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INTRODUCTION

Without doubt the invention of supersymmetry ¥ y & possible fundamental
symmetry between fermions and posons {(their contrasting statistics notwith-
standing) is one of the most elegant creastions in thecretical physics. The
recognition of this type of symmetry has enriched the mathematics of relativistic

particle theory in a number of basic ways.

1) In supersymmetric theories it is possible to group specified numbers
of mesons and fermions {(e.g. spins zero and %3 or 0, % and 1, or % and 2) in
supermultiplets of the same mass. The existence of one member of such a super-
multiplet must imply the existence of all the other members if supersymmetry

is a law of nature. Before the discovery of supersymmetry it had erronecusly
been assumed that basic tenets of quantum field theory forbade assoeiations of
different spins in the same multiplet.

"

2) One can associate multi-component "superfields” with such supermultiplets
and write supersymmetric Lagrangians for these. Such Lagrangians are extremely
restrictive in form. In particular, if renormalizabdility is reguired then

they are very special indeed. The most exciting property of these Lagrangians

is their "scoftness" in thaet many of the ultraviolet infinities of conventicnally
renormelizable theorles do not sppear {as a rule only wave functicn renormal-

izations are divergent}.

3) Internal symmetries like’ 1£;=pin, 5U{3), etc.,can be incorporated with-
out any difficulty intc the structure of the supermultiplets. These internal
symmetries can be gauged, i.e. made into local symmetries. For supersymmetric
and gauge inveriant Lagrangians the vector gauge bosons are necesserily
accompanied by spinué-supersymmetry partnersﬁ) These guuge fermions with

their uwniverssl geuge coupling ere a new phencmenon in particle theory. (The
universal couplings manifest themselves not only in the interactions of gauge
fermions with their vector partnera, the gauge bosons, but alsc in their
interactions with what one may call "matter" supermultiplets.)

) Supersymmetry can be broken spontaneously in exactly the same way &s
internal symmetries are broken when the appropriate scelar fields develap a
vacuum expectation value. In the lowest approximaticn this phenomenon iz
governed by the scalar field potential. In supersymmetric theories these
potentials are highly restricted in form, unlike the case of non-supersymmetric

Lagranglan theories where there is usually an embarrassment of possibilities.

of .
» To cur kncwledge the firsta@pearanceksupersymmetry cecurs in the work
of Col'fapd and Likhtman. It was rediscovered independently by Akulov and
Volkov and by Wess and Zumino. 1)

wle

This circumstance is e great but austere virtus - rot easily can one set up

a model which is flexible enough to meet one's requirements. Among the
suprising properties of supersymmetric theories one finds that if the super-
syumetry is not broken in zeroth order then it will not break in any finite
order and, moreover, the scalar field expectation values - which may describe
spontaneocusly broken internal symmetries - are given exactly by the zercth

order result (i.e. are not renormalized).

5} A basic aspect of supersymmetry - and on which may be associated with
developments of physical significance - concerns its reletion to the curved
spacetime of gravity theory. This would be the generalization of spacetime
to a manifold which includes anti-commuting c-numbers g (¢ = 1,2,3,4) along
with the femiliar xu . The notion of such an extension of flat specetime
was used to define superfields &(x,8). But the curved space generalization
in which the metrie field guv(x) becomes one part of a superfield remains
to be made eonvinecingly. The problem of finding & supersymmetric extension
of Einstein's gravity theory is being tackled now by many authors and much
progress has been mede. However, the picture has not yet become quite clear

and we shall not attempt to discuss the generalization of Einstein's theory.

It is our purpose in this paper to elucidate the developments (1)-(L4}
using the superfield nctetion throughout. Some of the results are published
elready; others are new. We feel, however, that it is worthwhile to cover
the entire development from this unified viewpoint.” One feature of our
presentation is that, from the outset, a fermionic quantum pumber is defined
in the suypermultiplets - often at the expense of space reflection symmeiry.
In the past this has been done more or less as an afterthought. In view
of the intrinsic importance of this quantum number in particle physics we

believe the present treaiment may be more epposite.

One should ask the question: 1is this very elegant development made
use of by nature? At present the enswer seens to be in the negative. Now
the photon and a neutrine could have shared a supermultiplet - this would
be especially plausible after the recent developments concerning unlfication
of weak and electiromagnetic intersctions -~ bhut, asz we shall show in See.V,
it seems that if there is 2 neutrinc accompanying the photon it is probsbly
a zoldstone particle, Such a Goldstone neutrino, arising from the sponteneous
breakdown of supersymmetry, is unfortunately subjeect to low-energy theorems
which make its identification with the observed Ve or Uu urlikely. The
neutrino which partners the photon may yet be found. The spin—g-object which
accompanies the graviton (spin-2) may have a fundamental role in full gravity
thecry - for example in circumventing singularities of specetime. On the

¥) A number of reviews with extensive lists of references are asvailable. 5)
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strong interaction side, the only indicaticn of a symmetry among baryons
and mesons appears to be the unversality of Regge slopes but this could, no

doubt,.be expleined in other wavs.

SECTION I
(A) SUPERSYMMETRY AS & HIGHER RELATIVISTIC SYMMETRY

The concept of a fundamental symmetry between fermions and bosons is an
intriguing one. It belerngs to the class of so—called "higher" or relativistic
symmetries in that its basic aim is to unite in a single multiplet, particles
with different intrinsic spins. In the past such relativistic schemes have
been concerned with the problem of uniting, for example, pseudoscalar with
vector mesons or spin %—baryons with spin %—barynns. Supersymmetry, however,

. L1 .
is concerned with the uniting of scalar and wvector bosens with spin E—fermlonSA

In order to clarify the relationship of the new symmetry to the old
proposals for uniting different spins in one multiplet, it i8 necessary to
digress briefly on the structure of the latter. One of the simpler such
was arrived at in the attempt to meke relativistic the SU{k) and SU(6E)
symmetries of Wigner, Girsey, Radicati and Sakita. The SU(6), for example,is
& phenomenclogical attempt to elassify the hadropic multiplet structure which
could be expected to emerge from the quark model if the dominant forces are
independent of spin. Thus the low-lying meson states, pseudoscalar and vector,
are expected to fill out a 35-dimensional representation of SU(6} while the
low-lying baryons, sping %-and %-, are expected to £i1l a 56-fold. In predicting
these states as well asigeveral other respects the symmetry SU(6} is successful .
However, and this is the mairn point for our discussion, the Wigner-Giirsey-

Radicati-Sakits symmetry is essentially non-relativistic. Its most distinctive
feature iz the presence among its infinitesimel generators of a set of operators
which carry one unit of angular momentum. These are the operators which
connect the states, such as n+ and p+ . Whose spina differ by one unit.

These generators behave in a well defined way under space rotations but not
under Lorentz transformations, In a relativistic theory such operators make

no sense; if the symmetry is tc be taken sericusly, they must be supplemented
Y new operstors so as to fill out Lorentz multiplets. A number of attempis

were made in this direction. One of the simplest wes to embed the 3-vectors of.
Gursey, HRadicati and Sakifta in antisymmetric b-tensors and this was achieved by

enlarging SU{6) to SL(E,€)-. The latter is in fact the smallest relativistic
symmetry which cas contain SU(E).

Unfortunately for SL(6,C), it is & non-compact group. This means that
its irreducible unitary representations are all infinite dimensional. If the
particle spectrum is to be classified in unitary representations of this
group, the T and p mesons must then be accompanied by an infinite sequence
of particles, making the scheme(at the least) unattractive., All attempts at
relativistic versions of the spin-containing symmetries met this phenomenon

which came to be known as & no-go thearem.
was alsc based on
Like many no-go theorems in physics, this one apparentlchertain hidden

assumptionsand we shall explain shortly how it is circumvented in the super-

symmetric framework.Briefly, the difficulties with SL(6,l) were concerned with
extra internal "dimensions" implieit in the symmetry. A rather pictorial
unitary representations
understanding of the infinite-dimensionality of SL(G,C)'S[can be obtained by
the method of induced representations., Thus, if SL(€,0) is resclved into
cosets with respect to its meximal compact subgroup SU{6) then one abtains
a 35-dimensional coset space on which the full group can act. Now what can
these 35 real varisbles signify? The snswer is that they must constitute an
"internal" space with 35 degrees of freedom. It is these internal degrees
of freedom which manifest themselves as aninfinite degeneracy in the particle
spectrum: theyi%%ntribute any amount of spin but no energy. In snother version
of SL{6,C) symmetry, one of the Lorentz tensors - an SU(3) singlet - among
the infinitesimel operators is identified with the generator of Lorentz trans-
formations on space-time itself. TFor this to meke gense it is necessary to
embed the space-time co-ordinates, xu , In a 72-dimensional manifold. This
time the new degrees of freedom contribute to the energy and one finds that,
in the rest frame, energy ranges over a continuum. It is diffiecult to

imegine how all the new dimensions could be accommodated in & physically
meaningful theory.

The difficulties Just outlined can all be avoided by the simple

expedient of asscciating the new dimensions with anticommuting varigbles.

Indeed, it is now rather hard to understand why such a simple solution was
not thought of long ago- The idea is to consider fields, &(x,8), which

are defined over the prcduct of the usual space-time, labelied by four co-
ordinates xu » With a new space labelled by & set of anticommiting c-
nunmbers, Bi . In order to see how the new degrees of freedom are controlled
one has only to expand the field ¢({x,8) 1in powers of B and notice that

the series must terminate after a finite number of terms

P T
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1 1
Axad) = o) + 0y (x) &, + 30,0 0,0, + e fray () B0y o
; I.1

vwhere N denotes the number of independent components Bi . Because of the

anticommutativity among the ei ,the coefficient fields ¢ (x} must be

i.i ...
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completely antisymmetric and there can therefore be only a finite number of

them.

It remains to be shown, of course, that a consistent group theory can
be established on the space of x and & . Such extensions of the Poilncaré
group do exist and a minimal example will be discussed in detail in the
following sections. At this stage we remark only that the new dimensions
must have a spinoriel character in keeping with their anticommutativity
as demanded by the TCP theorem. Thus, if in the above
expansion ¢{x) 1is a commuting scelar field, we should like the next member,
¢i(x) ; to be an anticommuting spinor field. For this reason the new
relativistic symmetry must combire bosons with fermions and its infinitesimsl

generators must include some which carry & half unit of angular momentum.

(B} THE MINIMAL FERMIONIC EXTENSION

The smallest spinorial representation of the homogenecus, proper
Lorentz group is the two-component spinor. It follows that the minimal
fermionic extension of four-dimensicnal space-time which can be conceived
is made with the two complex (or four real) compoments of such spincrs. This
is the manifold on whick is based the relativistic symmetry known as super-
symmetry. In order to esteblish a notation,we discuss now some of the

¢lementary features of this manifold and of the functions defined over it.

Since the concept of the four-component Dirae epinor and the
associlated apparatus of Dirac matrices is more familiar to physicists than
the two—component (dotted and undotted) spinors and their associated matrices,
we choose to work with the former. This is purely = matter of notaticn:

the two-component spinor is identifiable as a chiral projection of the Dirac

spinor. Now, a Dirac spinor has two chirsl projecticns (for the definition see

Eq.(1.10) and in general these are independent. However, if the Dirac spinor
is subject to a reality condition (the Majorans condition) then the two
chiral projections are related by complex conjugation. This means, in effect,
that the four reel components of a complex 2-spinor are identifiable with
the four real components of a MajJorana spinor. It is possible to set up =

one-cne correspondence between 2-spinors and Majorana spinors.

-5-

Our main conventions are a&s follows. For the metric of space«time

we take

nuv = dilag(+l,-1,-1,-1} (1.2)

and write the scelar product of two Wb-vectors

B = = - - - (1.3
AB AR, .8, AR AR, AB, )
(There is usually no need for the more exact but cumbersome
notation A-B = nw Au B\) = AuBu = .n’LT"lB]_l . The only point where confusion
could arise 1s in the use of the gradient au = BIBxD » —B/Bxl N —3/3::2 B
—B/Bx3.) The Dirac matrices, Yy  8atisfy the anticommtation rule
(1.4)

{Yu'Yu} = 2 My

The frequently employed tensor and pseudoscalar combinations are defined by

=1 -
T T N A LR A T (1.5}
With these definitions it 1s always possible to choose a representation in
which the matrices YO’ 012, 023, 031 are hermitian while Yl’ YE’ Y3, YS

and a are antihermitian. Arnother important matrix in the

01° Y02* o3
considerations which follow is the cherge conjugation matrix, C , whieh

relates Yu to the transposed matrix Yi ,

Cry ¢ = -v . (1.6)

The matrix C is necesserily antlsymmetric. (It can be fixed, apart from a
sign, by imposing the further requirements L a.)

The infinitesimal Lorentz transformations are defined by
S, o= X, (1.7)

where m“\J is real and antisymmetriec. The LY-vectors Au and B]-l are
required to transform like xu and this ensures the invariance of the

product AUBU . The Dirac spinor, ¥ ,is required to transform according to

—fm



_ i
& = -F 8y %Y (1.8)
The edjeint spinor m = VJJ-].YO then cbeys the transformation rule ~
& = ¢ e o (1.9)
In Iy uv ' 9

(This comes about because the matrices Yoguv , like Yg» YOYu’ Yo¥s and
iYOYuYS , are all hermitian.)

The transformations (I.8) are reducible.From (I.4) and the definitions

(1.5) it follows that YS commutes with 0].1\) The subspaces on which Ys = =i

and +i are invariant and this means that the chiral projections

1 % iy
W, o= ——=2 ¥

(1.10}

separately obey the rule {I.8). These chirel projections are of course the
two-component spinors of which the Dirac spinor is comprised.

From (1.9) and the properties of the charge conjugation matrix one can
show that the "conjJugate" spiner, UJC , defined by

¥ o= ot

(1.11)

transforms exactly like ¢ itself.,

T

in the equation Ccuv = - O‘WC. This identity is one of a number involving

¢ which may be swmarized in the statement:

The relevant property of C 1Is expressed

YuC and Gqu are symmetric
. (1.12)
C ., YSC end iquSC are antisymmetric

A MajJorana spinor is one for which wc = ¢ or , in terms of chiral
projections,

v = ¢V, (1.13)

The Maj)Jorsna spinor therefore contalns the same information as a two-component

spinor (and its complex conjugate).

Lat tl -t 112 be & peir of ssticoemsting Mejorsr= spinors,
{‘Pl-‘bg} = 0

Then the symmetries(I.12) are expressed in a atatement about bilinear forms:

?Flwrutpz and 0, JYp ere sntisymmetric while wltpg , $1Y5w2 and $li~ru'rs¢2
are symmetric under the interchange of “’1 and lbz .
that IplYulJJl

{Note in particular

and Tﬁlcuvlbl vanish identically for Majorana spinors.)

Now consider some of the detailed properties of the expansion (I.1) for
the case of a Majorena spincr 0O . Because of the anticommutativity among
the four components of 6  there are altogether sixteen independent terms
in the expansion., These cah be conveniently grouped as follows:

2(x,0) = Alx) + Bolx} +  BoFlx) + - Brgo6(x)

+ £ BIvre V(0 + f Bo0x(x) + 53 (80)° plx) (1.14)

where A, F, G, V\) and D are Bose fields, Yy and ¥ are Fermi. Tt is

clear that,with respect to the proper Lorentz group. A, F, G and D are

acalars, VV is a vector while

Y and ¥ are Y-splnors. We shall defer

discussicn of the improper transformaticns.

The product of two such expansions must again have the same form
and this can be verified, Thus if

0, (x,8) &,(x,8) = &,(x,8} (1.15)

then the components of 153 are glven by
Ay = M4y
Yy = Ay b
C
3 ATy - ¥V, + Fidy
e
3 A0, WYY, * GiA,

B -
3v T AV T LYY, VA,

e}
n

(7]
L]

-8-
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Xy = At W Ty = vl Gy + T YWY,
*oxphy ¥ ¥y - Y, - VIS,

Dy = AD,* 2FF, + 26,6, + 2V V, - 28y, - ax{¥, + DA, . (1.16)
In deriving these expressions we have assumed that § commutes with Bose
fields and anticommutes with Fermi fields. A further assumption we shall
make is that the order of anticommuting factora is reversed by complex
conJugation. With this understanding the bilinears &6 , 5756 and

ﬁiyuysa are"real”while, for example,

(Byl* = o = &° .

and this bilinear is real if ¥ is a Majorans spinor.

Derivatives with respect to the Majorana co-ordinates 8 are

defined by

B(x,0+58) = &(x,8) + &5 B—E $(x,8) (r.am)
]

to leading order in 66 . Since 9 and &8 are anticommting quentities

it is important to remark that the infinitesimal &8 is placed to the left of
39/36 in (I.17). This is a convention we shall adheve to. The derivetive defined

here has the usual properties of a differential operator with two important

exceptions. Firstly, when applied to the product of two functions its

effects are distributed according to the rule

3 29

3 1
= (90,} = — ¢, ¢ ’ (I.18)
172 I

vhere the +(-) sign sapplies when @l ig bosonic (fermicnie}, i.e. when
68 commutes (anticommutes) with 9 . Secondly, the product of two such
differential operators is antisymetric,

9. 3 _ _ 9 3% X (1.19)
35 58° 3° a®

Applied to a genersl function 1ike (I.1L) the derivative takes the explicit

form:

¢ . L
5 b3 (F+ Y56+ 1YYV, )0

+ 5 lE0+ T5Trg0 + iyvysﬁiyuysﬁ])( + % T (1.20)

This formula will prove useful when we come to define the action on component
fields of the extended Poincaré group (Sec.(C)).

Finally, it is necessary to make some decisions sbout the discrete
transformations P and CP . There are two possibilities. The first is
to refuse to assign any distinctive quantum number to the spinerial
components Y and ¥ . In this case,if the scalar and vector components
of #(x,8) are real, then the spinors should slso be real (in the Majorana

sense}, i.e.

#(x,8) = o(x,0)% (I.21)

and there iz no concept of fermion number. With such an interpretation one

can gssociate the transformation
9 > iy,8 (.22}

with space reflection. The component fields A, F and D are scalars,

G a pseundoscalar, Vﬁ an axial wvector.

is that we srrange that
The elternstive possibilitykthe spinor components ¢ snd ¥ are distinguished

from the Bose components by a fermionic quantum number. There is only one way
to do this and it means sacrificing the space reflection. Suppose the positive
chirality combination of co-ordinates 9+ carries unit fermion-number {as
well as one-half unit of spin). It follows that €_ carries minus one unit -
Clearly the transformation (I.22} reverses the fermion number,

8

*

- iyoe¥ .
This transformation can no longer be associated with a simple space
reflection. Rather it must be assoclated with combined space reflestion and

antiperticle conjugation.

10~



The phase transformationsz assocciated with fermion-number,

6, —+ eiiu' 4] or 9 >+ e 3] (r.23)

*

+

can now be applied to the functiom ®(x,0) . Suppese this function trans-

forms according to

s
3{x,98) -+ o(x,e “8) . (T.2k)

Then the component fields transform saccording to
A + A
G‘Ys
voroe Y

s
Ftig + &21% (52 1q)

v v

~aY5
X * =€ X
D +» D

{I.25}

To summarize, the boson fields A, V\) and D carry no fermion-number while
F + iG carries two units and F - iG carries minus two units; the chiral
spinors ¥_ and X, carry one unit while ¥, and ¥_ carry minus one
unit. These assignments are of course compatible with the reality condition
(1.21).

We ahpll return leter to the problem of defining both parity as well

as fermion-number in this framework.

(c) SUPERTRANSLATIONS

Having established a notation and described scme of the properties
of the extended space-time and the functions ®{x,8) defined over it, we
are pow in a position to discuss the Poincaré group and its extension.

Firstly, the action of an infinitesimal Poinecaré transformastion on

x and 6 is given by

11—

§x = b +uw X
M u v v
N (1.26)
8¢ = - N m'L-l\o' cwe
where bu and mu\} = —m\m are infinitesimal real parameters. The new
transformations, which we shall call supertranglations, are given by
i -
§x = = B
uT 2y
{1.27}
§0 = ¢

where € is an infinitesimal anticommuting Majorans spinor. We shall assume
that the components of £ anticommute among themselves, with 8 and with
all spinor fields.

The peculiar feature, expressed in {I.2T}, that a "tranalation" in the
MaJorana co-ordinates 6 is associated with a 6~dependent translation in
the space-time co-ordinate X is highly signifiecant and gives rise to the

many unusual characteristics of supersymmetrie theory. But first we must

verify that the infinitesimal transformetions (I.26) and (I.27) form an algebra.

Apply to x and 0 two successive infinitesimal transformations

characterized, respectively, by the parameters bl, wl, E:l and 'b2, m2, 52;

b, 5, *p = w"w X, 4 E AR AR Y

1 4 Tt
w'" (b‘v e ET.,O)

]

uafo;re -\-'t'.")
(m'" v o+ E’Y,.e‘) + u'"w}vxv

E'Yru;’,e;f,)a

+
Mmie -
oo
)
t
FYR N

.‘“v

“12-
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. r]
6,506 = - . ml“' Sy 5,6
= i it ¢
=z o 3 wr“c—?‘ ( 3 ”Rp 7‘?9 +
1, 2 M t
= _ 2(_31.;“ m"P o‘w G‘,P)O - waﬁ"‘,E

Now apply these variations in the reverse order and subtract to obtain
1 2 z | . ' 2
[5,,5.] xr = (Ww bv -w" b'll + 4 E '(r,a

+

——

d‘f m}’ - m’w m;v) Xy

(e ) ke

[N

[6.870 = _ i (wyuhy - o) 5 - isulaede),

from which it is clear that the commutator I62,61] is equivelent to a third

infinitesimal transformation 63 y characterized by the parameters

3 _ 1 2 2 1 J—— 2
bu = muv bv - wuu bv + i€ Yue
3 1 2 2 1

w = w_ w - W
e wp v T Mup ey

3 _ i 1 2 2 1

€ i Up\)(mu\) € Wy E }

(I.28)

The infinitesimal transformations do indeed form =n algebra snd, what is

more, they can be integrated to yleld finite transformations.

A pure supertranslation integrates gquite trivially to the finite
form

-13-

(1.29)

It is interesting to note the form taken by the product of two successive

supertransiations,

i =21 i1, =2
xu+xu+2eyue +2(e +E)Yu9,
1 2 (1.30}

8 + 6+ +6e

which indicates thaet aspace-time tra.nsl?ition, 'E'ElYuﬁz emerges when two

supertranslations are compounded.

In order to treat the representations of the symmetry defined by (I.26) and
(I.27), we shall set up an sbstract algebra of the infinitesimel generators.
Firstly, notice that the asppliceticn to xu and 6 of the filrst-order

differential operator,

§ = b -2y

i 3 -|o i
k% T 2 %ka xncak-x?tanc+5%xl_:]+€[_-+5?a]’

39 a8
(I.31)
reproduces the formulse (I.26} and (I.27). This differential operator can be

looked upon as a particular realization of the ebstract operstor,

= L L =
F(8) = T l:hKPIC -39 Tt ES:I s (1.32}

which defines the infinitesimal generaters F, J &and S5 . Moreover, the
commutator [62,611 = 63 , derived above, can be locked upon as a particular

realization - in terms of differential operators - of the algebrale statement,

EF(GE),F(Gl)] = F(53) . {1.33)

To deduce commutaticn rules smong P, J and S 1s now straightferward. On

the left-hand side of (I.33} substitute for F(dl) and F(ég} the linear ex-

, ml, sl and b2, mE, 52, respectively.

