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ABSTRACT

Within the framework of differential geometfy, Yang's parallel-
displacement gauge theory is considered with respect to “pure® gravitational
fields. In a four-dimensional Riemannian manifold it is shown that the
double self-dual solutiocns obey Einstein's vacuum eguations with cosmologiceal
term, whereas the double anti-self-dual configurations satisfy the Rainich
conditions of Wheeler's geometrodynamics. Conformal wethods reveal that
the gravitational analogue of the "instenton" or pseudoparticle solution
of Yang-«Mills theory was already kunown to Riemann.
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I. INTRODUCTION

It is now gemerally believed that Yang-Mills type [55] gauge field
theories eventually may provide a true unification of all fundamentisl inter-
artions. Such a unification should include gravitation [3k]. Nowever, gravity
is different in several aspects, First of all, it is a parallel-displacement
gauge theory (54}, which means in the language of fibre bundle theory that the
bundle of linear frames with the non-compact structure group SL{4,R) is
soldered [UE] to the base manifold. By introducing a Riemannlan metric the
symmetry group becomes broken down to the Lorentz group S0{(1,3) as a gauge
group, & procedure which resembles the Higgs mechanism. Furthermore, the
dynamics of Einstein's standard theory of gravity given by the familiar Hilbert
action is not modeled after Maxwell's theory of electromegnetism. Therefore,
Herman Weyl, whe introduced the concept of gauge invariance in physics, argued
at the end of his 1919 paper [47] that the most natural gravitational Lagrangian
should be quadratic in Riemann's curvature tensor. Later.on, this point of
view has been tsken up and developed further by e¢.g. Lanczos [29], Stephenson[45]
end Yang [5b4].

Further justificatioﬂs for this slternative cholce come from guantum
gravity [12]. fThere it is known from one-loop celculations that gquadratic
cﬁrvature terms must be added to the conventionsl Einstein-Hilbert aetion as
counter terms. Moreover, if a Yang-Mills type action [15] 1is incorporated
immediately from the beginning, the model is known [bh] to be renocrmalizable,
but suffers from a tensor ghost. It seems plausible that under certain
conditions the Froissart unitarity boundedness may still be guaranteed [42].
By admitting slso propagating torsion (compare with Hehl et al. [24]) a new
class of ghost-free gravity Lagrangians have recently been found [43]. After
Euclideanizing space-time and by restricting the field configurations of the
80{2) Yang-Mills theory [55] to be self-dual, exact solutions have been
obtained by Belavin et_sl. [5], which are non-singuler for imaginary time.

These "instanton” ~ or pseudoparticle solutions have received much attention
because of their significance for & non-perturbative treatment of guantum
field theory [25]. In perticular, they can be Interpreted as evidence for a
quantum-mechanical tunnelling between topologically different vecuum sectors.
The Riemsnnian analogues of these pseudoparticle sclutions should play &
similarly important role for a non-perturbative method (still in need of
invention) of quantizing gravity.

According to the Cambridge school [18] gravitatlonal instantons ere

defined by non-singulsr, cotmplete and positive-definite metrices which satisfy

the vacuuwn Einstein equations with or without a cosmological term. Solutions
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having also self- or anti-self-dual curvature are distinguished among
asymptotically locally Euclidean (ALE) metrics. If the'generalized pesitive
action conjecture" [22,19] holds, these are the only solutions having zero

Einstein-Hilbert action.

Since Yang's parallel displacement gauge theory [5L) of gravity is
formally much more related to Yang-Mills theories than Einstein's,in the

former case gravitational pseudoparticles mey be defined by self- or anti-

self-dual field configurations, In Yang's theory however, the notion of double
tufns out to be -

duslity of Riemann's curvature tensor, discussed in Sec.II, more/appropridye. The

reason for this deviating approach can be traced back to the special
isomorphism so(l) =3 su(2) (:) su{2) of the Lie group of the O(h) symmetry
group in four dimensicns [20]. By doing so, the search for gravitational
instantons in Yang's theory without sources [15] is converted into a problem

of classical differential geemetry .

