigned to infinite-dimensional representations of the non-compact
group 80(1,2}. Such non-compact symmetries are spontaneously broken and may
be vieved a3 spectrum genér&ting symmetries. It is interesting that, viewed
in this light, Xaluza-Klein theory seems to constitute an example of a

consistent theory of massive, charged spin-2 particles.

Information drawn from the structure of the harmonic expansions would
be useful in testing the classical stsbility of Kaluza-Klein type sclutions.
We have not dealt with this type of investigation {except for the simple
example of U+l theory) since it is generally necessary to introduce matter
fields of some sort into the system to generate non-vanishing curvature in
G/H. %) Such matter fields, which must affect the stability considerations,
represent a non-geometricel element in the theory (except, perhaps, in the

case of extended supergravititiea[7]) and are psrticular to specific models.

-2}

APPENDIX I

Non-linear realizations

To supplement the discussicn of Sec,III we give here a somevwhat more
amplified description of the propertiea of non-linear reslizations of continuous
groups. The concepts were theroughly exposed in the physics literature a few

Years ago when their appropriateness in treating spontanecusly broken symmetries was

noticed [12]. In that work the space on which the group acts is a set of scalar
fields and the non-linearity can be expressed through algebralc constraints on
these fields, Because of such constraints it 1is impossible for all components
to vanish simultanecusly, hence the absence of an invarfiant ground state, and
hence the relevance to spontaneous symmetry breaking. From a more sbstract
point of view, the set of scalar flelds comstitute & vector space which supports
g linear representation of the symmetry. The constraints serve to pick out a
subspace, generally curved, which i3 carried into i%self by the action of the
group. On such & subspace the group is sald to be realized non-linearly.
Indeed, to characterize the flelds belonging to such a curved subspace it is
generally necessary to adopt a curvilinear co-ordinate system and so to express
the group actions by the transformations which they induce in these go—ordinates.

The classic example of non-linear realizations is the treatment of
chiral 8U(2) x SU{2). This group has the infinltesimal structure of SO(k4)

and the scalar fields (0,1} are assumed to transform as a 4-vector. If they
are subjected to the constraint

. (1.1)

wvhere F iz a fixed number, then the number of independent components is
reduced to three: they belong to a8 3=-sphere of radius F. This 3-sphere is

of course carried into itself by the transformations of SO(L}. It is invariant.
To parametrize the points of the 3=-sphere one could simply use the 3-vector o
and write o = % - f . For some purposes, however, it is meore useful
to define a set of boosts, L, vhich are 50(4} transformetions that carry
a given reference point, aay

{a,p) = (F,0) (1.2)

into a general point. In terms of the b * 4 orthogonal matrices DuB(g)
of the vector representation one writes
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g = Dl;h(LTr) ¥

n, = D(L)F . (1.3}

Of course there 1s & great deal of lattitude in the choice of Ly and it
will generally be necessary to use at least two co-ordinaste patches if the
sphere 1s to be covered without generating artificial singularities.

To illustrate the parametrization of the sphere we give the example
of spherical polar co-ordinates,

g = F cosd

o= F glné cose

f, =T sinf sing cosy

o= F sin® sing siny (T.4)

which corresponds to the cholce of L,n N

1 -0Q,
Lo~ e o3 Yo Py

(1.5)

Here the operator Q‘uB = —Q is the generator of the infinitesimal rotations

Ba
in the aB-plane

19,5:Q51 = gy %s = Say %6 * Bac Qgy = Ops Gy - (T-6)

On applying an SO{4) transformstion, g, to the sphere, the point whose
co-ordinates are (8,§,0) will be carried into one with co-ordinates (8',9',p').
A rotation through the angle w in the lh-plane, for example, gives

{ 1

cosg’ cosw  sinw ! cosf

sing' cosy’ ~ginw cosw} [ sing coscpj

By selving these equations one cen discover the transformed boost, Lﬂ, .

In general the co-ordinate transformeticn 1s glven by

Dah(L'rr') = DuB(E) DBk(L“)

= Duh(g L-rr)

a 23

v e e e T G ER

From this it follows that the precise relation between L, and L 1 must take
the form
gL = L., h s (1.7}

n n'

where b 1is an orthogonal transformstion in the 123-subspace, 1.e.

Duh(h) = 8, - (1.8)

Since L , 1s known omce the angles (6',¢",4') have been computed, the 50(3)
transforustion, h = LI,'l g L, is well defined.