On the right-hand side substitute for F(63) using the values for b3, uJ3, 63

. i
pressions (I.32) with parameters b

given in (I.28).The resulting formula is an identity in the parameters
bl, wl, El and b2, we, 52 . By comparing the coefficienta of these

parameters one arrives at the fellowing set of rules:

-1h-



]
o

[2,.P,]

1

T [(Bodpd = By ~ny, By (1.34)

1 -
i [Juv’JKA] LYY JuA LYY JHK + T Toe ™ e Fur

[S Ny ] = 0
o H {1.35)
= L
[SQ,JW] = 3 (cqu) o
{SG’SB} = _(YHC)GB Py . (1.36)

These rulee are of course obeyed by the particular realization (I.31), in terms
of dlfferential operators, from which we started:

- P = i3 ,
u H
= L 2.
I i(xuav - xvau) -3 ] O = (1.37)
g =

i [§E-+ % #h]

The gubalgebra (T.3L) ig,naturaily, the familiar set of Poincaré rules. The pair

(r.351 merely indicates that the supertranslation generator S transforms
as a Dirac spinor under Lorentz trensformations and is unaffected by space
translations. The enticommutator (I.36)which closes the system reflects the
truly novel aspect of this symmetry. That it must be an anticommutator
rather than a cormutator can be seen in several ways. Notice firstly that

the matrix Y“C is symmetric. Secondly, the differential operstor expression
for S involves the anticcommuting operator 9/38 . This differential
operator anticommutes with £ ,which means that, in general, S should anti=-
commute with €& . Going back to the commutators(I.33)and keeping cnly el

and 52 cne finds
=1 ) -1
le7s , €8] = & YUEEPU (1.38)

and, on using the antlicommtativity of & with S , this yields the anti=-
commtation rule {I.36). )
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The sppearance of an anticommutator in the algebralc siructure is
a new phencmencn in particle symmetry. Tn the mathematical terminelogy the
system (T.3:)-{T.36) is called a graded algebrn, The linear operators TF($)
given by {I.32) belong to what is called an "extended Lie algebra" in that
some of the co—ordinates € belong to & Cressmann algebra. { Mathematical
precisién in such matters will not be emphasised here . Most of
the mathematical operations needed here are quite elementary and are
familiar to partiele theoreticians. }

We conclude with a remark on the fermionle quantum number.
Corresponding to the phmse transformations (I.23} which serve to asaign one
unit of fermicn-number to the pasitive chirality component 6+ , One can

define the cperator

P il , (I.39)

which commutea with Pu and J"N and with 5 gives the commutator

[s ,F] = 1755 . (1.40)

This shows that 35_ carries one unit of fermion-number while S+ carries
minus one unit.

(D} UNITARY REPRESENTATIONS
In crder to generate a unitary representation,the operators P, J
and S must be real. More preclsely, the Yinear form

iF(§) = b P L s

W T2 Y

+*
n

must be self-adjoint. Since the parameters b and w are real numbers

while £ 1s a Majorana spinor, this reality means simply

+ T
Poo= B, J, = I, . 8 =68 . (1)

Now the unitery representations of the Poincaré group are well known,so our

problem is to f£ind out how these must be combined sc as to form representations

of the extended group. In solving this problem the chiral projecticns S,

Play a erucial role.
16w
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The anbiccro -ator (1.36) resolves into three distinct pleces when

chiral projentions are taken,

{s, .8} = 0o , {s_,s8} =20,
1+ iy
{s, 8} =- —=2 yCP )
- 2 U U (I.)-J-E)

That this must happen iIs clear from the fermion-number assignments: sinece
there are no operators in the algebra which carry two units of fermion-
number, the anticommutator {S_ s S__} must equal zero, and iikewise for
{s, , 8,}

Since the chiral operator 5_ Thas only two independent components
and since these anticommute with each other, it follows that the product

of three or more of them must vanish,

8 s S --- =0, (T.43)

The same 1s true of products with thiee or more adjacent S+ factors.

The next important remark 1s that supertranslations must leave
invarisnt the manifold of states with fixed h-momentum since St commute
with PH . On such a manifold the anticommutator {S+ 3 S_} becomes
equal to a fixed set of nurmbers, and the operators S+ and S5_  are seen
to generate a Clifford algebra. Since this algebra has just sixteen in-
dependent members - the products with up to four factors of S+ and S5_ -
its one and only finite-dimensionsl irreducible representation is in terms
of % x4 matrices. The manifold of stabes with fixed L-momentum is
therefore reduced by the ection of supertranslations into four-dimensional

invariant subspaces.

On the other hand,the manifold with fixed bh-momentum is reduced by
the Wigner rotatioms into (2] + 1l)~dimensional subspaces where J , the
intrinsic spin, ie integer or half-integer. Taken together, the combined
acticn of Wigner rotations and supertranslations must give rise to invariant
subspaces with 4(2j+1) dimensions. We now show in detail how this comes

about.,

Following the method of Wigner we start with a state at rest,

Py =M , B =0 . (T.1b)

“17=

In this frame the Wigner rotations coincide with the space rotations

generated by J = (7 Jlal and one can ascie that the chosen state

23 J31’
carries a definite anguler mementum J and z-comporent ,jz . The basis
states for an irreducible representation of the Poincaré group are obtained
by applying to the chosen state firstly the space rotations which serve teo

generate the 2341 values of ‘Jz and, secondly, the Lorentz transformations

which generate states with an arbitrary I and P0 = Vge + M2 .

To generate the basis states for an irreducible reprasentation of
the extended Poincaré group we can apply the operators S+ » 5_ and their
products toc the 23+1 rest states and then apply Lorentz transformastions
to the 4({2J+1) states which resuit. We shall suppcose that the original
2J+1 states are amnihilated by S+ . (This is not a restrictive
assumption since, if the original states were not annihilated by S+ s We
could have multiplied them either once or twice by 5, and picked out from
among the resulting states a set of 23"+l states which certainly are
annihilated by S+.) Now multiply each of the 2]J+1 states by 8_ to
generate 2(Ej+1} new states. Since S_ carries one-half unit of
angular momentum,these new states will comprise a pair of multiplets with
spins ,j—% and j-%" .+ Next apply the operator 5 _5_ to the original
states. BSince, in view of the anticommutativity, the product S 5 hes
only one independent component, this operation will generate another
muitiplet of spin J . The rest frame basis is now complete since products
with three or more facters of 5_ must vanish. TIf the original states
carried fermion-number f then, since 5_ carries one unit of this
number, the gtates generated in this way carry f£+1 and f+2 . In sumary,

the rest frame states have the spin-fermion number content

3

1
Jf > (J _Ef‘i'l » (j +§f+l 3 Jf+2 (IuhS)

(For the case J =0 the miltiplet J% is of course absent.)}

Starting with the states |Jz>f which satisfy

Bligre = 13,24

u

28,7, aQ
T.08.%0 = 13,2 3, PO I I L SO

18~



Fl$, >, = 13,7, -

S, >p= 0 (1.L6)
the rest frame basis iz completed by adjoining the states !Jz’l>}+l )
=4+ L
A=tz and 1) 7, defined by
1 _ T
i_s—lj'z>f - z l'szl\;.f#l € X+(A) ?
A
S8 13,0p= =l (1.47)
where the pair of chiral spinors X*ﬂl) satiafy
1 =
z 92 ¥ ) = e (A, (I.L8)
and are normalized such that
XA ygx (A1) = 6,,, ¥ {1.49)
The normalizations are chosen so that all states have the same (positive)
norm. The positivity of the norm is basie to the unitarity of the
representation and it is a consequence of the reality condition
- =T
s, = €35 (1.50)

and the anticommutation rules{I..L2). The last of these rules reduces on
the rest states to the form

1+ iy
—-
{s, ,8} - % Yo€ M

b
or, on taking account of (I.50)

H

1~ iy
{s_, 8} —2-——2 Yo ¥

By means of these rules it is gtraightforward to construct the action of
S on the

states defined by (I.46)} snd (I.47). One finds

-19-

1812 = = I, CEy @),
1 S lhl)!ﬂ = ‘lt>’- X_,(l) + ‘lz>§n leﬂrtl) ’
S |1‘>f4"3 = 2

=T
1 ,cx, (
A h)>fﬂ (C X {I.51)
The states |jz,l> may be resolved into multiplets with angular momentum
1 1
§+% and j -3 but thig will only complicate the formulae (I.51).

To complete the basis system it remains only to apply the Lorentz
boosts. There are many ways to do this,but perhaps the most commonly
used

conventional scheme is the one due to Jacob and Wick.
frame 4-momentum

The rest

p, = (M, 9, 0, O)

is boosted to the general form

pu = M (coshy, sho sin® cos¢,sha sin® sing, sho cosd)

by the Lorentz transformation

(1.52)
~1pJ -16J 1pJ ~iaJ
12
U(LP) = e e G 03 {I.53)
where the angles a, 0, (¢ are restricted to the ranges
0 g < s 0L8x<m R - <@g .
Under this convention the so-called helicity states are defined by
etc. The action of the supertranslation cperator on these boosted states
is obtained from (I.51)} by applying the operator (T1.53} to both sides. From
the fact that S is a Dirac spinor it follows that

-20-
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A =)
L u " S ,
Ul pl 8 (Lpl E(LPI
where the matrix a(Lp) is given by

i i . i i
S99, - 80, TP0,, =08
e 2712 2% 2%%2 2 o3

I.
A(Lpl {1.53)

Onmultiplying both sidee of the bocsted form of (I.51) by the matrix a.(LP)
one obtains the formulae;

5 l? h>f

LYTE

= 2 gAYy, CEON

28 lppi), = a2 W R+ 1pad, (B
.} S I?1t>f-“ = - §. IP2!1>'FN CEI[?.)) )
{1.56)
where the spinor coefficients ui(p,)t) are defined,
1+ :l.'»f5
w (p,d) = ulp,i)

1% 1y

= 2 al) U+ y,) X, -

The spinors u(p,A) are positive energy solutions of the Dirac equation,
(M) u = 0, and are normalized by

LZ_'_(_p,A) u_(P:A') = M 61)\' »
j.e
E(Pa}\) u(PaA') = 2M S}A'

The formulae (I.56) which express the sction of S on the states of
an irreducible representation of the extended symmetry tske the form given
regardless of the boosting conventions. Such conventions affect only the

functional form of the spinors u(p,A}.

-21-

Thiz completes the discussion of unitary irreducible representations
with a finite mass. These representations are labelled by three perameters,
M, J and f , and generally incorporate four distinct irreducible
representations of the Poinearé group (as indicated in(I.L5)}.- 1Inm
the remainder of this paper,which is concerned mainly with renormalizable

Lagrangian models,we shall meet only two of these,
(1} The fundamental representation, £ =J = 0, with Poincaré content

. .
0, ® &, & (),

and of course the antiparticles
1
(O)0 @ (2)_1 @ (0)_,
{2) The "vector" representation, f = -1, 3 = %. with Poincaré content
L L
(1, @ (0)0 @ (1), @ (2)1 »

which 1ls self-conjugate.

(%) GENERALTZATIONS

To conclude this chapter on the purely group theoretic mspects of
the relativistic symmetry we shall consider very briefly some possgible
generslizetions. The fermionic extension of the Poincaré group dealt with
above was a minimal one in that it employed a single Majorana gpinor. The
most significant sacrifice imposed by the minimality requirement - combined
with the ldes that the new spinor co-ordinates should carry a fermion-
nurber - is  the loss of space reflection symmetry. If this is to be

restored then a generalizetion is needed.

~22=



The simplest generalization is from Majorans to Direec spinors which
can be subjected to complex supertranslations. The formulee (1.27) are simply
repleced by

- i G
-——— £
EY“B 2 OV

] [

Gxu =

% (1.58)

vhere @ and ¢ are anticommuting Dirsc spincrs. It is a simple matier

to prove that these form an algebra. The anticommutator (I.36) is here

replaced by the set

(s, .80 =0 , 8,80 o

B

?

=B _ B
{Sou . 571 = (Yu)cu. Pu ’ {I.59)

where 8§ and § (In unitary representations
= _ af
§=8 YO.)

are independent generators.

they are related by hermitiasn conjugation,

The complex sxtension characterized by (1.59)1is certainly compatible
with reflection symmetry and fermion number. Thus, for example, all four
components of 5 can carry one unit of fermion-number and this is clearly

congistent with the parity transformation S - YOS .

The fundamental representation has sixteen independent rest frame
states. These can be defined by succeasive applications of So; to a
"lowest" state |0>_2 {carrying zero spin and fermion number -2) which is

annihilated by g* . The successive states {all of the same mass) are;:

o>,
lay 5
I0‘5>0

logy

]a8Y5> o

4190 2
smsB|0>_2
sasBsY|0> =

8,8 BSYS 5 | 0> >

{1.60)
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They comprise: a scaler difermion and its
antiparticle; +two spln J-z_;-particles of opposite parities and their anti-
particles; two scalars, one pseudcscalar and one polar vector, all

fermionically neutral.

In Section IV we ghall present a renormalizable Lagrangian modei for
this multiplet. It is arrived at iIn a rather indirect way as a special
example of & class of models which, although based on the Maj)orana super-

symmetry, are set up in such a way that perity conservation emerges.

Further generalizations of the supertransiations are easily invented.
For example,

= 1=
Sx, = FE T8
B 75 {1.61)
where ek and e:k , k=1,...,N, are Majorana spinors. This scheme admits

an O(N) symmetry with a consequent enrichment of the multiplet structure.
This multiplet appears to exhibit an SU(2n) structure in the rest frame,
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ATwsy :s
W LC.'AL SUFERFIELDE

In Section T a +t ¢ symmetry waz defined in abstract terms.
Through their action on the co-nrdinstes of an enlarged "space=time" the
s{lpertransla.:ions were seen to constitute an extension of the group of
inhomcgeneous proper Lorentz transformations, the Poinceré group. Con-
sideration of the algebra of infinitesimal transformations led to the
formulation of commutation and anticommutetion rules among the generators.
On the basis of these rules the unitary irreducible representations, or

"supermultiplets", were analysed.

By means of such considerations a general understanding of the new
symeetry is achieved and it becomes possible to formulate dynamical statements
in the form of selection rules, identities among scattering amplitudes, etc.
Te reach a deeper understanding it is necessary to formulate & local field
theory for the supermultiplets and to set up Lagrangian models for its
realizaticn. A necessary firet step in this programme is the concept of

the local superfield which we now consider.

The prototypical local superfield is the real scalar function @¢(x,8},

whose expansion in powers of O was given previously,
1 1
o(x,8) = Alx) + Byix) + T BOF(x) + T §Y59G(K) +

+ EBIv Y0 V00 + 88 B(x) + 55 (B0 D) . (1ra)

This field is loeal if it commutes with itself at spacellke separations,
[8(x,8) , ®(x',6")] =0 , (xx""<0 .  (1I.2)

This definition of locelity is compatible with the usual requirement that
ordinary Bose flelds commute among themselves and with fermicnic fields
while fermionic fields anticommute among themselves {always at relatively
spacelike points). To ensure this compatibility it is necessary cs.nl_\,r to
require that the spinor co-crdinates 9 and 6' anticommute with each
other and with the spinor field components y(x} and x(x) , on the one

hand, and commute with all beson field compenents on the other.

-25-

The wcliom on @(x,8) of = infin. -3imal trensformation from

the algebra of the extended Poincaré group is ¢ -n, according to (I.31),
oy
80(x,8) = b3 - 2w e -x3 +28c vl Lyt stk
TR 2R VAVE an TRAY! vV 2 uv B‘e“ 35 s ?
{11.3)
This formula defines the "scalar" nature of the superfield ¢(x,8) . From

it can be deduced (by substituting the expansion {I1.1)) the transformaticn

properties of the various component fields. Thus, with respect to the

Poincaré group, A, F, G and D are scalars, V is
a vector, ¢ and ¥ are spinors. The behayviour of these components under

a pure supertransiation is glven by:

S84 = EY ,
0 = (P4 yG+iv YV - ifa) e
2 5 w5y
1- 1-
F = '2'8)(-'2'31#4’ '
S 1.,
66 = FErX * 3 Ez}?’ysw .
- 1= 1 -,
8V, = ZELYYeX * 5 ELfLy vob,
I : s dur
dy = s (D - ifF + Yslﬁc - iyvyslﬁvu) €,
= -Efx . (31.4)

Fermion-number is assigned accordlng to the convention of Section I,
i.e. 6+ carries unit fermion-number, ¥ = 1 . If the superfield &(x,0)
as a whole is required to carry F = 0 , then the following distribution of
F values is implied:

F = 2 F + iG

F =1 Vs X,

F = 0 A,V, D,

F o= -l LA G

F = -2 : F - iG . (I1.5)
26~



These assignments are compatible with the reality condition These results are easily verified with the help of the differentisl cperator

expressions for the generators (I.37}. From (II.7}! it follows that the

#(x,81% = o(x,6] {11.86) covariant derivatives generate a "supertranslation" algebra of their own,

which may be imposed. This condition would imply that Bose components A,

F, G, V.u and D are real, while spinor ¢omponents are subject to the Majorana {Da ’ DB} = '(YUC}O-B iau . (1I.10)
condition,

Again it is useful to distinguish the chiral components D since, for

54

T =T
= Cx instance, positive chirality components anticommute and the successive

b= d$ » X
application of three such differentiations must annihilate any superfield.
(In tsking the complex or hermitian conjugste of a superfield it is always

_ % _ _
necessary to reverse the order of anticommuting factors; (By) = yo = ECwT ,
ete.)

The covariant derivative is basically a Majorsna spinor and for this resson

it is useful to define the conjugate from i) by

In general the superfield ®(x,8} 1is locally irreducible. By this 5 = '1)“'8 D

(c Dg or B, = D3¢ (11.11)

we mean that it cannot be decomposed into a sum of distinet, Independently

transforming components without the intervention of non-local operations.

The usefulness of these operators lles in the fact that i) D+ and
(In this it is anslogous to the ordinary vector field Vu(x) which can be =

. t DD are invariants of the extended group. Applied to one superfield
expressed ss the sum of transverse and longitudinel parts, Vl-l =V + 3¢, -

> 2 $(x,8) they yield another whose compcnents transform in exactly the same
only with the help of the non-lccel operater 1/3° , i.e. ¢ = (1/3%) BUVU.

wey. OUut of these operators and their products we can construct invariant
However, such a non-local decomposition is of considerable help in understanding , ) . . . .
projections. We begin with some simple identities.
the structure of the representation (II.h) and its derivation will be our
first ta.sk) The most useful identities are +those  which spring immediately

from the anticommutativity ameng components of the same chirality,
An importent rcle is played in the derivation by the operation of

; . : . . p : £ _ _
covariant differentiation The govariant derivetive o ® is defined by D+(D D+) - 0 and D (D+D_) -0, (1I.12)

3 s . s : .

D¥(x,8) = [ .. % (?ja)] ¢lx,8) . (I1.7) vwhich imply the identities

30

It is covariant in the sense of transforming like a spincr, (D+D_) Di(D_D.,.) =0 . (11-13_)
fo, 7.1 = L g D (11.8) Repeated use of these identities together with the anticommutation rules
uv 2 Tpw 77 )
1% iy

with respect to homogeneous Lorentz transformations and an invariant with {D+ . ]‘j+} = 2_2 i? ,

respect to translations and supertranslaticnsa,

enables one to demonstrate

[}
o

[0, 2,

o, s} 4° (5p,) o)

1}
o

2
(11.9) [(5-D+)I (f’+]:}-]| ]

. 2
[(ﬁ+n_)(ﬁ_n+)] - 4% (5,p) (Bn,)

27
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These formulae then imply that the nonwlocal operators

1 =
E, = -~ 7 (ﬁ_.p_l (D_D+l R
43
E = - == (5p,) B,0)
- 132 -+ +7. (IT.1h4)
3
ere ldempotent and orthogonal, i.e.
2 _ 2 _
E, = E . E = B_ , EE =0 . {(11.15)

The operators (II.14} are twe of the projections needed for the decomposition

of ¥{x,8) . There exists only one more snd it is glven, of course, by

a2 m -
R
2

= 1+ (Ep)° .
b3 {I1.16)
The decomposition of &(x,8) corresponding to this non-loecal
resoluticn,
®(x,0) = (E+ +E_+ El) 2(x,0) ,
= ¢+(x,9) + ‘D_(x,@) + ¢l(x,6) . (IT.17)
is given explicitly by
A = A+ +A + Al .
o=y vy 4 ‘JJl .
F = F, +F_
G = iF+ - iF
Vo ARA - HBA 4V
X o= -ipy, - 1R+ 1fy -
_ 2 2 2
D = =3 A* -3 A_ + 3 _Al (1I.18)

-20.

where le is tranaverse and V¥, are chiral. The expressions (I1.18) can be

solved for the lrreducible components,

- AN I A
Ai = h—[ﬂ—azD]*'eazauvu.
1t iy
1 5 1
‘l’t = 'é' 2 [‘P—g){]-
= =
F, = g (FF18), (11.19}
1
Al = E[A*-;?-D)s
= 1 1
¥ o= 2[¢+1—;X]-
39
v, = |n -—u]v
1u Y 32 v ? (1r.20)

some of which are seen to be non-local . Only if the components Y and D
are themselves firat and second derivatives (d)(' and QED' of some local
fields x' and D'} =an the original superfield be considered locally

reducible; otherwise it is not.

The transformation behaviour of the reduced components (II.19} and
(II.20) can be deduced from (II.b4). One finds,

Sa, = EQM, ,
sy, = T~ iface .
oF, = -E,ij, (1r.21)
sA, = B,
1.
8, = % [lYustlu - i#Al] e,
8y, = -e9ivsid gl . (11.22)
-30-



The so-called chiral scalaf.representationa (I1.21) and the trangverse vector
representation {IT.22] are of Pyndamental importance in the development of
renormalizable Lagreangian models. TFor this reason it is necessary to discuss
their properties in some detail and,to gain a deeper understanding, from cther
points of view, We begin with the chiral scalars.

Since the superfield &(x,8) from which ¢+ and ¢ are obtained
could have been subjJect to the reality condition (IT.6}, it is clear that the
chiral representations are conjugate, 0_ LY @: We shall therefore restrict
our attention to the positive chirality ¢, - The existence of this kind of
superfield rests on a very simple fact. The behaviour of x and & under

supertranalations is guch that the complex lL-vector

1
= -=B 2] IT.2
zu x‘Pl N YUYS ( 3)
transforms acc¢ording to

qu = iE+Yu6+ . (I1.2L)
That 1z, 0z depends on 8, (or B ) but not on 68 (or 5;) This means
that the space of complex-velued functions, ¢(z,9+), must be invarlant
under the action of the extended group. Since B+ has only two independent
cemponents, the expansion of ¢ in powers of e+ must terminate in the

second order rather than the fourth. Indeed, cne can write
1
plz,0) = a(z) +F v (z) +5 88, Fl(2),

1
- Bpy_8
e ¥ P {A+(x) + By, (0 + 286, 7],

o (x.0) (11.25}
where, in the second line, we have effected the translation z+x by
means of a displecement operator. If the displacement cperatcr is expanded
in powers of 6 and the terms in (II.25) are arranged in the standerd form
(IT.1) then one will find precisely the coefficients which are indicated

for ¢_ in the expressions (II.18}.

Another way te characterize the chiral superfield ¢+ is by means

of a differentisl condition. Thus, the covarlant derivetive of ¢+ is:

-31-

1
TP (g 1
e [ ;-é- - i?a_} [A+ + §_\f)+ + Y 6_._B+ F+} .

1+ 1y
225 g,

indicating poaitive chirality with respect to the spinor index. In other
words, 0+ iz annihilated by the negative chiral part of the covariant

derivetive,

Do = 0 . (11.26

This set of covariant constraints has as its general sclution the expansion
(II.25). The positive chiral scalar is therefore defined by (II.26),

A property of the chirel scalars which is of crucial importance in
the construetion of Lagranglans is their closure with respect to
multiplicaticn,

B,(x,0) ¢,(x,8) =4 (x,8) . (11.27

That the product of two positive chirality scalars (at the same point)
should yield a third becomes evident when they are expressed as functions
AMternatively, the linearity of the differential operator
D_ implies that it will annihilate the product if it annihilates the

of =z and G+ .

L
separate factors. The component fields of O defined by (II.27) are

)
given in terms of the components of ®+ and ¢+ as follows:

A lx) = Al ALK,
00 = 8,(x) v (x) +y,(x) ALGx)
Flix) = a,(x) Pl + 8700 ¢ ulx) + 7 (x) 4](x)

}

)

(11.28)

Generalization of (II.27} and (IT7.28) to products with any number of factors

is clearly possible. Indeed, it is & simple matter to show that the lceal

funetion v(%{x,3))} has the component expansion

-32-
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g, ) =

+

1
- = By D
e v 7 ? [v(_A+l + §_w+ V‘(A+)

+

ne

30, [F+ v'(a,) 4 %wfc‘lw,, V"(AJ] * o (11.29)

where v' and v" denote the first and second derivatives with respect to
the complex varisble A of the function V(A+) . This function must be

analytic in general but, in practice, wiil be restricted to polynomlals.