The maln result cbtained in Sec.IIT is that non-singular scliutions
of Einstein's theory are double seif-dual and can therefore be rightly

regarded as "instantons” in Yang's theory. In particular, the"Euclideanized"
de Sitter cosmolagies turn ocut to be the Rlemannian snalogues of the pseudo-

particle solutions In Yang-Milla theory.

Sec.IV deals with the coupled Einstein-Yang-Mills system. For the
Abelisn case, it is known that the physicai context of ﬁhe resulting Elnstein
Maxwell theory can be completely coded in the geometry of a Riemannian
manifeld, provided that it satisfies the Rainich conditions [39] of geometro-
dynamics {35]. It turns out that double anti-self-dual solutions of Yang's
equation fulfill Just these conditions. Since these metrices are conformelly
flat, they constitute only a restricted class of Rainich geometries. Bome
concluding remarks on the main topological invariants of Riemannien manifolds

i.e. on the Fuler number and the Pontryagin index, are made in BSec.V.

II1. FOUR-DIMENSIONAL RIFMANNIAN (GECMETRY

In this section a few important properties of the Riemannian curvature
tensor Ruupu are recapitulated. All occurring gecmetrical ﬁbjects are
globally defined on an oriented, four-dimensional manifold M egqulpped with
8 positive definite metric guu, but, for reasons of familiarity, are here
regarded as local expressions of the correspending differential forms [34]

(MTw) .

HY . .
The double dusl of R oo 18 defined as follews [3h] (MTW, p.325)

,R*uﬂ = 1 CaBuv R pa

"{5 E uv elﬁUYd (2.1)

The Riemannian curvature is known to satisfy tdentically the second Bianchi

identity which may be given the more cencise form [29]

&
*R'aB*rG = 0 (2.2}

In the theory of generalized curvature fields {see Ref.31 for review) tenscrs

satisfying (2.2} are called to be proper.

It follows fram (2.2) by consecutive contractions that

u
v = -
 pa Vo Roo = Yo RUD {2.3)
-and
0 -
o, =0, (2.4}
vhere
= 1 -1
G = - = = _ #AR#¥
uv Ruv 2 By R R pawv (2.5)

1s the Einstein tensor. *)

The following analysis will be facilitated upon the introduction of an

orthogonal decomposition of curvature tensors in a four-dimensional Riemannisn
roand fold *%) ’

uv . uv Tuw TTuv
oG CDU@RDOQR oq

R R (2.8)

uv
where C o denotes the trace-free conformal Weyl tensor. From elementary

relations between permutation symbols [34] (MIW, p.87) it can be deduced that
Tuv — Y \Y
R = -~ g¥ gV
0q K{§ p S g8 8 p)

= K _wvap
- 2F EpuuB (2.7}

The aign conventlons for the Riemann- and Ricei tensor are the same as 1n
MIW. Due to the positive signature of the metric, the permutation symbols

pick up opposite signs.

=
) See, e.g. Sec.y of Ref.3l for generalizations to arbitrary dimensions.



Tuv

defines a double self-dual curvature tensor. In the case that R o is
proper, 1.e. satigfles (2.2},its sectional curyature
K = = (2.8)

would be constant. The remaining tensor

IIuv
pa

- Ll .u v in v \ u A3 u _ Iuv
R = 3 (R 0 8gm Rg b, *R 8 R 8} - 3R

o g p p po

(2.9)

of the decemposition {2.6) spans the orthogonal complement of the Weyl tensor
Cuu in the space of curvature tensors with vanishing scalar curvature.
According to & remarkable identity of Lanczos [28] valid in four dimensions
only, precisely this tensor measures the deviation of Riemann's curvature from

being double self-dual ®)

II1
— #R* = . 2.10
Ruvpcr R uvpo 2R pvpo ( }
An equivalent decomposition has been employed by Atiyah et al. [1] in &
profound recent anslysis of the gecmetry of gauge theories. According to
theirs, in four dimensions the conformal Weyl tensor has the further invariant

splitting
c=¢, & ¢C N (2.11)

W oL ey woubV
Cy oo (c ps £ *C m:')

under the operation of taking the double dual. It follows as an immediate
consequence of {2.6) and (2.10) that the condition
MY CLN

c =

oa 4o » 1-€- C_=0 (2.12)

may serve as a definitior [1] for "self-dual” Riemannian manifeolds.

