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INTRODUCTION

Without doubt the invention of supersymmetry , a possible fundamental

symmetry between fermions and bosons (their contrasting statistics notwith-

standing) is one of the most elegant creations in theoretical physics. The

recognition of this type of symmetry has enriched the mathematics of relativistic

particle theory in a number of basic ways.

1) In supersymmetric theories it is possible to group specified numbers

of mesons and fermions (e.g. spins zero and —, or 0, T- and 1, or — and 2) in

supermultiTilets of the same mass. The existence of one member of such a super-

multiplet must imply the existence of all the other members if supersymmetry

is a law of nature. Before the discovery of supersymmetry it had erroneously

been assumed that basic tenets of quantum field theory forbade associations of

different spins in the same multiplet.

2) One can associate multi-component "superfields" with such supermultiplets
2)

and write supersymmetric Lagrangians for these. Such Lagrangians are extremely

restrictive in form. In particular, if renormalizabiltty is required then

they are very special indeed. The most exciting property of these Lagrangians

is their "softness" In that many of the ultraviolet infinities of conventionally

renorraalizable theories do not appear (as a rule only wave function renormal-

izations are divergent}.

3) Internal symmetries like ' isospin, SU{3), etc., can be incorporated with-

out any difficulty into the structure of the supermultiplets. These internal

symmetries can be gauged, i.e. made into local symmetries. For supersymmetric

and gauge invariant Lagrangians the vector gauge bosons are necessarily

accompanied by spin-^- supersymmetry partners. These gauge fermiona with

their universal gauge coupling are a new phenomenon in particle theory. (The

universal couplings manifest themselves not only in the interactions of gauge

fermions with their vector partners, the gauge bosons, but also in their

interactions with what one may call "matter" supermultiplets.)

h) Supersymmetry can be broken spontaneously in exactly the same way as

internal symmetries are broken when the appropriate scalar fields develop a

vacuum expectation value. In the lowest approximation this phenomenon is

governed by the scalar field potential. In supersymmetric theories these

potentials are highly restricted in form, unlike the case of non-supersymmetric

Lagrangian theories where there is usually an embarrassment of possibilities.

ofv ox

v To our knowledge the f i rs t appearance isupersymmetiy occurs in ttie work

of GoL'fand and Likhtman. I t was rediscovered independently by Akulov and

Volkov and by Wess and Zumino.
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This circumstance is a great but austere virtue - r.ot easily can one set up

a model which is flexible enough to meet one's requirements. Among the

suprising properties of supersymmetric theories one finds that if the super-

symmetry is not broken in zeroth order then it will not break in any finite

order and, moreover, the scalar field expectation values - which may describe

spontaneously broken internal symmetries - are given exactly by the zeroth

order result (i.e. are not renormalized).

5) A basic aspect of supersymmetry - and on which may be associated with

developments of physical significance - concerns its relation to the curved

spacetime of gravity theory. This would be the generalization of spacetime

to a manifold which includes anti-commuting c-numbers 8 (a = 1,2,3,^) along

with the familiar x . The notion of such an extension of flat spacetime

was used to define superfields *(x,9). But the curved space generalization

in which the metric field g u v W becomes one part of a superfield remains

to be made convincingly. The problem of finding a supersymmetric extension

of Einstein's gravity theory is being tackled now by many authors and much

progress has been made. However, the picture has not yet become quite clear

and we shall not attempt to discuss the generalization of Einstein's theory.

It is our purpose in this paper to elucidate the developments (l)-(U)

using the superfield notation throughout. Some of the results are published

already; others are new. We feel, however, that it is worthwhile to cover

the entire development from this unified viewpoint. One feature of our

presentation is that, from the outset, a fermionic quantum number is defined

in the supermultiplets - often at the expense of space reflection symmetry.

In the past this has been done more or less as an afterthought. In view

of the intrinsic importance of this quantum number in particle physics we

believe the present treatment may be more apposite.

One should ask the question: is this very elegant development made

use of by nature? At present the answer seens to be in the negative. How

the photon and a neutrino could have shared a superwultiplet - this would

be especially plausible after the recent developments concerning unification

of weak and electromagnetic interactions - but, as we shall show In Sec.Y,

it seems that if there is a neutrino accompanying the photon it is probably

a Goldstone particle. Such a Goldstone neutrino, arising from the spontaneous

breakdown of supersymmetry, is unfortunately subject to lov-energy theorems

which make its identification with the observed v or v unlikely. The

neutrino which partners the photon may yet be founa. The spin-?- object which

accompanies the graviton (spin-2) may have a fundamental role in full gravity

theory - for example in circumventing singularities of spacetime. On the

*? A number of reviews with extensive lists of references are available.
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strong interaction side, the only indication of a symmetry among baryons

and mesons appears to be the unversality of Regge slopes but this could, no

doubt,,toe explained in other wavs.

SECTION I

(A) SUFERSYMMETRY AS A HIGHER KELATIVISTIC SYMMETRY

The concept of a fundamental symmetry between fermians and bosons i s an

intriguing one. It belongs to the class of so-called "higher" or relativistic

symmetries in that i ts basic aim is to unite in a single multiplet, particles

with different intrinsic spins. In the past such relativistic schemes have

been concerned with the problem of uniting, for example, pseudoscalar with

vector mesons or spin ^-baryona with spin jjbaryons. Supersymmetry, however,

is concerned with the uniting of scalar and vector bosons with spin -r fermions.

In order to clarify the relationship of the new symmetry to the old

proposals for uniting different spins in one multiplet, i t is necessary to

digress briefly on the structure of the latter. One of the simpler such

was arrived at in the attempt to make relativistic the SU(lt) and SU(6)

symmetries of Wigner, Gtirsey, Badicati and Sakita. The SU(6), for example, is

a phenomenological attempt to classify the hadronic multiplet structure which

could be expected to emerge from the quark model if the dominant forces are

independent of spin. Thus the low-lying meson states, pseudosealar and vector,

are expected to f i l l out a 35-dimensional representation of SU(6) while the

low-lying baryons, spins ~- and -r , are expected to f i l l a 56-fold. In predicting

these states as well asjfseveral other respects the symmetry STJ(6} is successful.

However, and this is the main point to~r our discussion, the Wigner-Gursey-

Radicati-Safcita symmetry ia essentially non-relativistic. Its most distinctive

feature is the presence among i ts infinitesimal generators of a set of operators

which carry one unit of angular momentum. These are the operators which

connect the states, such as IT and p , whose spins differ by one unit.

These generators behave in a well defined way under space rotations but not

under Lorentz transformations. In a relativistic theory such operators make

no sense; if the symmetry is to be taken seriously, they must be supplemented

by new operators so as to f i l l out Lorentz multiplets. A number of attempts

vere made in this direction. One of the simplest was to embed the 3-vectors of.

