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ABSTRACT

A detailed investigation of the Small time deviations of the
gquantum non-decay probability from a pure exponential is made to
study their physical consequences. Specific tonsideration is
given to the problem of the dependence of the 1lifetime from the
characteristics of the measuring apparata whose possible occurrence
has recently been pointed out. In particular we investigate the
preblem of the indefinite increase of the lifetime when the
frequency of the measurement processes tends to infinity, an
effect referred to as Zeno's paradox in Quantum Mechanics,

It is shown that if the uncertainty relations are properly
taken into account the arguments leading to the paradox are not
valid. Moreover, by the same kind of arguments, it is shown that
the dependence of the measured - lifetime on the frequency of the
measurement processes, even though present in principle, is
practically not detectable, To verify experimentally that the
reduction process is effective one must then resort to the
comparison of an experiment with reductions with one in which no

interactions with the environment take place.

-l

1. INTRODUCTION

In the quantum descriptio.a of an unstable system a crucial

role is played by the non-decay probability P(t), which is given

ORLO (11

where
-1 Ht
Alt) = <ule 4, (1.2)

} udbeing the unstable state wave function and H the Hamiltonian
of the system. As is well known,P(t), as defined by (1.1), cannot be
a pure exponential for all times for any choice of ]u) and H,
provided some essential physical requirements are satisfied.l)
By exparding Iu) on the improper eigenstates of H and calling
W(E) the energy form factor of )} u), one has from (1.2)

e -iEt

A= flwete dE. (1.3)

o

In writing (1.3) we have assumed the threshold energy to be zero,

From general arguments it can be proved that P(t) exhibits
deviations from the exponential both for amall and large times‘lz
The small time deviations from the exponential are particularly
relevant from a physical point of view. In fact, it has recently
been pointed out that in almost all practical cases, a decaying
syatem cannot be considered as evolving undisturbed, but it is
repeatedly subjected at random times to interactions with the
environment, which can be accounted for as yes-no experiments

which ascertain whether the system is decayed or not reducing

its wave function to the pure decay products or to the pure
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unstable state, rcspectivelyg*}he experimentally measured quantity
then is 1ot the non-decay probability P(t), but the probability
F(t) of surviving to all measurements up to the time t. This
survival prebability F(t) turns out to be practically a pure
exponential for all times and the experimentally measured life-
time turns out to depend from P(t) and from the mean frequency
A' of éhe measurement processes 5) Since the mean frequency
is in fact large,the time interval during which the system
evolves undisturbed from the unstable state is small, so that it
is the small time behaviour of P(t) which is relevant in determining
the experimentally measured lifetime.

In this paper we give first of all a quantitative estimate
of the order of magnitude of the small time deviations of P(t)
from an exponential, This will be done by using definite expressions
for the energy form factor, which, however,can be considered
appropriate quite in general, as discussed below. Thé obtained
non~decay probability P(t) is then used to discuss a peculiar
effect which has been known for a long time and has “recently

been discussed and referred to as "Zeno's Paradox in

Quantum HMechanics" 7). It consists in the fact that the evolution
equations for a quantum system subjected to repeated measurements
ascertaining whether the system is decayed or not, imply formally
that, when the frequency of the measurements tendsto infinity,

the unstable system will never be found decayed. Here we shall
show that, when arguments based on the uncertainty relations are
taken into account, the unlimited increase in the lifetime
formally implied by the evolution equations cannot occur,
Moreover, the arguments we shall use show that,

TQT_EE;ufact that the occurrence of interactions with the environment
modify the evolution law of an unstable system had already been
pointed out in Refs.2 and 3. A'more accurate quantitative treatment

of the effect has been given in Ref. L, while the consequences
of this type of description have been fully expleoited in Ref.5.

-3-
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in practice, it is very difficult te induce and therefore

to detect experimentally the dependence of ¥ on A,. The general
conclusion is then that, to verify experimentally that the reduction
process is effective, one must resort ta the comparison of an
experiment with reductions with one in which no interactions with

the environment take place.