To compute the basis vectors on the 3-sphere consider the differentlal

-1
e = L“ tiL1t

6q; ¥ ¥ -8Q,
R TAL T Q3 d[e Qs e“’qlz . hl]

= -8 Q. - dplQ, cosd + @, 8inb) - ay{Q,, cosy + (Q, 5 cost - Q5] siop)
= =36 Q‘hl - d¢ 8ind th + dy siné sing Ql&3

-4 &, - @ cos@ Gy * Y cosd sing Ay . {1.9)

From this expression one extracts the coefficienta

b1 ] 43

8 [ -1 0 0

euu = 9 o -5inb 0
v 0 0 sind sing)

12 23 31

_ 8 [ o 0 0

e = ¢ | 0 0

o 3

v [ o -cosfp cosf sing

(1.10}

vwhere the labelling of rows and columne is indicated. The metric tensor on
the 3-sphere is given by

-2l
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ds® = (ae eed'+ dpe ® 4 dW'ewu)2

= 467 + sin% 4% + sin%e sin’p ay” (1.11)

as would be expected in spherical polar co-ordinates. The spin connection

BG[BYJ is constructed out of the quantities
11’B = eueB
a o M
12 23 3
mf o 0 0
- v | == 0 0
31in!
-eote
L3 0 - ing  Cot8 J (1.12)

as dlscussed in the text, (4%.%) {and further in Appx.2}.

The case discussed above is an example of a non-linear realization in
which the group G = 80(4) is made to act on a 3-sphere., The points of the
3-sphere are put inte correspondence with the left cosets S0(4)/S0(3) through
the parametrization of the bsoosts, L“. The procedure generalizea directly to
manifolds of the form G/H where H is some subgroup of G. (Right cosets
can alsc be used. One writes

1

gl +L, =hlL g .

On the manifold of G itself one can define the action of G x G

i _ =1

(g)8p) + Ly~ L, =g Iyg

In &1l such cases the mapping ¥ * ¥y' is determined once the form of L]’r has
been specified.)

Global properties of a quotient space G/H are often made transparent
by embedding in a flat space of higher dimension, i.e. by viewing the non-
linear realization as cobtained from a linear one with constraints applied.

A simple illustration of this is provided by the case of SU(3)/su(2) x u(1}
which we consider briefly.

The infinitesimal transformations of SU{3) are generated by the eight

operators
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b at - ) a_ . E
Q= -4 s a,b =1,2,3 (Qa o) .. {1.13} .

The boosts may be given by
¥ Qu

where the co-ordinates y“ s, @ = 1,2, are complex. The little group in this
case, H = 50(2) x U(1), is generated by QuB. With this choice of RY the
procedures discussed above could be used to find the mapping ya * ylu
and the induced 5U(2) x U(1l) tramsformation, b, corresponding to an SU(3)

transformation, g. However, we shall not pursue this.

The manifold SU(3)/sU(2) x U(1l) clearly has two complex dimensionms.
In order to see that it is, in fact, t?z one can proceed as follows. Let
the hermitian, treceless matrices, Yab s be the co-ordinates of a flat space
on which SU(3) acts linearly

T+ Y o= gyglt o, (1.15)

An invariant subspace can be pleked cut by requiring the co-ordinates to
satisfy the matrix equations

¥ = % Y + %— R . (1.16)

where R is a constant. GSince Y 1is hermitian, it can be diagonalized by an
5U(3) transformation and one finds easily that its diagonallzed form must be

-R/3

T = -R/3 . {1.17)
l 2R/3

In other words, the general solution of the constraints Is given by

(1.18)

with appropriate SU{3) boosts, Ly . On the other hand, it is possible to
express the general solution in the form

b, (L,b_ Ta
t, [3 sa - = ] R , {1.19)
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»*
wﬁere T is a complex triplet and ﬁa =n Since Y 1is unchanged by the
complex scaling n, X n, s this means that the manifold parametrized by L

can be identified with the 2-dimensional complex projective space, ¢P2

As a supplementary remark we note that it is possible to define the
actioq of a non-compact group oh a compact manifold. A trivial example of this
is provided by the group of displacements on the real line., By factoring out
a discrete subgroup corresponding to displacements which are integer multiples

of some unit, 27R, one obtains a compact quotient space. Formally, one writes

0y 2rR . (1.20)

where Q 1is the generstor of infiniiesimal displacements. Applying an
arbitrary displecement, g = expwQ, on the left, one obtains as usual,

L =L, h
&l ¥’
where

¥' =y +uw - 20En
h o= (2RO (1.21)

and the integer n is determined such that y' lies in the interval (0,27R).
If the polnts y =0 and y = 27R are identified.then the Quotient space
is a cirele of radius R.

A less trivial example is the realization of the non—compact 50{1,2)
by its action on the proJective cone, a compact 1-dimensionsl manifold. That
such a realization should exist is easily seen by embedding the cone in
3-dimensional Minkowski space. The null cone

Y -1 - Y =0 (1.22)

is clearly invarlant under the action of S0(1,2). But it is a 2-dimensional

space. However, the cone is also invariant under the scaling transformation
Y -+ AY . {1.23)

A 1-dimensional manifold is cbtained by identifying those points which are
related by scaling. (In practice one would be dealing with functions on the

27~

cone which are homogeneous cof degree zZera. ) A possible parametrization of

the manifold would involve writing

'
Y = siny . {1.24)

a
Ccosy

To find the mapping ¥ *+ ¥' corresponding to sn hyperbelic rotation in the

¢{2-plane, for example, one Would write
chw + shw cosy
Y = siny =
shw + chw cosy J
{3 1
= A siny’
) cosy'
to obtain the relation

siny' = 1 . (1.25)

chw + shw cosy

This kind of realization can be formalized in the manner used previously.

