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ABSTRACT

The mess matrix for a peir of fermions interacting through chiral

gauge rields is computed by solving approximete Dyson-Schwinger equations.
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We attempt to compute the mass matrix including mixing angles, for
a pair of fermions interacting with gauge fields. What we have in mind is
8 system of two families,say the e and the p families of fermions. Fach
is geuged separately o.g. (SU(3) x sU{2) x u{1)) x (SuU(3) » m(2) x U(l))u
At the present low energies only the diawonal sum of the two types of gauges
manifests itself. We wish to ccmpute the geperal fermion mass matrix
dynamically, the only input being chiral cymmetry for the gauge mesons; e.g.
our coloyr group is not Just f‘;U(3){3 x SUH(B) tut [SHL(3) x SUR(B)]e xé - u)-
To gimplify the discussion we consider Just two fermionsfand the colour group
as U{1l). No Higes field is coupled to the fermion fields and the assumed
gauge symmeiry precludes an elementary mass term for the fermions. In such
8 system one can hope to find (dynamical) masses only by going outside the
framevork of perturbation theory. Now it is well known that perturbative
approximationg to the effective action preserve the symmetry of the classical
action (apart from the superficial complications assgciated with gauge fixing)
so that if fermionic masses are excluded by symmetry considerations at the
classical level then the same will be true at every finite order of &
perturbative calculstion. One must go to infinite order and, in practice,
this means attempting to solve a Dyson egquation. Apart from the technical
difficulty there is also a problem Wf ultraviclet divergences: parameters
like the fermion masses tend to be d‘vergent and therefore uncomputable. How-
ever, as was shown in a recent notelﬁthere do occur exasmples of gauge theories
where the divergences cancel and the fermion masses become in principle
computable. The technical difficulties remazin severe, of course, in particular
the matter of gauge dependence. 8ince the Dyscn equations operste with off-
shell snd therefore gauge dependent quantities, propagators and vertex
fuactions, it is a highly non-trivial preblem to extract any gauge-independent

informaticn from them. We ignore this problam here.

The two Dirac spinors wl and ¢2 knteract with gauge fields wlL’
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the Lagrangian takes the form In the Landau gauge, then
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Here the gauge fixing terms have not bteen specified. It 13 assumed that the

gauge symmetry breaks spontaneously to U(1} =o that three of the four gauge

fields acquire mass by the Higga mechanism. We &re not interested in the

= —-i<Tv3’A v!v> + ,; <Tvor Vov>

details of the Higgs system and have suppressed all scalar field-containing

terms. (In general there can be scalar vector mixing terms which affect the N

structure of the vector propagators and should therefore be taken into account. _ % (.,.! _ IZ: )( '_"M )Lz
= ~ [ T Y

Here, for simplicity, we shall adopt the Landau gauge where such couplings L h." k- My k

do not aceur.)

The gauge propagators are easily deduyced from those of the orthogenal
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combinations
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Since the object of the celculation is to compute the fermion mass
matrix, y , wve must use this matrix in the parametrization of the fermion

propagator. To cbtaln the appropriage expressions for the propagstor components
consider the effective Lagrangian

- - - +
Lapms = B, B9y + T B v = B v ¥y - T by
The mass matrix can be represented in the canonical form
yo= Uyt (5)

where U and V are unitery and = is real and diagonal. Tt is straight-

foward to derive the expressions
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ete. In the approximation where corrections to the vector propagators and the

vertices are discarded, the Dyson equation for the fermion propagator takes

the form
AL "yt D
Sep) = - i’ Ef—l;)“ Tt (p-% -2 ) Kt Drv (k). |
‘ ' o

In this equation the vertices derlve from the interaction Lagrangian
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in which the matrices 2 generally include the chiral projector (1 t 115)/2.