Gursey_, Radicati and Sakita in antisymmetric It-tensors and this was achieved by

anlarging SU(6"1 to Sl(6,l) . The latter is in fact the smallest relativistic

symmetry which, can contain SU(6),

- 3 -

Unfortunately for SL{6,C), i t is a non-compact group. This means that

i ts irreducible unitary representations are all infinite dimensional. If the

particle spectrum is to be classified in unitary representations of this

group, the ir and p mesons must then be accompanied by an Infinite sequence

of particles, making the scheme(at the least) unattractive. All attempts at

relativistic versions of the spin-containing symmetries met this phenomenon

which came to be known as a no-go theorem.
was also based on

Like many no-go theorems in physics,this one apparently^certain hidden

assumptions and we shall explain shortly how i t is circumvented in the super-

symmetric framework.Briefly,the difficulties with SL(6,l) were concerned with

extra internal "dimensions11 implicit in the symmetry. A rather pictorial
unitary representations

understanding of the infinite-dimensionality of SL(6,1)'s/cac be obtained by

the method of induced representations. Thus, if SL(6,(E) is resolved into

cosets with respect to its maximal compact subgroup SU{6) then one obtains

a 35-dimensional coset space on which the full group can act. Now what can

these 35 real variables signify? The answer is that they must constitute an

"internal" space with 35 degrees of freedom. It is these internal degrees

of freedom which manifest themselves as an infinite degeneracy in the particle
can

spectrum: theyj[contribute any amount of spin but no energy. In another version

of 51,(6,t) symmetry, one of the Lorentz tensors - an £U(3) singlet - among

the infinitesimal operators is identified with the generator of Lorentz trans-

formations on space-time itself. Tor this to make aense i t Is necessary to

embed the space-time co-ordinates, x , in a 72-dimensional Banifold. This

time the new degrees of freedom contribute to the energy and one finds that,

in the rest frame, energy ranges over a continuum. It is difficult to

imagine how all the new dimensions could be accommodated In a physically

meaningful theory.

The difficulties Just outlined can all be avoided by the simple

expedient of associating the new dimensions with antieommuting variables.

Indeed, i t is now rather hard to understand why such a simple solution was

not thought of long ago. The idea is to consider fields, $(x,8), which

are defined over the product of the usual space-time, labelled by four co-

ordinates x , with a new space labelled by a set of anticommuting c-

numbers, 6 In order to see how the new degrees of freedom are controlled

one has only to expand the field *(x,9) in powers of 8 and notice that

the series must terminate after a finite number of terms:

-h-



*U,e) e
(I.I)

where H denotes the number of independent components 9^ . Because of the
ant loommut at Ivlty among the 9. , the coefficient fields <f1 • tx) must be

1 12""
completely antisymmetric and there can therefore be only a finite number of

them.

It remains to he shown, of course, that a consistent group theory can

be established on the apace of x and 0 . Such extensions of the Poincare

group do exist and a minimal example will be discussed in detail in the

following sections. At this stage we remark, only that the new dimensions

must have a spinorial character in keeping with their anticommutativity

as demanded ~by the TCP theorem. Thus, if in the above

expansion (fifx) is a commuting scalar field, we should like the next member,

<)>. (x) , to be an antieommuting spinor field. For this reason the new

relativistic symmetry must combine bosons with fermions and its infinitesimal

generators must include some which carry a half unit of angular momentum.

(B) THE MINIMAL FEKMONIC EXTENSION

The smallest spinorial representation of the homogeneous, proper
Lorentz group is the two-component spinor. I t follows that the minimal
fermionic extension of four-dimensional space-time which can be conceived
is made with the two complex (or four real) components of such spinors. This
is the manifold on which is based the re la t iv i s t ic symmetry known as super-
symmetry. In order to establish a notation,we discuss now some of the
elementary features of this manifold and of the functions defined over i t .

Since the concept of the four-component Dirae spinor and the
associated apparatus of Dirac matrices is more familiar to physicists than
the two-component (dotted and undotted) spinors and their associated matrices,
we choose to work with the former. This is purely a matter of notation:
the two-component spinor is identifiable as a chiral projection of the Dirac
spinor. Now, a Dirac spinor has two chiral projections (for the aefinition see
Eq.(l.lO) and in general these are independent. However, if the Dirac spinar
is subject to a reali ty condition (the Majorana condition) then the two
chiral projections are related by complex conjugation. This means, in effect,
that the four real components of a complex 2-spinor are identifiable with
the four real components of a Majorana spinor. I t is possible to set up a.

one-one correspondence between 2-spinors and Majorana spinors.

- 5 -

Our main conventions are as follows. For the metric of space-time

we take

(1.2)

and write the scalar product of two ^-vectors

A-B = A, " A1B1 " A2B2 " V :A2 B2 3°3
(1.3)

(There is usually no need for the more exact but cumbersome

The only point where confusionnotation A-B = r\VV A B^ = A B^ = Â B
could arise i s in the use of the gradient 3 = 3/3x_ , -3/3x, , -9/3x- ,

x .) The Dirao matrices, Yu , satisfy the anticoramutation rule

The frequently employed tensor and pseudoscalar combinations are defined by

V> = 2 (1.5)

With these definitions it is always possible to choose a representation in

which the matrices Yo» °12'
 ff23' °31 a r e n e r m i t i a n while Y1> Y2. Y,. Y 5

and a , <J__, a are antihermitian. Another important matrix in the

considerations which follow is the charge conjugation matrix, C , which
1!

relates y to the transposed matrix y ,

c'1 - Y,. (1.6)

The matrix C is necessarily antisymmetric. (it can be fixed, apart from a

C~ C =sign, by imposing the further requirements C~ = C = C.)

The infinitesimal Lorentz transformations are defined by

<5x
UV

(1.7)

where in is real and antisymmetric. The ^-vectors A and B are

required to transform l ike x

product

A and B

and th i s ensures the invariance of the

A B The Dirac spinor, i|> , i s required to transform according to

-6-



•i (1.8)

The adjoint spinor $ = t|) YQ then obeys the transformation rule

Sil • f is J a . (1.9)
4 UV T UV l ? '

(This comes about because the matrices YQQ" V . l ike Yo» YQY-J. ^0*5 a n d

iY_Y Yc > *re a l l hermitian.)

The transformations (1.8) are reduc ible. From (1.4) and the definitions

(1.5) i t follows that Yq commutes with O . The subspaces on which y = - i

and +i are invariant and this means that the ehiral projections

(.1.10)

separately obey the rule (1.8). These ehiral projections are of course the

two-component spinors of which the Dirac spinor is comprised.