2. SMALL TIME BEHAVIOUR OF THE NON-DECAY PROBABILITY

As stated in the introduction, we are interested in studying

the small time behaviour of the quantum non-decay probability P(t).
As is well known, the pure c¢xponential e rt'is obtained when the
energy form factor has a pure Breit-Wigner shape and the integral
(1.3) is extended from - w to +o@ ., The fact that the energy
spectrum is actually bounded from below gives rise to deviations
from the exponential law. Furthermore, the pure Breit-Wigner
energy form factor has too slow a decrease for high energies,
so that the corresponding mean value of the energy turns out to
be infinite. It is then necessary, for physical reasons, to
depress the form factor for large energy values by superimposing

on the Breit-Wigner resonance a cut-off function. The presence
of such a cut-off also gives rise to deviations from the exponential
law. More precisely, general theorems on the Fourier transforms allows
us to prove, under the sole assumption that the mean value of
the energy be finite 12 that P(t) has a vanishing derivative at
the origin,

dPB _ o

'_JI_ t-: ' (2.1)

8)

implying a non-exponeﬁtial behaviour for small times. Fleming
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has obtained in a very elegant way a lower bound for P(t) at
small times,assuming that the energy spread
4
) 1) 7
AE s 1 <hIH WD = <HIH M) (2.2)

be finite., More precisely, he has shown that for the non-decay

probability amplitude A(t}, the inequality
[A)] > coA(AE-t) (2.)
holds for t such that

AR
0 W

(z.4)

independent of the choice of the normalized state Ju) used to
evaluate A(t). We are interested in the study of A(t) for a guantum
state |u ) whose energy form factor exhibits a narrow Breit-~
Wigner reso;nance of width r s for which,in a large time interval,
P(t) &= Q.-t + In order that the Breit-Wigner resonance 18 not
essentially altered by the modulating cut-off one must asaume

AE} x. Expressing AE in units ofr , and t in units of 1/’ s
AE
I

Eq.(2.3) becomes

Ift = ’t'/ (2.5)

T
w'(0T) ¢ Plr) 21, osT =7 - (2.6)

. . — 2
By considering the value ¥ of Z° in which (oA (D ‘l") intersects
-t
e ; we can say that P(t) exhibits relevant deviations from

—
the pure exponential at least up to times of ¢rder T , provided

the obtained T 1s. less than ﬂ'/ﬂD . The above formula (2,6)
shows that the relevant parameter governing the small time
deviations is the ratio of 8E to the width J' - The choice of
e-xt as the comparison function is the proper one since,
on one side it coincides for a large time interval with the
gquantum mechanical non-decay probability, and on the other, as
we shall 'see, it expresses the experimentally observed survival
probability F(t)., It is easy to see thgt, for D> 1 s the
solution of the equation 006! D? = € is given to a g'reat accuracy
by
1 v €, -E = _!—- . '
(AE)‘ (2.7)

According to (2.7),?(-—’!—- in the considered range of values of
D {to be precise, for -D> % }, so that the deviations from the
exponential extend at least up to times given by (2.7).

Another simplé way of getting the result (2.7) is the

following. Consider the power series expansion of A(t) around t = O

Alt) - 1-i(H>t'%<H"‘*l+0(*’J, ' (2.8)

from which one gets

2,2
P(t) = 1- (AE) "+ O(t"). ‘ (2.9)
1f we correspondingly write

e""t =d-pts 3‘- X‘zt‘*' oft’), _ (2.10)
XN

and we look for the time ©, for which P{t)-'- , we get

)

t- ——— (2.11)

Cog(aE)ts pt



which coincides with (2,7) for DE> ¥, The above estimate

of the times up to which relevant deviations occur is actually
confirmed by calculations on explicit models (see e.g, Refs.%, 10
and 13).

In the next section we shall study explicitly the function
P(t} for various physically reasonable choices of the energy form
factor of the state |u®. It will turn out that the behaviour
of P(t) is not relevantly influenced by the specific form factor.
On the contrary, it is determined essentially by the parameter
AE/¥ , at least ac far 4s the time interval in which we
are interested is concerned., The pur'pose of having explicit forms
for P(t) is to use them to investigate physically relevant
questions, such as the depende'nce of the experimentally; observed

lifetime from the characteristics of the measuring apparatus.
The above remark, that the behaviour of P(t) in the relevant time
region is rather insensitive to the specific cut-off function
superimposed on the Breit-Wigner resonance, allows us to consider
the obtained results as giving quite in general an appropriate
estimate of the effects which are involved.

