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ABSTRACT

A detailed investigation of the small time deviations of the

quantum non-decay probability from a pure exponential is made to

study their physical consequences. Specific, consideration is

given to the problem of the dependence of the lifetime from the

characteristics of the measuring apparata whose possible occurrence

has recently been pointed out. In particular we investigate the

problem of the indefinite increase of the lifetime when the

frequency of the measurement processes tends to infinity, an

effect referred to as Zeno's paradox in Quantum Mechanics.

It is shown that if the uncertainty relations are proper'ly

taken into account the arguments leading to the paradox are not

valid. Moreover, by the same kind of arguments, it is shown that

the dependence of the measured lifetime on the frequency of the

measurement processes, even though present in principle, is

practically not detectable. To verify experimentally that the

reduction process is effective one must then resort to the

comparison of an experiment with reductions with one in which no

interactions with the environment take place.
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1. INTRODUCTION

In the quantum description of an unstable system a crucial

role is played by the non-decay probability P(t), which is given

by

(l.l)

where

(1.2)

I u^being the unstable state wave function and H the Hamiltonian

of the system. As is well known,P(t), as defined by (l.l), cannot be

a pure exponential for all times for any choice of |u^and H,

provided some essential physical requirements are satisfied.

By expanding | u^ on the improper eigenstates of H and calling

the energy form factor of ) u ) , one has from (l.l)

00
 a -IE*

|C0(6)| €. d£. ( K 3 )
o

In writing (l.3) we have assumed the threshold energy to be zero.

From general arguments it can be proved that P(t) exhibits

deviations from the exponential both for small and ,lar*ge times

The small time deviations from the exponential are particularly

relevant from a physical point of view. In fact, it has recently

been pointed out that in almost all practical cases, a decaying

system cannot be considered as evolving undisturbed, but it is

repeatedly subjected at random times to interactions with the

environment.which can be accounted for as yes-no experiments

which ascertain whether the system is decayed or not reducing

its wave function to the pure decay products or to the pure

t)
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unstable state, respectively. The experimentally measured quantity

then Is not the non-decay probability P(t), but the probability

F(t) of surviving to all measurements up to the time t. This

survival probability F(t) turns out to be practically a pure

exponential for all times and the experimentally measured life-

time turns out to depend from P(t) and from the mean frequency
v . 5)

/\ of the measurement processes . Since the mean frequency

is in fact large,the time interval during which the system

evolves undisturbed from the unstable state is small, so that it

is the small time behaviour of P(t) which is relevant in determining

the experimentally measured lifetime.

In this paper we give first of all a quantitative estimate

of the order of magnitude of the small time deviations of P(t)

from an exponential. This will be done by using definite expressions

for the energy form factor, which,however,can be considered

appropriate quite in general, as discussed below. The obtained

non—decay probability P(t) is then used to discuss a peculiar
6)

effect which has been known for a long time and has recently

been discussed and referred to as "Zeno's Paradox in

Quantum Mechanics" . It consists in the fact that the evolution

equations for a quantum system subjected to repeated measurements

ascertaining whether the system is decayed or not, imply formally

that, when the frequency of the measurements tend*to infinity,

the unstable system will never be found decayed. Here we shall

show that, when arguments based on the uncertainty relations are

taken into account, the unlimited increase in the lifetime

formally implied by the evolution equations cannot occur.

Moreover, the arguments we shall use show that.

(*) The fact that the occurrence of interactions with the environment
modify the evolution law of an unstable system had already been
pointed out in Refs.2 and 3. A'more accurate quantitative treatment
of the effect has been given in Ref. 1*, while the consequences
of this type of description have been fully exploited inEef-5-

in practice, it is very difficult to induce and therefore

to detect experimentally the dependence of >> on A . The general

conclusion is then that, to verify experimentally that the reduction

process is effective, one must resort to the comparison of an

experiment with reductions with one in which no interactions with

the environment take place.

2. SMALL TIME BEHAVIOUR OF THE NON-DECAY PROBABILITY

As stated in the introduction, we arc interested in studying

the small time behaviour of the quantum non-decay probability P(t).
~ f x.

