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A D D E N D U M

The mixing term used in the text is by no means the only feasible one.

An alternative "cosmological" one is given by

•£fg = * V=£" + X' iCf - (X+X-) {-f)a (-g)e [-detCxg"1 + ( l -x)f~ 1 ] ] a + 2 ,

(A.l)

where g = det e , etc. and the contravarlant tensors (g~ )VV and (f )^V

are defined as the matrices inverse to e and f , respectively. If the

parameters are restricted by the two constraints

2(-xa + (l-x)g) (X+X1) = -xX' + (l-x)X ,

xCi-1) U + X 1 ) 2 = XX' .

(A.2)

U.3)

then the coupled system possesses a stable flat spacetime solution

f = g = Minkowski metric. In the linearized version there i s , in

addition to the graviton, a tensor meson with mass given \>j

The mixing term (A.l) was introduced (with x = £•) in the appendix to Ref. i

It is a simple matter to obtain exact solutions to the coupled f-g

equations for the case of the new mixing term (A.l) by imposing the constraint

"1 + U-x) f"1) , (A.5)

which decouples the equations for f and g provided a + S > g- . At
one^ disposal there are now eiflht co-ordinate conditions, one of which must
Toe used to satisfy (A.5). To i l l u s t r a t e , consider the de Sit ter solutions

v - ll + r r"| dr2 - r2(d0e + sin29

2 + 3in26

(A.6)

f dxu dxv - C dt2 - 2D dt dr - A dr2 - B (d62 + 3in
26

dt2 -

(A. 7)

The co-ordinates t , r are fixed by assuming the standard form here for g^
Likewise the f ,7 co-ordinates correspond to the standard form for f .
One must now construct a transformation such that (A.5) is satisfied, i . e .

0 = - detfxf"1 + (1-x) g"1)

(••MM
(A.8)

There are many ways to satisfy this', perhaps the simplest is by choosing



(A.9)

ao that

dx x-l - - - i - 2 ! " 1 ^ .

^ ^ r Cd6 + sin 8 d<p )
(A.10)

Alternatively, one may take

VB = r = j£2! r , t -J-^i' (t + f{r)) (A.11)
V x ' x~1

and choose f(r) so as to make vanish the last factor in (A.8). One finds

i-d f dt dr -

vhere l/R2 and

dtp2) (A.12)

•?
U.13)

This BOlution reduces to that in the text (with \i • 0) if one takes x = 3

and X = 0 . (If X f 0 , then it coincides with the exact solution recently

obtained by Isham and Storey for the old mixing term.)

The stability of our solution against changes in the details of the

mixing term encourages us to believe that it may have a more basic

significance than the explicit derivation would appear to suggest. This

stability is perhaps relevant also to the discussion of Boulware and Deser

vho showed (in the approximation g » n) that a sixth [scalar) degree of

-3-

freedom is excited in the interacting f system. For the particular mixing

term used in the text of our comment, they show that the Hamiltonian is

unbounded below. No such statement is possible, on the face of it, for

the term (A.l), nor is there any statement for the complete f-g theory

in either version of the mixing term. In fact, with the constraint (A.5),

the f-g Lagrangian essentially reduces, for this solution, to a sum of

two "-'ndependent" cosmological Lagrangians. Thus, presumably, the problem

of the boundedness of the Hajniltonian is reduced to the familiar problem

of a pure gravitational Lagrangian containing a cosmological term. We

believe that the question of such extra, degrees of freedom in f-g theories

Is a deep problem and will perhaps be resolved when tensor masses are

generated by a spontaneous mechanism .

REFERENCES
1 - 9 in th

10) C.J. Isham and S, Storay, Imperial Collega, London, preprint ICTF/76/9

(1977).
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ABSTRACT

We solve the Einstein equations for strong gravity in the limit that

vtak Ers.vi.ty in neglected. The class of solutions we find reduces to the

Echvsrzseliild solution (with the veak gravity Newtonian constant replaced by

e strong coupling parameter) in the limit M^—i 0 where M is the mass of

the strong gravity spin-? meson. These solutions may be of relevance for

the problem of defining temperature In hadronic physics.
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I. INTRODUCTION

The proposal that tensor fields may play a fundamental role in strong

interaction physics was introduced some time ago . This idea was given

expression in a two-tensor theory of strong and gravitational interactions

where the strong tensor fields are governed by equations formally identical

to the Einstein equations apart from the coupling parameter H-^ 1 GeV
-19 -1

vhich replaces the Newtonian K ~ 10 GeV . The equations for the strong

field, f , and the gravitational tensor, g , are derived from the

Lagrangian

K (l.D

vhere the first term is the usual Einstein Lagrangian and the second Is its

strong analogue (identical in form apart from the replacement K
E

<t). All

other fields are grouped into the term A ..