From (1.9) and the properties of the charge conjugation matrix one cs

show that the "conjugate" spinor, iji , defined by

t (I.11)

transforms exactly like 41 i tself . The relevant property of C is expressed
Tin the equation Ctr = - o~ C. This identity is one of a number involving

C which may be summarized in the statement:

Y C and 0 C are symmetric
(1.12)

C , f Y5
C a r e antisymmetric

A Majorana spinor is one for which \|i =• i|i or , in terms of ehiral

projections,

^ = Cif? . (1.13)

The Majorana spinor therefore contains the same information as a two-component

spinor (and i t s complex conjugate).

-7-

*„ He a pair of spinors,

Then the symmetries(1.12) are expressed in a statement about bi l inear forma:
\y ^2 and " i l ^ ^ are antisymmetric while ^ ^ , \y^l>s and \^vf^\>2

are symmetric under the interchange of l)i and l/j . {Hote in particular
that I y ty-, and If a 1(1 vanish identically for Majorana spinors.)

Mow consider some of the detailed properties of the expansion ( l . l ) for
the case of a Majorana spinor 9 . Because of the anticommutativity among
the four components of 6 ,there are altogether sixteen independent terms
in the expansion. These can be conveniently grouped as follows:

A(x)

where A, F, G, V and D are Bose fields, ty and It is

clear that,with respect to the proper Lorentz group. A, V, G and D are
scalars, V is a vector while ip and x » r e ^-spinors. We shall defer
discussion of the improper transformations.

The product of two such expansions must again have the same form

and this can be verified. Thus if

^(x.e) *2(x,e) = »3Ci.e} (1.15)

then the components of t, are given by

F3 "

V3v VlvA2

-8-



(1.16)

In deriving these expressions we have assumed that 9 commutes with Bose

fields and anticommutes with Fermi fields. A further assumption we shall

make is that the order of anticommuting factors is reversed by complex

conjugation. With this understanding the bilinears 9*6 , 5Yc& a n d

5iYuYc9 are "real1'while, for example,

and t h i s b i l i nea r i s r ea l i f !p i s a Majorana spinor.

Derivatives with respect t o the Majorana co-ordinates 9 are

defined by

—
3B

*(x,e) + 55 —
B

(1.17)

to leading order in 66 . Since 9 and 66 are anticommuting quantities

it is important to remark that the infinitesimal S@ is placed to the left of

3*/36 in (1.17). This is a convention we shall adhere to. The derivative defined

here has the usual properties of a differential operator with two important

exceptions. Firstly, when applied to the product of two functions its

effects are distributed according to the rule

3

35 35 39
(I.18)

where the +(-) sign applies when 0. is bosonic (fermionie), i.e. when

65 commutes (antieoimites) with * . Secondly, the product of two such

differential operators is antisymmetric,

34> (1.19)

-9-

Applied to a general function like (1.1*0 the derivative takes the explicit
form:

~

This formula will prove useful when we come to define the action on component

fields of the extended Poincar^ group (Sec.(C)).

Finally, It is necessary to make some decisions about the discrete

transformations P and CP . There are two possibilities. The first is

to refuse to assign any distinctive quantum number to the spitiorial

components ty and x • In this ease, if the scalar and vector components

of <Kx,6) are real, then the spinors should also be real (in the Majorana

sense), i.e.

*(x,0) = »(x,9)» (1.21)

and there is no concept of fermion number. With such an Interpretation one

c&n associate the transformation

9 + iY06 (1.22)

with space reflection. The component fields A, T and D are scalars,
G a pseudoscalar, V̂  an axial vector.

is that we arrange that
The alternative possibilityjthe spinor components !(i and x are distinguished

from the Bose components by a fermionic quantum number. There is only one way
to do this and it means sacrificing the space reflection. Suppose the positive
chirality combination of co-ordinates 6 carries unit fermlon-number (aa
well as one-half unit of spin). It follows that 9 carries minus one unit•
Clearly the transformation (1.22) reverses the fermion number,

This transformation can no longer be associated with a simple space

reflection. Rather it must be associated with combined space reflection and

antiparticle conjugation.

-10-



The phase transformations associated with fermion-number,

±io (1.23)

can now be applied to the function *(x,6) . Suppose this function trans-

forms according to

«U,e) + *U,e 56) .

Then the component fields transform according to

(I.2k)

F ± iG (F ±

D + D U.25)

To summarize, the boson fields A, V and D carry no fermion-number while

F + iG carries two units and F - iG carries minus two units ; the chiral

spinors \ji_ and x+ carry one unit while IJJ+ and x carry minus one

unit. These assignments are of course compatible with the real i ty condition

(1.21).

We shall return la ter to the problem of defining both parity as well

as fermion-number in this framework.

(C) SUPERTKANSLATIOH5

Having established a notation and described some of the properties
of the extended space-time and the functions *{x,6) defined over i t , we
are now in a position to discuss the Poincarl group and i t s extension.

Firstly, the action of an infinitesimal Poincare transformation on

x and 9 is given by

-11-

x = h + D x

56 = - r "> 0 84 yv yv

(1.26)

where b and 03 •a are infinitesimal real parameters. The newto

transformations, which we shall call supertranslatlons, are given by

«e
(1.27)

where £ is an infinitesimal antieommuting Majorana spinor. We shall assume
that the components of e anticommute among themselves, with 8 and with
all spinor fields.

The peculiar feature, expressed in (I.2T). that a "translation" in the

Majorana co-ordinates 9 is associated with a 6-dependent translation in

the space-time co-ordinate x is highly significant and gives rise to the

many unusual characteristics of supersymmetric theory. But first we must

verify that the infinitesimal transformations (l.£6) and (l.27) form an algebra.

Apply to x and 9 two successive infinitesimal transformations

1 1 1 2 2 2
characterized, respectively, by the parameters b , Oi , e and b , to , E ;

• i

-12-
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Now apply these variations in the reverse order and subtract to obtain

from vhich it is clear that the commutator [6^,6.] is equivalent to a third

infinitesimal transformation 6 , characterized by the parameters

* =

uup ^pv ~ wup wpv

(1.28)

The infinitesimal transformations do indeed form an algebra and, what is

more, they can te integrated to yieia finite transformations.

A pure supertranslation integrates quite trivially to the finite

form

-13-

(1.39)
+ e

It is interesting to note the form taken by the product of two successive

supertranslations,

2 ^ V
(1.30)

which indicates that a space-time translation, -r £ Y £ emerges when two

supertranslations are compounded.

In order to treat the representations of the symmetry defined by (1.26) and

(1.27), we shall set up an abstract algebra of the infinitesimal generators.