Another property of P(t) can be used to enforce the above
conclusions. In fact, there is a "continuous® dependence of P(t)
from the energy form factor of the state lu®, in the following
sense 1). Let us consider two states lu1> and qu) » with form
factors ml(E) and wz(E), respectively. Then the corresponding
non-decay probability amplitudes Al(t) and Az(t) satisfy the relation

| Ace) - Ay (8)]

I[lwicen‘- lon@] e aE ¢

(2.12)

¢ [ el - joy@r | e

from which one. gets

(RO - RO = [1a®1- 1401 [1a,0] + 14,0 ¢

< 2|1a,@} - |1 Aol | ¢
(2.13)

§2 ] AL - Ay] g

QJI Lo () - |y e | 4E

It follows that when @) (E) and (-.)Z(E} are sufficiently
Il[c‘)_.(E)] - i(J,,(E)l IdE < "2 , then for all times
Pl(t) differs from Pz(t) by less than ZNZ.

near, e.g. when

Actually it is this property that allows one t.o‘speak of an
unstable state when its energy form factor is Breit-Wigner-like
for an energy region which is large with respect to the width Y.
In fact in such a case, extending the integral (1,3) from -o0Q
to +o0, we get the purely exponential decay law e-t with an
accuracy which can be evaluated by using (2.13) to estimate the

error introduced by the addition of the integral from - o® ¢o 0,

L

uy

L]
In the explicit examples of the next section we shall consider

various modulating cut-offs, The results obtained for P(t) will
subsequently be used to investigate the problem of the dependence
of the experimental 1lifetime on the characteristics of the

measuring apparatus.
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3. EVALUATION OF D{t) FOR SOME SPECIFIC CASES

As already stated, in this section we shall evaluate oxplicitly
the non-decay probability For particular choices of the form factor
of the unslable state Ju . More precisely we consider the
following three choices for the energy form factor lw(E)‘l:

A, ]W(E)l" is given by a Breit-Wigner function of width r modulated
by another Breit-Wigner function of larger width :

. (p+2) T I TR A
|w{E))? - %_[(E'E*) "K] [(E B ] " (3.13)

B. I'-UIE)]z is given by a Breit-Wigner function of width } modulated
by a Gaussian factor of width 4 : P
- w3, A% _ (E-ExY/A%
/b 8 x
: Ye e
e[t of(F)] (e-r)te 2

(3.1b)

()

erf(x) denoting the error function,
c. lw(e)l" is given by a Breit-Wigner function of widthr in the

energy region lE'E'I:l" § and is zero outside this region:

_._.r_.____....._. E - 2 xl -4 ——
hU(E)\z’,—, #WB&(E) [( E’t)“"?;] £ IF&,‘;,
b
¢ otherwlse |
{3.1c)

We now give the values of AE and the expressions of P{t) for the
three cases considered above,
Case A

If we put

{_“,:m/ xts‘t', (3.2a)

we have )
(#) For the special functions we follow the Hzndbook of Mathematical

Fupnctions , ed. by M, Abramowitz and I.A. Stegun EDover Fubl,, New York
1968)3.

9=

s, I
) S
and
4
,1 -1 -mT - Mii
F;(f'): m*e 4+ -Ime ?
(m-4)*
Case B
Let us put

Q:D’n t=1.
r Vs B

We have - 1/4'%1 4
- /
s, 1(29Me ’

4
2 ﬁf[i-m{l(i/zgn)]

and { -% - _4___)1_1_!-
R P Ty S [#-wils -7

+ e}‘ [4 - nf (jg‘im‘z * "sz)”z

Putting

Case C

we have
LR
Y 2 Loaclam{2M) ’

=10~

{3.3a)

(3.4a)

{3.2b)

(3.3b)

(3.4b)

(3.2c)

(3.3¢)



and

1 z T,
t) - z N E(T+iMe

2
T ‘dc
B I AS R0 | PR

where Ei (\?) is the exponential integral,

A comment about cases A and B is necessary. In normalizing the

energy form factors (3.1).and in calculating the energy spreads
(2.3) and the non-decay probabilities (3.4) we have extended the
energy integrals from -0 to + &2 for the sake of simplicity.
This is the reason why the P{t)'s ocbtained decrease exponenfially
at infinity, contrary to the power-like behaviour implied by the
boundedness from below of the energy spectrum’ . However, this
approximation is irrelevant for the small time behaviour,
provided the resonance is far from the threshold, as can be seen
by using the argument of the previous section to evaluate the
difference between the correct P(t) and the P(t} as calculated

above. In fact, if we introduce the quantity

]
z

"I'S lwiey|* dE (3.5)

- 0o

i ; £)?

the properly normalized energy form factor is jwi{ (4-41,) .
According to the argument of the previous section,the difference
between the correct and the calculated P(t)'s is less than twice

the integral

ﬁS(z)[Iw(E)l"/(i-m} - jwie)?|dE = 20 (3.6)

where 1’{5) is the step function., We have in case A

4-4—.!'_3‘_"3. (3.7)
10 5 m
‘ -i1-

and in casc B

N< i ¥ k ' (3.8)
o By 4. wf(4/tm)

Since AE}L 3‘ implies ﬂ“}t’/ m’l)" 3-85 y the last factor

in both (3.7) and (3.8) is bounded and of the order of unity.