The sbove properties of the positive chirael scalar ¢+ are easily
translated for the conjugate representation fb_ . Thus, the negative chiral
gealar & is expressible as a function of z¥ and ©_ and one can write

for it the expansion

+ &84y 0
o(x,0) = e ' O [alx)+By (x)+1T0 F_(x)} . {rn.esy)

Such asuperfields are characterized by the differential constralnt
D¢ = 0 . (IT.26")

Finally, the praduct of two negative chiral scalars at the same point yields

a third: negative chirel scalars are closed with respect to local multiplication.

The local product of a negative chiral scalar with a positive one
does not yield a chiral result. This can be seen from the rather trivial
observation that the product of two functions, go(z,B_‘_) and Lp‘(z*,B_) .
must depend on both 2z an d z¥* as well as 8+ and ¢_ . The result
must therefore be a superfield ¢"(x,0) of the general type with which we

began this gection. Its components are given, in the standard notation,
by

A" = A.

.

" 1 1

U= A+ UA

" 1 1

F' = AF +FA .

L 1
G" = -iA JJF_+ irA_ .
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. 1 ' T < 1
v, = WaAl A +A(ABA) Y C oy

(13,8,0 ¥p_ * vyb, (13800 - (139, R N BRI

>
I

2
1

(-3°,) ]+ 2038 (3 A1) + A, (-3%)

v bEF vyl G -y (17.30)

This superfield is clearly not loecally reducible.

The fermion-number content of the chiral superfields is easily
established. Since B+ and €_ carry F =1 and F = -1 , respectively,
it follows from an examination of the expansion (I1.25) that A, llJ+ and
F+ must cerry F = £, f-1 and =2, respectively. The value T ,
associated with A+ is an invariant cf the representation. (We shall
normally take f = 0 so that w+ carrles F = -1 , i.e. LIJ+ serves to
annihilate one fermiocn and $+ creates one.) The negative chiral components
A_ . m_, F_ carry the values -f, -f+l1, -f+2 1f @_ is 1dentified with
CD: . (As a genersl rule we shall pot identify ®_ with ‘P: tut treat it
a3 an independent field with f =2 . With this notationel conventicn,

w_ carries [F = -1 and annihilates a fermion. Note that A ennihilates

a difermion.}

New categories of local representations are obtained by generalizing
the scalar superfields to spinors and tensors of arbitrary rank. That ia,
one regards ®(x,9) not as a single scalar superfield but as & set of
superfields belonging to cne of the finite-dimenslonel representaticrnsof the
proper Lorentz group. With respect to translations and supertranslations,
these fields transform as secalars, but under the homogeneous {proper)

group they transform according to

{x,0) -+ ¥ (x',8") = D(A) ¥(x,8) , (11.31)

where the matrices D(A) belong to. one of the familiar (2.11* 1} (2.]2 + 1)-
dimensional representations, ‘L(Jl,,]z) - or a direct sum of such
representations. This kind of generalization applies equally to the chiral
(*ﬁi) or non—chiral -(Q,tbl) types. Two examples will illustrate the main

features.
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The firat exsmple employs a chiral spinor superfield, (‘J’a_}+ ,
which has negative chirslity with reppect to its externsl spinor index,

{1+ iys) ¥, =0 . {11.32)

end poaltive chirality with respect to its internal structure,

D_¥, =0 . (11.33)

The expansion in component fields has the general form (IT1.25]

1
- By, 0
RAC (.60 + 3t v, + S50, v ]

‘F_+(x,6) =e
(11.34)

vhere U_ and V_ are negative chiral spinors and M isa Y—vector.

Under an infinitesimsl supertranslation these components transform
according to

8u_ = YHE* Mu .
- Jlz.y l:
&, = -SEYV_ -3 s+1p’yuu_ .
&V = i M .
e T A (11.35)

This representaticn is basically compléx. Thus, even with the most favourable
agsignment of fermion-numbers F =1, 0, -1 to u_, Mu and V_,
respectively, it 1s not possible to treat Mu as a real vector. However, if
certain constraints are applied,this representation will turn out to be

equivalent to the real ¢1 . We shall return to this question after setting
out the second example.

The second example employs a chiral spinor, ‘P++ ,which has positive
chirality both internaily and externslly, l.e.

(1-175) ¥, = 0 and D ¥ _ =0 . (I1.36)

Again the expansion in component fields has the general form (II.25),
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' N
AP Y

‘P_H_(x,el =

1
-+ Bfy0
e ! s [U+(x1+ GG+ Fo,, P Glle, + $88, v+(.x)} .

(11.37)
where U+ and V+ are positive chiral spinors, D is a scalar and Fu\J is
a self-dusl antisymmetric tensor. (It is of course the opposite external
chiralities that govern the appearance of a vector M, in ‘!’_+ and of a
scalar-tensor combination D’Fl.lv in ‘P_H_ .} The component fields transform

according to

U, = P*2% FW] N

® = -Liv, -3 140, .

o, = - L €V, - TE1 o0, -

av, = [D + -12-%\, Fuv] ife_ . {11.38)

This representation also is basieally complex but capable of being made

reel by means of certain constralnis.

¥ow consider the representation (II.35) to see 1f it can be made
self-conjugate. Since U_ and V_ carry F = 1 sand -1 , respectively,
we should identify the conjugate of one with the other. For the correct
belance of dimensions and also to heve the correct chiralities, the

asgsociation must take the form

v o= mi?CﬁE N (r1.3%}

where @ is a pumber to be determined. If the identification (IT.39) ia to

be compatible with supertranslations we must have
sv_ = wjestt
i.e. according to (II.3%),

TT ¥
Yuiﬁs_Mu = wi;fc-rﬁcf*Mu ,

*
e,

v ; L

S

R

e

R Sy



Tor arbitrary ¢_ . This gkvea constrajnts on M ., viz.

3,00, + w{l |

L] *
3,01, - w()l - a0t - w)

o
]

o
L[}

{I1.40)

Finally, it is necessary to verify the compatibility of (II.39) and (II.4Q)
with the expression (II.35] for SMu . This requires Jw| =1 . The

phage faptor can always be sbsorbed and so we shall take w=1. To

sumarize, taking

1
M o= =]V, -1
u 2 [ 1p 1311&1]
u = ¢1- .
v_ o= gl = igy (11.81)
- 1~ 1+ * )
where Vlu is real and transverse, Al is real and ml is MaJorana, we

find that the transformations {(IT.35) reduce to the form (II.22), i.e. a

real transverse vector representation.

Simllar considerations applied to the representation (II.38} show
that it too can be real. In this case the reslity conditicns are

v, = 1ol |

i
F 3V - BVVD +

n u'v 2 Buvip (BAVQ = aovk) .

(11.42)

with Vu and D real, The transformation rules (IT.38) then take the

form

1

U, = [D+3 OuU (auvu - avvu) £,
SVU = U+Yu€+ + E+YUU+
- Lg% _Lzgy
D= 3 O,ife, - 5 E, 190, (II.43)

This representation also is related to ¢ though 1t is not locally

1
equivalent. The connectionis made through the non-local relations,
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1
= = D,
A ¥
) av
Yip < [nuv T TE } Vo o
= 1 =T
b= 33 (Ul
or, more cempactly,
v, = i?D_Ql .
(B} GREEN'S FUNCTIONS AND INVARIANT AMPLITUDES

One of the main cbjectives of lceal field theory is the computation
of Green's functiona. The structure of these meny-point functions is
restricted by symmetry consliderations and, in the present case, by the
requirement of invariance under the actian of supertranslaticns. Such
structural constraints are best exhibited by expressing the Green functions
in terms of inveriant amplitudes and we shell examine here some applications
of this ides.

Since it is our purpose to reveal the implications of the new trans-
formations in the extended relativistic symmetry, we shall pay little
attention to the subgroup of Poincaré transformations, which can be handled
in the usual way. It will therefore be sufficient to deal with a system
of fields comprising only chirel scalars ¢+ and their complex conjugates.
The appending of Lorentz indices to such fi;lds g0 as to include non=-
sealar representstions is a relatively trivial modificetion and would not
affect the main argument. (Notice also that the non-chirel real fileld 01
can always be represented by a chiral spinor, W+_ = D+¢1 , and so included
in the general scheme.)

To begin with we shall ignore the fermionile quantum number which
distinguishes ¢_ from ¢: . Insofar as supertranslations only are
concerned, these fields are equivalent. It will therefore be sufficient
to analyse the structure of many-point Green's functions referring to
products of the fields ¢+ and ¢ , only. Afterwards we can introduce

the fermion-number and quite sasily pick out the amplitudes which conserve it.
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A considersble simplification in notation is achieved by amputating
the displacement operators, exp(¥F llfgﬁysﬁ), which always appear as factors
in the chiral superfieids. Thus, we deflne the smputated fields,

$I(x,0} = exp[i %-5#758} @i(x,e) s

A (x} + B, (x) + 258, F(x) , (11.L4)

which depend on only cne chiral component, either 6+ or B&_ (and 6_ or
§+), of the spinor co-ordinate. This property is expressed analytically by

Bl T SN
- 2 - r
, o
2 1+1 od
- . YE -— = 0
- 2 8 {II.k5)

Under supertranslations the smputated chiral fields transform according to

- ~
66+ = E [--_3;-—+ 1;e+] A
aex
A
- a¢+ -
= E o+ E,10,8, . (I1.46)
98, ,

On occasion in the following we shall use the abbreviated notation $+(l) =
N *
¢i(x1,91).

The n-point Green's functions 6 are expressed as vacuum expectation
values,

G(1,...,m) = LojT*d (1} ---8, (r) &_(re1) -+ 8 (m)|0) , (I1.07)

in which the T*—ordering is used so as to simplify the tranaformation
properties (i.e. avoid the complications due to non-covariant surface-
dependent terms). Our main purpcse here iz to consider the implications

of the requirement that & be invariant with respect to the transformations
(I7.45). This requirement is embodied in the single equation

=39
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s

r n
= 3 3 “~
= et —_ G
0 £ Z [ = + iﬁjej+] + E [ = + iﬁdej_]
1 J- r+1l )+
{II.L8)
or, equivalently, in the chiral pair,
r n
= 3 3
¢ [Z 5 Z i’aea—] ¢
1 J- r+1
41 T
- 3 a
0 = [ E =t Z 13‘593+] g .
r+1 J+ 1 (II.hQ)

Fortunately it is quite easy to find the ceneral solution to these equations.
Cne starts by locking for sclutions of the form

& = ey (11.50)

where W 1is chosen to satisfy the inhomogeneous equations

I n

Z —.2..?— = i’ 0 ’
38 } ' 3=
1 J- r+1
n by
W ‘
E ol Z e, - (11.51)
r+1l J+ 1

There are many weys to satisfy these inhomogenecus eguations and we-sghall
return o this question. For the moment assume that one sclution has been
found. On using this W in (II.50) and substituting it inte the conditions
(IT.49) one finds that the amplitude M must satisfy the simplified equations

0 = Z BM ]
T QBJ_
n
0 = Z -~ {11.52)
oy BBJ+

=U40=
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Thus, quite generally, the amplitude M can depend on the chiral co-

ordinapes 61+,...,6r+ ang Br+l_,...,6n_ only through their differences.
For example,

Moo= M8, L.eeesB g3 8o 20 o (T1.53)
where Gjr+ = 83+ - 9r+ apd BJn_ = SJ‘ - Bn_ . There are altogether n-2

guch differences. Further restrictions must arise for disconnected contri-
butions to the Green functionsz: only differences between co-~ordinates
referring to a connected plece are admissible. To simplify the discussion
we shall tacitly assume that only connected amplitudes are concerned. The
expression (II.53) incorporates the supertranslation invariance requirement
for all chiral Green's functicns with only two exceptions. The exceptional
cases lnvolve the products of fields all of which have the same chirality,
i.e.r =0 or r =n, and these must be treated separately. The reason

for this is the imposasibility of constructing.m W satisfying {IT.51) when
all O's have the same chirality. We shall return to the exceptional cases

after considering the form of W .

It is a simple matter to verify that the linear operator

S r (> )
= = i 4]
Wen ™ Er— iéJeJ— + En+ zg:: i¢393+ -8 1 3 me
T+l 1 ¥
(11.54)
n
is & solution or (II.51). (One needs cnly to draw on the fact :E:: Bj = 0
1

resulting from Poincard invarisnce.) The expression (IT.54]) meets all the
requirements but it is not very symmetric in appearance. While regreiting
this asymmetry, we do not feel that it is a very serious shortcoming. We
remark only thet alternative solutions to (II.51) must take the form

W = Wrn + W R
where W' 1is any linear operator constructed entirely from co-ordinate
differences and hence satisfying the homogeneous form of (II.51). By
exploiting thils arbitrarinesa one could construet & more
aymmetricel solution but we shall not pursue the point.
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Finally, we must deal with the exceptional, or what might be called

"monochiral” cases r =0 and r =n . Suppose, then, that r = n and the
constraints (II.43) tske the form

n n 4]
z G § i

0 = -B?J—: and 0 = 11‘16‘{{.8 . (II»ES)
1 1

The firast of these equations indicates that & must be a function of the n-1
co-ordinate differences ejn* . The second is solved by partitioning the

n-1 terms of the sum

n=1

Z 1350, 4 = z Py (I1.56)

1 k

in all possible ways. The partitions involve from cne up to n~l pieces,

P =

iag, @ + -
kt+ Jl Jln+

-+ 13, 8 (11.57)
Jg d ot

For each partition form the monomial
i Pk‘ Pk+ ,
k

which cleerly is annihilated by each member of the partition and hence by the
sum. The equations (II.S55) are therefore satisfied by

§ - Z U‘p‘k_ Py Mepy - (11.58)

partiticns

vhere the sum runs over all independent partitions tc each of which there

correspends & scalar amplitude M{P}'

The other monochiral emplitudes, r = 0, are deccmposed in the same manner.

Soqelexamples of these decompositions are given in Appx. B,vhere they play
an important role in the softening of ultraviolet divergences.

The supertranslation invariance requirement is fully met by the
expression (II.58) in the monochiral case and by the expresaion (II.50) with
M and W given by (II.53) and {II.54) in the mixed cases. If we had heen



dealing with chiral spinor and tensor superfields, these expressions would
st11l be valid, the appropriate Lorentz indices being tacit in the amplitudes
M and ‘M{P} . These amplitudes must of course respect the Poincaré group.
Their decomposition into scalar invariants would follow by standard methods
whi_ch we need not go into. {Even for the case of scelar superfields the
decompoaition of M into invsriant amplitudes, which is Just the problem of
resolving multispinors of rank < n-2, can be quite complicated.)
Having dealt with the supertranslations it is necessary to consider
now the phase transformations generated by fermion-number. On the chiral

scalar superfields these transformations take the form

z -1
u, 8,0x,8,) U = B (x,eT%,)
2 -1 _ -2ia ¢ i
Ua ¢ (x,0 ]} Uot = e @_(x,e 8_) , (1I.59)
at
and so 3_ must be distinguished from ¢+ . The implications are clear.

In the general case the amplitude M must satisfy an identity of the form

A
where N is an integer defined as the number of times $_ ocecurs in G

*
minpus the number of times (b_ oceceurs,
]
¥ o= m{¢) - ue) . {I1.61)

The condition (II.60) plairnly constitutes a falrly strong restriction on the
form of the amplitude M .

To 1llustrate the application of the symmetries discussed here we
list a few simple examples. Firstly, from smong the 2-point functions we

have

~ i
(T*¢, (1) ¢_(2))

n
o
|

<8, (1} 3 (2))

"
5
—
!
@
o
o
vl
s
=

? (11.62)

where & and M are scelar functions of the invarimnt xiE = (:g‘]_-xz,)2 .
The only other non-vanishing 2-point functions are those which result from
(II.627) by reversing the chirality assignments. We shall have more to sey
sbout expressions (I1.62) when we come to the insertion of intermediate

states.
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From among the 3-point functions we have, for example,

iy 82 8,3) = BB ) (8

12-81340 (853 85q,) My.

T, (1) (2 8 (3

em[-§3+(i;191+ * 13282+)] Mo

A 5. AR — . 1
{T*e, (1) @ (2) 3,(3)) e:cp[-<33+(1§1fal+ + 1?292+)] 5008050 M, s

(11.63)

where the scalar amplitudes MO’ Ml and M2 depend on the invariants
Ky s %y and ngxy

The importance of Green's functions in local fleld theorles lies
in their close relation to the quantities of more immediate interest, the
scattering amplitudes or S-matrix elements. The latter are extracted from
the former by means of the limiting procedure known as the LSZ reduction
technique. It is not our intention to derive and Justify this procedure
as applied to superfields but only to point out some of the novel features
and exhibit a finel formula. To this end we begin with a discussion of the
l-particle contribution to the Z2~point functions: the so-called free
propagators.

A scelar supermultiplet of mass M comprises the particle states
|p>0 N |p,?\>l R |p>2 defined in Section I. Now we must allow also for
the antiparticles |fz>~0 , |'p,l>__l , |_p'>«2 vwhich belong to a distinct
supermultiplet of mass M . The actlon on these states of the super-

tranglation generator 5 1is gilven by

Is 2>y = —Z lpA ), cTL(od)
A
%‘S lpAD; = I23q u (A} + [p), u_(p2)

Slep, = -y Ieap, oiltan (11.64)

X

od [

[

A =) FRACE
X

]

ST Y = 1B, Gilod) + [F), 6 (o),

e[

He e

sley, = —Z 22y, v (oA} (11.65)

T

T

DT

S



where u and v denote the usual positive and negative energy Dirac
spinors. From (II.63) and (IT.65) and the field transformation laws (II.L6)

expressed in the form

S0b,88] = T [% + 1jei] 3, .
9,

one can derive a mumber of relations among the matrix elements of the

component fields dbetween the vacuum and the l-particle states. On sultebly
normalizing the components A* and A_ one finds the following non-

vanishing matrix elements:

olaJrd, = 1 v oKBlAJed = 1 ,

Ol ey, = w el ; _(Flulod = v o0,
lrlpry, = o v _oKEIF 0%y = -u v (11.66)
ola_lpd>, =12 v H<Bla_loy =1 ,

Loly_ Iy, = uw el , _{Flv_ [0y = v}
QIF_lpy, = v oKFIF_[0o> =

{I1.67)

With & standard covariant normelization for these states we can compute
their contribution to the sbsorptive parts of the 2-point functions.
Firstly, with %a > Xog @

(s (2) 8 (2 =

- J (T:;% 8(p,) (22 {03, (1) {Ip>O REIE ; lpA», oAl +

+ |p>2 2<p|} 8 (21]0)

= J -—d% 8(p,} §(p°1) e_
{en)

oY <olB,leny, L oA e, 100 + oI, 0. 5,1, H<lat 0>

X

6y, + B, _(pane,, - 53 ¢

-1p(x -x,)
[ s atp)) stePay & P { Yy
(em)3 e

L
8, Gy 3 3] 3 P12~ Pyon

2+ T 2 Y124

Similerly, when X € %o the antiparticle multiplet gives the negative
freguency part. Taken together, these expressions clearly take the form
(11.62) with the amplitude, a , glven by

alx ) = Ak, %) . (11. 68
For the other 2-point functlon one finds a different complexion, Taking

X5 > X, one f£inds

. -ip{x, -x,}
' B = | s olg) 0t") o a7
i

{<0|A+|p>0 J<elatlod + Z 018, v, IpAY | | CRAIT,0, o) +

A

+ oIF, 8,7, 19y 5 ,<pI38,,5, F+I°>}
-tp(x, ~x,} -
- J (_2“!;3 8(p,) s(s2af) e L2 {1 + 8 _(pnio,_ - f'f‘z“ 5. 1+°2+61-}
1)

= ex‘p[—§2+i¢191+] A+(x1-x2 3 M2) .

Similarly when x; < Xx,; - This again conforms with (II.62}, the amplitude
M being Just the Feynman propagator AF . Free propagators for the varlous
component fields are easily picked out from these expressiocns.

Finally, we give the supersymmetric version of the LSZ reduétion
formulae. Consider one of the Green functions

Lo|T#, (x,0} M }0Y, (11.6)

where 1'[(3) denotes a product of superfields the detalla of which do not
concern us. According to well-known arguments,the asymptotic behaviour
(xo + #w} of (II.69) is dominated by the l-perticle contributions. Thus,

formelly, as XD >,
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oltd, (x,0)m0) = | —& —L
<| ax l> J(_Q;?h— pg—M2+iE

<0|A+(x)|p>0 O(p|n|0>+
> Kolgy, ey, (<Kerlnloy + ol or, 0 led, ,<alnio

A
dp i o-1Px nlo
I(a'n) p2—M2+ie [0 <l o7+

+ Z §_u, (pA) 1<p1|1'[{0'> - g-ﬁ_e+ 2<p|]'[[0>] .

More exsctly, the l-particle matrix elements of I are given by

o<oImod + D B uen)  Carlnloy - Bos, ,Caluloy -

A

=i [ ax o [(Pa?) ol xemio) |

(1T.70)

evaluated on the mass shell, p2 = M2 s With Py >0 The various matrix
elements are associsted with distinet ©-coefficients and so can easily be

picked out from (II.T0). Likewise, the antiparticle matrix elements are
given by the integral

Colulgyo+)  <olld)y  Evoh -$5s, oluls), =
A
=1 J dx eIPX [(32+M2‘; <0|T*3+(x-9311|0>] . (I1.71)

2
again with p° = ¥ ana Py > 0 . The equations (IT.70) and (II.T1)
A

constitute the reduction formulae for ¢+ . The same considerations applied
to 3_ yield the reduction formulae

><plnlo> fz B (e {orlmloy -’;—{éﬁ_ o~pl 0y =
A

=1 I ax oP% [(32+M2) <o|T$_(x,e)n|o)] , (11.72)

-

J

Olnls>, +y Ol 8y A - 58,0 olnlFd, -

A

-1 [ e e [P GOl enlod] . gp g

It will be remarked that the two formulae {II.70) and {II.T2) give
precisely the same matrix elements although with different coefficlents.

This 1s & reflection of the fact that, in the asymptotic regiom, the super-

fields ¢+ and ¢_  are related in & simple way.

They behave like free
fieids and satisfy & pair of linear differential equations,

i I
-2DD¢++M@_—0 )
1 b= -
- 5 DD@_ + M¢+ = 0 3
or, in component form,
F¥ + MAt = 0 ]

iy - My, =0

2 =
-BA.‘_. "'IM:F‘i = 0

Such differential equations, and thelr generslizations to the in_teracting
regions where they become non-linear, are properly the subject of Lagrangian

field theory and it is to this subJect that <the following section is
deveted.
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III. SUPERSYMMETRIC LAGRANGIANS

(A) ~ KINETIC ENERGY TERMS AND RENCRMALIZABLE INTERACTIONS

In this section we shall be concerned with the setting up of Legrangisn
madels to illustrate various aspects of the theory. Only through a study of
such models can one see how the new symmetry interacts with the standard

considerations of wnitarity, locality, caunsality end renormslizability.

Now in ordinary Lagrangian fleld theories the Jocality requirement is
met by starting with a local action which is & space-time integral over a local
density functicn of the fields andtheir first derivatives, the Lagrangian. We
ghal]l adopt this rule also for the superfields. However, with fields which
are defined over the eight-dimensional space of x and € , it is necessary
to decide what "density"™ means. A new concept seems to be needed, that of
integration on the anticommuting 8 . SBuch a concept has in fact been
described in mathemetical literature. Nevertheless we shall aveoid eny
explicit reference to this concept in the following.

One reason for avoiding the @ integrsl is that, so far as we are aware,
techniques for dealing with surface terms have not yet been developed and,
while no doubt they will be, we suspect that they will turn out to be fairly
elaborate. Butorrmain reason for aveiding these integrals, however, is simply
that we find we can do without them., All we need to do is mske sure that
any 6 dependence in the action functional is confined to surface terms of
the usual {space-time)variety. That is, we must ensure that the O-dependent
terms in the action density always take the form of space-time gradients.
Such surface terms do nct influence the Euler-Lagrange equations which are
governed entirely by the volume part of the action. These equations will

be supersymmetric (i.e. covarient with respect to the extended relativistic
symmetry) provided the volume part of the asction is an invariant. The
volume part will, in its turn, be invarient if the Lagrangian is a scalar
superfield sll of whose B-dependent terms are spsce-time gradients., Therefore,
the action associmted with a region of space-timemust teke the form

g = ax £{x,8)
volume
= J dx £{x,0) + surface integral ,
volume

where .,f transforms like a scalar superfield,

sd = E[-z-?-ig-;e]f

The corresponding &3 will clearly be represented by = surface integral.

This asymmetricel treatment of x and 8 does not do full Justice
to the underlying extended space-time structure and our only excuse is that

it is expedient.