As is well known, the pure exponential e ' is obtained when the

energy form factor has a pure Breit-Wijjner shape and the integral

(1.3) is extended from - • to +«c . The fact that the energy

spectrum is actually bounded from below gives rise to deviations

from the exponential law. Furthermore, the pure Breit-Wigner

energy form factor has too alow a decrease for high energies,

so that the corresponding mean value of the energy turns out to

be infinite. It is then necessary, for physical reasons, to

depress the form factor for large energy values by superimposing

on the Breit-Wigner resonance a cut-off function. The presence

of such a cut-off also gives rise to deviations from the exponential

law. More preciselyj general theorems on the Fourier transforms allows

us to prove, under the sole assumption that the mean value of

the energy be finite , that P(tJ has a vanishing derivative at

(2.1)

implying a non-exponential behaviour for small times. Fleming
8)
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has obtained in a very elegant way a lower bound for P(t) at

small times,assuming that the energy spread

AE (2.2)

be finite. More precisely, he has shown that for the non-decay

probability amplitude A(t), the inequality

(2.3)

holds for t such that

1-AE ' (2.4)

independent of the choice of the normalized state 1 u ̂  used to

evaluate A(t). We are interested in the study of A(t) for a quantum

state | u ̂  whose energy form factor exhibits a narrow Breit-

Wigner resonance of width lA , for which,in a large time interval.

P(t) 2£ fe .In order that the Breit-Wigner resonance it not

essentially altered by the modulating cut-off one must assume

/• Expressing 4 f in units of If , and t in units of l/# ,

timV, (2.5)

Eq.(2.3) becomes

(2.6)

By considering the value X of f in which fc>& ( D f ) intersects

C , we can say that P(t) exhibits relevant deviations from

the pure exponential at least up to times of order provided

-5-

the obtained 1~ is. less than 3T/3D . The above formula (2,6)

shows that the relevant parameter governing the small time

deviations is the ratio of AB. to the width V1 . The choice of

Q."' as the comparison function is the proper one since.

on one side it coincides for a large time interval with the

quantum mechanical non-decay probability, and on the other, as

we shall see, it expresses the experimentally observed survival

for D > * , the

equation CO* DT s. t is given to a great accuracy

probability F(t). It is easy to see thit,

solution of the equation CO* DT s. t i

i.e.
"

(2.7)

According to - ~
in **• considered range of values of

D (to be precise, for D> JL ), so that the deviations from the

exponential extend at least up to times given by (2.7).

Another simple way of getting the result (2.7) is the

following. Consider the power series expansion of A(t) around t — 0

<H*>t'4 (2.8)

from which one gets

p(t) s oit*y (2.9)

If we correspondingly write

and we look for the time t, for which

(2.10)

fc , we get

*•]•*4 («)*•]•
(a.it)



which coincides with (2,7) for ^E>^y. The above estimate

of the times up to -which relevant deviations occur is actually

confirmed by calculations on explicit models (see e.g. Refa.J), 10

and 13).

In the next section we shall study explicitly the function

P(t) for various physically reasonable choices of the energy form

factor of the state |u^. It will turn out that the behaviour

of P(t) is not relevantly influenced by the specific form factor.

On the contrary, it is determined essentially by the parameter

A E / y , at least as far as the time interval in which ve

are interested is poneerned. The purpose of having explicit forms

for P(t) is to use them to investigate physically relevant

questions, such as the dependence of the experimentally observed

lifetime from the characteristics of the measuring apparatus.

The above remark, that the behaviour of P(t) in the relevant time

region is rather insensitive to the specific cut-off function

superimposed on the Breit-Wigner resonance, allows us to consider

the obtained results as giving quite in general an appropriate

estimate of the effects which are involved.

Another property of P(t) can be used to enforce the above

conclusions. In fact, there is a "continuous• dependence of P(t)

from the energy form factor of the state Iu"^ , in the following
1)sense . Let us consider two states Iu ̂  and Iu "> » w i t n form

factors CJ (E) and CO,(E), respectively. Then the corresponding

non-decay probability amplitudes A (t) and A (t) satisfy the relation

r

J (2.12)

-7-

from which one. gets

I R.O0 - Pi CO I = - |AaO0| | • [ l A4(O|

(2.13)

It follows that when GO (E) and«il(E) are sufficiently

near, e.g. when I | Ico^CO - fOxCOl \<LE < <£ , then for all times

P (t) differs from P (t) by less than 2<w ,

Actually it is this property that allows one to speak of an

unstable state when its energy form factor is Breit-Wigner—like

for an energy region which is large with respect to the width y .