Therefore, when the considered resonance is narrow and far from
the threshold, i.e. IE‘ is small, Egs. (3.7) and (3.8) show

L3
that Eqs. (3.4a) and (3.4b) are very good approximations to the

correctly calculated P(t)'s. Obviously, this result is significant

only in the small time region, where P(t) and e')’ are much

larger than }’/E,L , while it does not . give any information for

large times where P(t) is of the same order or smaller than r/Et.
In Fig. 1, we have drawn the curves P(‘t‘)(i{;g to € =5 for

the cases A, B and C corresponding to %‘3%;4,:'

e.‘.' Fig.2 is simply an amplification of Fig. 1, up to T =1,
For AE}, = 1,2 it can be seen that the three curves have similar
trends, and for QE/¥ = 4 that the three curves are already

almost undistinguishable from the exponential in the considered
scale . Since we are interested in the small time behaviour
or even in the limit for T—» 0 we have drawn the small t‘ime
region more and more enlarged for various values of AE'/)‘

in Figs,3 and 4. The grouping of the lines with the same AE/J\
shows that the behaviour of P(T") depends essentially 'oln AE/J-,
while the particular choice of the energy form factor does not
make significant differences,

In the next séctions we shall investigate the physical
consequences of the small time deviations from the exponential on
the determination of the 1lifetime.. Since we are only interested
in estimating the orders of magnitude of the effects which are

involved, we can choose any of the considered P(T)'s to

(#} We have considered also the caseAE{,:‘Iz to show the large

effect at small times when the width of the modulating factor becomes
comparable to the width of the Breit-Wigner resonance. Note that

also for Aﬁb a 448 the modulating factor has a width equal or
larger than )\ . 13-

together with

f
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investigate them. Among the three forms of P{1} derived above,
the  simplest to handle is PAlT') ; since it has a simpler

mathematical structure,which greatly simplifies the calculations of

3ec. 5.
4. DISCUSSION OF THE DEPENDENCE OF THR LIFETIME ON THE MEASURING APPARATUS

As we have already said in the introduction, it has been stressed

4,5)

recently that, when the actual physical situation occurring in
experiments devised to measure the non-decay probability is taken
into acecount, what one is acinally measuring is not the quantum
mechanicai functicn F(t). Tnis is due to the fact that a decaying
system cannot be considered as evolving undisturbed, but is
subjected to repeated interactions with the environment, occurring
at random times, with a mean frequency X . What one is actually
measuring is then the probability F(t) of survival of the

unstable system to all measurements which it has suffered up to

5)

time t, It can be proved that forlappreciahly larger than p

F{t) turns out tc be practically a pure exponential for all times:

-ut
Fit)- e , (4.1)

where W is determined by the relation

X[we'” ept Pit)dt =4 . (4.2)

4]
It turns out that this equation has a unique positive solution

which is smaller than A ,

-13=

Equation (4,2) implies the occurrence of a dependence of the
experimentally measured 1lifetime 1/% on the fregquency A of
the reduction processes, Some physical consequences of Eq. (4.2)
have already been discussed in Refs. 9 and 11. In what follows,
besides discussing some conceptual implications of ®g. (4.2),
we shall study explicitly, using the form (3.4a) for P(t),; thia
dependence of ¥ on the other parameters,

Before coming to the explicit study of w, let us make
some comments on Eq. {(4.2). First of all, Eq, (4.,2) shows that
if P(t) were a pure exponential for all times, P(t) = e:tt’
then¥ =% . Therefore it is the non-purely- exponential nature
of P(t) which is primarily responsible for the fact that 1/v
is different from the gquantum mechanical life-time 1/3’ and that
W is a function of A. Secondly, since a precise analysis of the
actual physical situation showsl)that AYWH, Eq. (4.2) implies-
that in the determination of ® a crucial role is played by the
small time behaviour of P(t), Since for small times P(t) is
always larger than the exponential {(see Secs 2), the resulting
experimental lifetime 1/ turns out to be larger than 1/ , so
that