III. GRAVITATIONAL INSTANTONS IN YANG'S PARALLEL-DISPLACEMENT GAUGE THEORY

Consider the parallel-displacement gauge theory proposed by Yang {55]
as an alternative theory of gravity. The Lagrangian density is chosen to be
Yang-Mills:

#) The relation (2.5) may now be derived simply by contracting (2.10).

5=

~ _He pveew
apY =4£"i[-‘/§‘ R,uvga-R
= 4-1:1@ {ngs*’?”y" +4 RrVRFy“ R*

{3.1)

The equivalent expression given above can be reedily deduced by contracting
-(2.10) with B*PY gs had already been noted by Lanczos {28]. For later
convenience, the (strong) [3] gravitational coupling constant G has been
sbsorbed into the modified Plenck length 2% = (8n# G/c3)1/2 . According to
the Palatinl method the Euler-Lagrange equations may be derived by (s priori)
independent variations of (3.1) for the {affine) connection and for the

metric ¢
Varying for GxYNI'VDc yields

¥R

wpo - 0 (3.2)

after speeislizing [15] to the Riemann-Christoffel connection onc. Due

to (2.3), Yang's equation {3.2) is said to describe a "pure" gravitational
fleld, 1i.e. one for which the Codazzl equation "/

Vp R = VU R (3.3)
holds.

Varying for 6.!!/6 Eut , results in the condition

VOO upm spa VPO _
Hun: h Ruvpo Rnc R uvpo R% 0 (3.8
for the corresponding gravitsational stress-energy tensor. The relations
(3.4), not noted by Yang, have in an equivalent form been derived by
E 2] L

Stephenson [LU5].The superspace lor a11 Riemannian metrics gemY (module
diffeomorphisms @ ) which satisfy the field equations (3.2} and {3.4) of

» L
Yang's theory of gravity will be denoted by JY = 'mY/Q .

* X
) In this context (3.3) iz not to be regarded as an embedding equation.
#*) The geometrodynmamical notion of "superspace" (see also MIW, Chapter 43)
has a completely different meaning than that used in supergravity.

—6=



In mathematical physics it is commonly desirable to reduce {3.2),
which are of third order with respect to the metric, to equations of second
order. In view of the Bianchi identity (2.2).it is suggested here to solwve
both field equations {3.2) and (3.4) by imposing the necessary conditions

= Ap#
Rvoo = *B* oo (3.5)

® ¥ K _# &
Although the superspace ef+ = ’}ﬂg@ < cf‘[ of solutions of (3.5) will

likely be only & true subspace of pr, the former turns out to be of con-

sidereble geometrical significance by itself:

If the plus sign holds, a contraction reveals that the corresponding
Ricei tensor is a pure trace tensor. Moreover, the direct inspection of
(2.9) proves
Theoren I

Any sclution of Einstein's vacuum equsations *) with cosmological term

+ hg =0 (3.6)

G
Ny uv

ia double self-dual and therefore alsc a solution of Yang's equations.

Related cbservations have been made by Lanczos [29], Wilezek [L9]
end Olesen [36]. Moreover, a modified [15] version of Yang's theory of
gravity is known [11] to be entirely equivalent to Ricei flat spaces.
Consequently, e.g., the Euclideanized [21,18) Schwarzschild-de Sitter
solution of {3.6) defined on RZ x 82 can also be regarded as a gravitational
instanton in Yang's theory. On manifolds endowed with the topoclogy of the
connected sum [30) Hh # " (Hl x gl x 52) of n = 0,1,2,... "wormhcles"
it should be possible to construct multi-Schwarzschild instanton solutions by
the method of images in Euclideanized geometrostatics [33]. The reason being,
that the latter is just the study of the "time"-symmetriec initial-value
problem [31,30]

3 = a (3.7)

of genmeral relatiwvity, i.e., one which corresponds to an embedding problem
with vanishing second fundamental form.{Solutions of {3.6) en gt x 53, the

four-dimensicnal analogue [19] of the wormhole topology, are ruled out if
the positive action conplecture holdSJ

L ]
) It should be noted that (3.6) as an equation of second order in the metric

is unique in four dimensions [b41].
-7~
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Other gravitational multi-instantons ' of Einstein's theory have been{ rom

generalizing Teub-NUT spaces [21,37]. All these solutions suffer from the
deficiency of being esymptotically flat in the spetial directions only, but
periodic in the imaginary time direction. In order to reseumble the pseudo-
particies of Belavin et al. [5] much more closely, the metrics should be

asymptotically flat in the four-dimensional sense.