In fact in such a case, extending the integral (l,3) from - oO

to +oo, we get the purely exponential decay law €. with an

accuracy which can be evaluated by using (2.13) to estimate the

error introduced by the addition of the integral from - o« to 0,

In the explicit examples of the next section we shall consider

various modulating cut-offs. The results obtained for P(t) will

subsequently be used to investigate the problem of the dependence

of the experimental lifetime on the characteristics of the

measuring apparatus.

f,.



3' EVALUATION OF p(t) POP SOJE SPECIFIC CASES

As already stated, in this section we shall evaluate* explicitly

the non-decay probability for particular choices of the form factor

of the unstable state ) u ^ . More precisely we consider the

following three choices for the energy form factor l(U(E)| :

A. |U?(E)| is given by a Breit-Wigner function of width * nodulated

by another Breit-Wigner function of larger width fl> :

M a )

B. \U)tl)\S is given by a Breit-Wigner function of width I* modulated

by a Gaussian factor of width & :

(3.1b)

erf(x) denoting the error function.

C. is given by a Breit-Wigner function of width l* in the

energy region jE-Et,j<O and is zero outside this region:

0 otherwise.

(3-lc)

We now give the values of A E and the expression:* of P(t) for the

three cases considered above.

Case A

If we put

• MIL ^t.-r (3.2a)

we have

(*) For the special functions we follow the Handbook of Mathematical
Functions . ed. by M. Abramowitz and I.A. Stegun (Dover Publ., New York

1968),

-9-

(3.3a)

Y
and

i (3.4a)

Case B

Let us put

(3.2b)

We have

(3.3b)

(3.4b)

(3.2c)

we have

(3.3c)

-10-



and
and in case B

(3.4c)

where tj [ij is the exponential integral,

A comment about cases A and B is necessary. In normalizing the

energy form factors (3,1).and in calculating the energy spreads

(3.3) and the non-decay probabilities (3.4) we have extended the

energy integrals from -0O to + » i o r the sake of simplicity.

This is the reason why the P(t)'s obtained decrease exponentially

at infinity, contrary to the power-like behaviour implied by the

boundedness from below of the energy spectrum . However, this

approximation is irrelevant for the small time behaviour,

provided the resonance is far from the threshold, as can be seen

by using the argument of the previous section to evaluate the

difference between the correct P(t) and the P(t) as calculated

above. In fact, if we introduce the quantity

0

110 [E)l 011 / 11 =;'>

the properly normalized energy form factor is IttHO) /\^~'%) '

According to the argument of the previous section,the difference

between the correct and the calculated P(t)'s is less than twice

the integral

(3.6)

(3.7)

-flO

where VltJ is the step function. We have in case A

-11-

(3.3)

Since AE$" £ implies 1* $" Ay 7H S" 3.55 , the last factor

in both (3.7) and (3.S) is bounded and of the order of unity.

Therefore, when the considered resonance is narrow and far from

the threshold, i.e. *•=- is small, Eqs. (3-7) and (3.8) show
El

that Eqs. (3.4a) and (3-4b) are very good approximations to the

correctly calculated P(t)'s. Obviously, this result is significant

only in the small time region, where P(t) and fi are much

larger than f/£» > while it does not give any information for

large times where P(t) is of the same order or smaller than J/£{.

In Fig. 1, we have drawn the curves F(f) up to "C — 5 for
the cases A, B and C corresponding to — - together with

6. . Fig.2 is simply an amplification of Fig. 1, up to T •• 1 .

For *^y» = 1)2 it can be seen that the three curves have similar

trends, and for AE/jf = 4 that the three curves are already

almost undistinguishable from the exponential in the considered

scale . Since we are interested in the small time behaviour

or even in the limit for "f^^ 0 we have drawn the small time

region more and more enlarged for various values of /iE/y

in Figs,3 and 4* The grouping of the lines with the same

shows that the behaviour of P(T') depends essentially on

while the particular choice of the energy form factor does not

make significant differences.