The 8-independent part of the action density may be characterized
very simply. It must transform like & mixture of at most three local
representations, viz. the D component of the real (non=-ckiral) scalar
#(x,9) sand e real combination of the F compcnents of the chiral sealars
tb_ and ¢t . Recall that these components transform under the action of

an infinitesimal supertranslation according to

&D(x)
§F_(x)

€1 (x)

i ) .

Because of the gradients in these formulae it followz that the volume
integrals of D and F_ (Ft) are Inveriant. Another candidete for the
action density, a real combinastion of F, and F: , must be rejected
because of the rfermion-number which these ccmponents carry. There are no

other candidates.

Now the D compcnent of ¢ is simply the O-independent part of
{T)D)2¢ and the F component of &_ 1is the §-independent part of TD &_
Moreover, the 8-contsining parts of these expressions sre all space-time
gradients, This can be understocd by noting that every applicatieon of the
covariant derivative D = (3/8§ - -12-'— #9) either removes one power of & or
adds one power along with a space-time derivative. Such are the terms of
which the action density is to be made,
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L@ o + B0 +a) . (TT1.1)

Qur use of the covariant derivative here rather then the ordinery 5/38

has no significance for the equations of motion.

Given a single positive chirality secalar ¢+ and its conjugate ®+
wvhat possible Lagrangians can one make? Naturally one must start with
bilinears in order to generate linear, free fleld, equations of motion. It

is not diffieult to convince oneself that only one bilinear is admissible,
= LoEpy? s |2
£y = 5 (B0)° jo | . (111.2)

In terms of comporent fields the 8-independent part of fo is given by

L1 ,%.2 1 2 _ 1 %2 1 . 2
£, o T TERTR 43 13a,1° - £ a3, + $7,03 - ifh, + |7,

_ 2 2 \

= |BA+l + 1'|5+i¢lb+ + |F+| + gradient term (1TI.3}
The gradlent term can be gathered into the 9-dependent part and forgotten.
The active part of £0 is just what is shown explicitly in (ITT.3). It
has the form of a kinetlc term and, taken by itself, would yield the

equations of motion
A, =0 iy, =0 , F =0,

and thelr complex conjugates. The maln interest of the Lagrangtan (III.3)
is that it determines the dimensionelity of the fields. Thus, in natural
units,

5

= _ 372
A = m , [yl = ¥

which is canonieal for scelar and gpinor fields with the kinetic term always
required %o have dimension b4 ,

"
£ = ¥ .
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With ¢+ having dimension 1 it is clear that no interaction terms

can be constructed from this single field without dolng violence to the

requirement of renormalizaebility if fermion-number is conserved. To see

this, note that simple powers of ¢, are forbidden since
= 2 3
Bole, + ¢, + 00+ -0 )

carries two units of fermion-number. The only terms which congerve fermion-

R

number are of the form
=12 2
(BnY© (]e, |

and these have dimension 2n+2. (n a power—counting basis, these terms
confliet with renormslizability for n > 1 . (Recsll that ©D has dimension 1
and for renormalizsbility a Lagrangian must not possess dimensions in

excess of four.)

Similar arguments applled to the case of a single negative chirallty
*
scalar ¢ and its conjugate ¢ leed to the conclusion thet the only

pogsible fermion-number-conserving renormalizable Lagrangiasn is given by

-

£, = % (502 [e_(? - %b’n 0+ A%*) (111.4)
where M is a parameter of dimension 2. This expression reduces to
Ly = laa [P+ g ap_+ I[P+ v+ dert) (I11.5)

plus gradient terms. The eguations of motion are

A_ =0 , iy =0 , F_ = - \

BN - vy

and their complex conlugates.
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Thus, for a single chiral field of either type there is no possibllit

elther
of setting up a nen-tyivial theery witheut vieisting/fermion-number conservation or

tenorzelizebility flowever, for a systen containing two distinct flelds b and
lll__ s one can construct a non~trivie]l interactlon term., This mekes essential
use of the clesure property dlscussed earlier, viz. that the product of two
scalar superfields of the same chiral type is itself a chiral scalar of that
type. Thus, since d’: and ¢+ have pogitive chirality, so toc do their
products ¢t¢+ and Qt@f +  In both of these products the F components
carry zero fermion-number and can be used in the Legrangian. Thus, for the
¢+ N
takes the form:

<b_ system, the renormalizeble fermion-mmber-conserving Lagrangian

£ =% (n)? [:|c1=+|2 + [@_l"’]-% 1313[4»:(5 + M0, + git) + h.c.] , (171.6)

where h.c. stands for the (hermitian) conjugate terms, The
parameters 4, M and g have dimension 2, 1 and 0, respectively. No other
terms are admissible. Notice, however, the lack of symmetry of (TIL.6)
between ¢+ and ¢_ type flelds. Later, when we consider the question of

parity conservation for the Legrangian,this asymmetry will be relevant.

Of the three parameters in (IIT.6) only two independent.combinations
can appear in physically significant quantities such as scattering amplitudes.
This fact reaults from the Invariance of the kinetic terms under the c-
number shift,

2, + 3+ ¢ , (111.7)
where c¢ iz lndependent of x and 6 . Such transformations affect only
the scalar compenent A+ and 1t is clear from formule {ITI.3) that they do

not alter the volume terms in (1/8) (]3D)2 |<I:r.'_[2 . The remaining terms in
(TIX.6), however, change a3 follows:

ﬁ+d+Mc+ch

M -+ M+ 2ge

(111.8}

Otherwise expressed, the field transformstion (TII.7) iz equivalent to the
pearemeter transformetion (III.B). But quantities of physicel interest (the
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gquantum field thecoretic analogues of canonical invarianta)] should not be
affected by a field transformation. Therefore, they should not be affected
by the paremeter change (ITI.8}; they must depend on only two invariants,

g ¥

2 and E’

for example. We may conclude that no generality is lost by teking one of
the parameters, M or o » equal to zero.

Tt will be instructive to examine the companent structure of the
Lagrengian (IITI.6}. By means of the formulae (II.28)and (I1.30)
one obtalns the result

4 - 2 . 2 2
L= laa |”+ T age, + 17,15+ [oa_|* + T ihy_+ |7_|
* 2
+ I:F_(il +MA +Al) - T (M+2aa)y 4
Yy [(M + 2gA) F, + g¢EC_1¢+] + h.c.] (111.9)

rlus surface terms which include all the € dependence. The expression
(I11.9) is & Legranglen of the usual sort and one can deal with it by
standard methods. First of all one notices that the complex scalars F_'_
and F_ are not independent dynesmical varlables since their derivatives do
not appear in ;C {i.e. no canoniecal moments can be associated with them).
These auxiliary variables can therefore be eliminated from the Lagrangian
by means af the Euler-Lagrange equaticnsz which glve

-F =‘5‘J+MA+ + gAf ,

#*
-F, = MA_ +2gAA_ . (ITT.10)

Elimination of the auxiliasry fields leads to a Lagrangisn which describes
the interaction of two complex scalars, A, end A (the latter of which

carries fermion-number F =_—2), and a Dirac fermion ¢ = W_'_ +y_,
- 2 2,2
= [0a,1° - fd+ Mo, + gal]
+ 13A_|2 - M+ 2gA:) A_|2
- * T -1
+ P13 - My - [ng+m_w+ - BA WOy, + h.c.] . (I¥1.11)
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The behaviour of this Lagrangisn with respect to supertranslations has been
obscured by the elimination of the auxiliary fields. These tpansformations

are non-linear, wiz.

8, = B

'+ - 3

d¢ = =M+ EEA:)A_E+ -+ gAf)E_

-tfae - 1fa e,

sa_ = TY

and the corresponding change in £ isa space-time gradient. However,the
physical content of (ITI.11) is fairly clear. The free field part is most
easily read in the parsmetrization with & = 0 where the bilinear terms
take the form
2 2
x(z) = laa]” - e
+ Blig - My

2 2
+ | - ] (111.12}
Thus we are clearly dealing with a supermultiplet of particles of mass M
(and, of course, the corresponding supermultiplet of antiparticles). The
renormalizable interactions of these supermultiplets are charscterized
by the dimensionless coupling constant g .

The generalization of (III.6) to systems centaining several chiral

scalars is immediate, With the set of fields + J =1,2,... m,and

)
I+
¢a— »a=1,2,...,n (vhere m and n are not necessarily equall, the

Lagrangian must be

Lag®® | > la1%e > s, [
R &

i
-
=1}
(=)
L=
(o
1
iy
o
+
Wg
[
L]
T
+
+

1 E
5 Sajk¢j+¢k+] + h.c.},

a 3 Ik
(111.13)-
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where "a + M and g

ad stk - Eakj
regpectively. No generality is lost by assuming & diagonal form for the

are parsmeters of dimensien 2,1 and Q,

kinetic terms aince it can always be arranged by choosing appropriate linear
combinetions. Agaln 1t will be possible to eliminate some of the parameters

by making an appropriate shift @J-F -+ + CJ . However, there can now be

]
i+
Symmetry or algebraic considerations which restrict this freedom, To formulate
a general rule concerning this would be complicated and, in the long

Bt A

run, futile since 1t iz elweys simpler to desl with specific ceses as they

arise.

An cbvicus but nevertheless important remsrk concerns the field
count. If the numbers, m and n, of positive and negative chirality

fermions, ¢ and lba_ , are not equal then one of two things must happen.

Fither someJ;articles remain without mass, or else there must occur a
apontanecus violation of fermion-number conservation (reflected, for exsmple,
by <A_) 4+ Q). We shall postpone further a discussion on Lagranglans of
the genersl form (III.13) to Sec.IV. For the present we shall consider the

simpler form (III.6).

First of all, what are the squations of motion for the superfields

-

@+ and Q_? A direct if not wvery illumlnating answer to this question
could be obtained by first setting up Euler-Lagrenge equations of the
usual sort for the component fields. One cah deduce these equations from
the expression (III.9). Then, knowing that the component equations must
be compatible with supersymmetry, one should be able to arrange them in such
a way thet the supersymmetry is manifest, i.e. convert them back into the
notation of superfields. However, such an approach to the
problem is not very satisfying. One is left with the uneasy feeling that
an unneceasary detour has been made - that the underlylng geometrical
structure has not been ellowed. its due role, A more
aesthetically pleassing formulation should be possible,and this is indeed

the case. Tt is based on the notion of variational derivatives with

B e

respect to superfields.

Consider the question of functionsl derivaetives. OSuppose we have
s functional M which depends on the chiral fields § and @: . This
is equivalent to saying that it depends on the component fields A+ s QJ+,
F+ and their conjugates. Derivatives with respect to these components
can be defined in the usual way by expressing the infinitesimal &M as

8 linear form in the component variations,
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¢

) N T M,
M = J ax L5A+Cx) 5A (x) + é-w (_X.) du+\)§} + m6f‘+u)

* &M
+ &F (x) Tl
613_'_()(:1 + x 5F+ X

(ITI.1h}

Likewise, we must be able to express (M as a linear form in the superfield

»
variations 6¢+(x,8) and 6®+(x,6) . A convenient way to write this is

M = I dx [-% ] |:—3-G(—9-)- 8, (x,8) + a¢ (x,8) 6@,‘% 5 :l . (r11.15)

The coefficients 6M/6¢+(x,6) . BM/M:(K,S) are the required functional
derivatives. They are superfields in their cwn right and their component
structure is determined by comparing (ITI.15) with (IIT.14). One finds

that the linear forms are identlcal if the superfield derivatives are given

by
™ 1 ) [ M M $ =
= - 7.6 — - = & - !

5!‘(1.0) 9"[’( 45’ s 8 () Slhtt) e SAJ:) 208

iﬂ.:u(iﬁ?a)[&?-ﬁ&ﬂ
PlatP% SR SR ’ S

i
&
fﬂ

[~ o)
X
a_.

(III.16}

The superfield derivatives are thus seen tc have the structure of chiral
superfields with components given by ordinary functional derivetives. For
exsmple, on substituting M = &(x',8'} in (I1I.16), one finds

$!+(x’,o') - !x?(-is.‘rga)[ sﬁ‘_{x',o') ) SQ‘(x;e’)g . Bi(u:or)

52,(x,0) R W o BA
= ap("‘h‘fe._ -5’7(0)[5 ‘s] - Blo, + 159

~57=

= op (- 18W%e - 1LY
L (85 )(e, -8 § (x-x)

m

§, (6 x,0")

(I11.17)

which defines & supersymmetric analogue of the Dirsc delte function. It

is characterized by the integral property
1= . - 1
[ax- 300) (e, 0000 s,Goixrion]) = e,Gien (zas)

for an arbitrary pesitive chirality superfield ¢, . Similarly, the negative
chirality delta function is defined by

SEF(xe’)
$Bkix. 0/

= cxp(i.??fge ,,4L 5’}'759') ,1_(54"6: XQ_-G_') &(x_,,)

2 5 (x0;x0),
(ITI.19)

Let us now compute the derlvatives of the action functional

corresponding to the Lagranglan (III.6),

s=de[%(ﬁD)2 [|¢+|2+ ,4,_]2]_% [«:» (8 + ¥0, + gt?) +hc]] .
(I11.20)

Only the kinetic term causes any difficulty and to deal with this we need
to express the operator (ﬁD)2 in a 4ifferent form. Twe ldentitieas are

needed for this,
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12

(Bp1° = (Bp, + 5D

{5, , DD}

and o = IBn, , B - 2DjrD
whence
%(_D)2 = 5o, Bp_ - DfyD
= 5o DD++T3¢~(5D

(111.21)

one can put the varistion of the kinetic term into the following form:
= 2 2 1 2 * *
5 § (0m° [1¢+| ol ] - & (tD) [6¢+¢+ + 50%p_+ h.c.]
1l [= = - * *
=i {D_D+ D,0_ - Dfvcp| |S0.8, + 802 | ¢
Lz~ = = » x

5 [D+D_ b, + Daysn] [6¢+¢>+ + aa_a»_]

1 = - * ® .

=T LD, 6¢+ D+D_d>+ + 39 D+D_¢_ +

L 5p |66"500 +6 5D |+
R TR T L

i * *
+ £ DrD [a¢:¢+ - o6, - 680+ @_5@:_]

1 = L. ¥ -
h-DD 6®+ D ®+ + 5@_ PD ¢_+ h.e.| +
1 = » -
+ T D?YSD [5¢+@+ - 80 ¢ - h.c. . (111 .22)

With the help of this formula we can put the varlation of the action into the

forn:

1 = * 1 *
s = [ dx [-é- D] 6¢+ {- Eﬁn¢+ + (M + 25®+)¢_} ,

*
+ 8% {—

+ O do JE’BVYD[&»*@ - 800 —h.c.] . (111.23)
u us ++ - -

1 2
5 Dog_ + {0+ M0+ g,@+)} + h-c:-:|
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Thus the variation &5 reduces to a surface term when the functional

derivatives of S are set egual to zero.

§s = Lis *

6¢f = -2 DD¢+ + (M + 25¢+)¢'_ = 0

§ - l D 2 =

E = -gzboe_+ (o + Mo+ 5¢+) =0 {II1.24)

These are the equations of motion. They are manifestly supersymmetric.

(B) LOCAL SYMMETRY AND GAUGE LAGRANGIANS

We have just seen in Section III(A} thet the inclusion of global
internal symmetries into a supersymmetric scheme gives rise to no difficulty.
Supermuitiplets are combined into sets which support representations of the
internsl symmetry and this 1s effected by arranging the corresponding super-
fields into multiplets of the internal symmetry. Thus, expressing the
positive and negative chiral fields as two independent columns, 3 = {¢i+}
and ¢ = {¢>a_} , the action of & global transformation 1s given by

e, - Exp(il\kQ};) LT (111.25)
where the paremeters Ak are resl numbers ang the matrices Q_'_ and §_
are hermitian. (In a later sectlon expressions for the corresponding

conserved currents,
&= ¢qu¢+ - ¢J_rqli@_ : (111.26}

will be derived.)

Generalization of the transformations (III.25) to local form is
atraight forward. Indeed, if the parameters Ak are allowed to vary wiih
x!“L then they must necessarily depend on € as well and in such & way as
to preserve the chiral character of the transformed fields. In view of the
closure property of chiral products noted before, it is
clear that chirality preservation requires that the local parameters Ak{x,e)
be themselves chiral, viz.
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2,05,0) » exp 130,01 & 8,00
¢ (x,8} ~ exp[iﬁi(x,el' Q}j ? (x,8) . (1T1.27)

with
These transformations have an unususl structure. As [ any chiral field, these
matrices can be expanded in powers of § ,

exp[ihf(x,a) qf] = exp(-'%-ﬁ#vse] {U+(x) + E_V+{x) + % §_B+ W+(x)] .

(111.28)
where, of course, V+(x} carries a spinor index. The product of two
transformations yields a third with

U3+ = Ul+ U2+ '

Vae = Upe Vou ¥V Uy -

W, = U W, +Vi Clv, +W .U

3+ 1+ 2+ 1+ 24 1+ 2+ (111.29}
{In the last formula V$+ dencotes the transpose with respect to the gpinor

index of V1+.) The matrlces U+(x) which represent a subgroup are complex
but not, in general, unitery. One mlght expect that such transformetions
could not be compatible with the usual requirements of s physlically scceptable
theory. It is remarkable that no conflict arises: all negative metric

excitations are suppressed by the gauge mechanism.

As in all gauge thecries,the principal vehicle of the local symmetry
is a set of potentials. In this case they take the form of real [non-chiral)
superfields, Wk{x,e), Their role here is to provide a "metrie" for the cther
flelds in the system, Thus, the kinetic terms are to be expressed in the

form
1,22 (:1' 2} ¢ vl
L = 50D |0, e o, + 0 e e | . (IT1.30)
This form is gsuge invariant provided that the potentials transform according
to

ok ok A q wk -iAFgK

R A TP (111.31)

-E1=

where Qk = QE . (The cholce of an exponential paremetrization for the metric
in (1TI.30] i;rmerely~a convenience. It is conceivable that other types of
co-ordinates might prove useful in specific problems) For some purposes it

iz useful to represent the potentials Wk in the form of a hermitian matrix.
For example, in the case of SU(3) cne may write

. = 0My) (111.32)

where Ak , k =1,2,...,8,denote the Gell-Mann matrices.

A superfleld anslogue of the field strengths cen be defined. It
tekes the form of a chiral aspinor

i o= -2¥ 2y
¥ = -=—=— D [e D e ] . (111.33)
a++ 2#5 + - a+

where the numerical coefficlent 1s chosen for later convenlence. Thia super-

field is chiral with respect to both its 6 structure and its spinor index,
DY = 0 and (1-175)W++= o,

and sc belongs to the  transverse  vector representations discussed
in Sec.II, Eq.(II.36) ff.Under the gauge transformation (III.31} one finds

iA+ -iA+
T++ + e W++ e . . (II1.34)
The complex conjugate of ?++ is a negative chirality field ¥Y__. Thus
¥i_= c®Y
or _ +
B = (@Y. (111.35)

This field can also be defined by a formula analogou§ to (IIT.33), viz.

R 5D, [ew By e-z\y] : {II1.36)
G 2T T~ -
It transforms according to
iAI —iAt
Y- e " ¥Y__e . (I11.37)
-



4 gauge-invariant kinetic term for the potentisis is given dy

£, = §52, {g 7y f+]+h.e. {IT1.38)

where g 1s a dimensionless coupling constant. In genersl there can be one
independent constant for each simple component in the local symmetry group.
If this symmetry contains a commutative abelian subgroup, i.e. if the
infinitesimal a.lge‘bra. contains certain linear combinations, E( ) Q , which
commute with all Q s then the expression

aCE = %—(5}3)2 [Z gl(‘r) wk} (I11.39)

r

is gauge invariant (up to surface terms) and can be included in the Lagrangian.
The parameters & have the dimensicn of (mass)z and are very important in
the models of massive vector supermultiplets.

On combining the expressions (ITI.30),(III.38) and {III.39) one
obtains a gauge—invariant and supersymmetric Lagrangian for the interacting
system. The corresponding equations of motion are necessarily degenerate to
a degree which reflects the gauge freedom. In other words, those degrees of
freedom which are assccistedwith gauge transformetions will not be governed by
the equations of motion. They must be dealt with by an external mechanism.
This problem is familier from electrodynamics and Yang-Mills theory. Its
treatment in the supersymmetry context is of course more complicated in detail
than for these well known cases but will be seen to follow egsentially the
same lines. We begin with an abelian loeal symmetry.

For locel U(1) symmetry there is Just one potential, ¥ , a real super-
fleld. The transformation law (IIT.31)reduces in this case to the linear
Inhomogenecus form

*

A, (I11.h0)

¥ > ¥ -

-

A++

nofhe

and the implications are clear. Thus, since ¥ can always be reduced, i.e.

represented uniguely a3 the sum of chiral and transverse vector pleces,

*
¥ = §, +N _+ ¥, (Trr.u}

~63=

it follows that the trapsyerse yector part , ¥, ,is gauge invertant while
the positive chiral part, N, ,transforms according to

N + X -%-A+ . (III.42)

(These formulae are analogous to the following, drawn from electrodymamics,

' ITI.40"
A Ay BUA ! ( )
a = aataalb, (IIT.L1")
u W u

Ao b, (III.42")

where AE » the transverse part, satisfies BUA; =0 . The supersymmetric
analogue of this transversality econdition is, of course, ]_J+D_‘¥1 = B_D'._‘l‘l =10,)
The chiral part, N, ,is therefore completely arbitrary. It cammct be
determined by any gauge coveriant equations of motion and so must instead be
fixed by convention. At the classical level this convention or supplementary

condition may be taken in the convenient form

j=/|
o

DY = B, , DY =B , {I11.L43)

where B_ is an arbitrarily chosen chiral field.

The supplementary conditions (III.h3) are msnifestiy supersymmetric
and so are the most useful when it is desired to set up the Feynmsn rules
in an explicitly supersymmetric way. However, it is sometimes more convenient
to sacrifice this visible supersymmetry with its attendant unphysical modes
in favour of a description in terms of physical components. (Analogous to
the lecss of explicit lorentz invarisnce in geing from, say, the Landau
gauge to the Coulomb gauge.) Indeed, one can choose the components of N,
in such a way as to compensate some of the components of ‘Fl . In this type

of gauge the potential ¥ may be presented in the form
1. 1 1 2 III.bb
Wx,8) = 7 vayse Vu(x) + o 565‘{,5?\(:&) * 18 (78)° nlx), }

where X and D are unconstrained but V\) is sublect to the supplementary

condition
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auvu(x), = Blxl, (131.L5)

with B{x] an arbitrary real scalar, 9 One very considerable virtue of this
gauge is that it implies the reduction of exp(2¥) to polynomisl form since

v = 8 for n 23 . The Lagranglian then assumes a menifestly renormelizable
form.

Similar considerations apply to the non-abelisn symmetries where a

k are involved. The lineer transformation law

set of real potentials V¥
(IIT.4%0) is no longer relevant and the transverse vector pieces W? are
therefore not gauge invariant {Just as in the ordinary non-sbelian gauge
theories) but it is still possible to remove the gauge degrees of freedcm

by means of subsidiary comditioms like (TII.L3),
B.p ¥ =3 , DDV =8 (TII.L6)

. . k
or, alternatively, to represent each Wk in the form (III.hL) with auvﬁ =B .
On quantizing, the ususl Faddeev-Popov complications are encountered. These

will be discussed below.

In manifestly renormalizeble geuges of the type (III.h)) the field
strengths are given by

_ 1 Y 1 L .
¥, = exp[-ﬂ-E#Yse] 1+(x) + = [D(x) +3 Ty Vuv(x)] B, +5 §_6+(—1ﬁl_) s
(III.47)
where the Yang-Mills covariant derivatives appear,
Vuv = auvv -3V, - [vu,v\)] s
Vpl_ = BuA_ - i[Vu,A_] . (TII.L8)

The normeilzations in (IIT.h4} are chosen for leter convenience. The g
which multiplies A{x) iIs an unfortunate relic of the early development of
the subject when the role cf gspace reflections was not understood. Its

removal would probably cause too much confusion at this stage, however.
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(Note that h, is reizted to A_ Ty conjugation, AE = CXiT , since ¥

is reml.) If such a gauge 5 used,then it 7= be~% to discard the superfield
notation and express the Lagrangian entirely in terms of component fields.