In fact it has been proven that there are no such solutions for which
the curvature is self-or anti-self-dual. (The universal covering space of
the K3 surface is known (see Hawking and Pope [23)) to be the only compact
manifold admitting a self-dual metric.) The solutions found by Eguchi and
Henson [1%} as well as generalizaticn [17) thereof are asymptoticslly locally
Buclidean [ALE) enly, i.e.joutslde some compact reglon these solutions approacﬁ
the flat metric on R modulo identifications {7,19] under a discrete sub-
group of O(k}.

In Yang's theory formally rasther close analogues of the Belavin et al.
instantons do exist, as will be discussed below. Before doing so, let us’
return to the full field equations (3.2}. By noting {2.k) a contraction
reveals that .

VR = © (3.8}
H

is a pecessary condition on its solutions. This may not be a restriction at
all, if the following conjecture of Yamabe [ 53 is true.

Any compaet Cm-Riemannian manifold of dimension n > 3 cen be con-
formally deformed to one owing a "curvature centric" metric with constant
scalar curvature.

However, there are topological obstructions to positive scalar
curvature for certsin ("exotic") spin manifolds which have to be avoided[26 )
(see Ref.26 alse for a partial proof of thie conjecture).

Metrics with constant scalar curvature which are at the same time

solutions to Yang's equations can be constructed by conformal techniquea [31]
simllar to those emplcyed in the proof of Yamabe's conjecture.

To this end, consider the task of relating a geometry of constant
scalar curvature R0 to one with another constent R by means of a conformal

change

b -2
dsf‘ = dwﬁ - % (’)9qb d)\’q dx —_p dsa = ¢CW) dsuz

(3.9}



2 . . : .
of the Riemannian line element., Assume that dso ig written in & Gaussian
. {3)

g

co—ordinate system {as it can alwsys be done) and that the 3-metric A

as independent of w.

According to equation (A.5) of Ref.31l, this amounts to solving
_ 2 " 2
R = Ry ¢ + 6{es" - 2(4")7} (3.10)

for the conformel factor ¢(w) regarded as a function of w only. {Similar
equations will be encountered in Yang-Mills theories in its exponentiated [50]
form ¢ = e ¥ or in the ¢h theory [49], even with a coupling to Einstein's
theory of gravitation [3]. The latter theory results from {A.6) which is
an equivalent presentation of (A.5}, according to the Appendix of Ref.31.)

One obvious sclution *) of (3.10) is

R 1/2
#lw) = [E'fl—] ch {w »\fRolg} . {3.11)
0

Substituting

w6

e (3.12)

H
i}

+ '\/x“ X, =

2
K
in (3.11) yields

R -2
as® = ﬁg_ [1 + iﬁ ral [dr‘? + 2 (S)gab ax® dxb] . (3.13)

It generalizes the line element of a space of constant sectional (Gaussian)
curvature [51] K = Ro/12 for which already Riemann has shown that locally
its metric can be written in the conformally flat form

3 . {3.14)

o -2
v

- -2 _ K
8 ° plr) by = [1 +gr
The topology of these "Euclideanized" de Sitter cosmologies (compare with
Ref.13) is Sh or Rh, depending on whether or not the manifold has been
conformally compactified. According to a classical result the curvature
tensor associated with {3.14) is given by (2.7). It is therefore a straight-

forward matter to supplement Theorem I with the following.

*)

It has been employed in the construction of localized soluticns [32]

of a non-linear Klein-Gordon field over Minkowski space.

-9

Corollary

Spaces of constant curvature are double self-duanl solutions of Yang's

equation. Furthermore, they can be regarded as the Riemannian snalogue of the

pseudoparticle solutions of the Yang-Mills theory as derived by Belavin et al.[%].

