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ABSTRACT

The GL{2M,C) gauge invariance of Einstein-Certen-Weyl Lagrangians of
strong gravity is generalized to the supersymmetry group U(2M.2M|l) +  The
spontanecusly hroken theory, down to SL(2M,C} x U(1) x SU(l). describes the
propagation of M2 magsive spin-2 and M massive spin-% quanta, For M= 3,
the theory may describe & coloured nonet of strongly inta'a.c-t;ing f gravitons.

MIRAMARE - TRIESTE
Jaruary 1979

* To he sutmitted for putdicaticn.

I. INTRODUCTTION

)

The Einstein-Cartan-Weyl theory of gravity : has two types of
invarisnces: 1) general co-ordinate transformation invariance and 1i) SL(2,C)
or local Lorentz geuge invariance. In order to describe & nonet of
(possitly coloured) spin-2 guanta in the theory of strong f gravity 2). it
was necessary to generslize the SL{2,C) gauge invariance to an SL{6,)

3

invariance This generalization incorporates the internal SU(3) symmetry

in & relativistie spin-unitary-spin mixing geuge symmetry.

More recently, Einstein's gravitetional theory has been generalized
into the locally supersymmetric theory of supergravity ), through the
intreduction of a spin—-3— fermioniec partner to the gravitational field. One

2
atteampt to understand the geometrile structure of this theory %)

proceeds
through the 0SP(l4,1} geuge symmetry 61T) This latter symmetry incorporates
the fermionic sector by grading the 0{3,2) de Sitter or the s?(h) extension of
SL{2,C). Internsl symmetries of the O{N) type can be incorporated )28}
through the further extenaion to 0SP{4,N}. However, in order to incorporate
internal symmetries of the U(N) type, one must generalize the full super-

conformal or the U(2,2|1) group 9),10) to u(2,2|m).

Now each of the OSP(4,N) and the U(2,2|N) theories contains & single
spin-2 field. If we wish $0 describe super symetrically a nonet of apin-2
f grayitons, we must consider supersymmetric generalizations of theories of
the SL(6,0) type. In thie note we study such a generalization.

We find that the supersymmetry group which centaing SL{2M,C) is
obtaipned by first extending the latter to U(2M,2M) and then grading it into
U(2M,2M|1). The theory describes propagstion of a spin-2 and M spin-%
perticles. One may further extend the theory to U(2M,2M|K) group, thus
incorporating two distinet unitary groups of dimensions M &nd N - perhaps
colour and flaveur (U{M) x U(N)). We shall, however, limit our discussion

to the.case § = 1.

II. THE U{2M,2M|1} SYMMETRY

The parametrized generators J%(S}R.E,E) of the U(EM.2M[1) siper-
algebra are represented by the (UM + 1) x (4M+ 1) matrices, '

R . B | e
M€, & = Z e s (1}

P =



where

1 8 sa . 1 ab
B = 5{9 + 7550 AR RIS RS

i 5.1 ai S.8i 1 abi s
+Ai[n +YSR +1raﬂ +iya~(sn +205.bﬂ |

8 = 0,1,2,3 3 1=1,2,...,081) . (2)

e oF = (a, 20, 8.0
The € and
LM fermionic {anticommuting} complex ‘parameters and their Dirac adjoints.
They belong to the fundamental representation of the U(2M,2M} subgroup.

Here J\i are the matrices of SU(M). are the

:I.GM2 wosonic parsmeters of the U{2M,2M) subgroup. & =are the

Corresponding to the parameters (ﬂP‘.E,E) we introduce the super-
algetrs generators (5%,5,8).. Then from

[eHv(aR,cl.él). Jang,ez,e:.g)] = 1Ml 8 (3)

we optain the syperalgebra

n _a -'B =ll2‘3'h' h
{s‘:.sﬁ}={sm,sn} =0 S n = 1,2,e0M, (k)
8, _1_ .m 5 a 58 1 av)®
{SI:,Sn} =5 6n[J—75 I+ v, J _iYaYE J +EaabJ .
8
1 m [ 1 5.4 ai 5ai 1 abi]
*_F(Ai)nl}""s*’*’fa" MATRCERS LA N
(5)
2,88 =L (v 5 [0, = (&30 (6)
B¢’ 2 ‘"R°'a R*"n Z "Tglm *

where

Yg = (l—hM. Ygr Yoo i"a"s v Oy B Ay Ai~(5- AjYg ® Aiiva\fs s Ai"ab]
(n

11
The bosonic sector of the superalgebra, i.e. the U{2M,2M) subslgebra ) in

1
given by the commutstion relations of the matrices JR =5y An element

of the group is represented by

3=

Hnend) = o tHmE) .

