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INTRODUCTION

Without doubt the invention of supersymmetry ¥ y & possible fundamental
symmetry between fermions and posons {(their contrasting statistics notwith-
standing) is one of the most elegant creastions in thecretical physics. The
recognition of this type of symmetry has enriched the mathematics of relativistic

particle theory in a number of basic ways.

1) In supersymmetric theories it is possible to group specified numbers
of mesons and fermions {(e.g. spins zero and %3 or 0, % and 1, or % and 2) in
supermultiplets of the same mass. The existence of one member of such a super-
multiplet must imply the existence of all the other members if supersymmetry

is a law of nature. Before the discovery of supersymmetry it had erronecusly
been assumed that basic tenets of quantum field theory forbade assoeiations of
different spins in the same multiplet.

"

2) One can associate multi-component "superfields” with such supermultiplets
and write supersymmetric Lagrangians for these. Such Lagrangians are extremely
restrictive in form. In particular, if renormalizabdility is reguired then

they are very special indeed. The most exciting property of these Lagrangians

is their "scoftness" in thaet many of the ultraviolet infinities of conventicnally
renormelizable theorles do not sppear {as a rule only wave functicn renormal-

izations are divergent}.

3) Internal symmetries like’ 1£;=pin, 5U{3), etc.,can be incorporated with-
out any difficulty intc the structure of the supermultiplets. These internal
symmetries can be gauged, i.e. made into local symmetries. For supersymmetric
and gauge inveriant Lagrangians the vector gauge bosons are necesserily
accompanied by spinué-supersymmetry partnersﬁ) These guuge fermions with

their uwniverssl geuge coupling ere a new phencmenon in particle theory. (The
universal couplings manifest themselves not only in the interactions of gauge
fermions with their vector partnera, the gauge bosons, but alsc in their
interactions with what one may call "matter" supermultiplets.)

) Supersymmetry can be broken spontaneously in exactly the same way &s
internal symmetries are broken when the appropriate scelar fields develap a
vacuum expectation value. In the lowest approximaticn this phenomenon iz
governed by the scalar field potential. In supersymmetric theories these
potentials are highly restricted in form, unlike the case of non-supersymmetric

Lagranglan theories where there is usually an embarrassment of possibilities.

of .
» To cur kncwledge the firsta@pearanceksupersymmetry cecurs in the work
of Col'fapd and Likhtman. It was rediscovered independently by Akulov and
Volkov and by Wess and Zumino. 1)

wle

This circumstance is e great but austere virtus - rot easily can one set up

a model which is flexible enough to meet one's requirements. Among the
suprising properties of supersymmetric theories one finds that if the super-
syumetry is not broken in zeroth order then it will not break in any finite
order and, moreover, the scalar field expectation values - which may describe
spontaneocusly broken internal symmetries - are given exactly by the zercth

order result (i.e. are not renormalized).

5} A basic aspect of supersymmetry - and on which may be associated with
developments of physical significance - concerns its reletion to the curved
spacetime of gravity theory. This would be the generalization of spacetime
to a manifold which includes anti-commuting c-numbers g (¢ = 1,2,3,4) along
with the femiliar xu . The notion of such an extension of flat specetime
was used to define superfields &(x,8). But the curved space generalization
in which the metrie field guv(x) becomes one part of a superfield remains
to be made eonvinecingly. The problem of finding & supersymmetric extension
of Einstein's gravity theory is being tackled now by many authors and much
progress has been mede. However, the picture has not yet become quite clear

and we shall not attempt to discuss the generalization of Einstein's theory.

It is our purpose in this paper to elucidate the developments (1)-(L4}
using the superfield nctetion throughout. Some of the results are published
elready; others are new. We feel, however, that it is worthwhile to cover
the entire development from this unified viewpoint.” One feature of our
presentation is that, from the outset, a fermionic quantum pumber is defined
in the suypermultiplets - often at the expense of space reflection symmeiry.
In the past this has been done more or less as an afterthought. In view
of the intrinsic importance of this quantum number in particle physics we

believe the present treaiment may be more epposite.