The generators, Qab = -Qba’ of 80(1,2) satisfy the commutation rules

= - - . (T.26
[Qa.h’q'cdj oe qad nac de * Nag qbc Tha Qac ( )
I+ is possible to pick out two of these,

Qp Wi @ =Gy * 9 (1.27)

which are to be identified as the generators of the {non-compact) stability
group, H. They satisfy

[QOE,Q+1 = q, (1.28)
The bo;sts are defined by
L, = e:‘r e . (1.29)
¥
28~
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Since any element of S0(1,2) can be represented unambipguously in the form

o BQ ¥4
ke_qla e T e 02 (1.30)

' 1
¥ J . y‘j + (¥ M) w* - onplnd {I.36)
Jjk

r
with the integers n'1 chomsen such that ¥ 3 falls 1n the intervel (0,2113‘1).

it will alvays be possible to solve the mapping relation The little group transformation associlated with this is then

J..n
_ 21RYQ,\ J
gl =L B a= TTe 97 - (1.37)
b
for y' and h as functions of y and g.

lant basis is defined ual by the 1-iX
Another example 123 the flat group of Scherk and Schwarz [13}. Im its The covarlant ba § delined as us Yy the orm

simplest version, the generator Q1 is distinguished from the others,

- e =L -1 adL
QJ, J = 2,3,...,K. The commutation rules are ¥ ¥
1 h| J
= (g - M )+
[Qi SQJ] =0 %’ v Jk Qk ay QJ 3
i,e,
() =M, 4, (1.31)
where M 1s antiaymmetric, i.e. Q‘l generates orthogonal transfcrmations yi 1 -y
while the Q generate translations. (For X =3 this is simply the 2- eua - Ll . (1.38)
dimen slonal Poincaré algebra.) To construct a compact manifold for the group YJ 0 5,]1:
to act on, consider the elements
yﬂ, y‘jq To construct Killing vectors ‘the matrices Dﬂ'B of the adjoint representation
Ly = e Q"I' e 1 N (1.32) are needed. These are given by
4
- [+] -
where ¥y ranges from O to 21rfm1 (ml = smallest non-zera eigenvalue of iMjk) Dl (Ly) Qﬂ - Ly 1 q’.\. Ly
and the yJ are restricted to the ranges
b
Y M %
oy samp 3=2,. .0 . (1.33) .
a -
= L
Dy (Ly) % =k, 9L
The action of the group on I, iz eaaily found. Firstly, the action yln
1 . 4 = (e ), 9 s
of expw Q’l is given by Jk
win i.e.
e L =L, , (1.34)
Y v 1 Iy
+ t = k
where y 1. y‘j and ¥ 1. yi vt {mod 21t/m1). Secondly, Dus(Ly) = [ L . {£.39)
5 [ ] {expy:LM) 3k
Q
J
L = L,h , 1.3
e . o (1.35)
‘1 4 The Killing vectors for left translations are then
where y ~ = ¥ and

30—
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u = pPb u
k) D, (Ly) &g

¢ o
- ! ! . {1.%0}

0 (erpviM) Ik

{This matrix was denoted U(y) in the work of Scherk and Schwarz.)

We ¢lose with the observation that the zero-torsion spln connection

BmB (see Appx.2) is given for this manifold by

Ja_.pta L 2
B, B =0, BT sy My (1.31)

and the curvature 2-form \}a.nishes, i.e. the manifold is indeed flat.
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APPENDIX 2
Curvature and torsion on G/H

Because of thelr high degree of symmetry, quotient spaces have rather
simple geometrical properties and it is possible to derive a number of explicit
formulee to describe these, In thls appendix we give derivations for such
of these formulae as have been referred to in the text. All of them arise
out of menipulations of the boost elements Ly which we use to characterize
the manifold G/H.

As has been mentioned in Sec.IIT, the first and most important step
is to construct the vectors of a covariant basis on the manifold. To this

end one wust consider the 1-form

-1
e(y) L:r a1,

() 4

o e My) g . (II.1)

vhere the infinitesimal generators of G are denoted QG « These generators
gatisfy the commtation rules

o~
¥
(G » Gl = ey’ & (11.2)
~
with structure constants caay.
The differemtial propertles of e(y) needed for the diacussion of
curvature and torsion are summed up in the 2«form

-1
L
de(y)S—dLy A d y
=5 lar . taar
¥ Yy ¥
= elylaely) , {11.3)

-

the Cartan-Maurer formula. On substituting the expression e = e“qa and
using the commitation rules satisfied I%y the generators, one can extract the
equivalent form

§_1LE, 7 &
de = E e” A e’ cg?a (I1.k4)
or, in terms of components,
-32~
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C e = =T
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=

3 e - Bv e =a=@a e gan . {11.5}

As explained in the text the generators Qﬁ separate naturally intoe
two sets, Q& belonging to the subgroup H, and Qu , the remainder. The

coefficients e u, a =1,2,...,N, constitute a set of N covariant basis
B

vectors. The reciprocal basis is denoted e, s i.e.
wB_ 5B a v _ v,
ey €, ﬁu .o e = du (11.6)
The torsion 2-form, Tu, is defined by
o o B Q@
T =de +eAB R (rz.7)

where the 1-form Bsu represents the spin connection. Once the latter

quentity has been assigned it is possible to comstruct, in addition to Tg,
the curvature 2-form RuB defined by