Firstly, notice that the application to x and 9 of the first-order

differential operator,

U.31)

reproduces the formulae (1.26) and (1.27). This differential operator can be

looked upon as a particular realization of the abstract operator.

F(5) = T b
i [_

b P - 7-u) , J , S , (1.32)

which defines the infinitesimal generators P, J and S . Moreover, the

commutator [<5p,S, ] ~ <5, , derived above, can be looked upon as a particular

realization - in terms of differential operators - of the algebraic statement,

[F(62), F(fi3) (1.33)

To deduce commutation rules among P, J and S is now straightforward. On

the left-hand side of (1.33) substitute for F(<5. ) and F(6 ) the linear ex-
1 1 1 2 2 2

cress ions (1.32) with parameters b , ui , e and b , m , £ , r e spec t ive ly .
On the right-hand side substitute for ) using the values for b , ID , £

given in (1.28). The resulting, formula is an identity in the parameters
1 1 1 2 2 2

b , OJ , e and b , in , £ . By comparing the coefficients, of these
parameters one arrives at the following set of rules:

- l i t -



[PU,PV] = o

V PX " V Pv

V

(1.31.)

+ \ \ JVK " V

Is ,p ] = o
a' \i (1.35)

(1.36)

These rules are of course obeyed by the particular realization ( l . 3 l ) , in terms

of differential operators, from which we started:

V '

W

S fe-M
(1.37)

The aubalgebrs (J.3I*). is,naturally, the familiar set of Poincare rules. The pair

Cl.35l merely indicates that the supertranslation generator S transforms

a3 a Dirac spinor under Lorentz transformations and is unaffected by space

translations. The anticommutator (l.36)vhich closes the system reflects the

truly novel aspect of this symmetry. That i t must be an anticommutator

rather than a commutator can be seen in several waya. Notice firstly that

the matrix y C is symmetric. Secondly, the differential operator expression

for S Involves the anticommuting operator 3/35 . This differential

operator anticommutes vith S , which means that, in general, S should aati-

commute with e .
2

and e one finds

Going back to the commutators(l,33)ana keeping only £

[eh , '\'\ (1.38)

and, on using the anticommutativity of s with S , this yields the anti-

commutation rule (I.36).

-15-

Tte appearance of an anticommutator In the algebraic structure is

a new phenomenon in particle symmetry. In the mathematical terminology the

system (1.3I*)-{1.36) is called a graded algebra. The linear operators F(i)

given by (1.32) 'belong to what is called an "extended Lie algebra" in that

some of the co-ordinates E belong to a Grassmann algebra. ( Mathematical

precision in such matters will not tie emphasised here . Most of

the mathematical operations needed here are quite elementary and are

familiar to particle theoreticians. )

We conclude with a remark on the fermionic quantum number.

Corresponding to the phase transformations (1.23) which serve to assign one

unit of fermion-number to the positive chirality component 6 , one can

define the operator

(1.39)

which commutes with P and

r
ae

and with S gives the commutator

[S , IF] (1.1*0)

This shows that S

minus one unit.

carries one unit of fenaton-number vhile S+ carries

(D) UNITAHY BEPRESEHTATIONS

In order to generate a unitary representation,the operators P, J

and S must be real. More precisely, the linear form

1FC6J

must be self-adjoint. Since the parameters "b and (0 are real numbers

while £ is a Majorana aplnor, this reali ty means simply

= J (1.1*2)

How the unitary representations of the Poincare group are well known,so our

problem is to find out how these must be combined so as to fora representations

of the extended group. In solving this problem the chiral projections S+

play a crucial role.

-16-



The antloc:.-, -ator (1.36) resolves into three distinct pieces when

t;hiral projections are taken,

{S+ , S+} = 0 , (S_ , SJ = 0 ,

(1.1*2)

That this must happen is clear from the fermion-number assignments: since

there are no operators-in the algebra which carry two units of fermion-

number, the anticommutator {S_ , S } must equal zero, and likewise for

(S+ , S+} .

Since the chiral operator S has only two Independent components

and since these antieommute with each other, it follows that the product

of three or more of them must vanish,

a- 6 = 0 (1.1*3)

The same is true of products with thof-ee or more adjacent S+ factors.

The next important remark is that super-translations must leave

invariant the manifold of states with fixed It-momentum since S+ commute

with P . On such a manifold the anticonmutator {E+ , S_} becomes

equal to a fixed set of numbers, and the operators S and S_ are seen

to generate a Clifford algebra. Since this algebra has just sixteen in-

dependent members - the products with up to four factors of S+ and S_ -

i t s one and only finite-dimensional irreducible representation is in terms

of h x 1* matrices. The manifold of states with fixed -̂momentum is

therefore reduced by the action of supertranslations into faur-dimensional

invariant subspaces.

On the other hand, the manifold with fixed It-momentum is reduced by

the Wigner rotations into (2j + l)-dimensional subspaces where j , the

intrinsic spin, is integer or half-integer. Taken together, the combined

action of Wigner rotations and supertranslations must give r i se to invariant

subspaces with l*(2J+l) dimensions. We now show in detail how this comes

about.

Following the method of Wigner we s tar t with a state at res t .

tl.M*)

-17-

In this frame the Wigner rotations coincide with the space rotations

generated by J = (J,23 J,. , J,pl and one can ass;~s that the chosen state.

carries a definite angular momentum j and z-component j . The basis

states for an irreducible representation of the Poincare group are obtained

by applying to the chosen state firstly the space rotations which serve to

generate the 2j+l values of J and, secondly, the Lorentz transformations
z

which generate states with an arbitrary F, and P =VP_ + M

To generate the basis states for an irreducible representation of

the extended Poincare group we can apply the operators S + , G and their

products to the 2J+1 rest states and then apply Lorentz transformations

to the U(2J+l) states which result. We shall suppose that the original

2J+1 states are annihilated by S . (This is not a restrictive

assumption since, if the original states were not annihilated by S , we

could have multiplied them either once or twice by S + and picked out from

among the resulting states a set of 2j T+l states which certainly are

annihilated by S+.) How multiply each of the 2J+1 states by S_ to

generate 2<2j+l) new states. Since S carries one-half unit of

angular momentum,these new states will comprise a pair of multiplets with

spins j - — and S+-? . Hext apply the operator S S to the original

states. Since, it) view of the anticommutativity, the product S_S_ has

only one independent component, this operation will generate another

multiplet of spin j . The rest frame basis is now complete since products

with three or more factors of S_ must vaniBh. If the original states

carried fermion-number f then, since S carries one unit of this

number, the states generated in this way cariy f+1 and f+2 . In summary,

the rest frame states have the spin-fermion number content

(J - |) , (J + h. Jf+2

(For the case j = 0 the multiplet j-^- is of course absent.)