One should ask the question: 1is this very elegant development made
use of by nature? At present the enswer seens to be in the negative. Now
the photon and a neutrine could have shared a supermultiplet - this would
be especially plausible after the recent developments concerning unlfication
of weak and electiromagnetic intersctions -~ bhut, asz we shall show in See.V,
it seems that if there is 2 neutrinc accompanying the photon it is probsbly
a zoldstone particle, Such a Goldstone neutrino, arising from the sponteneous
breakdown of supersymmetry, is unfortunately subjeect to low-energy theorems
which make its identification with the observed Ve or Uu urlikely. The
neutrino which partners the photon may yet be found. The spin—g-object which
accompanies the graviton (spin-2) may have a fundamental role in full gravity
thecry - for example in circumventing singularities of specetime. On the

¥) A number of reviews with extensive lists of references are asvailable. 5)
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strong interaction side, the only indicaticn of a symmetry among baryons
and mesons appears to be the unversality of Regge slopes but this could, no

doubt,.be expleined in other wavs.

SECTION I
(A) SUPERSYMMETRY AS & HIGHER RELATIVISTIC SYMMETRY

The concept of a fundamental symmetry between fermions and bosons is an
intriguing one. It belerngs to the class of so—called "higher" or relativistic
symmetries in that its basic aim is to unite in a single multiplet, particles
with different intrinsic spins. In the past such relativistic schemes have
been concerned with the problem of uniting, for example, pseudoscalar with
vector mesons or spin %—baryons with spin %—barynns. Supersymmetry, however,

. L1 .
is concerned with the uniting of scalar and wvector bosens with spin E—fermlonSA

In order to clarify the relationship of the new symmetry to the old
proposals for uniting different spins in one multiplet, it i8 necessary to
digress briefly on the structure of the latter. One of the simpler such
was arrived at in the attempt to meke relativistic the SU{k) and SU(6E)
symmetries of Wigner, Girsey, Radicati and Sakita. The SU(6), for example,is
& phenomenclogical attempt to elassify the hadropic multiplet structure which
could be expected to emerge from the quark model if the dominant forces are
independent of spin. Thus the low-lying meson states, pseudoscalar and vector,
are expected to fill out a 35-dimensional representation of SU(6} while the
low-lying baryons, sping %-and %-, are expected to £i1l a 56-fold. In predicting
these states as well asigeveral other respects the symmetry SU(6} is successful .
However, and this is the mairn point for our discussion, the Wigner-Giirsey-

Radicati-Sakits symmetry is essentially non-relativistic. Its most distinctive
feature iz the presence among its infinitesimel generators of a set of operators
which carry one unit of angular momentum. These are the operators which
connect the states, such as n+ and p+ . Whose spina differ by one unit.

These generators behave in a well defined way under space rotations but not
under Lorentz transformations, In a relativistic theory such operators make

no sense; if the symmetry is tc be taken sericusly, they must be supplemented
Y new operstors so as to fill out Lorentz multiplets. A number of attempis

were made in this direction. One of the simplest wes to embed the 3-vectors of.
Gursey, HRadicati and Sakifta in antisymmetric b-tensors and this was achieved by

enlarging SU{6) to SL(E,€)-. The latter is in fact the smallest relativistic
symmetry which cas contain SU(E).

Unfortunately for SL(6,C), it is & non-compact group. This means that
its irreducible unitary representations are all infinite dimensional. If the
particle spectrum is to be classified in unitary representations of this
group, the T and p mesons must then be accompanied by an infinite sequence
of particles, making the scheme(at the least) unattractive., All attempts at
relativistic versions of the spin-containing symmetries met this phenomenon

which came to be known as & no-go thearem.
was alsc based on
Like many no-go theorems in physics, this one apparentlchertain hidden