B8 B

R"=48B
o

¥
y +B A B {11.8)

One of the simplest possibilities is to choose B such that the

torsion wvanishes,

0=de +efa BB“ . {11.9)

On comparing this equation with the Certan-Maurer formula and noting that
cg;"‘ = 0 (because H is a group) ome finds immedistely

a Y1 _ a ¥ o
Bg "¢ 3% *e cop
= g [&-c S AP (rr.1o}
2 "y -y Y8 . '

el =e'al=e ere . (11.11}

A" efL YL L, 8y
RB =5 e Ae l2 Che %sa t e °Fp T F %p Ces ] . (11.12)
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{In deriving this we have used cuBY = 0 wyhich is not generally true. See

for example, the discussion of 80{2,1) in Appx.l. In the general case one
would have to keep such terms.)

Another simple possibility iz to choose B suech that the torsion takes
the form

o 1 8, v o

T =geAe oy . (I1.13)
Comparison with the Cartan-Maurer formula this time gives
a _ ¥ a
Bg =& coy (11.1%)
and hence the curvature
Yy_1l «a € F v .
Ry’ =3e Ae c o cf {11.15)

In particular, if the manifold is G itself, i.e. H = 1, then this assignment
gives vesnishing curvature. (On the other hand, for some interesting manifolds
such as SO(N+1)/S0{E), the structure constants c__' vanish and the twe

[>1:]
assignments are identiesl.)




AFPENDIX 3

Transformation properties

Some symmetry properties of the manifold G/H are needed for an
understanding of the tranzsformation behaviour of the Yang-Mills fields. The

purpose of this appendix is to discuss the derivation of the necessary formula.

Consider firstly the transformetion rule (3.8) for the l-form e .

For an x-dependent left translation, y + y'(x,¥), this reads

-~ -~ ~ ~ -~ )
- - - =1
Syt) = ePiy) Dg“(h Ly slhan D + (g a o)f Dga(Ly By, (IT1.1)
)
where Da is a matrix of the adjoint representation, i.e.
-1 _ LB
g Qﬁ g = D&\ {5) Qé‘
' -1 8 -1,8 .
The components {g ~ & g) and {h dh ) are defined vy
-1 - a
Erde = (& aag) Qs
-
nant = maw g
= (han % q , (III.2)

[+

which is possible since g-l d g belongs to the algebra of G while h d h-1

belongs to the subalgebra associated with H . In the following we shall

assume that the slgebra is fully reducible, i.e.

g - 108 -
D, (n) = Do (h) =0 {II11.3)

This means that (III.1) separates inte components from G/E and X, respectively,

o B o -1 ﬁ a -1
( e[y)Dﬁ(ﬁ')"'(s d g} DB(Lyh)

e {II1I.k)

¥

g g Dga(Ly n .

Sy = o pfE + man) e g

(111.5)
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Under the transformation y » y'(x,y) we have

1

1
, u H
ay W= oyt Wy R
v m
3y ax
or, equivalently,
N 'y az“ m 31”
ay = 4y Ty + dx o .
¥ Ix
Fartial derivatives transform such that
[P v 1
¥ 8+ % =gy ¥ 3,L3]+dx"la L
L4 m oy LA m 3™ “J

. . m .t
dy au +dx 3

1 L}
(where 3m7 denotes differentiation with respect to e at fixed ¥ u}.

[}
Extracting the coefficients of dy ¥ and ax™ from the formulael ITI.H)
and (II1.5) gives

v
e 2y = W o Biy) p %Y (II1.6)
¥y
0 = a e Py p 2™ + (g7 2 )E 21, nhy {III.7)
3V ¥1 2 g m & By i
e E( ') = | E( ) D—E(h-l) + (ha h'l)‘;1 (I11.8)
Y ay'” [ev ¥) Dg v J .
sy 8 g, -1 ¢ -1y3
] =am ev(y)x}g(h )+ (nal nT)Y o+
X
+(gla g)a pa¥ (1, nh) (I11.9)
m B 'y :
The formule (III.T) can be arranged in the form
u ~
ay -1 B ¥
o (e 2y 8)" Ky , (111.10)

where Kﬁy , the so-called Killing vector, is defined by the expression

Kg'(y) = DgY{LY) eY“(y) (II1.11)
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H
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Its transformetion behaviour is obtained with the help of {III1.6), viz.