To give the f mesons a mass (as well as their weak gravitational

interaction) ve need a mixing term between f and g fields. One of the

simplest possible covariant mixing terms is given by

(1.2)

where M is a constant with the dimensions of mass 2)

In Ref.1 (on the basis of a linearization of these equations, with
fy\) = V + K f W guv = V + Kg\v)' i t w a s suesested that the equations

resulting from (l . l) and (1.2) describe a massless graviton given by the

field combinations

~J + ~2J
g

plus a strongly interacting massive spin-2 field described by the orthogonal
1

combination (f - K ).

-2-



In this note ve wish "to solve the equations for pure strong gravity ^

in the limit K * 0, without any further approximation. We are particularly

interested in that class of solutions which are soft in the limit M" •+ 0 and

which - as may fee expected from the structure of (l-l) - reduce to

Rehvarzschiia-like solutions (with Kj, replacing K ) .

Our interest in such solutions steins from the possibility offered by the recent

work of Hawking - to interpret them as strong gravity solitons, radiating all

species of hadrons thermally, with a temperature which is proportional to

strong surface-gravity

I I . LAGRAHGIAH ATO EQUATIONS OF MOTION

From now on we dea l v i t h t he pure ly s t rong g rav i t y s i t u a t i o n .

Al l . mat te r as w e l l as ordinary g r a v i t y w i l l Tae ignored . In t h i s s i t u a t i o n

the l ag rang ian ( l . l ) reduces t o the form:

£ = -±r £ (2.1)

where K { *>» 1 Ge¥~ ) denotes the strong analogue of the Newtonian coupling

and the first term here, expressed in terms of the tensor f , and its

inverse iVV , is identical in form with the Einstein Lagrangian (except for

the interchange of K f for K }. The second term.which gives mass to the

tensor meson, takes the form:

8K" Xl V

(2.2)

where r\ denotes the flat epace-tirae metric. In the usual rectangular

co-ordinates i t equals

The expression (2.2) is to be interpreted as the relic of a generally co-

variant form (1.2) in the limit in which ordinary gravitational effects are

ignored ( i .e . K •* 0 and g v •+ n. ). I t is a strictly phenomenological

expression whose origin in vacuum polarization effects we shall not attempt

to Justify here ' .

- 3 -

On varying f one obtains the equations of strong gravity,

Tv —• f

uv " 2 viv

2
f "yv (2.3)

where the left-hand side is the usual Einstein tensor and the right-hand side

is simply

L\i\>
(a.14)

We emphasise that this expression is not generally covariant: i t is the flat

space approximation to a generally covariant term (1.2). This means that.although

the left-hand side of (2.3) is a tensor, the right-hand side is not. One is

not able to remove any components from f by way of co-ordinate conditions

as one would do with a covariant system. Thus, there are altogether ten

Independent equations in (2.3) although four of them take the form of

constraints on T ,

0 = V T (a.5)

where V denotes the strong gravity analogue of the covariant derivative

Without the softening (expected,for example,from the Yung-Mills

ansatz motivated in I?ef,5) one might expect the solutions of (2.3) to behave

"badly in the limit M •+ 0, since in this limit the equations (becoming

generally covariant) decrease in number from ten to six since the four

constraints (2,5) are removed. (An analogous situation is encountered

in the weak field approximation where the five degrees of freedom

associated with a massive spin-2 field are reduced to two in the massless

limit. As is well knownjthis phenomenon is heralded by the presence of
-2 -h

singular factors M , H in the massive tensor propagator.) Notwith-

standing these general considerations,however, the message of this note is

that not all solutions of (2.3) are singular in the limit \t •* 0 and we

shall exhibit a class of smooth ones in the following.