assumptionsand we shall explain shortly how it is circumvented in the super-

symmetric framework.Briefly, the difficulties with SL(6,l) were concerned with
extra internal "dimensions" implieit in the symmetry. A rather pictorial
unitary representations
understanding of the infinite-dimensionality of SL(G,C)'S[can be obtained by
the method of induced representations., Thus, if SL(€,0) is resclved into
cosets with respect to its meximal compact subgroup SU{6) then one abtains
a 35-dimensional coset space on which the full group can act. Now what can
these 35 real varisbles signify? The snswer is that they must constitute an
"internal" space with 35 degrees of freedom. It is these internal degrees
of freedom which manifest themselves as aninfinite degeneracy in the particle
spectrum: theyi%%ntribute any amount of spin but no energy. In snother version
of SL{6,C) symmetry, one of the Lorentz tensors - an SU(3) singlet - among
the infinitesimel operators is identified with the generator of Lorentz trans-
formations on space-time itself. TFor this to meke gense it is necessary to
embed the space-time co-ordinates, xu , In a 72-dimensional manifold. This
time the new degrees of freedom contribute to the energy and one finds that,
in the rest frame, energy ranges over a continuum. It is diffiecult to

imegine how all the new dimensions could be accommodated in & physically
meaningful theory.

The difficulties Just outlined can all be avoided by the simple

expedient of asscciating the new dimensions with anticommuting varigbles.

Indeed, it is now rather hard to understand why such a simple solution was
not thought of long ago- The idea is to consider fields, &(x,8), which

are defined over the prcduct of the usual space-time, labelied by four co-
ordinates xu » With a new space labelled by & set of anticommiting c-
nunmbers, Bi . In order to see how the new degrees of freedom are controlled
one has only to expand the field ¢({x,8) 1in powers of B and notice that

the series must terminate after a finite number of terms

P T
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1 1
Axad) = o) + 0y (x) &, + 30,0 0,0, + e fray () B0y o
; I.1

vwhere N denotes the number of independent components Bi . Because of the

anticommutativity among the ei ,the coefficient fields ¢ (x} must be

i.i ...
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completely antisymmetric and there can therefore be only a finite number of

them.

It remains to be shown, of course, that a consistent group theory can
be established on the space of x and & . Such extensions of the Poilncaré
group do exist and a minimal example will be discussed in detail in the
following sections. At this stage we remark only that the new dimensions
must have a spinoriel character in keeping with their anticommutativity
as demanded by the TCP theorem. Thus, if in the above
expansion ¢{x) 1is a commuting scelar field, we should like the next member,
¢i(x) ; to be an anticommuting spinor field. For this reason the new
relativistic symmetry must combire bosons with fermions and its infinitesimsl

generators must include some which carry & half unit of angular momentum.

(B} THE MINIMAL FERMIONIC EXTENSION

The smallest spinorial representation of the homogenecus, proper
Lorentz group is the two-component spinor. It follows that the minimal
fermionic extension of four-dimensicnal space-time which can be conceived
is made with the two complex (or four real) compoments of such spincrs. This
is the manifold on whick is based the relativistic symmetry known as super-
symmetry. In order to esteblish a notation,we discuss now some of the

¢lementary features of this manifold and of the functions defined over it.

Since the concept of the four-component Dirae epinor and the
associlated apparatus of Dirac matrices is more familiar to physicists than
the two—component (dotted and undotted) spinors and their associated matrices,
we choose to work with the former. This is purely = matter of notaticn:

the two-component spinor is identifiable as a chiral projection of the Dirac

spinor. Now, a Dirac spinor has two chirsl projecticns (for the definition see

Eq.(1.10) and in general these are independent. However, if the Dirac spinor
is subject to a reality condition (the Majorans condition) then the two
chiral projections are related by complex conjugation. This means, in effect,
that the four reel components of a complex 2-spinor are identifiable with
the four real components of a MajJorana spinor. It is possible to set up =

one-cne correspondence between 2-spinors and Majorana spinors.