Ka“(y'} DgT(Ly.) ey”(y')

H

t v ay'?
= Dg*(s) Ko (¥) o
3y

1
A-\r -1 o v ay v
Dy (g Ly b DY {n) e, iy} =5

3y

. (111.12)

From (II1I.10) and (III.12) it is e simple exercise to derive an expressicn for

1
ay "/ax™ . Thus,

)
" oyl
" ax™ ay’

ORI N

-(g 3 g'l)a Kay(y')

Hieoot
)K?(Y)

(I11.13)

With the help of (III.12) and {IIT.13) one can gasily extract the
transformation rule for the Yang—Mills gauge fields AaB(x) defined by (3.21),

ar

Ea“(x,y) = Aas(x) Kﬁ”(y}

o
Since EEl

1]
Hu
Eau(x.Y) + B {x,y")
1

ay

H
= gV ¥ _
EB. (x13') )

(T1I.1%)

is part of a contravariant vector it must transform according to

)
n
3
+ E Mx,¥) -%
& 3x

Substitution of (III.1L4) into this rule gives

Pal
6 Y
A" (x) Ky {y")

a

-~ u u
3 v 3y n y
A {x) Ka (¥} X +E (x} o

8x

=1 Bly) Dé\Y(g-l) Kty -

~

- Ean(x} {g an g—l)s Ké‘u(y')

_3"(’_

{III.15)

Since K‘B\u(y'} is & common factor in this equation, it may be removed. One

is left with the rule

LB

8
or, egquivelently,

I - -1
A (x) =g Alx) g™ -g3

where Am(x) = Ema(x) Aa_B(x) -

() = 8,7 (x) 0 e™) - B x) (g3, &

-1

g

1,8
)

(1I1.16)

A more direct construction of the Killing vectors mekes reference to

infinitesimal transformstions. Thus, the infinitesimal form of the trans-

formation rule Ly, =g I-'y h—l reads

Ly+ey
U x I
6; 3a L =24§ - -
v, L g G I, L, o qa
-~
to first order in the infinitesimals Gy" . ﬁ_gu and
left by 1&‘1 and use the definition of e,

Pl -~
Hoa . .0
Sy eu q,\u = &g

-1 a
Ly Q&\ Ly - &h QE
2 8 &
= § - -
g Da (Lb) G - &b Qg
Extract the coefficient of Qm

~

g e ® = 5a® Da%(L
voe, g D ( Y
since &n% = o.

M

-~
sy 5g° DgF(Ly) e,V (¥)

& K" (y)

= (1 + &g" qa) Ly (z - 5h§ Qﬁ)

§h

Hence the 1nfinitesimal é‘yu is given by

Multiply on the

(111.17)

thereby defining the Killing vectors assceiated with left translations en G/H.
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The same procedure could be followed for constructing the Killing
vectors asgociated with right translations. One should use the 1-form
=LaL instead of e to obtain Ky = Dy’ (L™ &* . For the

special case, H = 1, the result is particularly simple One finds Eau = —eau.
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APPENDIX &

Harmonic expansions

The general form of harmonic expangions on the manifold G/H was
discussed in Sec.III. In particular, for the functions ll)i(x,y) which
transform under the combined left translations, y + y', and associated tangent
space rotations, h, such that

vy (x,7) > w;_(x,.v') =0;,(h) ¥, (xy) (1v.1)

the appropriate expansion would be

¥, (x7) = Zf Z - y‘l) w [ (e)

The sum includes all irreducible representations, Dn, of G which contain D

iJ
on restriction to the subgroup, H. If Di.‘,l occurs more than once in Dn,
then the supplementary label ¢ is needed. The matrices Dq; have dimension
d’n . The expansion coefficients rl)n are fields on W-dimensional spacetime
which belong to the irreducible representation i »
Y 'n n n
hd =T X . Iv.
rllpc(x) lbpc(x) pq(g) lch( } (1v.3)
They can be projected from wi(x,y} by integrating over the manifold
1 dn n ’
x) === -2 J du D (L) v, {x,y) . (Iv.L)
Yoo T NG S M Tty s
Differentiation with respeet to y' of the fields tlai(x,y) is
equivalent to an algebraic operation on the components ¢"(x}. The simplest
covariant derivative that incorporates a/ay“ would be
_ .M
V“ ¢1(K;¥) eu 3 ¢i 2 GESYI iJ ) wj
=e"a vy +eueED. Qs ¢ . (1Iv.5)
a p i [ TRRRG 1, - M
In this formula we have used the expressiocn
=40=

o 7T '*nu.qumwﬂcii{;«w¥“~ a2l g
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R TR
Bafevl = % °u Casy
6)
which 1s one of the possible spin connections on G/H, derived in Appx.2.
We have also used the formula (3.17) which fixes the embedding of H in the
tengent space group, SolN),

-1 8y p(zd) - o(a;)

Differentiation of the boost Ly“l leads back to the definition (3.3) of e,

vig,
%N Y“J- =T Ly-l W By Ly—l
- ef L™,
and this implies that, in any repregentation,
~
2, 2 = - P 0Map) PP (1v.6)

On comparing this with {(I1V.5) one finds for the covariant derivative of .,
n,.—1 n, ny.-ly
= =D, L . Iv.
7y DiP(L ) lcL(QQIJ qu( ) (1v.7)

This formula was used in Sec.IV to reduce some terms from the L+N-dimensional

Lagrangian to 4-dimensional form.

Finally, the expansion formulae are sketched for two relatively simple

casesd.

