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ABSTRACT

It is shown that spoéntaneous symmetry breaking can
arise in a non-Abelian gauge theory free of guartic scalar
couplings only if fermions are Present in the theory. A
sufficiency condition is developed for positivity of the
induced I’:potential as #F o# . The same condition
guarantees the existence of asymétotically free positive-
eigenvalue solutions to the renormalization group equations
for running coupling constants. Correspondence is es-
tablished between "eigenvalue" and induced-potential approaches

toward total asymptotic freedom.

=1-

Consider a qgauge theory of scalar (¢) and vector bosons.
Perturbative renormalizability implies the existence of a
term in the scalar field potential in order to cancel the
logarithmic infinity induced by the gauge interaction (Fig.l).
However, it has been recently demonstrated that self-cnergy
and vertex insertions in a given scalar-amplitude graph {such
as those in Fig. 1) are mimicked by replacing g

_ 1
with the running coupling constant g - Upon performing

rencrmalized

this substitution, one obtains a renormalization-group-im-
proved perturbation theorylin which the four-scalar amplitudes
of Fig.l are no longer infinite. Therefore a fﬁ' term
in the scalar field potential is no longex required to ensure
renormalizability.l}
The idea of dispensing with primitive guartic scalar
couplings in the potential is most appealing, for such
couplings are not asymptotically free in theories of physical
interESt.a) The only ¢7 terms that occur in a theory free of
primitive fycouplings are those induced by the gauge inter-
action and by Yukawa interactions. In Ref.l it is suggested
that these induced couplings, rendered finite by incorporation
of running coupling constants, can generate spontaneous

symmetry breaking. We examine these issues in greater detail

below.
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Consider the case of a scalsr field éi transforming

as a triplet under SU'2) [ fzz d)l ¢Ja+ ;1:77. ! '
J

i

We choose to work in Landau-gauge in order to eliminate
trilinear scalar-gauge-gauge-couplings to zerc-momentum 4
| :-_3’_{2'[’"../]-
scalar field lines {such as in Tigs, la& and.lb)., To 32 2 jj
7

one loop order, graphs of the form of Fig. le induce non-

I

(3)

zero f couplings through the gquadrilinear scalar-scalar-

gauge-gauge field interaction

A.(j -'—gi[ﬁ;x b, 7/€ s % /L,,,J

. 2 2 - .
= * Q‘l(yp'l,‘- h, ) = __f__ ) 4 [Q'/M“b * for g, Ak would have corresponded to a negative infinity
% z b S 7

4
to be absorbed in primitive A¢ ~ terms. If A‘g is rendered

Since the integrand of Ilg, MW] is positiv~, AF is negative.
In fact,AL; is negative for any gauge model, as Tr{MV]

is always greater than zerc. Had we not substituted g

{1) .. . — .. 4
finite by substitution of g for g, a primitive /\f term

[WI and W;, are orthonormal to the uncoupled gauge field is no longer required to absorb infinities. However, in the

=1 1 ¥
wﬁr "(‘} ul*g% *ﬂs’uﬁ')/fj where wl, 2,7 correspond absence of such a term, the induced coefficient of f
toT-matrices.] In Fig.le, WI and WII exchanges lead is negative,and spontaneous symmetry breaking is impossible,

~

to equal contributicns to the induced é_ potential. The This situation can be remedied by introducing a

L)
sum of these contributions :|_s3)

sufficient number of fermions into the theory. The graphs
j L 7 (.Zn'-}"’ [/r m; +¢¢=}" shown in Fig. 2 induce pesitive f couplings that are opposite
_ ’/,% — A_y in sign to those of Fig,le because of the closed fermion
B ) ? 1 . Tt i ; h to ch the sign of the
/r/ (ﬁ’ "’r +tf} (8) cops is non—triviael, owever, to change sign

induced potential by adding fermions to the theory. Suppose,
The bracketed integral is manifestly UV-finite. In Ref.l"

for example, that we almost saturate asymptotic freedom of
arguments are presented invoking a spectral representation

the SU(2) gauge coupling by incorporating 10 fermion doublets
of g to show that the bracketed integral is IR-finite as

well.S) Upon Wick rotation to Euclidean k [" (/ﬁ A')‘>

fA in the theory. For simplicity, we assume that there is
only one free Yukawa parameter h and a Yukawa interaction

given by
-3 =L
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This Yukawa interaction can be expressed as
A,fyz—-f; mIJ(é.jﬁ ; (s)

where Fo is a column vector containing all 20 fermions,

The induced f coupling from graphs in Fig. 2 is given

by 3 ,
4
(G T

o M +¢'(—/ (€)

where ;m; —— 4? 9{;/ // -, and whare the trace is understood to be

over Dirac indices as well 3}.