-5-

Our main conventions are a&s follows. For the metric of space«time

we take

nuv = dilag(+l,-1,-1,-1} (1.2)

and write the scelar product of two Wb-vectors

B = = - - - (1.3
AB AR, .8, AR AR, AB, )
(There is usually no need for the more exact but cumbersome
notation A-B = nw Au B\) = AuBu = .n’LT"lB]_l . The only point where confusion
could arise 1s in the use of the gradient au = BIBxD » —B/Bxl N —3/3::2 B
—B/Bx3.) The Dirac matrices, Yy  8atisfy the anticommtation rule
(1.4)

{Yu'Yu} = 2 My

The frequently employed tensor and pseudoscalar combinations are defined by

=1 -
T T N A LR A T (1.5}
With these definitions it 1s always possible to choose a representation in
which the matrices YO’ 012, 023, 031 are hermitian while Yl’ YE’ Y3, YS

and a are antihermitian. Arnother important matrix in the

01° Y02* o3
considerations which follow is the cherge conjugation matrix, C , whieh

relates Yu to the transposed matrix Yi ,

Cry ¢ = -v . (1.6)

The matrix C is necesserily antlsymmetric. (It can be fixed, apart from a
sign, by imposing the further requirements L a.)

The infinitesimal Lorentz transformations are defined by
S, o= X, (1.7)

where m“\J is real and antisymmetriec. The LY-vectors Au and B]-l are
required to transform like xu and this ensures the invariance of the

product AUBU . The Dirac spinor, ¥ ,is required to transform according to

—fm



_ i
& = -F 8y %Y (1.8)
The edjeint spinor m = VJJ-].YO then cbeys the transformation rule ~
& = ¢ e o (1.9)
In Iy uv ' 9

(This comes about because the matrices Yoguv , like Yg» YOYu’ Yo¥s and
iYOYuYS , are all hermitian.)

The transformations (I.8) are reducible.From (I.4) and the definitions

(1.5) it follows that YS commutes with 0].1\) The subspaces on which Ys = =i

and +i are invariant and this means that the chiral projections

1 % iy
W, o= ——=2 ¥

(1.10}

separately obey the rule {I.8). These chirel projections are of course the
two-component spinors of which the Dirac spinor is comprised.

From (1.9) and the properties of the charge conjugation matrix one can
show that the "conjJugate" spiner, UJC , defined by

¥ o= ot

(1.11)

transforms exactly like ¢ itself.,

T

in the equation Ccuv = - O‘WC. This identity is one of a number involving

¢ which may be swmarized in the statement:

The relevant property of C 1Is expressed

YuC and Gqu are symmetric
. (1.12)
C ., YSC end iquSC are antisymmetric

A MajJorana spinor is one for which wc = ¢ or , in terms of chiral
projections,

v = ¢V, (1.13)

The Maj)Jorsna spinor therefore contalns the same information as a two-component

spinor (and its complex conjugate).

Lat tl -t 112 be & peir of ssticoemsting Mejorsr= spinors,
{‘Pl-‘bg} = 0

Then the symmetries(I.12) are expressed in a atatement about bilinear forms:

?Flwrutpz and 0, JYp ere sntisymmetric while wltpg , $1Y5w2 and $li~ru'rs¢2
are symmetric under the interchange of “’1 and lbz .
that IplYulJJl

{Note in particular

and Tﬁlcuvlbl vanish identically for Majorana spinors.)

Now consider some of the detailed properties of the expansion (I.1) for
the case of a Majorena spincr 0O . Because of the anticommutativity among
the four components of 6  there are altogether sixteen independent terms
in the expansion., These cah be conveniently grouped as follows:

2(x,0) = Alx) + Bolx} +  BoFlx) + - Brgo6(x)

+ £ BIvre V(0 + f Bo0x(x) + 53 (80)° plx) (1.14)

where A, F, G, V\) and D are Bose fields, Yy and ¥ are Fermi. Tt is

clear that,with respect to the proper Lorentz group. A, F, G and D are

acalars, VV is a vector while

Y and ¥ are Y-splnors. We shall defer

discussicn of the improper transformaticns.