(1) su()/ua)

This is the case of spherical harmonics on the 2-dimensional sphere.
With & = SU(2) generated by Qab = -Qba’ a,b = 1,2,3 and H = U(1) generated
by Q, we can take ¥* = (8,p) with

.

9y,  -0e
L =e iz e 31 . {IV.5)

The covariant basis vectors are contained in the l-form

EBQBl epq“‘L2 d le‘w’lz e_eQ?’lJ

-d¢p cosd Qle + d sind Q23 - a9 Q31 . (Iv:9)

Expressed in matrix notation, with rows and columms indicated,

13 23 12

1 0 0

(Iv.1 0
o] sing -¢cosB

u12 (= euu in the notation of Sec.III).

The tangent space group, 0{2), in this case coineides with H = U(1)

The last column gives the components of e

so the embedding problem ig trivial. The 2-vector [ regolves into helieity
A= *1 eombinations,

1
= (o) * 1¢,)

and likewise for higher rank temsors. For a function, ¢k(x,y) of helicity
A, integer of half-integer, with respect to the tangent space group we have
the expansion

8, (x,y) = Z 3T anguy-l) 3 dx) ,  (van
J m

where |} takes the values |A|, |A|+1,... and D3 denotes the 2)+l«dimensional
representation of gu(2),

§
Jgp Ay o oo d (B PR
DM(LY ) Do [e e J
= a,3(0) &', (1v.12)

in the notation of Wigner.




Generalization to the N-dimensional sphere SO(N+1)/50(N) is straight-
forward in principle though, of course, complicated in detail. There is no
embedding tc be done since H = SO(N) coincides with the tangent space group.

Our second example illustrates a case where this is not seo.

(2)  sw3)/su(2) x u(1)

»
With G = SU(3) generated by the octet of charges, QE:b - -Q,ba' (Qaa =0),

a,b = 1,2,3 and H generated by the subset. QﬂB, a,8 = 1,2 we can parametrize
G/H by & complex 2-vector

' 2
lel3 +y Q23 - h.c.
e

L =

v . (Iv.13)

This would not be the most convenient choice for practical computations but we
do not intend to present more than a sketch here. The question of interest is
how to embed K = SU(2) x U(1) in the tangent space group, SO(4}. The general
formula for this, (3.17}, could be applied but it is simpler in the present

case to work ab initio.

The triplet of SU(3) decompeses under the subgroup SU(2) x U{1) such
that

3=2 +1 (Iv.1y)

1/3 -2/3

i.e. into an S{2) doublet with U(1l) quantum number 1/3 and a singlet with -2/3.

For the octet the decomposition reads

8=1,+3,+2 +2_ (1v.15)

1 1

If the octet is real then the doublets 21 and 2_l are related by complex
conJugation. In particular, the generators QGB, qu assoclated with G/H

are in the representations 21 and 2_1, respectively. According to the

general principle expressed in formula (3.17), the L-vector of
s0{b) ~ 8U(2) x SU({2)} must have the SU(2) x U{1l) content of G/¥,

(2,2) =2 +2 (Iv.16)
This means that the embedding must be such that

(2,1) = 24

{1,2) =1, + 1, (Iv.r

for the 2-spinors of SO(L4). An explicit construction for the SUL2) x U(1)

decomposition of a 4-vector, ¢a , 1s easily arranged. From the 2 x 2

matrix
(o *ieg (e, - i8,) )
I (1v.18)
| ie; + i¢,) ¢, - id,
select the first column. This belongs to the representation 21, and so we
define the spinor ¢)\ with components
1 .
12 = 5 T ey
b = == (14 - 0) - (1v.19)
-1/2 7 1t 19

Now the representation 21 is found in the SU(3) multiplets 8,10,27,..., with
triality zero. It follows, therefore, that the harmonic expansion of the
Lh-vector, rbu(x,y), must take the form

fa
#lx,y) = E = Z nlg(Ly‘l) ¢Pnlx), (1v.20
P

1=8,10,274...

vhere the coefficients ¢_"(x) are complex. Expansions for tensors of SO{(h)
can be comstructed by straightforward generalization of this procedure. It is
interesting to note, however, that spinors of SO(4) cannot be represented in
this way. This is clear from the fact that the SU{2) x U(1l) content of the
2=-spinors, via. 20, 11 and 1_1 is not to be found in any SU(3) multiplet. In
fact, it is net possible to define spinors on the manifold SU(3}/sU{2) x U(1l).
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AFPFENDIX 5

Spectrum of 4+1 Kaluza-Klein theory

Since the ground stete of the K = 1 theory is flat, it can be obtained
as a vacuum solution of the 4+l-dimensional Finstein equations without a
cosmological term. For K > 1 the manifold G/H has constant curvature and
it is necessary to introduce non-geometrical (matter) fields to act as sources.
Because of the simplicity of the K = 1 theory one can easily obtain its
excitation spectrum end relate it to an underlying non-compact symmetry,
so{'l,e}.

From the fact that the 4+l-dimensional Einstein theory has five degrees
of freedom cne expects that all massive states belong to multiplets of spin 2.