AVF will be finite providea h is replaced by the running

Yukawa coupling constant '}T(-kl} : y
2 2 2
P r I O
~ = /'//'/ [ A+ »7;]2

(7
/6;7 //;%;>/.;Z‘£{;4 ’"%132

We now wish to compare the magnitudes OfAVF and

45 . In Appendix I the renormalization group eguations

of g and h are shown to be of the form

A 7 * - ,;F'ﬁf
2 c[—z 7 ~2
1 A A4 -ﬁlj , (8)
2 AL
-5

where A,B and b are all greater than zero. The solution

for h(t) may be written in the form

(9= 30 & ewl )

where p= b [//j // "{5 é//A
and u(t)= [ (}/j,.z[f/]@ ~4 M7k

coupling constant is asymptotically free provided b > 0.

The gauge

In Appendix I, the Yukawa couplinq is shown to be asymptot-
ically free provided }P) 0and 0 £ R (f Since
the fermion mass m‘F cbtained through spontanecus symmetry

2
breaking is related to the gauge boson mass by ﬂ1;= ADM..( /"_'j

I/hm )= Rl ININY ‘*m;)z

6)

2

-— =0, 2 2 ‘-y»‘ ? f
P A ﬁmyﬂ ’wffﬂ]-

{10)
The expression in brackets [Eg. (10)] increases monoton-

ically as R approaches its maximum allowed value of f

{note that uft) > 1 for all t] , Therefore

rncaa'zrua) i=;7 /‘/J///’,Ag aiiA@ izéJé,;}(GfL/gcjlz

(,4@ % £nl/Y)”

(11)
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Since f/4 { 1l in our example (Appendix I}, we see that

LR m2) > GRS 2l o) SEA/ A #%m2 )

(12)
in which case

16 T3] > Tnal i md > 8 LG, m]

i (13)
Therefore the total induced potential Vlnd =4 Vg +A VF

has a maximum possible value in the range

674200 Tz md > VIS [ (3 5250 e TG w0
(1L}

2 .
Since the factor (-% + 5-?// ) is negative in eur exmmple, we have

d

failed to prove that vind ig necessarily positive, despite

the fact that the addition of even one more fermion doublet

destroys asymptotic freedom for the gauge coupling constant. 7

Under what circumstances will the induced potential
be guaranteed to be positive? Suppose the SU{2) model
we have been considering contained a primitive scalar field
potential Af%/ The renormalization group egquation for

/\ is found to take the form 8)

ek A

_+ -z .
[d,ﬂ,/f/’,ﬂ'are all positive] . If h =f‘g , its maximum

allowed value, and if (/J-fzo" y <" 0, then d/\-/ﬂ/f

is negative for arbitrarily small positive values of /‘,

and a "positive-eigenvalue"” asymptotically free solution
:\'[fjr ‘éj—:[f/ ﬁ*’] is guaranteed to exist. ) Note that
the coefficients  and ¢ are proportional to the coefficients
of the divergent part of diagrams in Figs. le and 2, re-
spectively. 1In our example, = 72, =40, and

in which case (0-£o ) = 48(3/2 - S£/4) > 0. a
positive-eigenvalue solution is not guaranteed to exist,
The point we wish to make is that the criterion that would
guarantee a positive induced potential [/-3/2+ ¢ J/ﬂ)<0 1
is the same as the criterion guaranteeing a positive-eigen-
value asymptotically free soluticn for ;\-. 10) This is hardly
surprising, as the same combinatorics manifestly appear
from Figs. 1¢ and £ . In terms of the notation of Ref.8,

in which scalar fields Pi transform according to
~ . a <
ﬂﬂe=g’¢¢£’ #eg f}‘/g% (16)

and the Yukawa coupling to the set of fermion fields F

is given by

22,5 ~Fh FY, ()

a sufficient condition for the existence cf a positive in-

duced coefficient of ;ﬁﬂ,‘ 4% is that 1)
e )

34 4y — ‘/yj:'i'j'kl <0 (18)
JA,,

where

-8
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t/k,l fé 94}){9
rfe2e't (e @‘f,
+[9 9)’ {0 fj;, ) ’

(19}

and where the matrix

j‘%'/r! - 2!' 7’:[’5/ ({ /i’j
fﬁf[}{ 1512
Iy )

is expressed in terms of Yukawa-coupling-constant eigen-

value solutions “;‘ff/ = ff ?- (V

The criterion of Eq. (18) is also sufficient for the

\

existence of a positive-eigenvalue sclution for the running
coefficient of & fg . f(" within any primitive potential

present in the theory.ll)