In the!, next sections we shall investigate the physical

consequences of the small time deviations from the exponential on

the determination of the lifetime.. Since we are only interested

in estimating the orders of magnitude of the effects which are

involved, we can choose any of the considered P(t)Is to

(*•) We have considered also the caseA^i»V| to show the large
effect at small times when the width of the modulating factor becomes
comparable to the width of the Breit-Wigner resonance. Note that
also for AEA » A/3 the modulating factor has a width equal or
larger than V . -12-



investigate them. Among the three forma of P(T) derived above,

the simplest to handle is Ĵ  IT) , since it has a simpler

mathematical structure, which greatly simplifies the calculations of

Sec. 5-

4. DISCUSSIOH OF TF£ DEPENDENCE OF THK LIFETIME ON THE MEASURING APPARATUS

As we have already said in the introduction, it has been stressed

recently ' that, when the actual physical situation occurring in

experiments devised to measure the non-decay probability is taken

into account, what one is actually measuring is not the quantum

mechanicsL functio/i P(t). This is due to the fact that a decaying

•System cannot be considered as evolving undisturbed, but is

subjected to repeated interactions with the environment, occurring

at random times, with a mean frequency \ . What one is actually

measuring is then the probability F(t) of survival of the

unstable system to all measurements which it has suffered up to

time t. It can be proved that forjappreeiably larger than Jf

F(t) turns out to be practically a pure exponential for all times:

= e

where U is determined by the relation

(4.1)

*J (4.2)

It turns out that this equation has a unique positive solution

which is smaller than X .

Equation (4.2) implies the occurrence of a dependence of the

experimentally measured lifetime l/l3 on the frequency X of

the reduction processes. Some physical consequences of Eq. (4.2)

have already been discussed in Refs. 9 and 11. In what follows,

besides discussing some conceptual implications of Bq. (4.2),

we shall study explicitly, using the form (3.4a) for P(t)$ this

dependence of x> on the other parameters.

Before coming to the explicit study of »> , let us make

some comments on Eq. (4.2). First of all, Eq. (4,2) shows that

if P(t) were a pure exponential for all times, P(t) = C f

thehV = 2f. Therefore it is the non-purely-exponential nature

of P(t) which is primarily responsible for the fact that l/i>

is different from the quantum mechanical life-time l/jf and that

V is a function of X. Secondly, since a precise analysis of the

actual physical situation shows that X»2f, Eq. (4.2) implies

that in the determination of s> a crucial role is played by the

small time behaviour of P(t). Since for small times P(t) is

always larger than the exponential (see Sec . 2), the resulting

experimental lifetime l/V turns out to be larger than l/jf , so

that

(4.3)

Equation (4.2), for a given Ptt^implies that for A.-»«o,

—* O^so that the unstable system becomes stable. In fact, if

PCt) + o-OO (4.4)

a well known theorem on the asymptotic behaviour of the Laplace

transform implies,for large X ,

(4.5)

-13-
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From Kj. (4.2) one sees that it is impossible that D-»\ for l-»«o,

Eqs. (4.3) and (4.5) therefore actually imply 1)-•O under the

limit. The physical meaning of this feature should be obvious:

if we measure whether the system is decayed or not with increasing

frequency we are exploring the behaviour of P(t) for very small

times, and since the derivative of P(t) vanishes at t = 0, in the

limit of X-*oo the system can never be found decayed. This effect

(which seems to be an unavoidable consequence of any description

of the decay processes taking into account the occurrence of

repeated reduction processes) has been known for a long time

and has recently been discussed and referred to as "Zeno's Paradox

in Quantum Mechanics" . The occurrence of this indefinite J

increase of the lifetime is relevant both from a conceptual and a

practical point of view. In particular, its real existence would

imply (provided we are able to perform experiments in which the

mean frequency of the measurements is sufficiently large) that the

dependence of i) on X could be shown experimentally. It is

then quite appropriate to make a critical investigation of the

arguments leading to Zeno's paradox.
13)A remark which has already been made is that the

limit X-»eO is unphysical since the environment, which is

responsible for the reduction processes, has an atomic structure,

so that a really continuous measurement is impossible in any

experiment one can devise in practice. But there is a deeper

argument against the existence of the quantum Zeno paradox. We

remark that the result that i) -• 0 when X-»°o has been derived

using the assumption that the quantum non-decay probability P(t)

depends only on the internal dynamics of the unstable system,

so that it is independent of X . This assumption cannot be correct

when the limit X-»» is taken. In fact P(t) depends on the state

1 u^ which is produced by the reduction process. The state | u )>

is essentially unique, in the sense that its energy form factor

-15-

has the Breit-Wigner shape over a large interval around the mean

energy E of the unstable statej but its shape for energies far
r

away from E is not determined by the internal dynamics of the
r

unstable state and can very well depend on the reduction process.