This is emsily verified. Write the metric tensor in the form

& = "n T Puw : (v.1)
vhere M,N = 0,1,2,3,4 and Ny is the flat metric,
T = diag(+1, -1, -1, -1, -1} . (v.2)

Treating the components hM:N as small quentities, one obtains the second order

terms in the Einstein Lagrsngian

L= (e, z B,z = 2 B,z Pvn,m ¥ 2 Pa,m Pongn T Bav,n Pawnt t

"%vatﬁvm , (v.3)

where JMN is an external source. The connections vanish so that simple
partial derivatives are indicated, hMN,L = aLhMN' The equations of motion
derived from (v.3) take the form

Moo T Bumn T Peogmn T Progem t

* v Pxnoxn T "wm Pre,in T oYMy (v.2)

L5~

These equations are compatible only if J is conzerved,

Iar,n = © . (v.5)

This is a relic of the 5-dimensional general covariance. The usual way to solve
{V.4}, subject toc the compatibility condition (V.5), is to impose a co-ordinate
condition. For example, in the gauge

By =0 (v.6)

they are solved by

1 1 *uy 7
v T2 Em‘?[“m‘?]JmJ ’ (v.7)

where 32 represents the S-dimensionsl d4'Alembertian.

On substituting the solution (V.7) back into the Lagrangian (V.3),
discarding total derivatives, one finds that iE reduces to

=1
‘Ie'h‘}mh]m
10 L _L 1
—h|_JMN32 Sym 3 Tt a2 JN'N] ' (v.8)

This expression represents the effective Interaction between conserved (i.e.

physical) sources due to the exchange of the Kaluza-Klein particles.

Now consider the pole, 82 = 0, in (V.8). 'The residue simplifies on
using the conservation of JMN' Firstly, it _ah # O we can choose a frame
in which

3, = 98, and 3, =0, 1=1,23 . (v.9)

i
In this frame we have

Jou =Ty » M= 0,1,2,3,4 (v.10)

_ 2 _ .2 . s
so thsat me = _Jii and JMN = JiJ . It follows that, in the neighbourhood of

the pole, the effective Interaction {V.B) reduces to

(v.11)}



where the physically significant part of the source is the traceless 3-
dimensicnal tensor
t

1
Tt = 7 _ o=
3 [

iy i J . (v.12)

ij "kk

This result indicates that the massive states (Bh # 0) are indeed purely apin 2.
Their masses are given by the eigenvalues of -~ Bi = {n/2eR}) , n = 1,2,...
R is the radius of the Kaluza~Klein cirecle.

On the other hand, if ah = 0 we have the massless states and they
can be anaslysed conveniently by choosing a frame where

3. =2 and 9, =3, =38 =0C . (v.13)

In this frame the effective interaction reduces, in the neighbourhcod of the

pole, to the form

2
1 1
n _>-_ J-l ;2——_? J;\ . (Vv.14)
A= =2 Q 3

vhere A refers to the 0{2) helicity and

1 .
5 () = It ridy,

o
n

1T Tt

- = -
I, = ‘J11 * I, -2 th)
T1% T~ 1te
J . = L(J P S B S § . (v.15)
-2 2 Y11 22 12

The terms in {V.1h) correspond to the exchange of graviton, photon and

Brans-Dicke scalar,

Turning now to the non-compact symmetry aspect of this theory, we note
that the general co-ordinate transformaticns in L+l-dimensions ineclude, in

particular, the set

4=

e Bl S

- - - —— Bl T o —— et b L f e T TTHE
g ey et p—— e T——— e - - " 7T IR R T LU W )

8x = 0

Sy

ml(x) cosMy - m2(x) sinMy . mB{x) 1 , (v.16)
M M M

where M = 1/2wR. (The finite transformations are discussed in Appx.l. See,

in particular (I1.25).) The infinjtesimal generators are given by

Q1=_29§ﬁ 3 =-S5 Q3=_:'—13 (v.17)

v

and these are easily seen to generate the algebra of S0(1,2),

.0 = » [8,el=09 , la4l=9, . (Va8
Moreover, the Casimir invariant vanishes,

b cosMy 2 sinMy 2 1., 2
"aqaqbg'lM 67 [M av] +[ﬁar]

This means that fields defined on the circle belong to an irreducible
representation of 80{1,2). It is infinite dimensional but not unitsry, however.

8ince the mass operator is given by -332 = M?Qg one gees that the spectrum
X 2

of masses is simply the spectrum of Q3

so{1,2).

in the irreducible representation of

Generallzations to higher dimensional manifolds are possible. For
example, on the sphere SK, which is invariant under SO(K+1), 1t is possible
to define the action of S0{1,K+l). Howwver, to find the excitation spectrum
and perhaps relate it to the apectrum p# some combination of generators of
50{1,k+1), it would be necessary to include the excitationz of the matter
fields which are needed for the ccompactificatiomn.
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2)

3

iy

5)

6)

FOOTNOTES

This comparability of contributions may have relevance to the

problem of renormalizability of Kaluza-Klein theories.

Throughout this paper BK 1s assumed to be & quotient space.
One may eventually contemplate internal menifolds {associated

with symmetry bresking) which are less symmetrical.