Starting with the states |j \ which satisfy

J 1 2 | J z > f = | j z > f

- 1 8 -



the rest frame basi3 Is completed by adjoining the states | j >X/ -. •

X = ± | and iJ z> f + £ defined byz > f + £

where the pair of chiral splnora X.(X) satisfy

| a l 2 y+(X) = Xx+U) ,

and are normalized such that

Y0X+U') = «xx, M (1.1.9)

The normalizations are chosen so that all states have the same (positive)

norm. The positivity of the norm is basic to the unitarity of the

representation and It Is a consequence of the reality condition

(1.50)

and the anticommutatioti rules (1.1+2). The last of these rules reduces on

the rest states to the form

T^ V M '

or, on taking account of (1.50)

{S , S
1 - il

2~

By means of these rules it is straightforward to construct the action of

S on the states defined by .(l.h6) and (I A T ) . One finds

-19-

1 S
it (1.51)

The states |j ,X̂ > may be resolved into multiplets with angular momentum
1 1

i + g" and J ~ f t u t this will only complicate the formulae (1.51).

To complete the basis system it remains only to apply the Lorentz

boosts. There are many vays to do this,but perhaps the most commonly

used conventional scheme Is the one due to Jacob and Wick. The rest

frame ^-momentum

p y = (M, 0 , 0 , 0)

is boosted to the general form

p = M (eosha, sha sin8 cosij), aha sin9 sinifi, shct cos6)

(1.52)

(1.53)

by the Lorentz transformation

where the angles a, 9, (p are restricted to the ranges

Under this convention the so-called hel ici ty states are defined by

etc. The action of the supertranslation operator on these boosted statea

is obtained from (1.51) oy applying the operator Cl.53) to both sides. From

the fact that S is a Dirac spinor it follows that

-30-



s ,

where the matrix a(L } is given by

e e e (1.55)

On multiplying toth sides of the boosted form of ( l .5 l ) "by the matrix a(L )
one obtains the formulae:

(1.56)

where the spinor coefficients u+(p,X) are defined,

1 i iv
u+(p,X) = 1 — - uCp,X)

(1.57)

The spinors u(p,X) are positive energy solutions of the Dirac equation,

u = 0 , and are normali led ty

= M

u{p,A) u(p.A') = 2M

i.e.

The formulae (I.56) which express the action of S on the states of

an irreducible representation of the extended symmetry take the form given

regardless of the 'boosting conventions. Such conventions affect only the

functional form of the spinors u(p,\).

-21-

This completes the discussion of unitary irreducible representations

with a finite mass. These representations are labelled "by three parameters,

M, i and f , and generally incorporate four distinct irreducible

representations of the Poincare group (as indicated intl.^5))-' In

the remainder of this paper, which is concerned mainly with renormalizable

Lagrangian models,we shall meet only two of these.

(l) The fundamental representation, f = j = 0, with Poincare content

(o)

and of course the antiparticles

C0)Q ©

to) a

(0)
_2

(2) The "vector" representation, f = -1, J = =-,with Poincare content

which is self-conjugate.

(E) GENERALIZATIONS

To conclude this chapter on the purely group theoretic aspects of

the relativistic symmetry we shall consider very briefly some possible

generalizations. The fermionic extension of the Foincase' group dealt with

above was a minimal one in that it employed a single Mojorana spinor. The

most significant sacrifice imposed by the minimality requirement - combined

With the idea that the new spinor co-ordinates should carry a fermion-

nuraber - is the loss of space reflection symmetry. If this is to be

restored then a generalization is needed.

-22-



The simplest generalization is from Majorana to Pirae spinors which

can be subjected to complex supertranalations. The formulae (1.27) are simply-

replaced by

(1.58)

where 9 and £ are anticommuting Dirac spinors. It is a simple matter
to prove that these form an algebra. The anticommutator (1.36) is here
replaced by the set

{Sa • V

L ot * J ~ M u a u ' (1.59)

where S and S are independent generators. (in unitary representations

they are related by herraitian conjugation, 3 = S Y^.)

The complex extension characterized by (I.59)is certainly compatible

with reflection symmetry and fermion number. Thus, for example, all four

components of S can carry one unit of fermion-number and this is clearly

consistent with the parity transformation S -+ YQS .

The fundamental representation has sixteen independent rest frame

states. These can he defined by successive applications of S to a

"lowest" state |0̂ > (carrying zero spin and fermion number -2) which is

annihilated by 3 . The successive states (all of the same mass) are;

3aSB |0>-2

(1.60)

- 2 3 -

They comprise: a scalar difermion and. i ts
antiparticle; two spin ^-particles of opposite parities and their anti-
particles; two scalars, one pseudoscalar and one polar vector, all
fermionically neutral.

In Section TV we shall present a renormalizable Lagrangian model for
this multiplet. It is arrived at In a rather Indirect way as a special
example of a class of models which, although based on the Majorana super-
symmetry, are set up in such a way that parity conservation emerges.

Further generalizations of the supertranslations are easily invented.
For example,

46, Ci-61)

where 6^ and e^ , k = 1.....H, are Majorana spinors. This scheme admits

an 0(H) symmetry with a consequent enrichment of the multiplet structure.

This multiplet appears to exhibit an SU(2n) structure in the reBt frame.



JIT',*, .: .

(A: LC 'AL SUPEP.FIELDS

In Section I a <:. : jyiametry was defined in abstract terms.

Through their action on the co-ordinates of an enlarged "space-time" the

super-translations were seen to constitute an extension of the group of

inhomogeneous proper Lorentz transformations, the Poincare group. Con-

sideration of the algebra of infinitesimal transformations led to the

formulation of commutation and anticommutation rules among the generators.

On the basis of these rules the unitary irreducible representations, or

"supermultiplets", were analysed.

By aeans. of such considerations a general understanding of the new

symmetry is achieved and it becomes possible to formulate dynamical statements

in the form of selection rules, identities among scattering amplitudes, etc.

To reach a deeper understanding it is necessary to formulate a local field

theory for the supermultiplets and to set up Lagrangian models for its

realization. A necessary first step in this programme is the concept of

the local superfield which we now consider.

The prototypical local superfield is the real scalar function #(x,0),

whose expansion in powers of 8 was given previously.

A(X)

vv(x) -| (ee)2

This field is local if it commutes with itself at spacelike separations,

[*(x,6) , *(i',6')] = 0 < 0 (II.2)

This definition of locality is compatible vith the usual requirement that

ordinary Bose fields commute among themselves and with fenoionic fields

while fermionic fields anticommute among themselves (always at relatively

spacelike points). To ensure this compatibility i t is necessary only to

require that the spinor co-ordinates 9 and 01 anticommute with each

other and with the spinor field components ^(x) and x(x) , on the one

hand, and commute with all boson field components on the other.