The contributions (ITT.30), (ITT.38) and (ITT.39) then beceme, respectively,

1]

T - t
;fk = TATVAL ¥ ¢,+1ﬁw+ *EF,

o [, - a)

+ vafva o+ Fafe o+ #lF
A T - - -
o o1vE aTiy g afeta | - aTofha
AT R g S (I11.L49)
oL 1 <k, 4k 1. kk
L, = = [‘1? v}:\) ve, o EhE s EDKD] , (111.50)
kK _k
ig = Z By O s (137.51)
r
where the coveriant derivatives in (ITI.t9) are given by
. k
VA = [Bu—thQi]Ai .
(111.52)

_ Ik
Vuw+ = [au - ivﬁqi] v,

There may be,in addition,a gauge-invariant self-interaction (or generalized

mass term) among the metter fields,

L

m

1
!
|-
[={}
=

D [%_ [ﬂ + M®+ +h ¢+¢+I] + h.c.

P+ My +h A+A+} - $;[Mw+ +haY, +h ¢+A+]

+ Aj[MF+ +hAF, +nFA +h wfc'l¢+] + h.c. (111.53)

provided it is compatible with the global symmetry.
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The Lagrangian defined by the expreasions {ITI.Lg)-[IIT.s3) is
manifestly renoymelizable {apart, possitly, from anomalies) and respects both
fermion-mumber and gauge symmetry. It is not manifestly supersymmetric owing
to the choice of gange (ITI.44). An importent feature is that the left-handed
gauge spinor X_ carries fermion-pumber F = =1, like ¢+ and §_ . The

+
fact will prove significant when we come to consider the problem of parity

right-handed spinor A, therefore carries # = +1 like w+ and $_ - This

conservation.

AMlthough the gauge (IIT.h4) appeers to confiict with the requirements
of supersymmetry, the contradiction is & superfieclal one since only gauge-
dependent quantities such as Green's functions are affected. Gauge-invariant
quantities such as scattering amplitudes and matrix elements (between physical
states) of the energy momentum tensor should not be sensitive to the choice
of subsidiary condition and should therefore respect supersymmetry (unless of
course it is spontaneously viclated). A formal way to see this is by e (non-
linear) transformation law for the fields,which reflects the action of super-
translations on them and which does leave the Lagrangian invariant. The
methed, although somewhat tortuous, can be carried through without difficulty.
The idea is to follow an infinitesimel supertranslation - which destroys the
form (III.44) - by an appropriste gauge transformation (III.31) which restores
it. The combined effect will then leave the Lagrangian invariant {up to

surface terms).

Firstly, the infinitesimal supertranslation applied to (ITI.h4) gives

.. - =
2 = z(ﬁ* 539)(},3.7,1,9\1, +1‘Lq§eg‘{,a " ‘_'éfﬁg)‘])

= isl‘nTsE Vv

LB A _ < Bo A . b aLLe EYRX
+1'5 * l.ﬁ-a’— * 4R bk (‘

+ 358 (‘D+ 1%, va) t

+ L o) (-5 3 ;31,1) .

(III.54)
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Next, consider an infinitesimasl gauge tranaformation,

g 62? = iﬂz eQT - e2lP ifp

A . o (171.55)

where A+ has no O-independent term,i.e.

1 —_
- eﬁsa = 1
A+ e {B”C_'_ + ) §_9+f+}
1l = 1 R .
= B, +580,r +¢8,008 (<f) . (111.56}
With this speciel form for A, it s possible to solve {IT1.55) for GA?

bty one iteration,

52 = -3(A-AD) L i [AA @)

= -2 (3 ¥4 1
- -i(ne-ze v jaf - jua g

i .

 y08 (- 955 - g:M,[:.M)

+ é‘ 6‘) [ Bq;i 1;,;]‘] ’
“a (x11.5M)

where we have defined C“ such that 5;;_ = E;B_ The gauge parame.ers

§+ and f+ must now be chesen such that

I 1 1 2
B ¥ +8,¥ = 1?5”\;"'59 6, + > Geﬁysal T (J0)° 8D . (111.58)

This is achieved by taking
L, = 2Vye. semd 1, =42E] (I11.59)

end the resulting variations of Vv, A and D =&re given by

. iz
cSV\j = —'E l-:YvA ,
. L 1
§A —@ [iy5D+2crw vw] e,
= _4 =
& = - = Prgh - (x11.60)
6B~
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Applied to matter fields §, , the t{ransformetions 6S®i_+ GAQt take the

form

6, = &y, ,

dy, = Ftei—ifAts;F .

GF‘F = E[—i#dji + 1 ﬁ A}:QI;At} » (ITI.61)

where the covarlant derivatives sre defined by (III.L8) and (ITI.52). The
transformations (III.60) and (ITI.61l) necessarily preserve the form of the
Lagranglan {ITIT.49)-(III.51).

(c) PARITY CONSERVATION

In thls section we wish to prove the important result that a super-
symmetric, renormalizable, fermion-number—ccnserving Lagrangian theory which

alsg preserves parity must be a gauge theory of a very special form.

First consider the fermion-number-conserving, renormalizable non-gsuge
type Lagrangian (III.13). For e parity operation to be defined, the super=-
multiplets ‘I’+ and ¢_ must be put into correspondence, Firstly the spinor
components can transform only according to a rute of the form

LA N T (111.62)

where « is some unitary matrix subjleet to the consirsaint w2 = %] .
Secondly, the fermion-number F = 2 spin-zerc components A must transform
among themselves,

A >uwa {IT1.63)

where w' 13 another matrix like w
Now consider the particular interaction term in (III.13)

T * T -1

7 Btk fa- Vye O Ve
Applicaticon of the transformations (III.62) and (IT1.63) to this term changes
it to a form which is clearly not present in (III.13}. This shows that inter-
actions of the form (IIT.13) cannot support space reflections.
We shall prove now " that if a locel symmetry is present it is

rossible to set up a parity-conserving interaction.

~69=

For definiteness consider the case of locel SU{n) symmetry. Since
the gauge field ¥Ye an n X n hermitian traceless matrix —contalns e set
of negative chiryality fermions, k_ y in the adjoint representation, it is
necessary that the matter system should contaln at least a set of positive
chirality fermionms, §_ , alsc in the sdjoint representation. These fermions
must belong to a (tra.cej.eas) supermultiplet §_ which we shall aall the sup-
plementary gauge fields. Under the action of local SU{n) the augmented
gauge field system transforms according to

*
2wy, Mooy
1A -1A
s, e ' 8. e ',

(111.6L)

where A+ la & traceless n X n matrix of positive chirality and g is a

dimensionless coupling constent.
Other matter fields may also be present in the form af supermultiplets
»
0+ and ¢ _ . Tt is necesaary that ¢+ and ¢ should trunsform contra-
grediently. For simplicity we take Jjust a pair of n-comporent columns trans-

forming according to

iAI

LR L. ' (II1.65)

The most general supersymmetric, fermion-number-conserving and
renormalizable Lagrangisn for this aystem 1s given by

1= 1. [ G
d= oo E-'I‘r[‘?_‘l'++‘l’+‘i‘_]

+ 5 (o0)° %Tr[si 8 g, e'eﬂ]

+ 3 (50)° [@f 28 o+ of o28Y @_;I

-3Tp jof M+ns) e +n (111.66)
5 _ + - «Co ] .

where h is & dimensicnless coupling constant and M 1s 8 mass.
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In order to deal with the parity question it is necessary to express
(11.86) in terms of the component fields. For ¢, and ¥ we adopt the
expansions (11,25 and(ILI. M} respectively, and for S, the expansion

e 30t [}+

(x} + §c*(x) + %E(hiYB)B f,f(x)J + (IIL.67)}

For convenience of writing we introduce the negative chirality antifermion

T_ defined as the conJugate of C+ , l.e.

-~ — .t —
o = (8g,) = 7,8 . (II11.68)
This means that the sum, ¢ = L S is a Majorana spinor lixe X .

Applying the formulae {IIT.h9}, (III.50), (IIT.53) to the Lagrangian
(III.66) one finds

£=%Tr[-§-uﬁ + iT?\_i-;L-DQ

%)

v

T = +
+ Vua+ Vua+ + ;+1¢C+ + £ L

+12¢g [iai.i_]::,f -z, [A_.a+}} +gal (D,a,]

+ = T
+ VuA+ \7qu+ + ¢+1;:'¢+ + FF

+ 142 g [AIX_¢+ - $+A_A+] +g AIDA+

+ vuA+ VA Uy + Py

+iV2g [Ati - E_A+A_] - g Aloa_

t ty _ T
M [A_F+ CFA =Ty, + h.c.]

+

A3 + t
h [% a+A+ + A_f+A+ + A_a+F+

+

- ATE, - Ta, - T, e h'c'} ‘ (111.69)

vhere tha various coverient derivatives are given by

-7l

Uy = 30, -30, ~islu,u)
VAo o= ax - telu ]

Vua+ = Bua+ - ig[Uu,a+]

Vo = 35, - telungd

Vs = BA, - g UA,

Ve = 3%, - le Uy,

(III.70)
The appearance of (lI.£9) can be greatly simplified if the coupling parameter
h is given the specific value

h = g2 .

{II1.71}

Indeed, with this restriction the system is parity conferving. Thigs can be

seen more easily by eliminating the auxiliary fields, ¥, , f+ and D ,
resolving a, into hermitian and antihermitlan parts,
1
a, = — f{a + in} ,
+ vz (111.72}
and introducing k-component gpinors,
voo= Y, ty
X = &, t il_ .
(TI1.73})
The Lagrangisan (1l.69) then reduces to
_1 1.2 R 2,1 2
i-e'rr--‘:uw+ xi7x+2(vua.) +2Wub)
+ gf{[a,X] + [b,ysx}]]
vvaloa, vval o « pap-my
uw+ oyt - u-
- g E(a—Ysb)¢ - g Vo {$xa+ - i@#sxch_ + h.c.]
- v . (I71.78)

where the covariant derivatives are easily deducible from (IIL,70),{III.72} and

{111.73).The conjugate spinor xc iz defined in the usual fashion

-T2~
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8 = B0t = B -1y . (I11.75)

The potentisl V has the form:

+7+

Lot + 1 T 1.2
VeFF +FF +5Tr|ff +%D ] . {111,76)

where the auxiliary fields are given by

F, = - (M + gla-ib)lA_
F_ o= = (M+glarib))a,
t_L,t
£, = -g2 V2 [A_A+ -z A+A_]
D = -2 [A+Ai -aat- %—[a,b]] + gﬁ-[A:A+ - ATA_]

{1I1.77)

(Recall that f, and D are traceless n xn matrices.} O©Cn substituting

the expressions (IIL.T7) into (IIT.T76) one finds

v = ﬁs orla,n]?
Al EM + ga)® + sab2]A+ + Ajl__(M +ga)® + saba]ﬁ_

& [1 - ﬁ} [EAIA+)2 + (ArA_)%}

2g° (1 + S} (afa ) afa)

+

+

+ 26° (2 + %] (AIA+) (AIA_) (111.78)

Parity conservation in the Lagrangian (11.74) with the potentisl {III.78)

is now manlfest. For the spinors we take
b Y

X * Yx  end X~ -ypx©
a ¢ (III.79)

~73-

Amcng the bosons: UM is & vector; a, A, and 4_ are scalars; b s

a pseudoscalar. (The odd relstive parity -f ¥ and xc results from the
definition (II.75) .}  Alternative parity as:ignments are eaqually feasible. Taus,
ingtead of (II.79) one could take

borowvgd

X -+ u.wo)(«'.u-l and x© + -w'yoxcw_l

’

(111.80)

where w is & unitary matrix setisfying m2 = 1. The corresponding rules

for the bosons &re then:

-1 -

Uo+mU0w N l.li +-inu.\l.
e o+ wawl , v + bWt

Ay ow Ay

(ITI.81)
This completes the discussion of the parity-conserving local SU{n)
model. Other local symmetries are treated in exactly the same way and any
number of matter supermultiplets may be introduced in the form of contra-

]
gredient palrs & , & . In every case the couplings sre determined

eptirely by the gauge principle,

(D) CONSERVED CURRENTS

We conclude this section on Lagrangians by considering the local con-

served currents which can be constructed corresponding to a given Legranglan.

4 Lagrangian of the general form (ITI.13) msy admit a global symmetry,

Gwi = iwqtd:i y (111.82)
wherethe matrices Q+ and ¢ are hermitian, In such cases one expects to
find a ccnserved 4-vector. This current vector must of course beleng to a

supermultiplet and one would like to know what significance the other members

can have, We now consider this guestion.

The



Notice firstly that the Lagrsngian can be expressed quite generally in
the form

& = - 2o, + n.c.)

5 s (111.83)
where the chiral part 5f+ is given by
L. o=-=Dp{le |F+fe |Plvar | +u_ o + 5. o, |.(1I1.84)
+ T Y 1+ a- a- 8 gl i+ gaij i+ T3+ )

An arbitrary infinitesimal variation of the fields ¢i+ and @a_ gives
8y = - 23,0, (ﬂ 58, « 8158, u..t_)
+
+ 88 (4 +m,E, H!;,g,*)
*
8 (M oy 8, ) 85
. (111.85)

and this expression cen be arranged in a more appropriate form with the help
of the variational derivatives of the action functional, S . The derivatives

of S are given by formulae like (III.2L), viz.

6S D
_.:- = - i‘b*b_ B + (‘a + MU B s";j e, EJ‘) '
§S ) = * * . - &

(I11.86)
Using these in (III.85) ome finds

i, = - 320 (else, 4 etsE .

)
-L“f(?f+iﬁu1J + (gxiﬂufﬁh

= %ﬁi'-b— (§: 8§+ - !JSQ_ - {.C)

v §S 65
-+ si- s!! “+ {!., S§4

(I11.87}
~75=

and for varistions of the type (III.82) which correspond to a symmetry this
must vanish. The identity (ITI.87) then assumes the form

) =8 Ta 85
5 D,0_Jiq) = - 50, R0, * 2 Q_ i > {111.88)

where the "current" J(Q) is a real (non-chiral) superfield defined by

- ot +
Ja)=9,9Q ¢ -0 Q & . {I11.89)

When the eguations of motion are satisfied,

(=]
wm

88
5 =0 . —===0 ,

* & @i

On|

then the right-hsand side of Eq.(III.88) vanishes and it becomes a asupersymmetric

conservation law. More generally, it can be used to generate Ward-Takshashi

identities,

The components of the current J(Q) are defined by the usual expansion

3(a) = ala) + Bu(a) + £ BOF(Q) + F By 00(Q)

+ 3 B0V (@) +  BeBx(Q) + 5 (B9) p(@)

{111.90)
where the bosonic components A, F, G, ¥V and D are resl and the fermionie
components Y and ¥ are Majorana spinors. They are given explicitly by

_ LT +
AlQ} = AQA -AQ4A
+ bt =7 =T
wl@) = AQy, -AQy +CUgQA -CPQA
. + t +
FlQ) = AQF -AQF +FQA -FQ4a ,
I ..t P .
¢{Q} = iAQF +iAQF - 1F+Q+A.+ -iFQ A,
_ te 2
v(Q) = A13 QA +A D3 QA+ T vy +Tyav
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* + T T
x(Q) eF Q. ¥, - 2F Q¥ + 20} QF, - 200 F_

t +, T ST
—A+i3h+¢L + A_lih_w_ + ch¢+1avq+a+ - chw_lBUQ_A_ s

D(Q) = hFiQ+F+ - uFfQ_F_ + 2$+i%+w+ - 2@_1'5'Q_¢_

-aPaa, v AR,
(111.91)

-
where =% -3 . The component structure of the "divergence" of J(Q) is

given Dby
-D,D_J{q) = exp{— %-Ezysa] [}F +16) + B_(x, - ifv)

1 1 2 -
+ -2-§_9+ [5 (b - 3°A) - :LBuVLL
{171.52)

When the equations of metion are satisfied, the identity (ITI.B8) gives

the "eonservation law"

0,0 J(q) =0 (II1.93)

and, since J(Q} is real, this implies ﬁ_D+ J(@) = 0 as well. In terms of

components,

F{Q) + iG{@) =0
Q) - ifp (@ =0

X ' 2' {ITT.9%)
o(Q) - 3°a(@) =0
auVu(Q) =0 ,

of which the lasst is the familiar conservation law.

In summary, the current lL-vector, VU(Q) , belongs to a real non-
chiral supermultiplet J(Q) whose components (III.91) are listed, The
divergence, a\-lvl-l(Q) , belongs to a chiral supermultiplet B+D_ J(@) all orf
vwhose components must vanish when the equations of motion are satisfied. The
corresponding Werd-Takahashi identities could be set up in & manifestly super-

symmetric form with the help of the classical identity (III.88).

=TT

Since the chiral part of J(Q) must vanish when the equations of

wotion are used, the remaining part must take the form of a trensverse vector
supermultiplet (‘I’l) . In these circumstances J reduces to

3(2) = A(Q) » B(Q) + F By .0 v, (@) + £ BBipv(Q) + o (0)° 3°a@) .
{II1.95)
The metrix elements of J{§) between physical states belonging to the
fundamental representation are characterized by two inverlant emplitudes.

We shall pursue this exercise in some detail now aince it provides a good

illustration of the methods developed in this section.

As & first step in treating the matrix elements of J(Q) it is
necessary to replace it by an equivalent chiral superfield to which the de-
compositions of Section IT(B) cen be applied directly. Therefore we shall
deal with the spinor superfield

2, = D.J(Q)

Nt

= up(.. %‘érr,e) ( @) 4+ 3 (%@ BAae)he

+
]

10, <74 (a) )
E exp (— !;5?750) &-_', ’

(111.96}
which has positive chirality in its B-structure and negstive chirality in its

external spinor index, i.e.

DY, =0, +iyd¥ =0,

and it carries cne unit of fermion-nunber,

The regquired matrix elements can be extracted from varicus 3-point

functions. A convenient one is,
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A ~
AT Rl T > =

= M ‘:'E%_ (i 76, +« ﬁ; ©,. ) (

where a sand b  are scalar invarisnts.

(II1.97). Thus

N jthh dx, .‘.‘hx, -‘,-h'“‘ {(bhﬂ‘)('a:ﬂ’\")(T* A Q) at(z) -@_ﬂa))] =
[ 3 man ol - e )

®.,(x,9,) [Ih)o + i‘r,l,z u,,2,08,_ - ’2_‘ 20 B lr,)J

= M exp[i(h—h)".s - .63_ ({.9{_-(;9;-)]- (G- + b[ﬂ‘(;])en- -

‘ (r11.98)
The varicus matrix elements are obtaired by expanding the right-hand side in
powera of & and comparing coefficients. Thua, with 83 ang x3 set

egual to zero,

);: Sl @12, Talpn) e, *{-‘qu-(hm SEAlRW@ gD, -

{I11.97)
This expression, the most general
one compatible with supersymmetry and fermion-number conservation, is of the

form (I1.63} . The L3Z reduction formulae (II.70)-{II.72) cen be applied to

M (o0 b Uk (on-040)

(111.99)

79—

6- b [Y,,%])O,- '

The terms linear in 93+ give

[ant o] (vt ,.-q,A(e)) [ +) =
- - (Ban- 8k) % (v bngI) (aa).

(III.100}

The terms quedratic in 93+ give no further information. To extract particular
matrix elements from {IT1.99) end (III.100) is straightforward. One finds,

<0y 1V (@) ppron = =(a + BB B, 10u_(p2)),

<Y (@)pg = (e + b[ﬁl’ﬁz])cﬂ(l’l}‘l) ;

n

oy |8t py, = 8+ (4 — o,

l<P1Kl|A(Q)|p2A2>l = ﬁ(pl)\l)(-EMb)u{pale} .

Lo |8(@)]pD, = -2 + (W€ - t)b,

0<p1|Vu(Q)lp2>o = {a - to)lp, + PE)u .

1<p1A1|Vu(Q)|P2"2>1 Upyh) Ny, - 210 € P1v"2ﬂp)“(P2"2) ’

2<P1[VU(Q)IPQ>2 = (a + to){p, + 92)1_l ’
(II1.101)

where @& snd b &are real functions of t = (pl - pE)2 Matrix elements

of w+(Q) can be obtained from these by ccmplex conjugation.

The Noether-like technique used here to treat a global symmetry is
not readily applicable to the geometrical symmetries: Poincaré and super-
translaticns. For example, although it is possible tc construct a current
Tu = J(iau) correspending to space-time translations, which setisfies
ﬁ+D_ Tu =0 , it is not real and it does not satisfy ﬁ_D+ Tu =0 . It does
not contain the cenonicael energy momentum tensor among its components. At
present it is not clear whether such currents will be at all useful. To deal
with the geometrical symmetries we shall adopt an indirect approach based on

the regquirement of fermion-number conservation.
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The conserved current 4-vector corresponding to the fermion-number
symmetry 1s given by
- _ + &
ju(x) = w+Yu$+ + w_yuw_ +2 A iau A . (IIT.102)
This is the standard Noether current obtainable by the usual considerations
applied to a Lagﬁangian made ocut of the fields A+ . W+ . w_ N A_ which carry

the fermion-numbers 0, -1, -1, =2, respectively. It setisfies the identity
&8 . 65 35
= § — + —_— + e + .
auju(x) i 5, b+ 5 Yo+ 2i oy A+ h.e. (III.103)

from which the WardTakehashi identities can be derived.

The supersymmetric versions of (IIT.102) snd {ITT.103) cen be obtained
directly by application of the "boost" exp(i88) , where § denotes the
supertranslation generator (to be distinguished here from the action functional,

8). The supertransletions act on the component fields according to the rules,
104,38 = By
FRR ER
Ly 58] =F.0, - ija6
FRRAE + £F
1 A
T [F,.08] = -Bidy,
(III.10L)
It is a simple matter to integrate these formulae to obtain
¢t(x,8) = eieé A (x) g 105 s
De, (x,8) = o 19% ¥, (x) 195
- %~ e, (x,8) = 198 F, (x) e 185
(I11.105)
and, in simllar fashicn,
A
.65 -~ B
8 o 85 . ,
5T, 5%, 09
355 L S s B
A S w
”
. ~
$S ¥ §s  _igS
151) - 2 g—. e '
T3 AR
89* # (II1.106)

{#ecall that the derivatives &8/6¢, are chiral superfields with the zom=

ponent structure
1 =
* 4 Oy u .
8 _e 85 88 o ,lgz, _85
50, (x,9) 6Ftix5 5wifx EEREE-The A" GA (I

Define the supercurrent Ju(x,a) by applying the boost to the fermion-
number current (II1.102), i.e.

J“(x,e) = eiBS Ju[x,O) e-ies

n
m

b {(I1r.107)

It is a simple matter tc show that this current can be expressed in the mani-

festly supersymmetric form

15 + +
3,(x,0) = 5 T iy y,D(0,0, q> ¢ ) - ¢ 1‘3 g, + @ ‘§u¢_ , (I11.108)

sinee this expression has no explicit 6-dependence and satisfies the boundary
condition Ju(x,O) = ju(x} . The current (III.108) is a real vector super-
field and it is clearly conserved when both fermion-number and supertranslaticns
are valid symmetries. Indeed, the identity whiech ineorporates the conservation
law for Ju is obtained by boesting (III.103},

auJu(x g) = —[D %]Dw i[n gi’—Jm + %[ o 3—} .. (II1.109)

When the egquations of metion are used it is posaible to show that Ju
reduces {(like the global J(Q)) to a transverse vector supermultiplet,

.0 J =TDb, 2 =0 . (I11.110)
The prcof is as follows. Firstly, there is a simple operator identity
D,p Ti = -0 D 1
DD D 1Yu e D D,D_ au ,

which implies that
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03 - B0 { DD (8, ste) - 735, 8, -
| s
+ 8.9, & }
s |- (8lE,-8'5) -5f%, 8, o 5]

In

|

280 {&ling, - st 5.}

(I11.111)

Next, in order to show that this wvanishes, an argument similsr to that used in

the global case can be used. Thus, corresponding to an infinitesimal ftrans-
lation,
_ 1= Ter T
3 4, =7 D,D_(9,3 8, -~ ¢332 ) (111.112)
when the equations of motion are used. Further, the equations of moftion imply

that {+ takes the simple form

+

. 1= +
£, =- 0,0 (e -02) . (1I1.123)

Subtraction of the gradient of (ITI.113) from (ITI.112) gives the desired
result,

_1lsz t +
0=5D,D (830 -¢392) (1I1.11%)

and (IIT.111) vanishes. Since J]_l is real, it follows that 1_3_D+ J11 also
vanishes and the formulme {III.110) are proved.