An obJect F belonging tc the fundamental representation is a (4M+1) dimensional

column
m
Eu
F = , {9)
P
vhere E: is & LM-dimensional U{2M,2M) complex spinor and @ is real. F

has & complex adjoint (row)}

F = (5.9 . (10)

P and F transform as

)
+
)
[~

F + GF H {11)

s0 that FF is invariant.

An oblect Q(ZR-T\,!'\.)- belonging to the adjoint reprementation has
the same structure as M(ﬁR,E..E) and transforms as

¢ > cogt (12)

The infinitesimal transformations are given by

§¢ = -} \:JL(Q.E-E) v ®(Zyns ﬁ):l . {13)

11I. INVARIANT LAGRANGIAN

In order to realize the U(2M,2M|1) symmetry locally, we introduce
gauge filelda through the l-form

= a H
A Jf.(vﬁ. v ¥) & R (1)

where & (V,y, §) Ims, of course, the same structure as {1}, Under the local
u(2M,2¥|1} transformations, A transforms inhomogeneously in the adjoint
representation as

.
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A+ cAct -tagct . (15)
The infinitesimel transformations are
SA(P ) = -iE«(n“.e.é). A(vn,w,ﬁ)] - al(afed . {16)
The curveture 2-form is defined as usual by
R(VAVR.vAw,vAE) = (& -1A4) A
= LA LD 1)

and transforms homogeneously as,

R » cRGY . (18)

The components (VAVR,VAUJ,VA$) are given in Table T.

As in the 0SP(L,1) theory, one needs the auxiliary (Higgs) multiplet,
to which the 15 matrix belengs, in order to construct en invariant sction,
For the U(2M,2M|1) symuetry, this multiplet N°@pF,x,X) should belong to
the adjoint representation. Of eourse, the intrinsie parities of the
component fields are abnormal. Define the covariant differential

TN = AN -1 [A.WN] . (19)
The most general U{2M,2M|1} geuge inveriant Einstein-Cartan-Weyl sction ia
P f Tr {RAR I (M)
+a RV, T 2,007
B TN, TN, TN, TV fs(«\(')}
+ h.c. (20)

Here o and g are arbitrary constants; f'l(u\('), fz(qV') and f‘B(UV‘) are
arbitrary functions of odd powers in ¥ . The trace operation ias taken over

the U(EM,2MI1) metrices and the int:-ration is over the four-volume determined

-5-

by the exterior forms. It i important to realize that the Einatein-Weyl-

cartan theory, represented by (20), iz pon-metrical and the Iagrangian i=s

severely restricted in form. This restriction makes it Impoasible for any
3

but the spin-2 and spin-g components of A and N to propagate.

The action {20) can, in principle, be minimized around 2 constant
value for fl(.y') proportionsl to

. (21)

This induces the spontansous breskdown of the U(2M.2_‘M|l) =ymmetry down to
sp{eM,c) x U(l) x 5U(l). This cen be understood as follows., From the
infinitesimal transformations (13) of the Higgs multiplet (q;R.x.;). we

find that as Scp » the coeffleient of y_, develops & vacuum expectstion

value <5tp> s then (q;:a, 5({95 N Qai, Sq)a.i’ X» X) Dbecome Goldstone fields.

The inhomogeneous terms in their trensformations are
& 5.8 5 5 a [}
& = a0 P> . de = - <5<p> ;

Gq;ai - _Sﬁai <5q}> \ 65(93'1 = -ﬂai<5tp).

i - 1 -
x 3 Ys€ <5CP> » 8k = -5 €vg (Sq:> .