III. A STATIC SPHERICALLY SYMMETRIC SOLUTION

When spherical symmetry is assumed, the number of independent components

in f is reduced from ten to four. For convenience we use spherical polar

co-ordinates and define the independent components by

-k-



f dxu cLx.v = c dt - 3D dt Or - A dr - fl (d.9 + sin"e dtp ) ,

(3.1)

where the components A,...,D depend only on r , The inverse is given by

JJli A,2 2D
- A 3t " r

C ,2 1 (.2
757sin o

(3.2)

where the convenient combination

A = AC + D (3.3)

is used. In the following we shall exchange D for A as the variable of choice.

For the four independent functions we have, of course, four equations

to solve. (Two of these will be of the constraint type (2.5)ibut here the

distinction is not a very useful one.) The four non-vanishing components of

TJJV a r e

B Vi
f3 . 2rf C]
I3 B - Aj

T tr = ^~2
B / A

(3.

- 5 -

In spherical eo-ortJi nates. The Kioci tensor 1B given by

S = _ £ R = _ £_ fC" + B'C _ CAP

J5
rr B 24 _ _

B 2i AB

ee

The identity DR. + CR = 0 implies the purely algebraic constraint

(3.5)

0 = DT . + CT ,
tt tr

f ^ (3- D H (3.6)

when the expressions (3-M are used. There are therefore tvo categories

of solution:

1) E = | r2 ,

2) D = 0 (or A = AC) .

These values are solutions, i t should be noted -not co-ordinate conditions.
7)

Type 2 solutions have been considered by Aragone and Chela Flores , who have

shown in a semi-linear approximation that these solutions exhibit a Yukawa-

like behaviour, rj— exp-(M.r) for large r . Our concern is with solutions

of Type 1. For these,the remaining three equations are easily dealt with and

one finds, altogether.

-6-



A + C = x-

C = = •

(3.7)

vhere y and A_ are arbitrary constants. The crucial step in obtaining

this solution was the replacement of I) ly A as a dependent variable. The

Eicci component R Is very complicated when expressed in terms of D

and, correspondingly, D = Â - AC' is a non-trivial function of r .

The remarkably simple result that A is independent of r comes from the

combination

R t t
K2 (C T.

t t
A T t t )

The rlght~hand side vanishes and the left reduces to

B 2B 2B
C. 41
r A

vhen the solution for E is inserted.

In order that D = ± VA - AC' is real, we must choose either

U > 0 , jj- > Ao and VA^" > 0

u < 0 , Q- < AQ and /5^ < 0

(3.8)

(3.9)

The choice (3.8) corresponds to the Sehvarzschild-de Si t ter- l ike solution in
weak gravity theory. {For M •+ 0 we recover pure Sehvarzschild and for
y * O.pure de-Sitter.) For comparison with the known solutions in weak gravity
theory, i t is perhaps instructive to exhibit (3.1) in the fonu:

fyv| dxU dxV = | ^ {(l-p) dt2 - (1+p+a) dr2 - 2 dt dr i/p(p+a)'

~ - (3.10)

-7-

where

Defining

p(r) - Eu/r + g-M2

a = lt/(9i) - 1

(1 + a /p ) 1 / 2 dr

we can cast {3-10) into the form:. 8)

(3.11)

(3-12)

(3.13)

-p) (dt + d~)2 - 2 dr (d?+dt) + <j(p + a) " 1

9A
sin26 •}• (3.HO

For a = 0 ( i . e . A = U/9), this is the Eddinglon-Finkelstein form of the
Schwarzschlld-de Sit ter .solution and will therefore possess the corresponding
Scrhwarzschild and cosmological horizons.

9)Nov Gibbons and Hawking have recently analysed the problem of

thermal emission from this class of solitonic solutions and concluded thil.
there are two distinct temperatures which can be associated with the two masses

for an
U and H in these solutions. They have also arguedj|observer-dependence of the
radiation associated with the cosmological horizon. If our basic notion

of associating a fundamental spin-2 field of the above variety with strong

interaction physics is correct, i t is clear that a direct tes t of (the

partly controversial) conclusions arrived at by Gibbons and Hawking may be

sought in experimentation in hadronic physics.

Appreciation is expressed to Dr. C.J. Isham for stimulating
discussions.
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