The transverse vectcr part of J]J can be expanded in the usual

fashion.
Ju(x,e) = du(x)
+ _B{—YS Su(x))
+ %'ﬁiTuYSB(-ETpv(x))
+ £ 90BLA v 8, ()
+ 5 @)% 3% (),

{111.115)
where S.p is & Ma)orans spinor whose left-handed part is given explicitly by
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oo - 77 3
= - +
i Su_(x) A_(vulﬂ 1§Yu)w_ + Yucw_F_ yvyuclp+ 13 A,
_ .t =T . T =T .
= F+Yuw+ + Yucw_F_ + (1auA-)Yquw- + vaucw+ i3 A,
s 19 (T Ty v )
AP ARESLL TR VR
{II1.116)
(where equations of motion have been used to effect the rearrangement). This

is a conserved current whose time-tomponent S is the density of the super-

[P
translation generater S

The tensor Tu\J is transverse with respect to both indices,
3 T =3 T =0 |,
] v

although it is not symmetrie. Tts explicit form is given, with the help of
equations of motion, by

[ i

a5, A

[
b (L% 4%, 9%

le = iAr‘-%r;avhw +

L
2

[y s
¢+(Yri' +1v4:9r)¢+ -+

-
-

o {rja +FE o L (Al oA, + YO sbe)

-iqe®-29 ) (AYA, - A1)

+3 Sap % {A,:‘ YA, o Af."’i‘,A, 4?-,7,,45,!;(3_4.,,_}_

(I11.117)
The antisymmetric part makes no contribution to the integrated 4-momentum

operator.

By its construction the current Ju transforms according to

1 2 =|3 i
i_ [JH,ES] = E[ﬁg + E 39] JH

-8h-
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or, in terms of components,

[Ju,ts] =-F Y5 su .

—a1 _ 1
(5,251 = [Tuv 55, Ju] Y, €
A 1
[Tw,ts] =-5F0, 3 s]_l
(I11.118)
The integrated quantities
F = [ d3£ JO . S = [ d3£ S0 s
{III.119)
By ® J ax Ty Ty = I d3§[xﬁ Tiov) = % Towy]  °

can be shown to satisfy the supersymmetry algebra of Section I. {In Juv
the symmetrical part of Tuv is employed.)
The components of Ju can be arranged into two distinet supermultiplets.

Notice firstly that the covariant derivative

- expl} i 1
D+Ju = exp[n-gﬂyse][?su+ + (Tuu -5 iju)yve_ +3 E+B_3Su;] R
is a chiral superfield. Muttiply this by Yu to obtain

B+ (T - 53,4,

vl 2 v T

s
1uv -

= L ] i + T
0, I, expl§; ihrsel EYuSu+ "

1
-3 8.9 3 Yy Su;] s
(I1I.120)
c i
which shows that the trace, Tuu , and the self-dual part of T[uv] -3 auJu
belong with Yusu in one supermultiplet. The remsining components make up
ancther supermultiplet.

Pinally, & few words about Ward-Tekahashi identities. These are
based on the identities (II1.88) for J(Q) and (III.109) for Ju . A
typical Green's function involving J{Q) e¢an be represented by a path
integrel,

<r @) 1)) = [ (a0} 3(@) (o) expld si0)]
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vhere 1{&) represents s product of superfields. The identity (II1.88) can
te applied directly,

. 55 6 iS
13,0, (T3 ME)) S(m (_ 2 ag, + gle. s‘&z)m’,‘

5
L3 S(amrm (_ tfell . wte & )t*

=z 58] I3

ig
- %jw!) (%i L€, - §_*'Q_5£-+)¢.‘
= ﬁ: '( T ( 2%{#‘i+ !; - gi?‘i- ?g{* ).;>

after integrating by parts. (A singular term has been excluded by assuming
6+(l,1) = 0 , see below.) Thus, for example,

5,0 (T 7(1,Q) ¥,(2) o1 (30 =

M

=85, 1.2) qoe,(2) 9T (3))y - Edro t2) 073> @_ 8,030

1< +

5T,D_ (T J(1,0) ¢_(2) 0, (3p =0 ,

where 6+(l,2) denotes the supersymmetric delta function
8§ (1,2) = exp|~ L By 6 - 13 g.v.0,.l 8 {x, - x,} & [] ]
+ PN W if1fs1 T T Yefalste 1 7 *2' 7 iz, Y12+

This delta function has the important feature that it vanishes when Bl = 82 '

a properiy used in the above derivation.
In similar fashion one can derive Ward-Tekshashi identities for the

supercurrent JU . Only the details differ.
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1v. MODEL BUILDIXG
(A) SPONTANEOUS SYMMETRY BREAKING

S0 far we have tacitly assumed that supersymmetry is unbroken. The

dispussion of representations in Section I and invariant amplitudes in Seetion

II, for example, were based on the presumed existence of a supersymmetric vacuum.

Our purpose now is to discard this assumption and investigate some of the con-
sequences of a degeneracy in the vacuum. In other words, we shall suppose

that the underlying dynamics (as expressed in the Lagrangian) is invariant and

that a conserved supercurrent exists, but that the ground state is not invariant.

In this case the space-time symmetry is reduced to the Poincard group &nd a
Goldstone phenomencn occurs. On the one hand,the mest distinctive aspect of
supersymmetry - the grouping of fermions into supermuitiplets with bosons - is
lost while, on the other, & new and equally distinetive feature emerges, the

»
Goldstone "neutrino .

The mechanism is analogous to the familiar chiral dynamics of the pion
vhere chiral SU(E)L x sU(2 )R symnetry is realized by mesns of a triplet of
massless pseudoscalar Goldstone bosons. Whenn the chiral symmetry breaks
spontanecusly to SU(2) there necessarily appears a set of massless particles
with the gquantum numbers of the lost symmetries. The associated currents
are then dominated at low energies by the exchange of these massless particles,
and various low-energy theorems result. Exactly the same thing happens when

supersymmetry is broken spontaneously.

Let the spinors Y, {x} belong to scalar superfields of the kind intre-

duced in Section II so that, under an infinitesimal supertranslation,

1t iy
8y, = —2—2 (F, - id8,)e . (1v.1)

If the vacuum is at leest translation-invariant then {FAD =0 and we have

o,y =<F e, . (1v.2)

If the vacuum respects fermion-number conservation, then <F‘+> =0 but we

shall net require this,

If either <5¢+> or &)  is non-vanishing, then the vacuum cannct
be supersymmetric., Formally,

81—

&,(0) = T [v,(0) , ]

1 -
=7 I d3_:£[¢i(0) Y Eso(x)l * (IV-3)

vhere SO is the time component of the current Su introduced previously.

The vacuum expectation value of this equation can be expressed in the compact

form

89,400y 8, (x) = 13, Ke" T 5 (xi, (00) (1v.4)
provided that the vacuum is translation-invariant and the current Su(x) is
local and conserved. Substitute the expressions (IV.2} for &y, end remove
the parameter £ from both sides of {(IV.4). One finds

1 % iy
19, <% 4,00) & (x)y = —5~2 ¥,) 8,00 . (v.5)

In momentum space,

[ x o <ory, (0 5,000y =

1+ iy
- 5 il®) (£) (+) (&)
z M1 ku + M2 “w * M kpk Y\J + Mh Gu\:k\) 3
(1v.6)
where the amplitudes M](_t), r+* depend on k2 . The identities (IV.5) take
the form
2, (2)
K =<F,D
(), 2 () e
+ 2 (+) _
M2 + k M3 =0
The second of these serves only to eliminate Méi) from the decompesiticon

(IV.6). The first gives the explicit form of M](_i) , viz. a simple zero-
rass pole with residue (¥, . This indicates that the intermediste states
which contribute to the two-point function (IV,6) must ineclude a massless

particle of spin 1/2; a Goldstone fermion.

A similar argument cen be repeated with the spinor components, A_

in the gauge fields. According to the formula (IIL.60},

SRR _JL_ e, {1v.8)
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which mey be non-vanishing if supersymmetry is broken.

The Goldstone spinor will in general turn cut to be a mixture of the
spinor fields present in the system. The relative proportions in the mixture

are governed by the expectstion vaelues of the scalar fields, F:r. and D

Perhaps the simplest way tc see this is through the expression for the ccnserved -

supercurrent Sp(x) s
. =T . t =T, A,k 1 k
isw = F_yuw_ + Yucw+F+ + 1VUA+YV'YHI{J+ + Yv'\fucljl_lvuﬂ._ + = (™ - 2 GKAwl;A)YuA- .
(1v.9)
On linesarizing this about the vacuum solution, one finds
15, N<EY Yy 4y Y ¢ 2y e e
L+ -7 Tu*- PoTE N Vi e
o MV R
Y‘_1 _
(IV,10)
where the Goldstone spinor, v_ ,is defined by
ev =Sy Al EY LD A (1v.11)
- -7 V2
and f 18 a normalizing factor. If fermion-number is conserved, then
<F+>= @ and v_ is seen tc be a pure negstive chirality fermion field.
Low-energy theorems can be derived for v_ by writing
is =71 v +R
i LTSI
Current conservation then implies that the neutrino source #v_ = -(l/f)auﬂw_

is a soft operator at low energies.

{B) ~ MASS GENERATION

Owing to the very strict controls that supersymmetry imposes on the
form of the mactign it often happens that one or more perticles are found to
be masslesgs. Of these only the Goldstone spinor, assscciated with the
spentaneous breakdown of supersymmetry can be understood in group-theoretic
terms. Other instancea of this phencmenon can usuelly be explained by a
particular representstion content in a given system, or by the exigencies of
renormalizability which severly limit the variety of interactions. Here we
review the mass problem in general terms and list the various ways in which
mass can be generated. We conclude with two mechanisms due to Slavnov where-

in the supersymmetry is broken explicitly slbeit softly.

v

~ARQ

B.1 Masg generation for scalar supermultiplets

To begin, consider the free spin-1/2 particle. It is usual to re-
present the massive spin-1/2 states by means of a pair of chiral spinors w+
sand 1 which belong to independent representations of the proper Lorentz

group. They satisfy the Dirac equation

-iaw_'_ + M‘b_ =0 ,
(1v.12}
-1+ Mg =0,
and, in the Lagranglan, the mass term tekes the form
-My_ b, + h.e. (Iv.13)
The fields \p+ and §_  may be related by hermitian conjugaticn,
b=, {Iv.1%)

but this is possible only if the states carry no internal quantum number
such as baryon or lepton number. Using {IV.14) the mass term (IV.13} takes
the form
Mp. T ¢y + hee {Iv.15)
+ + i .
and this term clearly violates such quantum rumbers. (Gf course, if M =0
one can diseard either 1p+ or ¢ and allow the remaining cne to carry the

quantum number. )

The massive spin-1/2 fermicn is now considered to belong to & massive
scaler supermultiplet of the extended Poincaré symmetry. It has sceler
partners which carry fermion number ¥ =0 and F =2 ., This muttiplet
can be represented by a pair of chiral scalar superfields ¢+ and t])'_ yWhich
are just the supersymmetric extensions of ¢+ end ¢ . They satisfy an

extended version of (IV.12),

15 =
-EDD¢++M¢ =0 ,

1 (1Iv.16)
_EDD¢_+M¢+=O ,

and, in the Lagrangian density, the nmass term takes the form

S {MP*%, + h.c.)

5 *o, .c.
= M(F#&_ — [ |, + A¥F_} + h.c.

S Tt -+ ’
{xv.17)
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which includes the spinor term {IV.13). The fields ¢, and ¢ may be
related by complex conjugation if there is no fernionic guantum number

present. The supersymmetric extension of (IV.1L4)} is simply
o =% (1v.18)

However, we shall continue to sssume that a fermionic number is involved and
so will not identify ¢  with @: . To conclude, in general, mass generation
for scalar supermultiplets requires the <c-operation of multiplets <D+ and

‘13_ in a Lagrangian term of the type (Tv.17). The massive supermultiplet
{represented by ¢+ and '15_) has the content: one spin—l/‘?iénfssive particle
carrying fermion-number F = 1 , one spin-zero part.icle‘ ¥ = 0 and one
spin-zero particle with F =2, A1l these particles have the same

mass M .

The most general renormalizable and fermion-number-conserving inter-—

actions of a massive scalar multiplet are described by the Lagrangian (III.6).

B.2 Mass generation for a vector supermultiplet

So much for the scalar supermultiplet, The wvector supermultiplet
is mueh more complicated. First of all, the only known way to set up a
renormalizable interaction for massive vector particles is through the agency
of a spontenecusly broken gauge symmetry. Hence the vector supermultiplet
must be associated with a gauge superfield ¥{x,9) . For the spontaneous
bresking of this symmetry a set of Higgs scalars is needed and they must be

carried in scalar superfields ¢+ . The two superfields, ¥ and ¢, ,

co-operate to make a vector supermultiplet of messive states - rather as

¢ end ¢°+ co-operate to make a scalar supernmultiplet.

In general, one may consider a non-Abelian local symmetry which

involves & number of generators Qk and associated gauge fields ‘Pk . The

symmetries are spontanecusly broken if

4
eay # 0
Now, it is well known that the vector components acquire in this way the

masa term,
+ -1 2.k% &
URCO A RO LE: V]:(M A (Iv.19)

where the mass matrix (M2 )kk is given by

e = aTidt da, (1v.20)
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and the gauge coupling strengths are implicit in the charge matrices Qk
The new feature of the supersymmetric gauge theory is the generation of
fermion masses in the fusion of left-handed gauge fermions J\k with right-

handed matter fermions Y, in the term

X “k
LE<aE Y A ¥ §, +n.c. (Iv.21)
There may of course be additional left-handed fermion components, 1JJ' . in
matter superfields cl>_ The full mass matrix then takes the form,
— _  [ive <A1-> QF
(A ) * P, + h.e
v + . .C,
m
= (_ ¥.) M, +n.c.
(v.22)

where M is, in general, & rectangular matrix, The non-vanishing fermion

mazses are included among the eigenvalues of the matrix

1/2<aly et
mi' = . (-i/2 ¢* <oy m)

m

2avdidteay wEUD

-7 w'at <y a'm
: (Iv.23)

If the off-diagonal elements <Ai> Qk n are non-vanishing,then there is

mixing between the guage fermions X_ and the matter fermions y_ . The

fermion spectrum wiil then differ substantially from the vector spectrum.

{If there is no such mixing then MM{. ineludes s submatrix which is

effectively the same &s the vector mass matrix (IV.20).) In other words,

this mixing term (AI} Qk m is & signal of supersymmetry breaking - although

such bresking cen happen even when there jis no mixing.

B.3 Minimization of effective potential to generate scalaer masses

Scalar masses are obtained by expanding the potential

+

_ ot 1 k2
vV = F+F+ +FF+ 5 {D™} (Iv.2h}

sbout its minimum with F+ » F_ and Dk expressed in terms of A+ and A

as discussed in 8Sec.III. It supersymmetry 1s not broken then sll F's and
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D's must vanish at the minimum and the masses are obtained by retaining only

their linear parts,

JF aF
/4 -
F, " EZ>A_ , F_m<a%>ﬁ+,

3D t s 3D
prd 55y A +A<—- :
3A+> + + aﬁi

where the notaticn <> means “evaluated at the minimum", and we heve

(1v.25)

assumed thet fermion-nurber is not violated, i.e. <A_> =0Q ., (If fermion—

number is viclated,then we should have more terms in the linearization,
aF aF oF aF
+ + + + iy +
F+"‘<3A>A-+<3A>A++A+< +>+A-< )
- + 3A+ BA_

ete. We shall continue to assume that fermion-number is preserved since it

means a great simplification.)

If the supersymmetry is broken spontaneously, then some components
among the P's and D's will fail to vanish st the minimum. In these com-
ponents it will be necessery to retain quadratic terms. Such terms act to
separate the degenerate terms of a supermultiplet., For instance, if

<Dk> # 0, then the sealar mass terms will contain

Gy uld

.k
L - Aaa)

which separates states with F = 2 from those with F = 0 and both from

those with F =1 ., To find out whether such a term will appear in = glven
model is o metter of detailed investigation. One must minimize the potential
and see if any F or D is non-vanishing there. However, if the model is

not a very elmborate one it will usually be apparent when there are no values

of A+ end A_  for which all F's and D's vanish simultaneously.

A problem which cften arises is that of degeneracy in the classical
minimum, The potential attains its mirimum value not at a single point or
even on a set of points which are connected by symmetries of the system, but
on & larger manifold, This phenomenon indicates the presence of massless
{pseude-Goldstone) scalar states. In ordinary gauge theories when this kind
of instability appears in the classical approximstion it is removed by the

quantum corrections. However, & peculiar feature of supersymmetric theories

is that such instabilities can persist to all orders. Indeed, it can be

proved that the pseudo—Goldstone particles remain without mass to all

orders in perturbation theory if the supersymmetry is not broken in zeroth
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order. On the other hand, if the supersymmetry is broken in zeroth order,
then either the instability is removed or it ia amplified, i.e. the pseudo-
Goldstone particle acquires either a real or an imaginary mass. Again, it

requires a detailed investigation to decide which alternative is chosen in

any given system.

B.4 Slswnov's mass generating terms

The appearance of vecuum instabilities seriously limits the utility
of strictly supersymmetric schemes. If such & pathology arisea in a
particular model one can only tonelude that it is not amenable to perturbative
treatment, Whether such a model is sick in some even more fundemental way
cannot be answered at present. In order to circumvent these difficulties
we consider now the introduction of pseude-explicit symmetry bresaking terms

which serve to lift the vacuum degeneracy in zercoth order.

Two mechanisms for bresking supersymmetry in a perticularly soft way
have been invented by Elswmov. The first (Type I} mechanism is applicable
to Lagrangians which admit a global U{l) symmetry. This symmetry is then
gauged in the usual supersymmetric way and then a singular limit is taken
in which the gauge coupling vanishes while the associated auxiliary field
D becomes infinitely large. At no stage is the supersymmetry of the extended
system broken explicitly end,in fact,a Goldstone spinor is present. However,
this Goldstone spinor, along with the U{l) gsuge vector,is decoupled in the
limit, and the end result is & scalar mass term which, so far as the original
system is concerned, acts like an explieit symmetry breaker, The derivation

goes as follows,

The supposed glcbal symmetry acts on the matter fields ¢+ through

"charge" matrices Q, and it is required that this symmetry remain unbroken,

Qt<¢i) =0 .

It is made lccal through the introducticn of a gauge superfield ‘FO which
couples to ¢, through the kinetic terms,

_ 2 ¥ Q 0+ .. =2g. ¥ Q + .-
%(DD)zl:@Ie VRl X f 00 @_:I , (1v.26)

where &, denotes the new coupling consient and the dots indicate sll other

ganuge couplings, With a U(1)} leocal symmetry it 1s possible to introduce

g linear term
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2
1 =2 (M
{p} [—— ¥ } ' {1v.27)
B &y o
vwhere u 1is a parameter with the dimensions of mass. The new gauge field
givea rise to a new term in the classical potential, viz.
2 2

1.2 1|u T T

_ = —|a— 4 -

50, 2[50 g (A,Q A -4Q4) (1v.28)
snd this 1s the oniy term in the entire Legranglan which becomes singular
in the limit g + 0 (keeping W fixed). In this limit the vector and
spinor components of ‘i’o will decouple &nd the only relic of this field will
be the terms

L
1.2 _ W 2,1 T
lim 5 DO ==+ (A+Q+A+ - A_Q_A__)
2g0

of which the first, en infirite ec-number, is irrelevant and mey be discarded.

(Iv.29}

Only an effective mass term for A+ and A remains.

As remarked sbove, this mechanism is not an ordinary sort of symmetry
bregking. Although the term (IV.29)} acts, in effect, as an explicit breaker
of supersymmetry, 1t has & symmetry respecting origin in the gauge field Ll’o
of which it {s a sort of tadpole. In other words, one can lock upon the
mass ingertion, u2 , a8 the contributicn of a zerc-frequency external D
line,

0
W= g B> (1v.30)

In this view the symmetry breaking is spentanecus rather than explicit. This

viewpoint is importent when one inquires into the matter of counter-terms.
In supersymmetric theories only wave-function counter-terms are needed and
this means that only ome new divergence is introduced into the theory by
this mechanism: the rencrmalization of D0 , which will manifest itself as a
logarithmice divergence in 1-!2 . By virtue of this paucity of independent
parameters, Slavnov was &ble to set up a model which is both ultraviolet

free and infra-red stable.

Slavnov's second (Type II) mechanism is applicable to systems where
it is possible to construggfgffinears which are invariant under any local
symmetries of the system. Let @E n G>+ be one such invariant,where n
is a symmetric numerical matrix. Introduce the pair of auxiliary negative
chirality singlets 5 and S' whose kinetic terms and imteractions with

?+ are governed by a new term in the Lagrangian,

—g5-

1

2
D)2 (g4g" L e + B gy v
g (Tp)~(g¥s’ + h.c.) 5 DD(h S*¢, n o, 0 §' + h.e.) . (Iv.31)

The non-positive definite kinetiec term here indicates that one of the new

states must be associated with a negative metric,

5§ + 8' |2 |s - g
s |tz

|2

§*s' +h.e, =

However, it is not difficult to show that these states do not couple to the
physically significant ones. To see this, reduce (IV.3l) to component form,

* 1 — 1 » t
[8&_ Ba_ + T_ifr_+ f_ T
* T T -1
+ & [Eh ALMF, + hU,C n!b,f]

2
- T {2mfnw+1 -t {hATnA+} + L f‘l:l + h.ec.

*

* 2" T T.-1
[a_[—a a_+ 2hA+r1F+ + hy,C ‘W,,,]

+

4 [iifcl- szanJ

+ [fi + EE] [f: + hAEﬂA¥] - UEAznﬁq] + h.c.
{1v.32)
with the neglect of surface terms, Now make a field transformation, i.e.
substitute in (IV.32) the expressions
al=a.'_+§-2-(2hAEnF++hwEC-lnIP+) ’
=+ %3-(2h AL nw,) (1v.33)
rl=?'_-hAEnA+

The resulting Lagrangien,
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— ~ 2 ~ 2 T
[é&: EE; + g_ia g+ (fr + %—)f_ -u A+ n Af} + h.e.

describes a pair of non-interacting superfields 5 and §_ , together with

a scalar mass term,

2 T
-u" A nA +h.c. (Tv.34)

which is relevant t¢ the original system. Again this is, in effect, an
explicit supersymmetry breaker slthough it has a symmetry respecting origin.

Just as in (IV.30), one can write
2 _ * l
o= -n S, (1v.35)

and this implies that u2 must diverge logarithmically as in the Type I case.
(It the physical system contains a singlet ®_ then the parameter A - in the
term IIF_ - must develop a logarithmic divergence due to contributions from

{Iv.34).)

{c) MODELS

To illustrate some general features we list three example. The first
two are parity-conserving models in which an internmal symmetry is spontanecusly
broken but supersymmetry is preserved. The third is a very simple model with
a diserete symmetry wherein the supersymmetry is spontenecusly broken and a
Goldstone fermion appears.

«-gT-

c.1 Local U(1)

This parity conserving model inwvolves, in addition to the gauge potential

¥ , a neutral singlet S+ and & pair of charged fields ¢+

Lagrangian is given by

1l ,=_.\2 2 2g¥ 2 =2gY 2
£=% oo [le,l? 28 v o |2 25 o | 7]

8

1=
-3 oD [-

=

oopry

W;W+ +

Dov + v2g ¥ 5 o, + h.c.] ,

vhich reduces in the Wess-Zumino gauges to

_ 1.2 L mgu .l 2,1 2
,‘C--L—Uw+x11x+2(aua) +5 (3p)

£ VAL Tal? + Ty

and ¢

- ghlaygh)y - & V2 [W(xA,, - 1y5xA) + h.c.] -V,

where the potential is given by

with

2 2 2,1
|F 15+ [F_I7 4+ |£,|" + 5D

-gla ¥ ib)ay
#*
- ZaA

£-alla,l®-1ai® .

2

¥

The

{iv.36)

(Iv.37)

(Iv.38)

On substitution of these expressions into (IV.37) the potential reduces to

v ) (o (2 (D) ¢ 261,12 [a B oD e [E o a2 0 |a ff]

(1v.39),

In (IV.36) the covariant derivativee take the form appropriste to an abelian

symmetry, viz,

et

v

- aﬂUU f

BUUu

v Vo= (818000 . A = (31604,

=98~

(1v.40)
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Minimizatlion of the classicel potentisl (IV.37) is trivial. Indeed
one cen see thet all the suxiliary fields (1V.38) vanish at the point

<a) a (b) = <A_> =0 <A.,.> = ‘/EE ’ {Tv.h1)

provided E/g »0 . Thim point iz non-dagenerate and, since {V =10 , 1t
is clearly an abaclute minimum. The wacuum respects supersymmetry as well
ag parity and fermion-number. The local symmetry is broken, hovever.