Such a process has not been analysed in a proper way, as far

as Its possible influence on the setting up of Zeno's paradoxieal

situation is concerned. In fact one must observe that no

measurement can take place instantaneously in quantum mechanics.

If we denote by T the actual time interval which is necessary

for a measurement to be performed, we obviously have that T must

be a lower bound for the mean time interval 4/Xbetween two

consecutive measurements;

•4/X > T . (4.6)

In other words, if we want to increase X indefinitely, we must

also affect the modalities of each individual measurement, making

it last for a shorter and shorter time interval. A naive use

of the time—energy uncertainty relations shows then that

this in turn would affect the energy spread of the produced state,

making it unavoidably larger and larger. On the other hand,we

know that the small time behaviour of P(t) depends critically on

the energy spread A E . Moreover, since the region of appreciable

deviations from the exponential shrinks when ̂ E is increased

(see Sec. 2),we can suspect that Zeno's paradox and the related

possibility of revealing the dependence of V on X by increasing

X could not exist.

The above argument^ being based on an uncritical use of

time-energy indeterminacy relations, needs to be discussed more

critically (see, for instance, Refs. 14 and 15 ). We shall do

this in the next section, showing that it is actually impossible

to make T tend to zero without introducing a larger and larger

energy spread. We can then conclude quite in general that the

-16-



lending to Zeno's paradox are not valid.

Let us come back to the study of Eq, (4.2). Xo get explicit

quantitative estimates of the dependence of i> on X , we shall

use the form (3.4a) for P(t). It is useful to measure D and X

in units of jf', so we put

0

Equation (4.2) can be written:

e

(4.7)

I (4.S)

Using the form (3.4a) for P(t) and performing the integration we

get

- A. (4.9)

Equation (4.9) when expressed in terms of the relative change

(with respect to jf) of the frequency of the decays

(4.10)

becomes

a O (4,11)

where

<O

d. » e (ae + w - H ) > o ,

(4.12)

-17-

the inequalities always teing satisfied since we are interested

in tho lunit for large & . One gets

. a > o ,

f (o) * c > O (4.13)

<O ,

It follows that f(x) vanishes once and only once for negative x

and that such a root is larger than — d/cj i.e.

O<-x< (4.14)

Under the usual assumption that ^E/Jf > a. , it is easily

checked that the corresponding i> satisfies the condition (4.3)»

so that the considered solution of Eq. {4-1l) is that

corresponding to the solution of Eq. (4.2).

We note that the indefinite increase of the lifetime

yielding Zeno's paradox corresponds to x ̂  —1 {see Eq. (4.10)).

In accordance with the previous discussion about the possible

dependence of & E on i/x, we remark that in our model this

dependence is expressed as «vt being a function of € .We must

then distinguish three cases:

In such a case from Eq. (4.12) one easily gets that the only

acceptable solution of (4.1l) is

X - - d , >(4.1§)

which implies the occurrence of Zeno's paradox.

In such a case Eq. (4.12) implies,in the limit

(4.16)

so that x remains strictly larger than - 1 and the infinite

-18-



increase of the lifetime cannot occur1.

In such a case Hq, (4.14) implies x = 0 and the observed lifetime

l/i> coincides with the quantum mechanical one l/jf .As we shall

see in the next section, one can prove that when £-*oo, m goes to

•* too, at least as fast as 6 , so that we are in casesb) or

c) above and Zeno's paradox is excluded.

5 . DISCUSSION OF ZENO'S PARADOX

We want to show now that an unavoidable increase of the

energy spread of the state produced by the measurement corresponds

to the increase of the frequency of the reduction processes

and we want to study explicitly this dependence of £ E on X .

For this purpose, let us f irst of all use naively the time energy

indeterminacy relation within our model. From

i >

we get,using Eq.(3.3a) and the definition (4.7),

(5.1)

(5.2)

which implies that we are in case c) of the previous section.

Zeno's paradox is then excluded. As already stated, however _,

the use of the time energy indeterminacy relations can be

criticized since,as shown by the deep analysis of Befs. Ik and

15, there is no fundamental principle in quantum mechanics which

forbids us to make a measurement in an arbitrarily short time

without inducing a large energy spread. However, it must be

remarked that to violate & E • T y"lt one must use (as discussed

-19-

in great detail Ln Ref.l'O properly devised and operated

mi-asuring apparata. In decay experiments, the measuring apparatus

is constituted essentially by the environment of the system and

thi? experimenter cannot monitor the exact time in which the

measurement, takes place or the modalities of the energy exchanges

between system and apparatus. Also in Fief.15, when criticizing

the use of the A E •"!">-! relation, the author states that this

relation "...applies just to what we may call static experiments..."