(22)

These Goldstone fields correspond to the spontaneously broken generators
(7°, 5Ja. Jai' 5.3‘5'1. S, 5). The generators (Ji. sJi, Jab' Jib) of the
SL(2M,C) algebra as well as J and 5J. the generators of U{l) and 5U(l)n
respectively, are left unbroken., The Goldstone fields can, of course, be
gauged away (the unitary geuge). The remaining fields (cp. %P. q)ab. qvi,
5(91, cps‘bi) of the Higgs multiplet do not have any propagation character in

thie theory ¥/

®) It may be thought that one can introduce &4 group-invariant metric of the
form &y = Tr[vudv' YoMl and use it to conftruct ;nvariant I.erms c;ntainins
the ususl spin-0 and spin-l kinetic terms, Z (autp) and - (FHV) . How-
ever,this epproach is beset with the following difficulties: a) the sppearance
of negative-norm states assocliated with the non-compact parameters cf the
U(2M,2M|1) group, unless further constraint equations are used; o) the
appea.ra.nce!.of kinetic terms of second order for the fermions (ghosts) when-

ever second-order supersymmetric lagrangians are constructed,and 2) the loss

of conjugacy between the conpection fields (V‘:b,v:bi) ard the vierteins (vi.vzi),
A set of new particles described by the connections acquire independent

propagation. 6



The first term in {20), proportional to the vecuum expectation
value (21), ylelds the lagrangien

= MV2e |1 ab ed 1 abi cd
Sf e [H eabcd vu Vu VA vo +ﬁ Ea‘bcd Vu Vv VJ\ vp 1
5 2 i
+VVUVA Vp+ﬂv Vvkai

1 -
+ 5]' Vu qjv 75 VA wp] + h.c. (23)

The Iagrangian {23) by itself, without imcluding the terms of (20) involving
the remaining Higgs fields,is, of course, invariant under the surviving
SL{2M,c) » U{l) x 5U(J.) symmetry. A closer investigetion of {23} shows
the following:

1) The first two terms of (23) contain the usual SL{2M,C) theory
snd provide, via the conjugste fields (Va' Vab) and (vai V#bi). the
mopagation of M2 magsive spin-2 quanta The masses come from the
“"eosmological™ terms involving ‘I: and V‘:i . It should be pointed out
that since the theory contains "ecospologieal" terms, it must be linearized
around & curved (de Sitter) background. The (ma.g:ﬂ.:l.t.ud.e)2 of the
coemelogical term is of the same order as that for the spin~2 coupling.

2) The remaining bosonic fields of the gauge multiplet, namely
b S, i, Syt 5l
(Vu. Vu' o Vu, Vu. u ) do nmot acquire propagation character at
the claagical level. These fields together with the remaining non-
propageting fields of the Higgs multiplet, however, may pick up propagation
through gquantuym corrections (quantum completion), 2s has been suggested
for the usual 3L(6,C) theory. *)

3) The last term in {23) provides propagation for M massive spin-%
quanta. Other contributions to the masses of these guante come from the first
two terms.

We conclude this note by giving the lagrangian term describing
the coupling to matter. Teking the fundsmental representation F, given
by (@), to represent matter, the non-metric geometric Iagrangian term can be
written as

»
) See footnote, p.6.

R W ST e ol awrn vy o e an o
W" B b B A ) B T R 1 m

e =

Loatter F VeV, TN, %A, VF + h.c. (24)

This Legranglan provides for the propagation of the fermionic components g
of F, -but not for the scelar ¢ . As noted before,this is e genersl
property of all such Lagrangisns (i.e. propagation of spins 2, g-and %only)') .
In the unitary gauge, we have
' iYaYS 0
W Cpd 5 5 ’ (25)

Hence, the propagaetion of spin—‘la- ratter is described by & term of the form

P ——

Vav Tb,\ “Yep¥E * Bee. (26)
which is proportional to the usual term
~ .18
. {det Vua) EVy, Vug + h.c. {27}
y
1
]
i
\
]
#*
) See footnote, p.6.
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