The product of two such expansions must again have the same form
and this can be verified, Thus if

0, (x,8) &,(x,8) = &,(x,8} (1.15)

then the components of 153 are glven by
Ay = M4y
Yy = Ay b
C
3 ATy - ¥V, + Fidy
e
3 A0, WYY, * GiA,

B -
3v T AV T LYY, VA,

e}
n

(7]
L]

-8-
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Xy = At W Ty = vl Gy + T YWY,
*oxphy ¥ ¥y - Y, - VIS,

Dy = AD,* 2FF, + 26,6, + 2V V, - 28y, - ax{¥, + DA, . (1.16)
In deriving these expressions we have assumed that § commutes with Bose
fields and anticommutes with Fermi fields. A further assumption we shall
make is that the order of anticommuting factora is reversed by complex
conJugation. With this understanding the bilinears &6 , 5756 and

ﬁiyuysa are"real”while, for example,

(Byl* = o = &° .

and this bilinear is real if ¥ is a Majorans spinor.

Derivatives with respect to the Majorana co-ordinates 8 are

defined by

B(x,0+58) = &(x,8) + &5 B—E $(x,8) (r.am)
]

to leading order in 66 . Since 9 and &8 are anticommting quentities

it is important to remark that the infinitesimal &8 is placed to the left of
39/36 in (I.17). This is a convention we shall adheve to. The derivetive defined

here has the usual properties of a differential operator with two important

exceptions. Firstly, when applied to the product of two functions its

effects are distributed according to the rule

3 29

3 1
= (90,} = — ¢, ¢ ’ (I.18)
172 I

vhere the +(-) sign sapplies when @l ig bosonic (fermicnie}, i.e. when
68 commutes (anticommutes) with 9 . Secondly, the product of two such
differential operators is antisymetric,

9. 3 _ _ 9 3% X (1.19)
35 58° 3° a®

Applied to a genersl function 1ike (I.1L) the derivative takes the explicit

form:

¢ . L
5 b3 (F+ Y56+ 1YYV, )0

+ 5 lE0+ T5Trg0 + iyvysﬁiyuysﬁ])( + % T (1.20)

This formula will prove useful when we come to define the action on component
fields of the extended Poincaré group (Sec.(C)).

Finally, it is necessary to make some decisions sbout the discrete
transformations P and CP . There are two possibilities. The first is
to refuse to assign any distinctive quantum number to the spinerial
components Y and ¥ . In this case,if the scalar and vector components
of #(x,8) are real, then the spinors should slso be real (in the Majorana

sense}, i.e.

#(x,8) = o(x,0)% (I.21)

and there iz no concept of fermion number. With such an interpretation one

can gssociate the transformation
9 > iy,8 (.22}

with space reflection. The component fields A, F and D are scalars,

G a pseundoscalar, Vﬁ an axial wvector.

is that we srrange that
The elternstive possibilitykthe spinor components ¢ snd ¥ are distinguished

from the Bose components by a fermionic quantum number. There is only one way
to do this and it means sacrificing the space reflection. Suppose the positive
chirality combination of co-ordinates 9+ carries unit fermion-number {as
well as one-half unit of spin). It follows that €_ carries minus one unit -
Clearly the transformation (I.22} reverses the fermion number,

8

*

- iyoe¥ .
This transformation can no longer be associated with a simple space
reflection. Rather it must be assoclated with combined space reflestion and

antiperticle conjugation.

10~



The phase transformationsz assocciated with fermion-number,

6, —+ eiiu' 4] or 9 >+ e 3] (r.23)

*

+

can now be applied to the functiom ®(x,0) . Suppese this function trans-

forms according to

s
3{x,98) -+ o(x,e “8) . (T.2k)

Then the component fields transform saccording to
A + A
G‘Ys
voroe Y

s
Ftig + &21% (52 1q)

v v

~aY5
X * =€ X
D +» D

{I.25}

To summarize, the boson fields A, V\) and D carry no fermion-number while
F + iG carries two units and F - iG carries minus two units; the chiral
spinors ¥_ and X, carry one unit while ¥, and ¥_ carry minus one
unit. These assignments are of course compatible with the reality condition
(1.21).

We ahpll return leter to the problem of defining both parity as well

as fermion-number in this framework.