To see the latter correspondence explicitly, the SO(4) geuge conmection

(see e.g. Brill and Wheeler -[8])

- 1 “\A4r _ [T }'19 av r$
r;u" % 3gt{(9f¢ey)eu M py e’,egﬁ’
(3.15)
written in terms of the generators
uv l[ u.v
[ = 2 Y .Y ] (3.16)

will be calculated. In agreement with (3.1h) the Vierbein field (eross-
section of the bundle of linear frames} ia locally given by

e = o) 8. (3.17)

Since the Christoffel symbols for conformally flat metrics have the following

structure {see, e.g. equation (A.2) of Ref,31):

T = _]; T _ T - T
rw s {gw 3 du 3, sv ap}¢ (3.18})
a short calculation yields
2 v
L 3 & X, ,for K#0 . (3.19)

=4
K r

With respect to a spherical co-erdinste system these are exactly the gauge

potentials of the pseudoparticle solutions [5,25] of the SU(2) Yang-Mills

theory, the strueture group of which has been extended to SU(2) @ SU(2) =250(4).

(If the curvature of (3.1L4) would not become singular, the case K = «
would correspond to the so-called "meron" solution [2].)

Iv. COUPLED EINSTEIN-YANG-MILIS SYSTEM ANL RAINICH GEOMETRY

Ultimately, the U{n) geuge-invariant Yang-Mills theory [55] of
internel symmetries would have to be unified with gravity. In the conventional
formulation of such a theory, the gauge field strength FI-N must satisfy the

Yang-Mills equations 10



W u _
VE, * [A ,FW] = 0 {4.1)

in the Euclideanized background "space-time™ self-consistently curved up by

the stress energy

z 2 S _ wp 9
ew 5 aTr(F‘va - g F, ) (4.2)

via the Einstein-type field equations

G, = i e {4.3)
uv He v ‘ "

{Due to the presence of the Planck length £*, the Yang-Mills coupling constant
e 1is now incorporated into a generalized dimensionless Sommerfeld constant
a = e /fic.)

The Bianchi-type identities
U U oy =
P, R = 0 (h.h)
are identically satisfied by the field strenmgth, where

- (4.5)

*F : JQL E.euvus )

Uy
denotes their simple dual.

In the Abelian case (o = 1} it is known that the Einstein equations
(4.3) - on account of {4.2} - may be replaced by the algebraic Rainich
conditions [39]

R = o (4.6)

o _ 1 of
RoBy = T By Bgg B s (L.7)
Boo 2 0 (4.8)

of the “already wnified field theory™ or geometrodynamics of Misner and
Wheeler [35]. The stress energy tensor (4.2} remains invarient with respect

to duality rotations defined by

*
Sy
wy

m

*
e R,y ChE + ¥F shé . {4.9)

-11-

However, Maxwell's-equations, of which (4.1} and {(4.4) are generalizatioms,
demand that the duality rotation angle or complexion ¢ for Abelian gauge
fields has to satisfy the differential equaticn

[v‘,vk] § =0 . (4.10}

Since the gradient of & can be expressedin terms of the Ricci curvature

Tt S6,v8 “p
V,§ =79 .5, R > V'R / Rep R (4,11
the physical context of Maxwell's theory may be regarded as completely c¢oded
in the geometry of the underlying Riemannian manifold and vice versa *). (In
& space-time with Lorentzian signature, null fields make an exception [16]
as they belong to the "kernel" of this geometrization. Their structure
cannot be deduced from the geometry alone. However, fhis difficulty does
not arise in "Buclideanized" gravity.)

With this equivalent formslism at hand, let us return to the double
anti-self duml solutione In Yang's theory.

. On account of (2.10) the minus sign in (3.5) leads to

Ii
Ruo ™ F Luse s (b.12)
which, because of the defining relation (2.9) -already implies (L.6}). In orger
to see 1f the other Rainich conditions are valid, the following identity for
"squared" curvature tensors may be borrowed from a stimulating paper by
Bach [4]:

dj! 4 _4 2
+ RFquR + ZRR}H’ 12 gwa . (1.13)

*)

This "codification" mey also be expressed in terms of the iavariants
gssociated with the Ricei Vierbein field of princir~?! directions [Lo].