The free vector propagetors (L) are included in the general expressions
a.b _ & .ab
drwewy =-oim) . (8)
The complete fermion propagator is written

LT¥i> = -Rpozent . (9)

The diagonal terms (a = b) in the vector propegator D:ﬁ(k) muat be O(K™2)
for k + = and they will be associated with ultraviolet divergent terms In
P 121 e o(k‘l‘) if the

corresponding element of the masa matrix (ME)ab is non-vanishing, other-

the Dyson equatliaon. Off-dizgonal terms Da

wise they will decrease even faster. All auch terms contribute finite pieces
to the right-hand side of (7). If the equation is decomposed into chiral
pieces then the mass term ELR will be given by & convergent lntegral if there
is no component among the vectors which couples to both left and right spinors,

i.e. if the gauging is fully chiral. (The kinetic terms I

LL
must inevitably diverge and be subtracted by weve function renormalizations.)

and zﬂR

" If the mass matrix i3 determined by 8 convergent integral equation
then, at least in principle, one can compute it. That {s one can express
the fermion masses in terms of & set of glven vector boson masses. This iz a
more modest programme than the fully self-consistent generation of dynamical
symmetry breakdown in which the vector masses are also to be computed by
exploiting the appropriate Dyson equations.

To obtain an estimate for the mass matrix u we set p =0 im (T)

and in the integrand let I Dbe represented Just by the mass matrix itself,

1~ iy 1+ 1y
) = —2 e
It is a simple matter to eliminate the Dirac matrices and extract the
equation
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b
where it is understood thet ¢° (a = 1,2) refers to Wooand (v = 1,2)
to WR . The propagator components Dab needed for (10) are just those listed
in {4}. On mseking the substitutiops,
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Make a Wick rotation ko - ikh srd integrate out the angles, i.e. write

dhk = 2n2k2dk2 te obtain
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where a = geh/h . Alternsetively, this equaticn can be given in terms of

eigenvalues and mixing angles. Quite generally, the mass matrix can be

expreased in the form

[T U:n\i’—1

- f
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-sing cosh

sind cost, j c o om, R R
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(any complex pheses in p can be absorbed by appropriately re-defining wL
and wR). It is convenient to introduce the rotated coupling matrices

3 cos@ sing 1 [cose -sing
tv{8) = t

-8ind cosd tsin& cosd

[ cos”B -3ing cosd
-3iné comB in2&
and
r 2
2 sin™8 sind cosé
t“{e) = 5
sinf cos8 cos € (14)
Eq.(12) now takes the form
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where m is 8 dieagonal matrix. There are fouwr distinct equations here for the
four unknowns, M. W, BL and BR. To solve them we shall make some
approximations. Thus, we shall assume that the ferminon masses are small

relative to the vector masses

m/M << 1 . {16)

Then (15) reduces to

Ve =t



2y 2 M 2 Ly My (0
w = %E(r'r[tll. zmﬂn%i t, = t, zmﬁu;‘.{g _[tt)tm?n;’(k ”&]

or, in detail,

M Ve

m, o = o m, In M—';t::l + {CL":&)"‘IE“%‘; e Cam a3, 5.m, Hin "'",z;
" T w o
0 M (_SLCR~|*C\-S&ML)2“":LML‘11 2 (e Sem, ) "R,

3
(‘°Lst"'l+3~‘-'u"‘t}""%? -f&mim;)’n'ﬁ",

m'n'i;g‘ - (q~ca)w€ng‘;‘ + (5 5e™ ~qc¢a)9*5,ﬂ’

(n

where cL = cosEGL, CR = cosEBR,...,etc. Consider, firstly,the two off-

diegonal components
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It = and/or o, is non-vanishing then compatibility requires
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Since the vector masses are presumsbly independent we must take
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2 = sg ) (19)

For convenience,in the remaining equations we shall adopt a particular solution

GL = —GR = B » (20)
where 6 is given by
M -
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M% Mg
i.e. . h"'l
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The remaining two equations are

M M
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To simplify these we make an assumption about the relative magnitudes of the

vector masses,

MM, |
tn Mz << Iln W (23)
3 2
since this serves to decouple the equations (22). They give
z [s28 -1 - TE/30¢
™, = M' Mi. <
1-2c e e,
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where ¢ 1s to be obtained by solving the transcendental equation which

results on substituting (2L4) inte (21)

M)+ (Me/m,)f -]

¢ T s e (25)
(Mu/M;} - (M) A LM;
k)

An amusing feature of this caleculation is the emergence of the relation {19)

2 _ 2
sin 26L sin eeﬁ.

For the two family system treated here, we started with three spin-one
messes and recovered three parameters for the fermion mass matrix. For three
families, the number of spin-one masses will be five, while the Fermi mass
matrix which we recover contains seven parameters. Thus the results of the
calculation will give testable constraints, if the individual fermions are

replaced by the known e, u, T families.
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