Og» gy <xr . (4.3)

Equation (4.,2), for a given P(t), implies that for A-deo,
W -y 0,s0 that the unstable system becomes stable. In fact, if

P) = 4+ o0 | (4.4)

a well known theorem on the asymptotic behaviour of the Laplace

transform 12) implies, for large X,

v ae A (;_-‘—_‘_-;) . (4.5)

=-14-



From Ej. (4.2) one sees that it is impossible that Y-\ for )\ -0,
Eqes. (4.3) and (4.5) therefore actually imply W -» O under the
limit, The physical meaning of this feature should be obvious:

if we measure whether the system is decayed or not with increasing
frequency we are exploring the behaviour of P{t) for very small
times, and since the derivative of P(t) vanishes at t = 0, in the
limit of A #00 the system can never be found decayed, This effect
(which seems to be an unavoidable consequence of any description
of the decay processes taking into account the occurrence of
repeated reduction processes) has been known for a leng time

and has recently been discussed and referred to as "Zeno's Paradox

7

in Quantum Mechanics" The occurrence of this indefinite -
increase of the iifetime is relevant both from a conceptual and a
practical point of view, In particular, its real existence would
imply (provided we are able to perform experiments in which the
mean frequency of the measurements iz sufficiently large) that the
dependence of ¥ on A could tbe shown experimentally, It is
then quite appropriate to make a critical investigation of the
arguments leading to Zeno's paradox,

A remark which has already been made 13)

is that the

limit A= is unphysical since the environment, which is
responsible for the reduction processes, has an atomic structure,
so that a really continuous measurement is impossible in any .
experiment one can devise in practice, But there is a deeper
argument against the existence of the quantum Zeno paradox. We
remark that the result that ¥ — 0 when A2 has been derived
using the assumption that the quantum neon-decay probability P(t)
depends only on the internal dynamics of the unstable system,

so that it is independent of A , This assumption cannot be correct
when the limit A ™ is taken, In fact P(t} depends on the state

f u» which is produced by the reduction process, The state Ill>

is essentially unique, in the sense that its encrgy form factor

has the Breit-Wigner shape over a large interval around the mean
energy‘Br of the unstable state; but its shape for energies far
away from Er is not determined by the internal dynamics of the
unstable state and can very well depend on the reduction process,
Such a process has not been ahalysed in a proper way, as far

as its possible influence on the setting up of Zeno's paradoxieal
situation ‘is concerned. In fact one must observe that no
measurement can take place instantaneously in quantum mechanics,
If we denote by T the actual time interval which is necessary
for a measurement to be performed, we obviously have that T must
be a lower bound for the mean time interval 4/Xbetween two

consecutive measurements;
A/ > T . ‘ (4.6)

In other words, if we want to increase A indefinitely, we must
also affect the modalities of each individual measurement, making
it last for a shorter and shorter time interval., A naive use
of the time-energy uncertainty relations shows then that

this in turn would affect the energy spread of the produced state,
making it unavoidably larger and larger. On the other hand,we
know that the small time behaviour of P(t) depends critically on
the energy spread AE, Moreover, since the region of appreciable
deviations from the exponential shrinks when AE is increased
(see Sec. 2),we can suspect that Zeno's paradox and the related
possibility of revealing the dependence of 2 on A by increasing
A could not exist.

The above argument, being based on an uncritical use of
time-energy indeterminacy relations, needsto be discussed more
critically (see, for instance, BRefs. 14 and 15 }. We shall do
this in the next section, showing that it is actually impossible
to make T tend to zero without introducing a larger and larger

energy spread, We can then conclude quite in general that the

-16—~
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arguments leading to Zeno's paradox are not valid,
Let us come back to the study of Eq. (4.2). To get explicit
quantitative esiimates of the dependence of ¥ on X , we shall

use the form (3.4a) for P(t). It is useful to measure 1 and L

in units of Y s SO we put

-Eae ) §=%.

¥ (4.7)

Equation (4,2) can be written:

P.f & ™ P@de = 4. (4.8)

Using the form (3.4a) for P(t) and performing the integration we
get

Ei 3
[ i + A - 4w J:-L (4.9)

(m-aYle-maeA 2 -m+rm ¢ +mt4-Sm,

Eguation {(4,9) when expressed in terms of the relative change

(with respect to x) of the frequency of the decays

x=2.§_h‘.'=m-‘|, (4.10)
becomes
£0)z=ox+bxtrcx+d =0 (4.11)
where
a2 }

ba-[ae +3(ﬂv\.--\)]<o ;
2e(e-4) + (m~4X 3L +m-4) > O,
d = e(2e+2m-4) > 0O,

(4.12)

0
"

-17-

the inequalities alweys being satisfied since we are interested

in the limit for large £ . One gets

f(0) = & >0,

FE=c>0, (4.13)
$'"(x) =2 bax +2 <O , for x£O.

