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ADDENDUM

The mixing term used in the text is Dy no means the only feasible one.

An slternative "cosmclegical" Y one is given by

1

" +B-%
Loy =2 V8 + M TF - ) (-0 (0P [—det(xg'l + (1-x)f-l}:‘a 2.
{a.1)

vhere g = det By ete. and the contravariant tensors (g-l)uv end (£~
are defined as the matrices inverse to gu\) and fw , respectively. If the

parsmeters are restricted by the twe constraints

2(-m + (118} (a7) A"+ (1-xIx . {(a.2)

wlx-1) (+ary? M, (A.3)

then the coupled system possesses a stgble flat gpacetime solution
fm_ =BT Minkowski metric. In the linearized version there is, in
addition to the graviton, s tensor meson with mass given by

= (g§+.¢§)u-/(a+x') ) (A1)

The mixing term {A.1) was introduced (with x = %) in the appendix to Ref.1

It is a simple matter to obtaln exact solutions to the coupled f-g
equations for the case of the new mixing term (A.1) by imposing the constraint
_1)

9 = detlxg™ ¢ (1-x) 1), . (A.5)

vwhich deccuples the equations for f and g provided a + B >% . At

one's disposal there are now eight co-ordinaste conditions, one of which must
be used to satisfy (A.5). To illustrate, consider the de Sitter sclutions

u v

-1
2
g, " ax” = 1+%-r}dt2-[l+%r2] ar® - r2(a8% + ain®0 f)

(4.6)

2 ax” a¥ = cat? - 2D at ar - & &° - B (a8? + sin®e agd)

uv
-1
: -2] at? - [1 + %lf‘?] a#? - 72(a6° + sin®p agf)

(A.7)

n
=
+
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The co-ordinates t,r are fixed by assuming the standard form here for guv .
Likewise the T ,T co-ordinates correspond to the standard form for fu\J .
One must now construct & transformation such that {A.5) is satisfied, i.e.

1y (10 gD

242 -1
= (rh sin°8) 7L [x + (1-x) ;—] %+ ﬂl%‘xl{{l + %rE]A + [1 + %r2] c} +

0 = - det(xf

(4.8}

There are many ways to satisfy this) perhaps the simplest is by choosing
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go that
uv

x=1 2 2 . 2 2
v (87 + sine ag') (4.10)

Alternatively, one may take

# =7 = L, | % =1’§f_1‘3 (t + £{x)) {a.11)

and choose f(r) so as to make vanish the last factor in (A.8). One finds
2 2
£ odax’ = X4 [11-5—] at® + 2 1+r—] £ dt ar -
inY x-1 RE R2
2 2y=1 2
k) bl - bed et
R R
X=1 2 2 2 2
= r° (a6° + sin®e dg”) (A.12)
2  x=1 A'
where 1/R = - and
3 3
=1 2+ =1 -1 2 25-1
A 2 r A2 x=11" 1 T
Ry R R M R A YR
R R
(a.13)

This solution reduces to that in the text (with u = Q) if one takes x = 3

and A =0 . (If A # 0, then it coincides with the exact sclution recently
cbtained by Isham and Storey J"O)f‘or the old mixing term.)

The stability of our selution sgainst changes in the detalls of the
mixing term encoursges us to belleve that it may have & more basic
significance than the explicit derivation would appear to suggest. This
stability is perhaps relevant also to the discussion of Boulwere and Deser 3)
who showed (in the approximation g = 1) that e sixth (scalar) degree of

-3-

freedom is excited inthe interacting f system. For the particular mixing
term used in the text of our comment, they show that the Hamiltcnian is
unbounded below. No such statement is possible, on the face of it, for
the term (A.1), nor is there any statement for the complete f-g theory
in either version of the mixing term. In fect, with the constraint (A.5),
the f-g Lagrangian essentially reduces, for this solution, to a sum of
twe "‘ndependent” cosmological Lagrangians. Thus, presumably, the problem
of the boundedness of the Hamjltopnian is reduced to the familiar problem
of a pure gravitational Lagrangisn containing & cosmological term. We
believe that the question of such extra degrees of freedom in f-g theories
iz & deep problem and will-perhaps be resolved when tensor masses are

generated by a spontanecus mechanism 5).

REFERENCES
1 ~9 in the Text.

10) £.J. Igham and D, Storey, Imperial Ccllege, London, preprint ICTP/76/9

(1977).
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1c/76/125 I. INTRODUCTION

The propesal that tensor fields may play a fundamental role in strong
interaction physics was introduced some time age . This ides was given

Internationgl Atomic Energy Agency expression in a two-tensor theory of strong and gravitational intersctions
where the strong tensor fields are governed by eguations formally identical

1

and
to the Einstein egquations apert from the coupling parsmeter K, ~ 1 GeV™

-1 -1 f
GeV . The equations for the strong

United Nations Educational Sclentific and Cultural Organization
which replacesthe Newtonian Kg ~ 10