- 2 5 -

The ticlion on $(x,B) of -:.\._ Ltifln. '^imal t ransformation from

the algebra of the extended Poincare group i s /:.' -:n, according to ( l . 3 l ) ,

toy

( I I . 3 )

This formula defines the "scalar" nature of the superfield $(x,9) . From

it can be deduced (by substituting the expansion (ll.l))the transformation

properties of the various component fields. Thus, with respect to the

group, A, F, G and D are scalars, V isPoincar^

a vector, \(i and X a r e spinors. The "behaviour of these components under

a pure supertranslation is given by:

6A = EI|J

6F

j (F + Y G + i y T T - ISfA)d 5 U 5 u
Y G + i y T

5 U 5

| ex - | Ii/i(i

\ £-Y5X + | ei

\ av5^
+ \ ^

Fermion-number is assigned according to the convention of Section I,

i.e. 8 carries unit fermion-number, IP = 1 . If the superfield $(x,8)

as a whole is required to carry F = 0 , then the following distribution of

F values is implied:

F = 2 F + iG

$_ , X +

IF

IF

IF

= 0

•« - 1

= - 2

: A , V y ,

•• * + > 5 C

: F - i d

- 2 6 -
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These assignments are compatible with the reality condition

(II.6)

which may be imposed. This condition would imply that Bose components A,

F, G, Vv ana D are real, while splnor components are subject to the Majorana

condition,

ii = cf , x = cf •

(in taking the complex or hermitian conjugate of a superfield it is always

necess

etc.)

— * — —T
necessary to reverse the order of anticommuting factors; (6t|>) = tjj6 = iJcty

In general the superfield t(x,9) is locally irreducible. By this

we mean that It cannot be decomposed into a sum of distinct, independently

transforming components without the intervention of non-local operations.

(In this It Is analogous to the ordinary vector field V (x) which can be
t

expressed as the sum of transverse and longitudinal par t s , V = V + 3 4 .

only with the help of the non-local operator 1/3 , i . e . 4> = (1/3 ) 3
U

V
U -

However, such a non-local decomposition is of considerable help in understanding

the structure of the representation (ll . l t) and i t s derivation will be our

f i rs t task.)

An Important role is played in the derivation by the operation of

covariant differentiation. The covariant derivative of $ is defined by

Dt(x,e) = [ — - |

It Is covariant In the sense of transforming like a spinor.

(II.T)

(II.8)

with respect to homogeneous Lorentz transformations and an Invariant with

respect to translations and supertranslations,

{D , S} = 0 . (II.9)

-27-

These results are easily verified with the help of the differential operator

expressions for the generators CI.37J. From (lI.Ti it follows that the

covariant derivatives generate a "supertranslation" algebra of their own,

• V (11.10)

Again it is useful to distinguish the chir&l components D+ since, for

Instance, positive chirality components anticommute and the successive

application of three such differentiations must annihilate any superfield.

The covariant derivative is basically a Majorana spinor and for this reason

it is useful to define the conjugate from D by

or D ± = -D
—1

(11.11)

The usefulness of these operators lies in the fact that D D + and

D D are invariants of the extended group. Applied to one superfield

$(x,8) they yield another whose components transform In exactly the same

way. Out of these operators and their products we can construct invariant

projections. We begin with some simple identities.

The most useful identities are those which spring immediately

from the anticommutativity among components of the same chirality,

D+(D_D+) 0 and D (5+D_) = 0 , (11.12)

which imply the identities

(D+D_) D±(D_D+) = 0 . (11.13)

Repeated use of these identities together with the anticommutation rules

{D± , D±} =

enables one to demonstrate

(D_D+H5+D_)

C5+Dj
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These formulae then imply that the. nonlocal operators

E^ = - -^5- Cp\p I (P D.I ,
+ h*

E = - - ~ CD D. ] ID D 3 ,

are idewpotent and orthogonal, i . e .

, E2 = E , E^E_ = 0 . (11.15)

t i l .11*)

E E+

The operators (lI.lU) are two of the projections needed for the decomposition

of S(x,6) . There exists only one more and it is given, of course, by

Ej_ = 1 - E + - E_ ,

= 1 + - — (D_DJ_ , E^D_} ,

2 t i l . 16)

The decomposition of $(x,6) corresponding to this non-local

resolution,

*(x,9) = (E, + E + £,) *(x,6) ,

(x,e) + $ (x,e)

is given explicitly by

(11.17)

A = A+

F = F + + F_ .

G = IF - iF .

V 1S

X = - i

- i 3 u A -

p o
D = - 3 A+ - 3 A (11.18)

-29-

where V is transverse and ^ are
1]1 -

solved for the irreducitle components,

. The expressions (II.18) can Toe

1 ±

F± - | tF T iGl ,

V

t i l . 19)

(11.20)

some of which are seen to he non-local . Only i f the components x a n d D

are themselves f i rs t and second derivatives (^x1 a n d a D ' o f some local

fields x' axii D ' ) - a n t n e original aoperfield be considered locally

reducible; otherwise i t is not.

The transformation behaviour of the reduced components (11.19) and

(11.20) can be deduced from (il.l*). One finds,

<5F, (11.21)

5V, (11.22)

- 3 0 -



The so-called chlral scalar,representations (II.2JLJ. and the transverse vector

representation Cll-22l are of fundamental importance in the development of

renormalizable Lagrangian models. For this reason it is necessary to discuss

their properties in some detail and,to gain a deeper understanding, from other

points of view. We begin with the chiral scalars.

Since the superfield *(x,9) from which $ and <}_ are obtained

could have been subject to the reality condition (II.6), it is clear that the
#

chiral representations are conjugate, $ <v $ + . We shall therefore restrict

our attention to the positive chirality * + . The existence of this kind of

superfield rests on a very simple fact. The behaviour of x and 8 under

super-translations is such that the complex ^-vector

z,. = x,. - f 5Y,,YC6 (11.23)

transforms according to

= i£. (11.210

That i s , <5z depends on 6+ (or 9 ) but not on 9 (or 6+) . This means
that the space of complex-valued functions, <p(z,6+) , must be invariant
under the action of the extended group. Since 6+ has only tvo independent
components, the expansion of <p in powers of 9+ must terminate in the
second order rather than the fourth. Indeed, one can write

A+(z)

e 4 | 5 _ e + F+(x)J

= *+ { x"8 ) (11.25)

where, in the second line, we have effected the translation z •+ x by

means of a displacement operator. If the displacement operator is expanded

in powers of 8 and the terms in (II.S5) are arranged in the standard form

(il.l) then one will find precisely the coefficients which are indicated

for *+ in the expressions Cll.l8}.