It follows that f(x)} vanishes once and only once for negative x

and that such a root is larger than - dfc, i.e.

0<-%x<& £ (2e+2m-4) . (4.14)
28(€-4) +(m-4)(3R+em -4)
Under the usual assumption that AE/F > 4 , it is easily
checked that the corresponding » satisfies the condition (4.3},
so that the considered solution of Eq. (4.11) is that
corresponding to the solution of Eq. (4.2).

We note that the indefinite increase of the lifetime
yielding Zeno's paradox corresponds to x-» =1 (see Zg. (4.10))}.
In accordance with the previous discussion about the possihle
dependence of AE on 1/X, we remark that in our model this
dependence is expressed as M being a function of € . We must
then distinguish three cases:

a) m /e Y™ o. -
In such a case from Eq., (4,12) one easily gets that the only

acceptable solution of (4.11) is

X a =4 ) (4.1%5)
which implies the occurrence of Zenol!s paradox,
b) m/e Yo 4« > 0.
In such a case Eq. (4.12) implies,in the limit
4+ &/2

so that x remains strictly larger than - 1| and the imnfinite

18-



increase of the iifetime cannot occur,
C ey .

) £/m s O .
In such a case %q, (4.14) implies x = 0 and the observed lifetime
1/ coincides with the quantum mechanical one 1/3" .As we shall
see in the next section, one can prove that when €60, m goes to

e« too, at least as fast as € , so that we are in casesb) or

c) above and Zeno's paradox is excluded,

S. DISCUSSION OF ZENO'S PARADOX

We want to show now that an unaveidable increase of the
energy spread of the state produced by the measurement corresponds
to the increase of the frequency of the reduction processes
and we want to study explicitly this dependence of AE on X .

For this purpose, let us first of all use naively the time energy

indeterminacy relation within our model, From

AE-“x > AET ¥4 (5.1)

we get,using Eq.(3.3a) and the definition (4.7),

Yo o - e
Se > 4 , GLe. M gﬁ ] (5.2)

which implies that we are in case ¢} of the previous section.

Zeno's paradox is then excluded. As already stated, however ,

the use of the time energy indeterminacy relations can be

c¢riticized since,as shown by the deep analysis of GRers. 14 and
15, there is no fundamental principle in quantum mechanics which
forbids us to make & measurement in an arbitrarily short time

without inducing a large energy spread, However, it must - be

remarked that to violate AE- T §'1, one must use (as discussed
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must recall that,as exhaustively discussed in Ref.l,

in great detail in Ref. .1k} properly devised and operated
mrasuring apparata. In decay cxperiments, the measuring apparatus
is constituted essentially by the environment of the system and
t.he experimenter cannot monitor the exact time in which the
measurement takes place or the modalities of the cnergy exchanges

between system and apparatus, Also in Ret.15, when criticizing

X~
the use of the AE-T74 relation, the author states that this

* t

relation '...applies Just to what we may call static experiments...'
Inthesec cases T is not a preassigned or externally imposed parameter
of the apparatus but is on the contrary determined dynamically
through the workings of the Schr¥dinger equation, which describes
the passage of the wave packet through the analysing system, The
wave may perhaps be said to interact with the apparatus during

the time interval T and in this sense AE-T 9“1, is valid"', We
stress that the situation descrived above is exactly - that
occurring in decaying experiments where the interaction of the
system with the environment is induced by Schr#dinger -evolution,
The above conclusions about the nomoccurrence of Zeno's paradox
can then be considered correct, If one wants a more direct proof

of the dependence of AE on X\, one must enter more specifically
into the details of the reduction mechanism, To do this one

the yes—ﬁo
experiments performed by the apparatus correspond , in~ﬁractice,

to a localization of the decay fragments within a relative distance

R, characteristic of the experimental set up, The time T, spent

R
by the decay fragments to travel the distance R must be muth
smaller than the quantum lifetime 4/;, in order that the treatment