One can show that sll particles in this model heve a common mass.

The free Lagrangian is easily obtained by substituting intc (IV.36) & {IV.39)

the shifted field
_ 1
A+ = Jg +&(A1 + iAE) (IV.J-&E)

and retaining only bllinear terms. One finds

L= b2, o 1y, - Fon)

uv M e

1 2 1 2
5 (aua) *3 (aub)

+ |auA-|2 - mehx_lz

+ Xipx + Tiby - M(Px + RO
{(IV.43)

where the common mass is given by

M o= v2gh (TV.4b)

The scalar field A2 can be removed by & gauge transformation. There re-
mein two real scelars, Al and & ; a real pseudoscalai b 4 a scalar di-
fermion, A_ } & real vector, UU 3 two Dirac spinors, J%lw + X} and
Jg— YE(QJ'- ¥)s of opposite parity.

Interactions are characterized by a single dimensionless coupling
constant g . The model is presumably rencrmalizable but we have not
examined the quantws corrections.

Although thie model cah have no broader interest we have included it here as
the simplest representative of a supersymmetrlic syatem in which both parity

and fermion-number are conserved. In fact, it describes the rencrmalizable
interactions of a single multiplet of the complex supersymmetry discussed in
Secticn T.
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c.2 U(3} x 8U(3)

local global

A model of the same type but with more structure is constructed from
the gauge potentials WO ,Wk (k = 1,2,...,8), their supplementary pieces SS
5, and a pair of matter fields & _ and ¢_ in the representaticn (3,3).

The parity-conserving lagrangian is

- 0 u 0
L= %-(DD)2 Tr[¢1 exp(EgOW +2g¥)9, + ¢ exp(—EgOW - 25?)@_]

+ ]Soi2 v Lopls’ exp(2g¥) S, exp(-2g¥)
+ 2 + +

1, 1,00 _1ikk  E= 0

to O
+ /2 1r o (g5, + & 5,08, + h.c] ’

where ¥ = Wklk and s+ = kak are traceless 3 x 3 matrices. In this case

one can show that the potential is minimized at a point which respects both

supersymmetry snd global SU{3), viz.
{8 y=0 , (A= /~E/3g, x unit matrix ,

(1Iv.46)
y={sy=0 .

There are no massless particles. It turns out that the system comprises two
multiplets of the complex supersymmetry, an Su{3} singlet with mass f—EgGE
and en octet with wass f-bg £/3g,

c.3 C'Rajgeartaigh's model

This is the simplest model in which spontaneous breakdown is realized.
It contains three chiral superfields, ¢0_ ' ¢1+ and @2_ , and admits a
discrete symmetry

-100~

R T - e -

*

(Iv.45)

T

e

R

T

e



¢ + ¢ s 8.+ =0 s B, + -0 . (Iv.47)

The Lagrangian is

L= % (TJD)E[ltko_I2 + |¢1+]2 + |¢2_|2] - L rojen [6 + ]alq@ ] *mog e, h.c.]

2 O-- 1+
{Iv.L48)
end the potentisl 1s glven by
2 2 2
U LN R R N R (Iv.k9)
where the suxlliary fields are
= b 2 = » P =
Foom A g A, s P mwhy, tnMA L Ty sway,

0f the three extremal conditions QV/SA';'_ =0 , ete., only two are independent:

= + *
O=ma,_ +nada

2
= |m® + 2 2 N
0= [m + 5 IA1+| } A1+ + hﬂAl+
There are two solutions, but one is deeper, viz.

1/2

(A= [(—2/h2)(m2 +n xf{' :

Since only the ratio A2 /AO is fixed here the minimum i= degenerate. The
system contains & massless di-lepton in the zeroth order. To compute <AD->

and <A2_> cne must take account of quantum effects.*) Hotice

2 1/2
<F0__,>= E'— H <Fl+> =9 ) <F2_> = —mE-—Q/hz)(mz + hﬂﬂ H

which certifies the supersymmetry breskdown.

® There 13 a standard technique for obtaining the one-loop contribution to
the effective potential. Meke the c-number shifts

AU_+aO_+A0_ N JL-L++a.1++A1+ . A2_+32_+A2_

and pick cut the terms which are bilinear in the gq-numbers. This shifted
free Lagrangian determines a set of masses which are functions of ay_ » eta.
The cne~lcop contribution is then given by
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(D) UNIFICATION OF WEAK AND ELECTROMAGNETIC INTERACTIONS IN A SUPER=-
SYMMETRIC APPROACH

To conclude this discussion, we twrn to the problem of incorporating
the weak and electromagnetic intersctions of leptons and hadrons in a super-
symmetric framework. As yet there exists no satisfactory resclution of this
Problem and the following paragraphs are intended to point up the problems as

they appear to us now.

In the ashsence of any more compelling alternative, we shall begin
with a minimel extension of the SU(2) x U({l) model of wesk and electromagnetic
interactions where left-handed (matter) leptons and gquarks are classified into
doublets and the right-handed are {matter) singlets. The supersymmetric
extension involves introducing deoublets and ginglets of scalars to go with the
fermions and a (geuge) triplet plus singlet of fermiens to go with the gauge
vectors of SU(2) x U(L} . This much is the bare minimum but in practice many

more fields are needed.

The new left-handed gauge fermions (SU(2) % U{1l) triplet and singlet)
in the supersymmetric approach can have nothing to do with the matter fermions
(leptons and quarks) which are supposed to be doublets. They must therefore
be very heavy (or, in some other way effectively decoupled from present-day
rhysics}. They muat thersfore be given right-ﬁanded partners from among
new matter fields. These new matter flelds may then be thought of as part
of an "extended gauge system”. No members of the extended gauge system -
a.pért from the photon - have yet been seen; presumably they are all very
heavy.

V(l)(&) =& 3 Z (-—)2‘1 Mh(a) fn M2(a.) + counter—terms. (1Iv.50)
by ’
]=0,'1'1,|

On restricting the variebles a and a2_ to the subspace on which

0- * %1+
the classical potential is minimized (keepiug only a

0=
ent varisble) the counter-terms, like V(D) , are ccnstants. Cne then

v(l)

, say, a3 an Independ-

minimizes with regerd to a . It is found that this minimlzes at

o
a, =a, =0 . Lepton—aumber is conserved. Cne finds, in addition to the

Goldstone lepton (left-handed), a lepton and a di-lepton of mass M = /-(m"+23h),

2 2
a peir of ordinary bosons of mass /{‘12 - and /M2 +m . Finelly, the

2
pseudo-Geldstone di-lepton is found ta have the (memas)

242 2 iy 2 2
LRV [1+m—] E.n[l+m—]—[l—m—] En[l-E—]—g%—

16112 M2 2 bf? M2 M

I}

=1l02-



We shall continue to assume the existence of the fermionic quantum
nunber F asscciated with the chiral components of the supertranslations.
This number will not be identified witk any of the known cnes such as electron-
or muon-number. If these numbers are all separately conserved, ag we shall
assume, then there will be no mixing between the gauge fermions and the matter
Permions. This 15 an importent requirement if the universality of the wesk
interaction (equality of weak (eve) and (‘u\)u) couplings) is to be maintained.
(It follows also that the Goldstene fermion, arising through spontaneous break=-
down of supersymmetry, will not be identified with either of the known neutrinos.)

To ensure the universal strength of the charged wesk current one assigns
left-handed fermions or right-handed antifermions to doublets of SU(E)I x U(1)

e.g.

Y *

N
_ with I=1/2 , Y=-1,
&y
+
1

with I =31/2 , Y =+1 ,
\J'R

while right-handed fermions or left-handed antifermicns are singlets,

e'R with I=0 , Y=-2 ,

+ N

“L with I=0 , Y=+2
Since vy, has no right-handed partner, it must remain massless {at least if
electron-number is conserved). Likewise for \)I . The quarks are similarly

R
gssigned, e.g.

T
U with I=1/2 , ¥
nly

=1/3 ,
Py I=0 , Y =b4/3 ,
np I=0 , ¥ = =2/3

A major difficulty concerns the scalar partners of these fermions.

These scelars tend to be degenerste with the fermions.

Hotice firstly that if these secalars carry globally conserved
quantum nymbers, like electron- or baryon-numbers, this will regquire their
vacuum expectation values to wvanish. In turn, this will mean that the

masses of these supermultiplets arise entirely from their interactions with
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the extended gauge system. This extended gauge system has two parts: the
vectors and left-handed fermions contained in guasge superfields ‘l’k(x,ﬂ) ,
and the scalars and right-handed fermions contained in a set of positive
chirality scalars ¢i+ . It is the scalar components of the latter which will
play the role of Higgs fields and generate all masgses,

Now there is some latitude in the assignment of the scalars but,
wfortumately, all the veraions we have examined suffer similer defecta. The
main defect is the persistence of a mass formula by which the average {ma.ss)2
of fermions in any gharged supermultiplet is equal to the average (masa )2 of
bosons. This means, for exemple, that if the electron is assigned to a scalar
supermultiplet, then even after the bresking of supersymmetry, its two bosonic
partners must have masses ~1/2 MeV. This rule, for which we have no general
proof, persists even when Slavnov's mechanism is used. This will be i1llustra=-

ted in the example which follows.®

To illustrate the main features of e supersymmetric version of weak
and electromagnetic interactions,we present a model based on the local sym-

metry SU(Q)I x U(l)Y x Ul(1) wherein the electric charge is identified by
1

2

s

Y
1 2
= —_+ = .51
L A (Iv.51)
The other four symmetries must be broken spontanecusly. The gauge superfields
Y, LFOl and \Poe include three electrically neutral and two charged ones
comprising the photon, two neutral vectors, the charged vectors and the
accompanying left-handed fermions. Right-handed fermlons are contained in

a pair of positive chirality doublets ¢ and & with the (I,Yl,‘f_e)

1+ 2+
') An alternative one might consider is the use of vector supermultiplets.
These contain two fermions along with a secalar and a vector. One fermion

could be light and the other heavy like the bosons. However, such an approach
brings its own difficulties. Firstly, if the theory is to be renormalizable
then the vector will have to belong to a gauge system and one will not be able
to make do with SU(2) x U(1) . Rather, one would have tc assoclate an
independent symmetry generstor with eech lepton and quark. This very large
symmetry would then heve to break in such a way as to yield one relatively
light charged vector W+ and perhaps a neutral ZO . The leptons and quarks
would belong to the adjoint representation and it is herd to imagine how

they could all resemble doublets of some relatively weskly broken SU{2) sub-
group. The problem of setting up a universal weak interaction would seem

to be insurmountsble in such a framework.
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assignments

¢1+ u U-/B’ -1, 0) "

{Iv.52)
L (1/2, 0, 1)

These fields, together with the gauge fields ¥ , ‘1'01 B ‘}'02 make up what we
designated as the extended gauge system.

Matter leptons will take one of two possible forms, either left-—
handed doublet paired with right-handed singlet,

3~ /2, 0, -1},
(1v.53)
s3+ « (0, 0, -2} ,
or right-handed doublet paired with left-handed singlet
¢h+ ~ o (1/2, 1, 0)
(Iv.54)

§,_~ (0,1, 1)

Fractionally charged quarks {tc which, for simplicity, we shall con-
fine our considerations) are assigned in & similar way except that they carry
fractional hypercharges and each doublet is paired with two singlets instead
of one so that all quark states are massive. (See Eq.(IV.91) for the
assignments of the second singlet.)

The matter interactions are severely limited with these sssignments.

Cnly two types of coupling can be made,

1= + T |
-EDD(f@ 8 +hosp % iT, q>2++h.c.) . (1v.55)

3= 3+ ¢2+

Notice the glcbal symmetries,

1153_ ks i ¢3_ . S3+ S3+ R

ig ig
bore . B_rel5, (1v.56)
O o¢ T 0 oy 0

vhich may be interpreted as eleetron and muon number symmetry.

The gauge interacticns are given by the kinstic terms,
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1 =2 fat +
L @) o], emleat - 28,%,)) 0, + 5, expleat + 2,100

plus the supersymmetric analcgue of the Yang-Mills Lagrengian (III.38).

191 1+

02" 2+

+
+ ¢3_ exp{-2g¥ + 232'1‘02)@3_ + S‘§+ exp(-hga‘?oa) 53+

+ q’L expl2gh + 2¢) ¥, )4, + Sf_ exp{-2g ¥y - 2u,%p,) Sh-]

(Iv.57)
With

two commutative U(1l) groups in the local symmetry we can have two dimensional

parameters, El and 52 ,in the temm

1 e 2
F (D) (El'F + LY

The scalar pctential 1s the standard one,

V= FI+F:L+ * F£+F2+ * F;-F} * |f3+|2 * FLFM * |fu_l2 +
PEE R e
where the guxiliary fields are given by
-FL,=0 , -t = f A;_ Ay
—-F2+ = fag_'_ A3— - hah_ 11’2 Aﬁ+ , -F, = hah_ i'l:2 AL_ ,
-F3_ fa3+ A2+ N —f_‘h_ =h Al,..;. i'r2 A2+

where

iz,

electric charge are all conserved then, in the vacuum only two fields can

1ot + 1
SGRTALIA AL TA, AL TA,

1 &

3

[

-

__ =1 1 T _
PR B Ul U eyt

2
-=—0D —+
8 02 &5

t +
Ay o v A AL - 2]a

)

ol 2 02

*

(1v.58)

(Iv.59)

(1v.60)

the notation for component fields is exactly as im previous sections,

+

I+

¥

If the various guantum numbers, fermion, electron, mucn etc.,and

exp(¥ ljfahse)mt * B, +

exp(¥ %;53"{59)(8.1 + _é;i;i +

1l = 1 ==
=% _GiYU"{SB V\J + o GBS'YBA +
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develop an expectation value,

0 _ o =
<A1+> =v, and <A2+> = v, (Iv.61)

where the values v,

They can be expressed in terms of psrameters in the Lagrengian by solving

and v, are fixed by minimizing the potential (IV.59).

the equations

g g
2l =1 2|2l f2. o2l 2,2 2
gl - €1 - vl - gE - £y ¥ v2 =e (vl = V2) N (1v.62)

On expanding V at the minimum, one finds the following mass terms:

2 - + 2
Vi 2g !vz Al + vy A2|

- 2 2 2 -
+ (;2 vg - 2g2(vi - vi))|a3|2 + (; v, * 2 (vi - vg})|A3!2
2 2 2, 2 2 +2 2 2 2, 2 2 +2
+ (0% v - 280 - oD ey |+ @F vy ¢ 2870 - Vo) Iay
+ 26" + & o (re &) - bgly v, (re D)(Re D) + 2(° + gENE(Re A0)7

(Iv.63)

(where superscripts refer to electric charge). A1l non-Goléstone components,

except for Ao and AO , have mass and these masses are real 1T
F L+
22 2, 2 2 22 2, 2 2
v, > 2 |vl - v2| and BV, > 2g |vl -l (Iv.64)

The pseudo-Goldstone states Ag_

They are without mass in the tree approximation

and A&_ could receive masses from the
radiative corrections.
because of their association in supermultiplets with the neutrinos ng R lpgR .
Couplings to the extended gauge system provide only & modestly effective

means for breaking the supersymmetry: chargéd multiplets are split but neutrsl
ones are nct, Fortunately, 1t is not necessary to rely on radistive effects
for 1lifting this degeneracy. Instead we can expleoit the Slavnov Type I
mechanism.  The necessar:,: global U(l) symmetries are simply, electron-number,
muon-number, etc.,end so we can immedlately adjoin to (IV.63) suppliementary

mass terms of the type (IV.29)},

241,02 -2 -2 241,02 +2 +
W(aS12 + 18312 - 1a51%) + a5(a 17 + 1417 - lar %) . (1v.65)
For the positivity of a.; and e,; masses we must have
2 22 2, 2 2
u1<fv2—25 (vl—vz) . o6
v,
2 22 2; 2 2
My <RV, - 27 (v - v5)
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Finally the masses of the two real neutral components Re Ag and Re Ag are

determined by the matrix

2 2, 2 2
2{g” + gl)vl —2g" vV,
(Iv.67)

-232v v

2. 2,2
1% 2lg” + gy)v,

whose eigenva._lues are certainly positive. Thus, sub)ect to the above in-
equalities, all scalar masses are real and the minimum is established. In
perticular, the assumed conservation of charge and the various fermionic

qugntum numbers is justified. Consider now the spinor and vector masses,

The spinor mass terms are contained in the various Yukawa couplings
of Al and A2 .

=T vy b3 8

They are
I
= hvg ck__ wh_ s
R o= - : T+
+i2g v A ¢l+ + i2g V5 A lb2+ ,
. = 0,0 . - —a .0
+1v2 vl(gl3_ -8 )‘1-)“’1+ ) v2(g A}_ - & }\2_)1J12+ + h.c.
(1v.68)
The masses of the charged particles can be read immediately from this. For
3 S3 ,while the
belengs to a left-hand~d doublet while
(It would be equaelly possible if u~
were assigned to a left-harnded doublet.

definiteness, suppose that the electron is contained in @
m:on is in @h \ Sh , i.e. that e~
U belongs to a right-handed cne.

There is no problem of electron
mucn mixing if none is introduced in the bare Lagrangian.) In addition to

the ftwo charged leptons

) =1p3_+;3+ , mle )=.fv2 .
+ + + + (Iv.69)
= + m{n’) = nv,
" C]-I.- e+ s s 2
there are two charged fermionas in the gauge system,
+ + + +
Q =¢12++1A_ . m(ﬂ)=2gv2 .
-~ _ - - - {(1v.70)
@m0y, v, @) = 2w,
Assoeciated with the charged leptons (IV.69) are the two neutrinos,
=40 1 o
v = ¢3_ and Ve, . (1v.T2})

which are without mass. Finally there is a& set of mass terms for the neutral
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fermions in the extended gauge system. These can be arranged in the form of

8 rectangular mass matrix,

e W0
100 302, u ; +h.e
Uy .
with
B 0
M=/2 o XA ) {Iv.72)
& -8y,

The canonical representation of this matrix would take the form

m1 Q
M=11lo m| v ) (Iv.73)
0 0

where U and V are orthogonal matrices (3 x 3 and 2 x 2 respectively) and

" n
the "eigenvalnes m and m,

together with the angles in U and YV are cbtained in a straightforward

are real and pesitive., These eigenvalues

fashion by diegonalizing the symmetric matrices MMT and MTM . (1t is

worth remarking that MM is precisely the scalar mass matrix (IV.67) while,

as will be seen, MMT is the vector mass matrix. This elegant relatioriship
iz a menifestation of the underlying supersymmetry: the massive scalars, spinors
and vectors belong to & pair of vector supermultiplets). There are four

angles involved in the representation (IV.73}, three in U and one in V .

They can all be expressed in terms of the three independent ratios, gllg s

g/g and v /v, . Let us write
03 —53 0 C2 0 —32 Cl —Sl o]
U= 53 03 ol j6o 1 1 Sl Cl o] v
.0 [¢] 1 SE o] C2 0 0 1
v | TR
% (IV.74)
where C, = cos@l » 8y = sinal . etc.  These angles can be used to define

two massive neutral spinors:
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0 0 0 , o . Q :D
Q = (e - Sy U,), + 1((c3c2cl - s3sl))\l - {c3c251 + 8,000, = C 84,0
0 _ 0 Q 0 0
Q, = (Sh‘l’l * C],‘JJE),, + i((SBCECl * casl)ll - (830281 - C3C1)A2 - 5332)\3)_
(1v.75)

and one massless left-handed spinor:

Y _ a_ V]

vy = (8,004 = 550, + CA.)_ - {1v.76)

The coeffieients in (IV,76) can be expressed entirely in terms of coupling
constant ratios,

P
g

@ |-
[z}
[¥2

w
2]
-
[0 Lo
1l
1 3 [d

1
%2 g Cy s (Iv.77)

where e denotes the electromagnetis combination,

+ 1—2 . (1v.78).
-1

The other angles and the masses m o, W, are glven by straightférward but

rather lesa interesting formulae. We pass on now o the vector masses,

The wvector mass terms are obtalned in the usual way from the Higgs

fields A1+ and A2+ . They are
ZSE(VJQ_ + v:)lw+}2 + vi(gw3 - glvi)z + v:(ng; - gevg)z . (1v.79)
vwhere (W+,W3,W-) dencte the gauge vectors of SU(2 )I , and Vi , Vg those of
U(l)Yl x U(l)y2 . The neutral terms cen be arranged in the form
20wt | [0
(] ¥ uy) N v
-gslvf -gggvg gz(vi + vg) W
v
=y apvawdwt vl -
Y3
=110-



2 Q
m 0 0 v 10 a 0y . _
spin 3 05 = (8,4 + Cp), i((s3c2c1 0.8, "] = (84,8, - CiC NG - 88,05
1 0 -1 2 0
= z {v W }ou 0 m o| u |v
5 W Vp Wy 2 2 i 0 _ o _ - -
spin 1 Z, (3302(:1 + c3sl)vl (33(:251 c3c1)v 8332W3 .
o] 0 o} W3 o o 0
spin 0 ¢, =5, v2 Re A + C, /2 Re s
(IV.BO) 2 N 1 N A2
—_— — '
with M given by (IV.72) and (IV.73). The two massive vectors and the photon spin% ng = (sh\p +* Cl;w2 N 1((530201 +C S )A - (530231 - C3C1)A -8 S A3) l:
are, therefore, o
= _ ’ {Iv.84)
Z) = (C;0,0; - 855 )v - (€40,8, + s3cl)v - CyBHs
These multiplets are umbrcken in zeroth order. Their respective masses are
Z = (84550, *+ OBV} = (50,8, - €009 - S350 (1v.81) glven by
- a_ 0 2 .,z 2.2 2. 2,2 J 2 222 N 422
A = 8,0 V) - 5,5V, + CMy . my o =g v Evy v (& eI, F ((&" + &), - (g + 32)V) +hgiviv, .
In summary, the system comprises the following states: (Iv.85)
(1) A charged vector supermultiplet (3) The photon supermultiplet
. _ )
spin = 4 =y + 1A, (@) = 2av, a1l A = 8,007 - 58V) 4 ¥z o
. ¥
spln 1 W = =% (W, - 1W,) n(W') = 28°(vF + v5) int  W=502% ~552% «cA, (the Goldstone neutrino) L
T S 2'u ? 17 Vel e Fpin 3 | - B M PR s - MO~ . ° nos (Iv.86) ‘
. + (Iv.82)
aptn 0 ¢+ . v2A1+ + le2+ m(¢+) SR ve) The vector supermulitiplets (1)-(3) exhaust the gauge system. Leptonic matter
ﬁ-—a * ? ig classified in scalar supermultipleta: the ®3_ N 33+ and ¢h+ ' Sh— type
+ .
v \E combinations of which there mey be duplicates. For definiteness we conalder
1 = = — - one of each and label them "electroni¢" and "muonic" respectively.'
spin 5 1Y) =1Pl+—i)x . m{f )=Egv1 .
(%) The electron supermultiplets, one charged,
4 it ta. spin 0 a_ -=‘/22_ 5.2 _ 2y _ .2
an 8 conjugate 3+ . m(a3) by v? 2g (Vl 2) o
(2) Two neutral vector supermultiplets spin % e = C;_ + "’3— . mie ) = £V, !{'
spin = n°=(c¢°-sw°)+i((ccc-ss)x*(ccs + 8,0 N5 - C38,04) . 4
2 "M ¥ T Phrads 37271 1 w271l T Tatifte 37203/ =2 ‘n o A" (A-)_\!22+2(2 2y, 2 :
spin 3 . m4,) = v, glv] - v, B s
Q
spin 1 2. = {C_C.C, - 5.8,V -{ccs +sc)v-csw .
1 3271 31 21 1 323 (note m2(a;)+m2(A5)=2m2(e_))
0 ] a (1v.87)
spin 0 ¢- =0, v2 Be 4] = 5, V2 Re 4 . and one neutral, :
1 L 1 Y 2
4] 0
— — — in 0 A m{al) = p,
1 0 —0 (o} ( 0 P 3- 3 1
in = = - - - -
spin 5 Q) (chq;l SWQL i (C302Cl 8351”‘1 (030251 + 5301} 5 ¢ s 1\3)
- l —_ =
spin 5 v = IJ'JB_ . m(\JL) a .
{1v.83) (1v.88)
-111- -1i2-

e



(5) The mucn supermultiplets, charged,

+ ] 2, 2 2 2
spin 0 A;'H_ . m(Ah)=JhV2+Es (vl-v2)+u2 >

1+ o+ + +
spin 3 W o=, + % . mluw) =hv, ,

+ + 22 2, 2 2 2
spin O & _ , m(ah) =qh v, = 28 (\rl -Vl -,

{again me(a:) + me(A;) = 2m2(1.l+)

{1v.89)
and neutral,
spin O Aﬁ+ . m(Aﬁ) =My s
apin-;- v} = 1|'.JE+ . m(vﬁ) =0 .