INTERNATIONAL CENTRE FOR THECRET1CAL PHYCSICH rield, le , and the gravitaticmal tensor, gy > Bre derived from the
Lagrangian
4 CLASS OF GOLUTIONS FOR THE STRONG GRAVITY BQUATIONS * £ L TR+ L Fre)+d + o ,
e Wt fe matter
& f {1.1)
Abdue Salem wirere the first term is the usual Einsteln Lagrangien and the second is its

International Centre for Theoretical Physics, Trieste, ltely, ctrong analogue (identical in form apert from the replacement l(g > Kf). All

and other fields are grouped into the term ';{matter'
Tnperiel College, London, England,
To glve the f mesons & mass (as well as their weak gravitational

interaction) we need & mixing term between f and g fields. One of the

and
simplest possible covariant mixing terms is given by

J. Strathdee

Internaticnal Centre for Theoretical FPhysies, Trieste, Italy. 2
hysics, te, ¥ {fg - ﬁE ¥z [fuv - guv} [frcl _ EK)\] {gxu Ery - B B
ABSTRACT : (1.2)
|
' where M 1is a constant with the dimensions of mass 2).

We solve ihe Pinsteln equations for strong gravity in the limit that : In Ref.1 (on the basis of & linearizatiom of these equations, with
week grevity is nealected. The class of solutione we find reduces to the fuv = nw + Kf¢uv’ €y = N + Kshl-l\))’ it was suggested that the equations
Schwarzschild reluticn (with the weak grevity Newtonian constant replaced by resulting from (1.1) end (1.2) describe a massless graviton given by the
& strong coupling parameter) in the limit MQ—-) O where M 1is the mass of Tield combinations
the strong gravity spin-? meson. These solwutions may e of relevance for 1 1 1 -1
the problem of defining temperature in hadronic physics. [ ;‘3 By * :5 fuv] [ K_E * F]

4 £ -4 t
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In this note we wish to solve the equations for pure strong gravity,
in the limit Kg » 0, without any further epproximation. We are particulurly
interested in that class of golutions which are soft in the limit M2 + 0 and
which - as may be expected from the structure of (1.1} - reduce to
Schwarzschild~like solutions  (with K. replecing «_ ).

Our interest in such solutions stems from the possibility offersd by the recent
work of Hawking - to interpret them as strong gravity solitons, radiating all
specles of hadrons thermaily, with a temperature which is propertional to

]
strong surface—gravity )

1I. LAGRANGIAN AND EQUATIONS OF MOTION

From now on we deal with the purely strong gravity situation.
All . matter as well as ordinary gravity will be ignored. In this situation

the Lagrangisn (1.1) reduces to the form:

_ 1 r—
Sf B 2 £ R(f) + fmass * (2.1}

L

b

where Kf{lv 1 GeV-]) denotes the strong anslogue of the Newtonlan coupling
and the first term here, expressed in terms of the tensor fuu , end its
inverse fuv, is identical in form with the Einstein Lagrangien (except for
the interchange of Ky Tor Kg}. The second term,which gives mass to ihe

tensor meson, takes the form:

2

.M A KA u iy
afmass T g v (f -n ] [f -0 ] [nxu M ™ e “pu} !
4

(2.2)

vhere nuu denotes the flat space-time metric. In the usual rectangular

co-ordingtes it equeals
nyy" AeReL,-L,m1,-1)

The expression (2.2) is to be interpreted as the relic of & generally co-

variant form (1.2} in the Jimit in which crdinary gravitaticnel effects are
~ > nuv)' It is a strictly phenomencicgical
expression whose origin in vacuum polarization effects we shall not attempt

to Justify here 3.

ignored (i.e. g * 0 and g

-3

[ R

On varying fuu cne obtains the equations of strong gravity,
R -=f R = k.7 R (2.3)

where the left-hand side is the usual Einstein tensor and the right-hand side

is simply

=

2
K 'I'“\J =

e [f'd‘ - ﬂd) {”Ku M ™ e nuv] [ﬁ/ﬁ] {2.4) "

We emphazise that this expression is not generally covariant: it is the flat
space approximation to a generally covariant term (1.2). This means that ,elthough
the left-hand side of {2.3) is a tensor, the right-hand side is not. One is

not able to remove any components from f,

v
as one would do with a covariant system. Thus, there are altogelher ten

by way of co-ordinate conditions

independent egquations in (2.3) although four of them take the form of

constraints on Tuv 3

= Ku
0 SRV T, (2.5}

=

where VK denotes the strong gravity analogue of the covariant derivative

Without the softening (expected, for exémple,from the Yeng~Mills
ansatz metivated in Ref.5) one might expect the solutions of (2.3} to behave
badly in the limiy M2 + 0, since in this limit the equations (becoming
generally coveriant] decrease in number from ten to six since the four
constraints (2.5) are removed. {An anslogous situstion is encountered
in the weak field approximstion ' where the five degrees of freedom
eggociated with a massive spin-2 fleld are reduced to two in the massless
limit, 45 is well known, this phenomenon is herelded by the presence of
singnlar factors M‘2, M-h in the massive tensor propagator.) Notwith-
standing these general considerations,however, the messsge of this note is
that not a1l solutions of {2.3) are singular in the limit M2 + 0 and we

shall exhibit a class of smooth ones in the following.