5)

leading to (4.2) be appropriate . We can then make a very simple
sketch of the actual physical situation., We have an unstable‘system
very well localized. around the origin of the reference frame which
develops, by Hamiltonian evolution/components on decay states

propagating away from the origin. Since we want to have the

w20=-

#

#

*

&



possibility of reducing the time T taken by the localization
process at R, we must discuss in detail the operation of

the detecting devices, for this purpose we consider a radial
thickness £ , representing the distance over which the detector
has efficiency one, To shorten the time T we rmust then make

€ smaller and smaller. Moreover, since we want to avoid the
occurrcnce of infinite mean energies associated with sharp
localizationsf*)we shall assume that the localization consists
in a smooth reduction process; Therefore, when the system is

found undecayed, the reductionis accouhted for by the application

to the state ¥ of the system before the reduction, of an operator

L defined as follows:

[Lele = LOIp® (5.3)

where

4 gonn g R

Lx) = (5.4)
O fx nPRYE

and L(r) varies continuously from 1 to O in the -interval
R{r{R +&,.

We want to relate the energy spread of the reduced state
LJ,P to the time T. For this purpose let us consider the projection

operator P on the interval (R, R +€}, i.e,

Ps) o REnER*e
[PI "P](""") = ?
o evewy where, efae

(5.5)

— dP
(%) Note that if H» = 00 the argument leading to s

no longer valid.

1.

= 0 is
d'b 2l

z
and let us calculate the indeterminacy ( APE) in the reduced
state Lt.la . We have

(&R - ---,<L=r|P it cp)-n o ,‘<L.c|.-|Pf_||_q;> (5.6)

so that

iCo “1<Ltylp iLy> > (k) . (5.7)

2
Taking into account that Pe = Pg we obtain

<LyIPEILy> = fd»‘ml-“)w(*)I <jd«' ATIOIFINCE

(R,RYE) (R,R¥L)
R+s
°
where we have used the shorthand notation I A =I A \df) .,
(R,R+L) R

From (5.7) and (5.8) we get

2 .
Jdﬁ‘ ‘q-'('ﬂ)‘ 2> (AP&) . (5.9)
(R,R+2)

ll'-{’“"

We can then write

3
ENNCA Pt o @rSen)s 1 KIRIy (o
L4,“,(1'_\.5) PYATICH G GRS TR p

(R Res)

where we have denoted by AE the energy spread in the state L(]J
and we have used the general form of the uncertainty relation
for the two observables H and Py .

Due to the fact that R ig¢ larger than the range of the
for-es acting between the fragments, we can identify H with
the kinetic energy operator, Using the fact that L(R) ‘4)[..(2"'&)'0,
the matrix element of the commutator [H, P‘] appearing in (5.10)

is easily calculated, giving
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<LyilH,PIILyD = ik, (5.11)

with
where ¢R is the flux associated ‘( (P through the sphere of radius

R, i.e.

-
P, =j LE s ’ (5.12)

with ;j_ the current density, Since UL‘-Y“ € 1, from (5.10) and
(5.11) we get

2
2 3 3 4
(AE) Id""“‘t’“)‘ > . (5.13)
(R, R+e)
In classical terms the time T, necessary to complete the

measurement process, is given by
&
T= 9 (5.14)
Vn being the radial veldcity of-the fragments. Eq. (5.14)} implies
iR
pRIE=T P(R)ve = T 2= - (5.15)
Integrating this expression over ZR we have

sz(maaz - T Li

For small € the quantum analogue of (5.16) is evidently

A2 . (5.16)

‘R
R

[ )i = T g ) (5.17)
(w,R¥s)

which can be assumed as a definition in the quantum case of the
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time T necessary to perform a measurement process, Using (5.17),

Eq. (5.13) becomes.,

a4
T (aEY » 7 P - (5.18)

L]
Since, as already remarked, the mean frequency 4/2 between.two 3

reductions must be larger than T, one also has
4 (AEY 5 4 .
x( ) > 44’3 (5.19)