Tn these cases T is not a preassigned or externally imposed parameter

of the apparatus but is on the contrary determined dynamically

through the workings of the SchrtTdinger equation, which describes

the passage of the wave packet through the analysing system. The

wave may perhaps be said to interact with the apparatus during

the time interval T and in this sense & £ - T >*-A , is valid". We

stress that the situation described above i s exactly that

occurring in decaying experiments where the interaction of the

system with the environment is induced by SchrSdinger evolution.

The above conclusions about the non—occurrence of Zeno's paradox

can then be considered correct. If one wants a more direct proof

of the dependence of A C on X , one must enter more specifically

into the details of the reduction mechanism. To do this one

must recall that, as exhaustively discussed in Sef.l, the yes-no

experiments performed by the apparatus correspond , in' practice,

to a localization of the decay fragments within a relative distance

R, characteristic of the experimental set up. The time T spent

by the decay fragments to travel the distance R must be much

smaller than the quantum lifetime "t/}f, in order that the treatment

leading to (4.2) be appropriate . W e can then make a very simple

sketch of the actual physical situation. We have an unstable system

very well localized- around the origin of the reference frame which

develops, by Hamiltonian evolution^components on decay states

propagating away from the origin. Since we want to have the

-20-



possibility of reducing the time T taken by the localization

process at R, we must discuss in detail the operation of

the detecting devices, for this purpose we consider a radial

thickness €, , representing the distance over which the detector

has efficiency one. To shor/ten the time T we must then make

£. smaller and smaller. Moreover, since we want to avoid the

occurrence of infinite mean energies associated with Bharp

localisations, we shall assume that the localization consists

in a smooth reduction process, Thereforej when the system is

found undecayed, the reduction is accouhted for by the application

to the state U» of the system before the reduction, of an operator

L defined as follows;

(5.3)

where

LOO
O

(5.4)

and L(r) varies continuously from l to 0 in the interval

R < r < R + £ .

We want to relate the energy spread of the reduced state

LO» to the time T. For this purpose let us consider the projection

operator P- on the interval (R, R +6 ), i.e.

(5.5)

(•"•) Note that if <H"> = oO the argument leading to
no longer valid.

dLP
cLfc 0 is

fcmO
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and le t us calculate the indeterminacy ( ^ P̂ ) in the reduced

state L <U , We have

so that

Taking into account that P£ = P^ we obtain

fa o*i

(5.8)

f
where we have used the shorthand notation I

From (5.7) and (5.8) we get «j«*»

f"V f

(5.9)

We can then write

M O )

where we have denoted by & E the energy spread in the state L<

and we have used the general form of the uncertainty relation

for the two observables H and P. .

Due to the fact that R is larger than the range of the

forces acting between the fragments, we can identify H with

the kinetic energy operator. Using the fact that LOO""!

the matrix element of the commutator ^H, Pt"| appearing in (5.10)

is easily calculated, giving
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(5.11)

with
where <£ is the flux associated 7 <U through the sphere of radius

R, i.e.

(5.12)

1, from (S.lO) andwith j the current density. Since

(5.11) we get

(5.13)

In classical terms the time T,necessary to complete the

measurement process, is given by

(5.14)

being the radial velocity of the fragments. Eq. (5.14) implies

(5.15)

Integrating this expression over i R we have

For small £ the quantum analogue of (5.l6) is evidently

T<t> ft ,

(5.16)

(5.17)

which can be assumed as a definition in the quantum case of the

-23-

time T necessary to perform a measurement process. Using (5.17),

Eq. (5.13) becomes,.