For an infinitesimal transformation in H we have

+5hYc—
a

DuB(h) b aa Y8

B

= %ap * Yag
where g = gy - Viewed as an infinitesimal SO(K)
transformation this reads %mus E“’B = én'¥ %, which implies
(3.17).

Some illustrative examples are contained in Appx. L.

The coriginal Kaluza-Klein theory in b+l-dimensions represents
a case where G/H is flat. Generalizations of this have been

investigated by Scherk and Schwarz [13].

This spin connection corresponds to non-vanishing torsion on G/H.

In general the spin conneetion will contain terms additional to
this cne, inecluding fluctuation terms for example.

“4g-
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Rebuttal of a reply by Ichimaru, Totsu}l, Tange and Pines

ARMED OSMAN - Elastic and rearrangement scattering between two inter-
ecting deuterons es a four-body problem.

5.P, de ALWIS and J.E. KIM - Supersymmetric SU{11), the invisible
axion and proton decay.

P. CARINI, G. KAIMAN and K.I. GOLDEN - Exaset dynamical polarizability
for one-component c¢lassical plasmas.

LEAR MIZRACHI - Comments on "dyons of charge eE/2n".

V. PAAR and 5. BRANT - Signature effect in SU(G) medel for quadrupole
phonons.

Z.G. KOINOV and I.Y. YANCHEV - Path-integral calculation of the density
of stetes in heavily doped strongly compensated semiconductors in a
megnetic rield.

C. PANAGIOTAKOPCULOS - Regularization of the quantum field theory of
charges and monopoles.

A, BADIQ and M. AHSAN KHAN ~ Ehtrcpy of percolating and randeom infinite

clusters,

AH, BASBYOUNI ~ Stark brondening of isolated U.V.-lines of LiI, All
and SiI by a D.C.-ARC plasma without and with Cs.

A.H. BASSYOUNI - Impriscnment of resonance radlation in atomic
absorption spectroscopy.

B. BUTL. - Interaction of turbulent sclar wind with cometary plasma talls,

M.K., FARIDA and A, RAYCHAUDEURI -~ fow mass parity restoration, weak
intersetion phenomenclogy and grand unification,

J. PRZYSTAWA - Symmetry end phase transitions.

P, BUDINICHE - On “conformal spinor geometry™:
internal symmetry.

An attempt to 'understand”

Y. FUJIMOTO - The axion, fermion mass in SU{9) G.U,Th.

U. XKASPER - Remarks on the non—uniquenegs of the canonical cnergy-zomentum
tensor of classical field theories.

J. TARSKI ~ Path integral over phase space, their definition and aimple
properties.

f.P. BERG ~ Classical mechanlee of 4 breathing top.

K.G. AKDEHTZ - On clnss{cél solutionn of Gursey's conformal-invarfant
sriner model.

ZEAKG LI=RING - Graded Jde-~-Sitter
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P. NIKOLOV - On the correspondence between Infinitesimsl and integral
degeription of connections.

AR, CICUDNARY - On an improved effeetive range formula.

K.R. PAINTER, P.J. GROUT, NH.H. ‘"RCH and ¥.P, TOSI - A model of the
ice-d-electron metal interface.

TE] SRIVASTAVA - On the representation of generalized Dirse {Clifford)
algebras.

R, JENGO, L. MASPERI and C. OMERO - Variational discussion of the
Hamlltonian Z{N) spin model in 1+1 and 2+1 dimensions.

D.A. AKYEAMPONG - Supersymmetry breaking in a magnetic field.
D.K. SRIVASTAVA - Integrals involving functions of the type (Ws)d .

A. BULGAC, F. CARSTOIU, 0. DUMITRESCU a.nd 5. HOLAN - Ferml liquid model
of alphs decay.

ANDRZEJ G02DZ - Equivalence of the L-diminishing operator and the
Hill-Wheeler projection technique and its spplication te the five-
dimensional harmonic cscillator.

M. CIAFALONI - Soft glucn contributions to hard processes.

Summer Workshop on High-Energy Phyaics {July-August 1981} (Collection
of lecture notes).

E. BOBULA and Z. KALICKA - Sufficient condition for generatlion of

multiple solidification frent in one-dimensional sclidification of
binary alloys.

A. SADIQ - Cultural isolation of third-World scientists.

E.¥. MIFLKE - Reduction of the Polncaré gsuge field equationa by
means of a duality rotation.

ABDUS SALAM nnd J. STRATHDEE - On Kaluzs-Kiein theory.

N.H. MARCH and M.P, TOSI - Saturation of Debye screcning length and
the free energy of superionie PbFa .

H.R. KARADAYI - Anetomy of grand :miry’ing groupsa.

A.R. CHCUDHARY - A study of C-wave n-p scutiering using a nev effective
range formula. .

G. OLSZEWoKI - Hartree-Fock approximation for the cne-dimensicnal
tlectron pan

. Rt
T. SRIVAUTAVA = A twe-component wavescquaticon for puriicles of spin-g
und nem-voero rest cans {Part 1Y, '
RV, iy, G, OENATIUE And 'LPL, TORT - Chorterange topie curvelstions

in golo-cesium metto,
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