Another way to characterize the chiral superfield $+ is by means

of a differential condition. Thus, the covariant derivative of * is:

-31-

•'fe-W

indicating positive chirality with respect to the spinor Index. In other

words, * + is annihilated by the negative chiral part of the covariant

derivative,

D_*+ = 0 . (11.26)

This set of covariant constraints has as its general solution the expansion

(11.25). The positive chiral scalar is therefore defined by (11.26).

A property of the chiral scalars which is of crucial importance in

the construction of Lagrangians is their closure with respect to

multiplication,

*+(x,8) *+(x,9) . (II.27)

That the product of two positive chirality scalars (at the same point)

should yield a third becomes evident when they are expressed as functions

of z and 6+ . Alternatively, the linearity of the differential operator

D implies that it will annihilate the product if it annihilates the

separate factors. The component fields of 0 defined by (11.27) are
1 +

given in terms of the components of 9 and $ as follows:

A+(x) = A+(x)

A+(x) ij/(

= A+(x) C"1 F+(x)

(11.28)

Generalization of (11.27) and (11.28) to products with any number of factors

is clearly possible. Indeed, it is a simple matter to show that the local

function v(^[x,9)) has the component expansion
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" F ^

(11.29)

where v1 and v" denote the first and second derivatives with respect to

the complex variable A+ of the function T ( A + ) . This function must be

analytic in general but, in practice, will be restricted to polynomials.

The above properties of the positive chir&l scalar 4 + are easily-

translated for the conjugate representation * . Thus, the negative chiral

scalar * is expressible as a function of 2* and 9 and one can write

for it the expansion

*_(x,e) = e U) + 5+e_ Fjx) . (11.25'

Such superfields are characterized by the differential constraint

D ^ = 0 (II.26'

Finally, the product of two negative chiral scalars at the same point yields

a third: negative chiral scalarB are closed with respect to local multiplication.

The local product of a negative chiral scalar with a positive one

does not yield a chiral result. This can be seen from the rather trivial

observation that the product of two functions, <p(z,6+) and (p'(z*,8_) .

must depend on both z an d z* as well as 6+ and t>_ . The result

must therefore be a superfield *"(x,6) of the general type with which we

began this section. Its components are given, in the standard notation,

by

A" = k+k'_ ,

= A+F + F+A .

G" = -i1+F_ + i?+A_ .

- 3 3 -

V v =

X =

D" = (-32Aj A' + 2(3 1 ) u / ) + A f-s

F+F]_ + 2 ^ c " 1 ! ^ - 1$) *' (11.30)

This superfield is clearly not locally reducible.

The fermion-nuaber content of the chiral superfields is easily

established. Since 9+ and 0 carry IP = 1 and IF = -1 , respectively,

i t follows from an examination of the expansion (II.25) that A+ , I(J and

F+ must carry F = f, f-1 and f-2, respectively. The value f ,

associated with A is an invariant of the representation. CWe shall

normally take f = 0 so that <J>+ carries IF = -1 , i . e . t|J+ serves to

annihilate one fermion and ty. creates one.) The negative chiral components

A_ , i|J_, F_ carry the values -f, -f+1, -f+2 if *_ is identified with

<$* . (As a general rule we shall not identify $_ with t but treat i t

as an independent field with f = 2 . With this notational convention,

ijj carries F = -1 and annihilates a fermion. Hote that A annihilates

a difermion.)

New categories of local representations are obtained by generalising
the scalar superfields to spinors and tensors of arbitrary rank. That i s ,
one regards Ofx,9} not as a single scalar superfield but as a set of
superfields belonging to one of the finite-dimensional representationsof the
proper Lorentz group. With respect to translations and supertranslations,
these fields transform as scalars, but under the homogeneous (proper)
group they transform according to

•Kx.e] -* S ' U ' , 6 ' ) - D(A) *(x,9) (11.31)

where the matrices D(A) belong to- one of the fajiiliar (2J+ l ) (2J2 + l ) -

dimensional representations, 2j[j , , j ? ) - or a direct sum of such

representations. This kind of generalization applies equally to the chiral

* ) types. Two examples will i l lus t ra te the main{$ } or non-ehiral

features.



The first example employs a chiral spinor auperfield, (.? ] ,

which has negative chjirali'ty with rejspect to its external spinor index,

and positive chirality vith respect to its internal structure,

D_ ?_+ = 0 .

The expansion in component fields has the general form (II.25]

- r- 53Y 8

(11.32)

ClI-33)

Cll.3lt)

where U and V are negative chiral spinors and My is a U-vector.

Under an infinitesimal supertranslation these components transform

according to

SU'- = V+
Mu

<SM

(11.35)

This representation is basically complex. Thus, even vith the most favourable

assignment of fermion-numbers F = 1, 0, -1 to U , M and V ,

respectively, it is not possible to treat M as a real vector. However, if

certain constraints are applied,this representation will turn out to be

equivalent to the real ^ . We shall return to this question after setting

out the second example.

The second example employs a chiral spinor, ¥ + + , which has positive

chirality both internally ana externally, i.e.

(1 - = 0 and D (11.36)

Again the expansion in component fields has the general form (11.25),
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C11.37)

where U and V are positive chiral spinors, D is a scalar and F i3

a self-dual antisymmetric tensor. ( i t i s of course the opposite external

chira l i t ies that govern the appearance of a vector My in V_+ and of a

scalar-tensor combination D,J" in V++ .) The component fields transform

according to

D,J" in

ST

(11.38)

This representation also is basically complex but capable of being made

real by means of certain constraints.

Now consider the representation (11.35) to see i f i t can be made

self-conjugate. Since U_ and V carry (F = 1 and -1 , respectively,

we should identify the conjugate of one with the other. For the correct

balance of dimensions and also to have the correct ch i r a l i t i e s , the

association must taJce the form

V = (11.39)

where w is a number to he determined. If the identification (11.39)

be compatible with supertranslations we must have
t o

<5V

i.e. according to (11.35) ,
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for arbitrary $ , This gives constraints on M . viz.

(11.1*0)

Finally, i t Is necessary to verify the compatibility of (11.39) and ( I I .

with the expression (II.35] for fiM . This requires \ia\ - 1 . The

phase factor can always tie absorbed and so ve shall take w = 1 . To

summarize, taking

2 [ lvi y l

r l -

(II.Ul)

where V is real and transverse, JL is real and lit is Majorana, we

fina that the transformations (11.35) reduce to the form (11.22), i . e . a

real transverse vector representation.