=12a



Insertion of (4.12) and {4.6) in the decomprsition (2.6) shows that the

conformal Weyl tensor Cuvpa vanishes. Therefore

ol

<f
Rpa Ry™ = % gpv Rup R

o
=7 Rrﬁdﬁa‘ (RIydﬁY + 25},?!2 ﬂ) =0 (4.14)

as the terms in parenthesis are zero in this instance. Thus (4.17) is true.
Furthermore, the complexion & trivially satisfies equation (h.10). Thelstter
result is an immediate consequence of the fact that its gradient defined by
(4.11) vanishes since (3.5) implies the condition (3.3} for a "pure"
gravitational field. This completes the following.
Theorem II

Double anti-self-dual solutions of Yang's equation are conformally
flat and, for ROO
(This ineludes Theorem 1of Gu et al. [20].)

> 0, fulfill ithe Rainich conditions of geometrodynamics.

An extensiocn of the Rainich-Misner-Wheeler unification programme to
the case of U(n) gauge invariant and generally covariant Yang-Mills theory
{n > 2) has not yet been worked out. -Nevertheless, the following remsrk on an
interesting degenerate case of this wnification with gravity can be made at

this stage.pssume that the internal gauge field strength themselves are self-

or anti-self dual, i.e.

s F =" (4.15)
Then, the rield equations (4.1) are automatically satisfied because of the
Bianchi~type identities (4.h). Moreover, the geometrodynamical background
menifold is not deformed off the Einstein spaces (3.6) since (4.13) T
implies [25] the vanishing of the symmetric stress energy tensor (%.2).
However, in the case that the underlying, now autonomous manifold owns a
non-trivial topeclogy, there exist exact Yang-Mills instantons whieh have no
flat space analogue [9,38]. Furthermore, if the strong gravity hypothesis
is tentatively adopted, these solutions may become important for the confinement
prablem [3].

-13-

v. REMARKS ON GLUBAL 'MOPOQLAGY

Two invariants are commonly invoked im order to characterize

gravitational instantons on closed manifolds topologically. The Euler
number ’

xw = ;z:§3§- J Ruvpc WL Aﬁ; dhx (5.1}

(see Ref.27, Vol.II, p.318 for its genermlization to arbitrary even-
dimensional manifolds) and the first Pontryagin index [27] (Vol.II, p.213)

by _ 1 pvpg N
p, (M) = )2 f Rooes "R Je ax . (5.2)

For non-compact manifolds, additional boundary terms must be considered
(see Chern [10), also Gibbons and Hawking [18]. From the inequaliity (see
Belavin and Burlankov [6], Ou et al.[20] as well as Xin [52])

,e"g' 4 v '
g2 T2 %+ 5 PR RS - em e ony

2
= £ (Ryygo - "R, o) Vg d% 2 0.

{5.3)

1t can be inferred that the gravitational action (3.1) is minimized by doyble
self- or anti-self dusl sclutions of {3.2) and (3.4) for which the Euler
nurber 1s zero., Compared to Yang-Mills theory in which simple duslity is
employed, the roles of pl{Mh) and X(Mh} are interchanged with respect to
this iszaue.

The Euler-Poincare characteristic is via

y

oy = E (1P 8 (5.4)

p=20

related to the rank of the pth homology greoups H (Mh), i.e. to the Betti
nmumbers Bp = dim Hp(Mu). The first Pontryagin igdex is known, if there
exists a smooth self-transversal immersion £ of the oriented, compact mani-
fold Mh into Euclidean 6-space. Then, pl(Mb) is minus three times the
number v of triple points of f which, due to its self-transversality,

are isolated and hence finite [4B],

-1h-




As a connected complete four-dimensionel space of constant curvature

K= lfrg is isometric to a sphere S of radius r, (or to s real projective

0
space [27] if non-orientable spaces are admitted}, its Pontrysgin index
vanishes, whereas the Euler number is twe (or one, respectively), Therefore,
Yang's action (3.1} is not minimized for the examples of spaces of constant

curvature given asbove, but, e.g. for the flat torus 'T]‘L H Sl x Sl % 51 x Sl.
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