{Iv.90)

Finally, since the baryonic supermultiplets should not contain any neutrinos,
it 1s negessary to adjoln extra singlets, 8'3+
baryonic multiplets are fractionally charged,then their hypercharge assignments

and, consequently, their masses will be different from {3) and (4} above.

or Sﬂ_ . Moreover, if the

Consider the (I,YI,IE) asgignments,

L {1/2, ¥, ¥-1) , L {1/2, Y+1, Y)
Sy ™ (o, ¥, ¥-2} 5, % (0, Ya1, T41) (1v.91)
8, ™ (0, Y41, ¥-1) s{_~ (0, 1, 1),

under which the following interaction terms are permitted:

}_,- 1' it " *' T 1 V¥ T i
-EDDEDB_(f @E S.. +rftd )+ (n sf_o,, +h' S\ d>1+)1 T, B, *+ Dae.| .

1
* U3 1+ E"3+ 4
. (1v.92)
One finds the following spectrum of baryonic states.
{6} Supermultiplets with charges Q = Y+l , Y and masses given by
Y+l ne. 2 2,2 2
A, Jh v, * (v+1)2g (vl - v2) R
T+1
(W, * ) B,
Y+1 n2 2 2,2 2
8 _ \lh v, - (¥+1)2¢g v - v2) .
=113~

Afw \!h'avi ,y zgz(vi - Vg) ,
(le' * L:lt-)Y Rlv,
ai. @21,? _y Ege(vi _ vg) ,
and similar supermultiplets ®with Q =¥, ¥-1, (1v.93)
(50 + 93 * A
’%— f-2v§ - Y 232(v§ - vg) ,
a‘é:l 'dfzvg + (¥-1) Egz(vi - v:) .
(‘;3+ + q’3. )Y_l f"v2 R
A 4 22 - (1-1) 28°(F - ) .
(1v.94)

To summarize, what we have shown above is that the demand of
universality of couplings can be met, if the extended gauge sector fermions
do not mix with matter (lepton and quark) fermions. {One important econ-
sequence of this is that gauge fermions exist which are about as massive as
Wand % particles.) Th;s chief drawback of the model presented lies in that
there also exist in the model (charged) spin zero particles ~ companicns of
electrons and mucns - with light masses. The hope is that radiative effects
mey cure this defect of the model.

To obtain an effective Lagrangien useful for phenoménology at relatively
low energies (< 5 GeV) it would be remscnable to integrate out all massive com-
ponents of the extended gauge system, i.e. the supermultiplets (1) and (2)
which are very heavy (> 50 GeV). The photonic supermultiplet (3) must of
course be retained in the effective Lagrangien. That pert of the interaction
Legrangian which is linear in the gauge field defines a set of currents,

) As is well known, there are no anomalies in the theory, provided
that there are two(integer charged) leptons and four qQuarks among the matter
fields with their conventional essignments of Y quantum numbers. (The
extended gauge fermions do not produce anomaiies.)
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] Q L0 o 0 G ~0,.0]
g i (szj J(QJ) + LJUJ(ZJU) + ¢>J J{cbj) + J(RJ)RJ]
J=1, .

- - - - e
o [ o 00 ¢ )+ 3@ e ]
Elimination of these wsauge fields yields the effective interaction Lagrangian,

z 1 .0 o,, 1 .02 1 _. 0,2}
E;; J(Qj) J(RJ; + 2m§ J(¢J) - 2m§ J(Zdu) ]

J=1,2
b @7 ) - =R S T ()
a(?7) aW)® A MM
r—2geh) 29Ty + 22— 35 105
m(¢*)? n(a’

We shall not pursue this any further in view of the unrealistic charscter of
this model. All of the currents in this effective Lagrangian receive
contributions from lepton or baryon—-number carrying scalar fields which cannot
be ignored. Their masses must, according tc formulae like {IV.8T), (IV.89),
(zv.93), (IV.94) be of the same order &s those of their fermionic partners.
{This being sc, there is even a long-range pseudo-electromagnetic interaction

between scalars and spinors due to the exchange of the photonic neubtrino

{1Iv.86).)
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AFPENDIX A

FEYNMAN RULES

A number of apparently renormalizable Lagrangian medels has been given.

In this appendix rules are develcped for computing terms in the perturbation
series. To take full advantage of the supersyrmetry, these rules are pre-

sented in a manifestly supersymmetric fashion.

The formal derivation of Feynman rules proceeds very much a&s in any
ordinary quantized field theory. Consider firstly the mest general renorm-—
alizable system made entirely from scaler superfields (i.e. without any local
symmetries). The action is given by

s(9) = [ ax %{ﬁm?[mif e I

=

D *
Dn[qha_{n'a M %t By By ¢J+} + h.c.]] 1)

Introduce extermal sources Ja"- N Ji— and define the connected vacuum ampli-

tude Z{J)} by the usual path integrel,

i _ i 1= t u
exp z I(J) = I (a® ad*) exp S(0) + [ gx (- DDHJI S, + 0T + h.c.}] :
{a.2)
Connected Green's functions are given by the functional derivatives of 2
evaluated at J =0 . For example,
+ v s’z
<T ¢+(1} ¢-(2)>con = ; ";"—""—'-—""—
’ 87_(1) &7 (2)

J=0

For meny purposes it is convenient to have a special notation for the

functional derivatives of 2 at arbitrary values of J . Thus we write
_6_12_;&11 =¢,(1) ,
s7_ (1)
=) (A.3)
§z(J}) _ .+
sa, ) 7 %0
defining the field avera.ées as functionals of the external currents. In

principle these expressions can be solved to give the externsl currents as
functicnals of the field averages to which they give rise. We denote field
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averages by the same symbols as are used for the field operators since no
confusion can possibly arise. Higher derivetives of the connected vacuum

amplitude are denoted quite generally as follows:

) & 5 +
z2(1) = g, (01} ¢, (2) ---9_(n}) . {a.L)
ST &) 67, n) G.are, =)

As an alternative to the connected vacuum amplitude Z{J) one mey
choose to work with the effective action T(¢) defined by

Z{7) = r{e) + J 4 x (- -;—'DD){qus+ + @’_r:+ + h.oe.} (8.5)
The effective equations of motion then read
ST{d}) ST{a} +
=-J.(1) 3—(-(—)-=-J (1) (A.6)
+ + 4 ¢+ 1 -

§e_(1)

end they are solved by the expressions (A.3). The effective action is
characterized by one-particle irreducible graphs and it may be obtained, in
principle, by solving the Dyson—-Schwinger equations:

T _ _ &8
6ex (1) §ex (1)

A
* Sa:l,j| i_G@i+{l) ¢J+(l)) *
(4.7)

&r &3 x
5., () " 8, (1) " Payy 5 © on (1 ‘1’3«»(1)) .

In these equations the fields ¢ are the independent variables and one is

to solve for the funetional [(%} . In order to do this it is necessary to
have the 2-point funetions G(1,2), which appeer in (A.7) expressed as
fungctionels of ¢ rather then J . This ia done by defining a{1,2) as a
functional inverse of the matrix of second derivatives of T(d) . We

shall not pursue this matter here.

Although the perturbation series for T'(¢) is simpler than that for
Z(J) in that it contains only irreducible graphs, the latter is easier to

derive rules for. The derivation proceeds as follows.

Firstly, separate the classicel actiom into two pieces,

s(¢) = so(cb) + sg(:b} s (4.8)
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where § contains all the trilinear terms (i.e. S, 1is obtained from (a.1)
by setting e, 57 0}. Then the cornected vacuum smplitude ls given by

expiii—z(.j') = eXp%"- Sg{% g_,:r] exp_‘i;Zo(J) ' (a.9)

where ZO
avaluated.

denotes the amplitude corresponding to Sa . It is esmsily

To evaluate ZG(J) , notice firstly that the corresponding effective
action, [, , is just SO(M . This is implied by Egs. (A.T). Turn next
to Eqs.(A.6). With T replaced by &

equations, viz,

o they become linear inhomogenecus

GSO 1=
;. =-§D¢a—+g’a+Mai¢i+=-Ja+ *
85, N {a.10)
W—=-§'ﬁD¢i++¢ M* =-Ji— N
i+
which can be solved with the help of the identity
1.2 _ ,2
(ZDD)° = 5" .
Cne finds,
b (1) = =(3° + )L (%—T)DJ + M},
= + - {A.11)
2, 3) = (3% + mhw) (%TJDJ__ +uiT, + &) .

Finally, substituting these solutions into the right-hand sides of Eqs. (4.3},

a quadrature gives

Z,(1) = J d.x%— (ﬁn)g[‘fi(az + )t I, 0+ JI(B2 L J_]

rajH

—DD[-Ji(ae +unt MT(J+ +d) + h.c.]] ’
(A.12)
where the Feynman inverse is understocd. This funeticnal can also be ex-

pressed in the somewhat more cumbersome form,

Zyd) = f ax, (- —é—‘nn)l Ef(l)(ap:,-o + h.c.] + J ax, dx, (- —;—Sn)l{— %Tﬁn)E

[F) oy, aielteR)s_2) + sty _aiefiel)s, @ +
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+ 30, (o, 0 1), (20 + 5T e el 2))a_2)]

(a.13)
which serves to define the zeroth order expectation wvalue,
<¢*>Q = -(3% + Tyt M.rd
{a.14)
-1
= M d
and the zeroth order propagators,
+ 2 T - =
G0(¢+(1)¢+(2)) = (3] + M M) - %DD)I 6 (1,2) ,
t a2 -1, 1=
Go(_1)el(2)) = 32+ mi Y H- 20y, 5,020
+ e b1 (a.15)
Gy (1) (2)) = (o5 + ) M 8 (1,2)
Go(¢+{1)¢f(2)) = _(ai syt 8,(1,2)
The chiral delta functions are given by
= 1
5,(1,2) = exp {70, 4,70, ¥ 3,78, )5 Biow Oy0s80xy - x5)
vwhere 612 = Gl - 82 .

It is practical to work with the truncated fields 6+ introduced
in Sec.II.B,

8,0x,0) = expl* £ By 00, (x,0) . (a.16)

For these fields the propagators are considerably more simple,

6@, (1087(2)) = % + ¥ exp(B)_ 13, 0, dolx - x,)
6@ (1987(2)) = (6] + )L expB, 10, B, 0800, - x,)
@_(181(2) = -7 + " T T, 8, slx - %)
@, T2 = 67 + w25, e, sz - xy)

(a.17)

The perturbation series for the connected vacuum amplitude Z(J) is
now given by substituting the expression {A4.13) (or {4.12)) into (A.9) and

expanding in powers of Sg s
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. n
exp‘hl—Z(J) = Zi—, [%sg] expﬁ Zol0) . (4.18)

where

e[ ] sl i o]

This prescription may be summarized in a set of momentum space Feynman rules

as follows:

(i) Draw diagrams in the usual way with 3-leg vertices correspending to
the interaction terms
* 3 # 3 Fn B
su.i,j 3a_ $i+ ¢_j+ and gaiJ Qa L34 - ¢J+ N
(There may be l-leg vertices corresponding to the linear term,
da. 3; + h.c. , but in practice these can slways be ellminated by
8 suitable shift in the filelds ¢i+ . Such a shift would modify the

mass matrix but not the couplings.) The vertices each carry a de-

finite chirality, positive or negative.
(ii) With each vertex associate the factor

4

(em) (positive chirality)

i
§(p, + pp * P3)-i5aia
or

y i, e
(2m) 6(pl +p,* p3) i hi (negative chirality) .

These factors are represented graphically as in Fig.l

Ig 1
» ]
1
Fig.1: ! i
PR i —
i + 3 i - 3
positive chirality negative chirality

(iii) With each line joining a pair of positive vertices associate the pro-

pagator

A, 2 t.1 f 1z
'T[{'P M M]ia 2 910n Bros

With each line joining negative vertices associate the propagator
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(iv)

(+)

! 2 Ty-1 1
-7 .[(..p + MM) M]ai 55-124_ 912_

With emch line joining wvertices of opposite ¢hirality associate as
appropriate cne of the propagators

B o® w0y e B0,

4, 2, 5l =
Tf ) en(®_89,)

where the 4-momentum is directed from the positive vertex (1) to the

(Note the asymmetry, 9. b B,_= ~§é+ ¥ Sl+.}

negative vertex (2).
These propagators are represented graphically in Fig.2,

+ +
L et 2
i 8

1 mepmem—s 2

a i
Fig.2:
+ -
1l ———— 2
i 3
+ -
]l cvmmmeypemnw w2
a ]

With each external line assoclatée the wave functicn

ext(

B = A 2 5, 0 0 + 2T, 0, P (o)

At each vertex apply the operator (- L Tp) s i.e. extract the co-

2
erficlent of the ferm

-
=11

vertices

and integrate over the momentsa,
dhp
(ar)

lines

(The rule (iv} applies to incoming or outgoing particles. The modi-
fications necessary to characterize lines which terminate on the
external currents J, are easily arrived at.)
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To conclude this appendix we list the component structure of the pro-

pagators (A.17).
ing to value of the fermionie

number ¥ in the intermediate states.

non-vanishing components are as follows.

1) E =0 sector
G, (2, (1) AI(Z)) =
6, (F_(1) F(2)) =

o, (F_(1) a1 (2))

5, (8, (1) 7 (2))

2) F =1 sector

6, (v, (1) T, (2))

5, {b_ (1) ¥_(2))

6, (b_(1) 9,(2)

G, (¥, (1) V_(2)) =
3 F = 2 sector

Gy (F, (1) Fl(2) =

GO<A_(1) Af(2)>

5,6 ) F2))

6, (F, (1) IYe)!

%+ MfM)-l ﬁ(xl - xa) s

2,.2 T ~1
-3 (3" +mm } 6(x1 - x2) '

87 ) b, - k)

—(3% + wer)"l * G(x - x2)

+]_'Y

@+ 5 g et - xy)

4 1 - iy
(32 + MfM) 1 -——5——;i iy 6(x1 - XE) s

'iY
(32+MM 'l--———i Md(xl-xe) ,

1+ iy
(32 + M+M) ———5- 3[r 6(::1 - x2) .

~208% + w7t slx - x,)

(° + )t Sl - x,)

3%+ MM+ M 6(x - x2} s

-® vt six, - x,)

Vertices are governed by the interaction lagrangisn,

Bip by, ¥ A% 12 AT 14 lpi+ ¢j+]]+h.c.

% = Saidﬁg- Ar By~ 2.
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These are convenlently separated into three sectors accord-
The

(4,20}

{4.21})

(a.22)

{a.23)



The formulae (A.20)-{A.23) give a good indication of the complexity of the
model described by the Lagrangian (A.l) whose Feynman rules have been listed
above, However, they give no hint of the remurksble cancellations coming
from the supersymmetry. To see these effects it is definitely worthwhile to

employ the superfield notation and associsted Feynman rules.
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APPENDIX B

REGULARIZATION AND RENORMALIZATION

In order to regularize the model of Appendix A in a manifestly super-
symmetric fashion it is sufficlent to replace the kinetic terms by the ex-

pression

5 (ﬁn)a{qsi R, (2) o, + 3 R_(3) ¢_] , (3.1)

where R, (3} are polynomials in 3/8x ,
2 2,2
R (3) =1 4§, 3" +n(37)" + .- (B.2)

The exact form of these cperators is not important. They need only be of
sufficiently high order %o dampen the short distance behaviour of propagators
so as to make finite the radiative corrections tec the Green's functions. The
parameters £,n, ... are to he taken to zero at the end of any computation.
(In terms of the familiar momentum space cut-off, ﬂ , we have E " 1/A2 ,-
naat, ) ‘

Since the regularizing factors R, sre introduced only in the bilinear
terms they will cause changes in the propagators but not in the vertices. It
is a simple matter to construct the regularized propagators. One has only to
modify the equations [A.10) by introducing the factors R, aad R_ . They

become

- =TD R_(B) ¢ +d+M ¢+ =-J, ,
_ + . (8.3)
DD R+(B) o, + M =-J ,

ol W

and they are solved by

®

3 -[R+(B)32 + M"'B:lta)m]‘l [%Tm 7+ wRE) (3, d)] .

(B.14)

E=J
H

-[‘ﬂ“(a)a2 +M R:l(a}m+]'1 [%—'ﬁn I M R:_l(a) J_] .

Differentiation with respect to J, gives now the regularized propagators,

6@, 8 (@) = ®% M exp(B_ 15 0,) 80x,y)

2 o +.1.-1 t -1 1—
-(r3 +MR_]'M) MR 38, 8, 8(x,)

6o G, 08 @),
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NCESLE) NI CE AR E b e v

at 2 -1 t.~1 = .
GE @) o (2% et e, 17 8,) 8lxp)
(8.5)
vwhere 3 = a/axl . It is c¢lear that the light-cone behaviour of these pro-

pagators can be made as soft as required by chocsing the polynomials R+(3)
of sufficiently high order.

Since the regularized kinetic terms (B.1) are manifestly supersymmetrie,
it follows that the regularized amplitudes constructed from the prepagators
(B.5) will be compatible with supersymmetry as well as finite. This is
Important for the arguments which follow.

The renormalization of supersymmetric medels is greatly simplified by
the occurrence of zeros in certaln amplitudes whose canonical dimensicns
would, on the face of it, seem to indicate divergence. A good enalogy is
given by the electrodynamic vacuum polarization,

2 2
3" - 3uav) mx")

Huv(x) = (nuv

The kinematical factor reduces the "effective” dimensionality of ﬁﬁv(k) from
2 to 0 and so the divergence is logarithmic rather than quadratic. This
analogy is not perfect, however, in that the softening is due entirely +o
current conservation - i.e. gauge symmetry - whereas, in the supersymmetric
system there is, as we shall see, a subtle cooperation between the symmetfy

and the constraints due to renormalizability.

In order to reduce the discussion to essentials, we shall henceforth
ignore the internal degrees of freedom (ineluding the fermionic rumber, I)
and déeal with the prototypical system comprised of a single scalar superfield,
¢, , in self-interactionm,

1 2 2 1= M2, g .3
af-g(‘nn) I¢+| -5 oD J¢++2¢++3¢++h.c.] . (B.6)

The simplification 1s only notstional. It will become apparent as the argu-

ment proceeds that it is applicsble to the genersl case as well.

Assume now that a supersymmeiric propagator regularization of the kind
discussed above has been made and consider what sorts of divergence might be-
expected In the limit when the regularization is removed. The usual
dimensional argument would indieate the presence of divergences in the follow-

ing derivatives of the effective action,
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6T _ &
® B W)

+ +

. &°r s
o) 6$+(1) 6$+(2) = 5A+€x15 5F+(x25 2 912- 1o

3 3 _ _
6T §°r 1 15 o

88,01} 68, (2) 8,(3) 7 8a Tx ) 8 (x,] &7 (x,) 2 13- ®13¢ 2 %23~ %234

c)

2 3 s°r

DI RO O R G NURE oy ol
evaluated at ¢+ = ¢: =0 . Typicel components are shown on the right-hand
sides in order to revesl the cancnical dimensions in a familiar way. Thus

the quantity (a) has dimension 2,and one is therefore prepared to find that

it diverges quadrstically. The amplitudes (b), (¢} and {d) have dimensions

1, 0 and O respectively, and could therefore diverge logarithmically. These
are the only quantities which even potentially diverge )] and, as it happens,
only {d) actually diverges. Fortunately there is a simple explanation for this
suppression of divergences and there is no need to enquire too deeply into

the graphical structure.

Of particular importance are the formulae (IJ7.58)which express super-
symmetry for the monochiral Green's functions,

8,2, um) =<2 8,(1) - B, ey . (B.7)
= Fal . a *
The amplitude G+ is a function of Gl+,82+,... ,6n+ s which must satisfy
the constreints
o The absence of a quadretic divergence from the mass term (b} 1s to

be expected since the supermultiplet includes a fermion whose mass c¢an, at
worat, diverge logarithmically. GQuadratic divergences in the scalar masses
must therefore cancel. A third derivative,like (e) but involving one dirf-
ferentiation with respect to 3: ,need not be considered: its finiteness is
asgured by supersymmetry since there is no corresponding term, (l/B)(ﬁD)2

2
(d’: ¢+) in a renormalizable legrangian.
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83+

>
1
n

D 8008 -0,
1

ar

=0

r

(5]

{B.8)

and ¢an therefore depend only on the n-l differences e,]n+ and in s very
restricted way, moreover, Only those combinations of the ejn+ and momentsa
n-1

which are annihilated by the sum, s cen appear in ‘E“:+ . For

Py Ons
example, 1

2

a+(1,2) =0,6 .
2 .2 2

¢,(1,2,3) = 13856 + () 0349, 8,507 6,

o 2 2 .2
€, (3,2,3,4) = 67, 0y 04 G

)2 G, + 62

2 2
* 80y (P By +p3 983)7 Gy + 05 {py 04 + 0y 8),)° Gy

2 2
+0g, (py 0y +p, 8,07 6
+(p, 8., +p, 0, +p.8.)°G
1 1L 2 24 3734 5
(.9)
where, to save space, we use the abbreviated notation,

8° =

M-

86,

The scalar amplitudes G

1'G

POIREE depend only on scalar combinations of

the momenta.

We shall new prove that there can be no rediative corrections to the
monochiral vertex functicms {a), (b) and (¢} evaluated st the origin of
momentum space. All we need in addition to the group theoretical results
indicated in the structure {(B.9) is the remark that the required emplitudes
{a), (b) and {c) can be cbtained as coincidence limits on amplitudes like

a+(l,2) , §+(l,2,3) and 6+(1,2,3,h), respectively. Thus, for example,
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— - a+ g <rd, (x,0) B, (x,00)
&0 (x,e)
+
=4+g%&J1£} , (B.10)
#129%,
= o )

since, according to {B.9}, 'é+(1,2) must vanish in the coincidence 1limit

512=0.

The second formula of (B.9) gives

_ 2 .2
o <6 = (p1 + B,) b5 G o (B.11)

2

%,(1,2,3)

which wvanishes at P + b, = 0. If we understand this monochiral esmplitude
not as the 3-point Green's function but, rather, as the hybrid quantity

& ~ a
———a(f, (1) 8,(2)) ,
58, (3)
then the limit (B.11} representes the self-energy operator, l.e. the radiative

corrections to the amplitude (b} (see Fig.3)

Fig.} = 5

self-energy operstor

, 2
The crucial result here 1s the emergence of the kinematical factor (pl + p2)

which causes the self-energy to vanish at the orligin of momentum space.
Equivalently, '
2
§T - 2H 2 5,12
5, 0x) 87,100, M8 (x) + 3°M(x") . {8.12)

Since the potential divergence was only logarithmic we may conclude that [T
is strictly finite.

An entirely analogous argument is applied t¢ the monochiral funetion

8(2,2,3,4) = a(3, (1) $,(2))

"

8%, (3)60, (4

—18°-

&aq
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Its structure 18 exhibited in (B.9), which shows the vanishing of this quantity
in the limit

1050 » Pt R TR TR 7O

This means the absence of radiative corrections to the coupling constant.

The amplitude {c) is finite.

Evidently the arguments given here will go through in exactly the same
way when fermion number and other internal degrees of freedom are restored.
Only the trilinearity and menochirality of the interaction was used (along with
the supersymmetry displayed in the formulee (B.9)) and these features are
common to all the renormalizable models made from chiral scalars.

Finally we mey mention that the amplitude (d) is truly divergent and

mist be compensated by & wave funection counter-term of the form
1 2 2
(z - 1) § (Dp) le,1° . (B.13)

This wave function rescaling will of course affect the parameters A& , M
and g in the ususl way

B4 =2ty .
Tr
’ MM =M, (B.1%)
oo g =P
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