Similar considerations applied to the representation (11.38) show
that i t too can be real . In this case the reali ty conditions are

2F
(II.4

with V and D real. The transformation rules (II.3S) then take the

form

6U. - w

\ e+ (II.

This representation also is related to $, though it is not locally

equivalent. The eonnectionis made through the non-local relations,

- 3 7 -

3 3
1U

CU+

o r , more compactly,

(B) GREEN'S FUMCTIONS ME INVARIAMT AMPLITUDES

One of the main object ives of loca l f i e ld theory i s the computation

of Green's functions. The s t ruc ture of these many-point functions i s

r e s t r i c t e d by symmetry considerat ions and, in the present ca se , by the

requirement of invariance under the act ion of supe r t r ans l a t i ons . Such

s t r u c t u r a l cons t ra in t s are best exhibi ted by expressing the Green functions

in terms of invar iant amplitudes and we sha l l examine here some appl ica t ions

of t h i s idea.

Since i t i s our purpose to reveal the Implications of the new t r a n s -

formations in the extended r e l a t i v i s t i c symmetry, we sha l l pay l i t t l e

a t t en t i on to the subgroup of Poincar^ t ransformations, which can be handled

in the usual way. I t w i l l therefore be su f f i c ien t to deal with a system

of f i e lds comprising only c h i r a l soa la r s * + and t h e i r complex conjugates.

The appending of Lorentz indices to such f ie lds so as to include non-

scalar representations is a relatively t r i v t a l modification and would not

affect the main argument. (Notice also that the non-chiral real field ^

can always be represented by a chiral spinor, *+ = D *, , and so included

in the general scheme.)

To begin with we shall ignore the fermionie quantum number which
distinguishes $ from <f> . Insofar as supertranslations only are
concerned, these fields are equivalent. I t will therefore be sufficient
to analyse the structure of many-point Green's functions referring to
products of the fields 4 and $ , only. Afterwards we can introduce
the fermion-number and quite easily pick out the amplitudes which conserve i t .
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A considerable simplification in notation is achieved by amputating

the displacement operators, exp(T r- 9jfy6), which always appear as factors

in the chiral superfields. Thus, we define the amputated fields,

exp ±

A±(x)

»±U,e) ,

0 + | e T 8 ± F ± C x ) ' ( I I . kk)

which depend on only one chiral component, either 8+ or 6_ Cana 5 or

S+), of the spinor co-ordinate. This property is expressed analytically by

1 -

36+

3$

35

39

39
= 0

(11.1*5)

Under supertranalations the amputated chiral fields transform according to

36,

On occasion in the following we shall use the abbreviated notation ?+(

The n-point Green's functions G are expressed as vacuum expectation
values,

n) = <O|T*S+(1) •••»+( $_(n)|0> , {IIM)

in which the T*-ordering is used so as to simplify the transformation

properties (i.e. avoid the complications due to non-covariant surface-

dependent terms). Our main purpose here is to consider the implications

of the requirement that G be invariant with respect to the transformations

(11.1(6). This requirement is embodied in the single equation
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0 = £

or, equivalently, in the ehiral pair,

9J- r • 1

t ̂ v

(II.U8)

(II.U9)

Fortunately it is quite easy to find the general solution to these equationB.

One starts by looking for solutions of the form

S - e"tfM ,

where W is chosen to satisfy the inhomogeneous equations

til.50)

L—• J j+ ' CII.51)

There are many ways to satisfy these Inhomogeneous equations and we-shall
return to this question. For the moment assume that one solution has been
found. On using this W in (11-50) and substituting i t into the conditions
(II.li9) one finds that the amplitude M must satisfy the simplified equations

0 =
3M

(II.52)
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Thus, quite generally, the amplitude M can depend on the chiral co-

ordinates 61+ 9^ and e
r+1_»--->

e
n_ only through their differences.

For example,

M = M(e l r + , . . . ,e r_ l r + ;e r + l n_ en_lnJ , (11.53)

w h e r e 8, = 6,. - 8 . and B = 6 - 6 . There are a l t o g e t h e r n-2
jr+ 0+ r+ jn- J- n-

suoh differences. Further restrictions must arise for disconnected contri-

butions to the Green functions: only differences between co-ordinates

referring to a connected piece are admissible. To simplify the discussion

we shall tacitly assume that only connected amplitudes are concerned. The

expression (11.53) incorporates the supertranslation invariance requirement

for all chiral Green's functions with only two exceptions. The exceptional

cases involve the products of fields all of vhich have the same chirality,

i.e. r = 0 or r = n, and these must tie treated separately. The reason

for this is the impossibility of constructing,a W satisfying {II.51) when

all 6's have the same chirality. We shall return to the exceptional cases

after considering the form of W .

It is a simple matter to verify that the linear operator

Vr + 1
(II.

is a solution of (II.51). (One needs only to draw on the fact

n

resulting from Poincare invariance.) The expression (II.51*) meets all the

requirements hut it is not very symmetric in appearance. While regretting

this asymmetry,we do not feel that it is a very serious shortcoming. We

remark only that alternative solutions to (11.51] must take the form

¥ ¥ + ¥•
rn

where W' is any linear operator constructed entirely from co-ordinate

differences and hence satisfying the homogeneous form of (II.51). By

exploiting this arbitrariness one could construct a more

symmetrical solution but we shall not pursue the point.

-1+1-

F ina l l y , we must deal with the except iona l , or what might be ca l l ed

"raonochiral" oases r = 0 and r = n . Suppose, then, that r = n and the

constraints (11.1*9) take the form

0 = (11.55)

The f i r s t of these equations ind ica te s t h a t G must be a function of the n-1

co-ordinate differences 6 + . The second i s solved by p a r t i t i o n i n g the

n-1 terms of the sum

n - 1

Z 13 .6 . + = > P, .k+ (11.56)

1 k

in all possible ways. The partitions involve from one up to n-1 pieces,

3. e, . + •••+ 13, e. .
Jl J l n + Jk Jk n +

(11.57)

For each partition form the monomial

which clearly is annihilated by each member of the partition and hence by the

sum. The equations (11.55) are therefore satisfied by

(11.58)

partitions

where the sum runs over all independent partitions to each of which there

corresponds a scalar amplitude Mrpi.

The other monochiral amplitudes, r = 0, are decomposed in the same manner.

Some examples of these decompositions are given in Appx. B,where they play

an important role in the softening of ultraviolet divergences.

The supertranslation invariance requirement is fully met by the

expression (11.58) in the monochiral case and by the expression (11.50) with

M and W given by (11.53) and (II.51*) in the mixed cases. If we had been