We claim, however, that the
real significance of theories containing such positive-eigen-
value sclutions, which can hardly be expected to te ra-
diatively stable, is that such theories are also likely
to contain positive induced potentials after running coupling
constants have been incorporated to allow removal of all
primitive f couplings,

There is an important qualitative difference between
the positive-eigenvalue and the induced potential approaches
to total asymptotic freedom; only the latter approach is

successful for a continucus domain of input parameters - the

-0-

initial values R for the Yukawa couplings. Suppose, for
examnple, that (p-f} ) € 0, thereby guaranteeing that

Egq. (15) has a positive eigenvalue solution for X when

the Yukawa coupling h is at its limiting eigein'\zralue )
solution ilnz{f/:fj-z(f/ . If - IP (b)/]; [“)

iz chosen to be anything less than f, the eigenvalue
solution disappears, as l:({) - now falls faster with t

than j {!‘/ [‘17 (f/7 The corresponding induced

? -potential is positive provided I[4 MF]> f 7[} "'r_7

However, we have already shown that this is true when

R= ¥ [EE(/;/] , and _2'[4: me 7 is
manifestly a continuous function of R{Eg. (l0)]. 12) There-
fore, if the difference between Tmﬁ"’f’] and f,f[j;mr]
is finite, there will exist some domain of R<{ for

which I[R,m.] remains greater than {':I[ﬁ”yj . The
induced potential remains positive over this domain of R.
Thus the presence of positive-eigenvalue solutions to a

given theory serves to indicate the possible existence of

an asymptotically free theory of a non-eigenvalue character

in which positive quartic scalar field couplings are en-

tirely induced.
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Appendix I The soluticon to Bys. (A.4,5) is found by setting

a3 = t/ gt/ ; : 8
The Running Yukawa Coupling Constant A [f} k(/j ( + in which case
A ‘2{5 = A8tk . €A.6)
The Yukawa interaction between f Eermion doublets 2.:’;& AT
and one- fermion triplet Y/ may be expressed as 8 Egq. (A.6) is inteyrated using Eg. (A.5):
' . A a P k(¥ ( %)
- — 2 - (A.1) 4 _ ; I/ ¢
_ . . / why KAk M“J
In this equation there are f£(f + 1}/2 independent 4‘5 N (A.7)

The associated running coupling constants satisfy 8) and the solution

_ - - 7 k)= ,e;‘/[,{uu[g/(f-/?)] (4.8)

e /‘/f ‘7" ac [CL‘ AFE AIJ AJI AL , ¥-4//4
? is obtained in which U(L‘/ [j //‘/j’ (f)]
L ,q A2 :
3 57 (a.2) f:@-,{,}/A , and R=Fkle)=4 o)/ f
In the text we consider the case of a single independent The gauge coupling is asymptotically free provided
Yukawa parameter such that b ) 0, in which case £ € 10. The Yukawa coupling is asymp-
= . (A.3) ; . . .
h46’ A ‘{; totically free provided fl:;vw /:_(l‘/ —> 0 . A sufficient

. condition for this to be the case is that Zim & (/>0
The running value of h is then seen to satisfy the following £y a0
Consider the RHS of Egq. (A.6):

differential equa,tio:/}_-z_ AA_Z A;J‘jf_-? } " CQA/:‘Z/"/A": A’(A"#‘y: F(k/ . (4.9}
3 dF

Eg. (A.9) has critical points at k=0 and k=f. The criterion

2
where A :[(’* "’r)/’fM/'fl asd B ,.,(f’/;)//(” ’ for stability is that (dF/dk’k ) < 0. Now (JF//A/ ) }:'_!
: - crit ko
The running gauge coupling constant equation is 7 and (JFA/A' /‘,:;}“ *f .  Suppose f(a .
if ‘c_/gé 1: - é/q‘y . (4.5) Since kE 4—2/)72 is positive, the k=f critical point
7 .

is unphysical. Therefore, physical values of k have stability

where 6:‘(2/“'27(//‘/3”?

properties determined by the k=0 critical point, which is

13~
-12-
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unstable. However, if ;b)»p , the k=0 critical point is
stable. k(t) will go to zeroc as t— 0 provided 05&6‘)()’.
Therefore k{t) is asymptotically free provided jp>-0 and
O<R (j? . The case R=1‘ corresponds to k being con-

stant over all t. Note for the example of SU(2) that

5’:’(35‘:3€2)?ﬁ2f?3i) . Therefore to have an asymp-
totically free Yukawa coupling, f must be greater than or

equal to k,

-13-
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