(c) SUPERTRANSLATIONS

Having established a notation and described scme of the properties
of the extended space-time and the functions ®{x,8) defined over it, we
are pow in a position to discuss the Poincaré group and its extension.

Firstly, the action of an infinitesimal Poinecaré transformastion on

x and 6 is given by

11—

§x = b +uw X
M u v v
N (1.26)
8¢ = - N m'L-l\o' cwe
where bu and mu\} = —m\m are infinitesimal real parameters. The new
transformations, which we shall call supertranglations, are given by
i -
§x = = B
uT 2y
{1.27}
§0 = ¢

where € is an infinitesimal anticommuting Majorans spinor. We shall assume
that the components of £ anticommute among themselves, with 8 and with
all spinor fields.

The peculiar feature, expressed in {I.2T}, that a "tranalation" in the
MaJorana co-ordinates 6 is associated with a 6~dependent translation in
the space-time co-ordinate X is highly signifiecant and gives rise to the

many unusual characteristics of supersymmetrie theory. But first we must

verify that the infinitesimal transformetions (I.26) and (I.27) form an algebra.

Apply to x and 0 two successive infinitesimal transformations

characterized, respectively, by the parameters bl, wl, E:l and 'b2, m2, 52;

b, 5, *p = w"w X, 4 E AR AR Y

1 4 Tt
w'" (b‘v e ET.,O)

]

uafo;re -\-'t'.")
(m'" v o+ E’Y,.e‘) + u'"w}vxv

E'Yru;’,e;f,)a

+
Mmie -
oo
)
t
FYR N

.‘“v

“12-
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. r]
6,506 = - . ml“' Sy 5,6
= i it ¢
=z o 3 wr“c—?‘ ( 3 ”Rp 7‘?9 +
1, 2 M t
= _ 2(_31.;“ m"P o‘w G‘,P)O - waﬁ"‘,E

Now apply these variations in the reverse order and subtract to obtain
1 2 z | . ' 2
[5,,5.] xr = (Ww bv -w" b'll + 4 E '(r,a

+

——

d‘f m}’ - m’w m;v) Xy

(e ) ke

[N

[6.870 = _ i (wyuhy - o) 5 - isulaede),

from which it is clear that the commutator I62,61] is equivelent to a third

infinitesimal transformation 63 y characterized by the parameters

3 _ 1 2 2 1 J—— 2
bu = muv bv - wuu bv + i€ Yue
3 1 2 2 1

w = w_ w - W
e wp v T Mup ey

3 _ i 1 2 2 1

€ i Up\)(mu\) € Wy E }

(I.28)

The infinitesimal transformations do indeed form =n algebra snd, what is

more, they can be integrated to yleld finite transformations.

A pure supertranslation integrates gquite trivially to the finite
form

-13-

(1.29)

It is interesting to note the form taken by the product of two successive

supertransiations,

i =21 i1, =2
xu+xu+2eyue +2(e +E)Yu9,
1 2 (1.30}

8 + 6+ +6e

which indicates thaet aspace-time tra.nsl?ition, 'E'ElYuﬁz emerges when two

supertranslations are compounded.

In order to treat the representations of the symmetry defined by (I.26) and
(I.27), we shall set up an sbstract algebra of the infinitesimel generators.
Firstly, notice that the asppliceticn to xu and 6 of the filrst-order

differential operator,

§ = b -2y

i 3 -|o i
k% T 2 %ka xncak-x?tanc+5%xl_:]+€[_-+5?a]’

39 a8
(I.31)
reproduces the formulse (I.26} and (I.27). This differential operator can be

looked upon as a particular realization of the ebstract operstor,

= L L =
F(8) = T l:hKPIC -39 Tt ES:I s (1.32}

which defines the infinitesimal generaters F, J &and S5 . Moreover, the
commutator [62,611 = 63 , derived above, can be locked upon as a particular

realization - in terms of differential operators - of the algebrale statement,

EF(GE),F(Gl)] = F(53) . {1.33)

To deduce commutaticn rules smong P, J and S 1s now straightferward. On

the left-hand side of (I.33} substitute for F(dl) and F(ég} the linear ex-

, ml, sl and b2, mE, 52, respectively.