IIr. £ STATIC SPHERICALLY SYMMETRIC SOLUTION

When spherical symmetry {s assumed, the number of independent componenis
in £, is reduced from ten to four. For convenience we use spherical polar

co=prdinates and define the independent components by

b~
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. oM ax” - cas® - 2pat ar - A @ - B (a8 + sine o)

(3.1}

where the components A,...,D depend only on r . The inverse is given by

uv _A.2_ 2D _g o2 1 {2 1 2
EUa S hmn vy N-F Bt T 39] ,
3in" 8
{3.2)
where the convenlent combination
& = Ac+ 2P (3.3)
is used. In the following we shall exchange D for A as the varisbleof choice.

For the four independent functions we heve, of course, four equations
to solve. (Two of these will be of the constraint type (2.5h but here the
distinction is not a very useful one.) The four neon~vanishing components of

T are given by

v
T = :‘{2._. r2 [3...2_1'“ _,.C_] .
tt 2 YA B A
T = ﬁ —.1:-2_. [_I_).] '
tr 2 VR A

+3
1]
P
o
—
o
a1
n
Bl

= — 3 - 2
v EVE B4
"
7 .. rh r_o, A
0 2 La~ |7tE YTric
5 YA

{3.4)

in sphericel co-ordinates. The Ricel tensor is given by

= g. - Q_ w B'C! C'A'
By = bR = 5 [C TR T A ] ’
B" B2 A B'C! c'a' B'A?
R = S = = = (0" - = v
rr B 2B2 24 B 24 AB

1 A
R =_1+£_ (B".,._Bi.é.c___g_é_]

88 28 24
(3.5)
The identity DRtt + CRtr = 0 implies the purely algebralc constraint
Q = DTtt + CTtr 7
2 2 2
=1\§4— =z [3-2;']9, (3.6)
BY &
when the exprestions (3.4} are used. There are therefore tvo categories

of solution:
2
BB o= 3
2y D =0 {cr A = AC)

These values ere solutions, it should be noted -not co-ordinate conditions.

Type 2 soluticns have been considered by Aragone and Chele Flores m

s Who have
shown in a semi-linear epproximation that these solutions exhibit a Yukawa-
like behaviour, ﬁl; exp—(Mfr} for large r . Qur concern is with sclutions
of Type L. For tiese,the remeining three equations are eagily dealt with and
one finds, altogether,

6



0
c = 2 4 [1-2 I Vi
2 o r 6 Agla (3.7)

where u and AO are arbitrary constents. The cerucial siep in obtaining
this sclution was the replacement of D by 4 as & dependent varisble. The
Ricel component Rrr ia very complicated when expressed in terms of D

and, ecorrespondingly, D= VGCT?TQF is & non-trivial function of r .
The remerkably simple result that A is independent cf 1 comes from the
combination

a

CR_+AR, =x"(CT

Tr L t *A Ttt)

1

The right~hand side vanishes and the left reduces to

2]

[ 3" B CBf A' C 4ar
o] =— - - = 4

B 2B2 r

when the sclubtlen for B is inserted.

In order that P = + ¥A ~ AC is resl, we must chocse either

%

L>0 , g>4; and \/:%30 (3.8)
or

neo , ;‘7<A0 and {%%o . (3.9)

The choice (3.8} corresponds to the Sehwarzschild-de Sitter-like soluticn in
week gravity theory. {For M+ 0 we recover pure Schwarzschild and for

i + 0,pure de-Sitter.) For comparison with the known solutions in week gravity

theory, it is perhaps instructive to exhibit (3.1) in the form:

. ax” ax” = —S—‘@- {(1-1:) at® - (+pra) ar® - 2 at ar Ye(p+ad

2
- %— (25° + sin®® a¢2)~i \ (3.10)

where

plr) = 2ufr + %—MerQ a3/ , (3.11)

a = b/{9a) -1 (3.12)

Defining

ar = {1+ u/p)l’rz dr | {3.13)
we can cast {3.10) into the form: &)

34 {(1-—10) (at + an? - 2 a¥ (d¥eat) + ofp + o)) s
2
- g};—— (a6° + sin®e d¢2)]} . (3.14)

For @ = 0 (i.e. A = L/9}, thie is the Eddinglton-Finkelstein form of the

Schwarzschild-de Sitter soluticn and will therefore possess the corresponding

Schwarzschild and cosmological horizons.

Now Gibbons and Hawking 9) have recently enalysed the problem of
thermal emission from this class of sclitonic solutions and coneluded that
there are two distinct temperatures which can be associated with the two masses
W &nd M in these solutions. They have also argﬁgglg%server-dependence of the
radiation associated with the cosmelogical horizon. If our basic notion
of associatinga fundamental spin~2 field of the above variety with strong

interaction physics 1s correet, it is clear that & direct test of (the

partly controversial) conclusions arrived et by Gibbons and Hawking may be

sought in experimentation in hadronic physics.

Appreciation is expressed to Dr. C.J. Isham for stimulating

discussions.
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¢|<X] 4
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