Equation (5.19) shows that, for A+, AE must diverge, because
the r,h.s. of £q. (5.17) remains different from zero in the
limit, In fact the flux 4>R through the sphere of radius R at

time t can be written as:
4

~LHE

LHE '
P () s - 7;5—:: <¢ole Poe |yu> , .20 N

where |‘-Pu> is the state present at time t = 0, and Pe is the

projection operator on r § R. We note that the expectation value
on the r.h.s, of {5.20) is not the non-decay probability P{t},
since P, is different from fpu><Yul . contrary to what happens

for P(t), one can then easily shqw that the quantity (Yulc:mP‘ o™

ye>

does not have a vanishing derivative at t=0, a fact that should

also be obvious on physical grounds. We remark that this means Kl
that it would be inconsistent to identify ¢>R(t) with the deriva- 1
tive of P(t) and, in evaluating the 11'_mi1:P of the r.h.s, of Eq.(5.19)

d

, to use the argument that ———| =0, as one could

for X =»od I
e

naively think of doing.
From (5.19),using expression (3.3a)for AE in our model and

the definition (4.7)’ we see that m diverges at least as fast
as e,

and Zcno's paradox cannot occur., We remark that the result now

s0 that we are in case b) or c) of the previous section

obtained, without being in contradiction with Eg, {5.2) obtained
#

—2h= ‘.



by th: straigh'forward use of time ¢nergy indeterminacy relations,
i¢ weaker,since it guarantees only the incrcasing of m with ¢
instead of e‘ . llowever, the obtained result is sufficieat to
exclude the occurrence of Zeno's paradoxicai situwation,

To summarize the.previous discussion,we remark that in any
case Zeno'!s paradox cannot occur, Moreover, there are good reasonsk*)
which lﬁake}auite plausible that €/m =20 for € P , In such a
case we get from (4.14), ¥ = ¥, which is exactly the opposite
of Zeno's paradox: for a very high frequéncy of the reductions
the observed 14ifetime 1/¥ tends to the quantum mechanical one
1/3‘ . In any case we want to stress that in practical cases one
works with an almost fixed value of )y/B‘ and one has,in thecases in
which P(t) can be determined experimentally, a very small F, y
Typical figures for A and y are, as discussed in Ref.ll, A= 163r
and ¥ 107 7eV for a lifetime of 10 8 sec, Due to the smallness
of ¥, and the practical impossibility of making wave packets too
narrow in energy, one =alwsys has m3» € , implying, through
Eq. (4.14), x 2 0, i.e. the differences between p and ¥are
undetectable in practice.

All the above results have been chtained under the assumption
that all reductions lead to an energy form factor of type (3-11};
However, the general argument stressing that one cannot take
the A6 limit keeping P(t) unchanged is without doubt correct.
Moreover, since the very small time behaviour of P(t)} is essentially
determined by the energy spread (as explicitly showﬁ in Sec.3)
and is largely independent of the particular ferm of thé cut—~of f
function, and since the use of the uncertainty relations is the
crucial point in the preévious discussion, our result can safely
(#) Besides the general argument leading to AE + T 1, a very
sketchy evaluation of (AE}2 for the reduced state |Ly)» indicates

that actually (A E)2 e« £°® for very small values of & , =o that
L/ = 0 for L2000,
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be considered o hold completely in general,
We can then conclude that the occurrcnce of Zeno's paradox
is conceptually forbidden and that it is practically hopeless to
try to detect any dependence of the lifetime on A by making X
large, The mechanism of repeated reductions therefore has the
anly effect of yielding a purely exponential decay law instead
of the quantum mechanical law P{t), while the observed . lifetime
turns out to be practically equal to 1/y to a great accuracy, Te
ascertain that the reduction mechanism is effective, the only
crucial experiment at small times would be to measure P(t) in vacuum,
and to show the deviations from the exponential, Repeating

the experiment with the reductions taking place, one should then get

a purely exponential survival probability F(t).
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case A

Fig.

1

The quantum non-decay probability P(T)'s for cases

A, B and C of the text, up to P =T = 5, The numbers

in parentheses are the values OE‘AEIr

-

The corresponding

values of the parameters m,ffLand M (see text) are:

m=1,M = 1,155, M = 1.166 for AEJyp
m=4,M = 3,850, M = 3.580 for AE/p
m =16, M =14.497, M =13.026 for AE/p

-28-

-

T ‘?“"TTTT'*"W!""’W?' T

i

[}

LY
13
2.

#

y

il

Y

s e



~——— — Cate B

0.4

Fig, 2 The same as in Fig.l 1, up to ¥ =1,
For AEI)" = 4 we havem = 64,m =
= 57.039, M = 50.731.
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Fig, 3 The same as in pig, 1, up to ¥ = 0.3,

For AE/r = 8 we have m = 256, m -
= 227.196, M = 201,528,
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Fig. 4 The same as in Fig. 1, up to & = 0.01.

For AE[r = 16 we have m = 1024,
M = 907.818, u = 804.715.
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