(5.18)

Since, as already remarked, the mean frequency -*/-X between two

reductions must be larger than T, one also has

(5.19)

Equation (5.19) shows that, for X-»oO^ A E must diverge, because

the r.h.s. of E<1. (5.17) remains different from zero in the

limit. In fact the flux V through the sphere of radius R at

time t can be written as:

«-Hfc
(5.20)

ft"lMt|i'*>

where l4*o? is *he state present at time t = 0, and P is the

projection operator on r ̂  R. We note that the expectation value

on the r.h.s. of (5.20) is not the non-decay probability P(t),

since P is different from l^*!^^^"' • Contrary to what happens

for P(t), one can then easily shqw that the quantity (fv\&

does not have a vanishing derivative at t=0, a fact that should

also be obvious on physical grounds. We remark that this means

that it would be inconsistent to identify *p (t) with the deriva—
R

tive of P(t) and, in evaluating the limit of the r.h.s. of Eq.(5.1

for X-»eo t to use the argument that -rr I =0, as one could

naively think of doing.

From (5.19) .using expression (3.3a)for A E in our model and

the definition (4.7), we see that m diverges at least as fast

as C , so that we are in casesb) or c) of the previous section

and Zone's paradox cannot occur. We remark that the result now

obtained, without being in contradiction with Eq. (5.2) obtained



by the straight forward use or' time- energy indeterminacy relations,

if weaker since it guarantees ouly the increasing of nt with t

instead of £ , However,the obtained result is sufficient to

exclude the occurrence of Zeno's paradoxical situation.

To summarize the previous discussion^we remark that in any

case Zeno's paradox cannot occur. Moreover, there are good reasons

which make/quite plausible that €,/m->0 for ft -*°o . in such a

case we get. from (4.14), ̂  — Jf , which in exactly the opposite

of Zen.o!s paradox: for a very high frequency of the reductions

the observed lifetime l/V tends to the quantum mechanical one

1/y . In any case we want to stress that in practical cases one

works with an almost fixed value of "̂/jf and one has,in thecases in

which P(t) can be determined experimentally, a very small Jf .

Typical figures for A. and )f are, as discussed in Hef.ll,
8

10
- 8- 7 8

and JC 2 10 eV for a lifetime of 10 sec. Due to the smallness

of jf | and the practical impossibility of making wave packets too

narrow in energy, one always has m » 6 , implying, through

Eq. (4.l4)> x d 0, i.e. the differences between JJ andyare

undetectable in practice.

All the above results have been obtained under the assumption

that all reductions lead to an energy form f act jr of type (3.1»)j

However, the general argument stressing that one cannot take

the \-*eO limit keeping P(t) unchanged is without doubt correct.

Moreover, since the very small time behaviour of P(t) is essentially

determined by the energy spread (as explicitly shown in Sec.3)

and is largely independent of the particular form of the cut-off

function, and since the use of the uncertainty relations is the

crucial point in the previous discussion, our result can safely

(*) Besides the general argument leading to £ E ' T ^ l , a very
sketchy evaluation of (^E) 2 for the reduced state |t-ip> indicates

be considered to hold completely in general.

We can then conclude that the occurrence of Zeno's paradox

is conceptually forbidden and that it is practically hopeless to

try to detect any dependence of the lifetime on X by making X

large. The mechanism of repeated reductions therefore has the

only effect of yielding a purely exponential decay law instead

of the quantum mechanical law P(t), while the observed lifetime

turns out to be practically equal to l/y to a great accuracy. To

ascertain that the reduction mechanism is effective, the only

crucial experiment at small times would be to measure P(t) in vacuum,

and to shov the deviations from the exponential. Repeating

the experiment with the reductions taking place, one should then get

a purely exponential survival probability P(t).

that actually ( A
» o for

QC 6 for very small values of f, , so that
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1 The quantum non-decay probability PCt^ 's for cases

A, B and C of the text, up to jf t - T = 5. The numbers

in parentheses are the values of -fif/j* . The corresponding

values of the parameters m,yt\,and M (see text) are:

m = l,1(t\, = 1.155, M = 1.166 for AXjf = I;

m = 4, VCl = 3.850, M = 3.580 for Af/^ = l;

m =16, OH =14.497, M =13.026 for hElf = 2.
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Fig. 2 The same as in Fig.l 1, up to % = 1.

For &lf = 4 we have m = 64,1U

- 57.039, M = 50.731.

0.95-

ig . 3 The same as in FIg< 1, up to T = 0 . 1 .

For A£/f = 8 we have m = 256, OH

= 227.196, M = 201.528.

- 2 9 -
-30-
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0.995-

0.99 0.01

F i p . 4 The same as i n Fig. l j "P t o t = 0 . 0 1 .

For AE/^* = l6 we have tn = 1024 ,

= 9 0 7 . 8 1 8 , M = 8 0 4 . 7 1 5 .
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