On the right-hand side substitute for F(63) using the values for b3, uJ3, 63

. i
pressions (I.32) with parameters b

given in (I.28).The resulting formula is an identity in the parameters
bl, wl, El and b2, we, 52 . By comparing the coefficienta of these

parameters one arrives at the fellowing set of rules:

-1h-



]
o

[2,.P,]

1

T [(Bodpd = By ~ny, By (1.34)

1 -
i [Juv’JKA] LYY JuA LYY JHK + T Toe ™ e Fur

[S Ny ] = 0
o H {1.35)
= L
[SQ,JW] = 3 (cqu) o
{SG’SB} = _(YHC)GB Py . (1.36)

These rulee are of course obeyed by the particular realization (I.31), in terms
of dlfferential operators, from which we started:

- P = i3 ,
u H
= L 2.
I i(xuav - xvau) -3 ] O = (1.37)
g =

i [§E-+ % #h]

The gubalgebra (T.3L) ig,naturaily, the familiar set of Poincaré rules. The pair

(r.351 merely indicates that the supertranslation generator S transforms
as a Dirac spinor under Lorentz trensformations and is unaffected by space
translations. The enticommutator (I.36)which closes the system reflects the
truly novel aspect of this symmetry. That it must be an anticommutator
rather than a cormutator can be seen in several ways. Notice firstly that

the matrix Y“C is symmetric. Secondly, the differential operstor expression
for S involves the anticcommuting operator 9/38 . This differential
operator anticommutes with £ ,which means that, in general, S should anti=-
commute with €& . Going back to the commutators(I.33)and keeping cnly el

and 52 cne finds
=1 ) -1
le7s , €8] = & YUEEPU (1.38)

and, on using the antlicommtativity of & with S , this yields the anti=-
commtation rule {I.36). )
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The sppearance of an anticommutator in the algebralc siructure is
a new phencmencn in particle symmetry. Tn the mathematical terminelogy the
system (T.3:)-{T.36) is called a graded algebrn, The linear operators TF($)
given by {I.32) belong to what is called an "extended Lie algebra" in that
some of the co—ordinates € belong to & Cressmann algebra. { Mathematical
precisién in such matters will not be emphasised here . Most of
the mathematical operations needed here are quite elementary and are
familiar to partiele theoreticians. }

We conclude with a remark on the fermionle quantum number.
Corresponding to the phmse transformations (I.23} which serve to asaign one
unit of fermicn-number to the pasitive chirality component 6+ , One can

define the cperator

P il , (I.39)

which commutea with Pu and J"N and with 5 gives the commutator

[s ,F] = 1755 . (1.40)

This shows that 35_ carries one unit of fermion-number while S+ carries
minus one unit.

(D} UNITARY REPRESENTATIONS
In crder to generate a unitary representation,the operators P, J
and S must be real. More preclsely, the Yinear form

iF(§) = b P L s

W T2 Y

+*
n

must be self-adjoint. Since the parameters b and w are real numbers

while £ 1s a Majorana spinor, this reality means simply

+ T
Poo= B, J, = I, . 8 =68 . (1)

Now the unitery representations of the Poincaré group are well known,so our

problem is to f£ind out how these must be combined sc as to form representations

of the extended group. In solving this problem the chiral projecticns S,

Play a erucial role.
16w
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The anbiccro -ator (1.36) resolves into three distinct pleces when

chiral projentions are taken,

{s, .8} = 0o , {s_,s8} =20,
1+ iy
{s, 8} =- —=2 yCP )
- 2 U U (I.)-J-E)

That this must happen iIs clear from the fermion-number assignments: sinece
there are no operators in the algebra which carry two units of fermion-
number, the anticommutator {S_ s S__} must equal zero, and iikewise for
{s, , 8,}

Since the chiral operator 5_ Thas only two independent components
and since these anticommute with each other, it follows that the product

of three or more of them must vanish,

8 s S --- =0, (T.43)

The same 1s true of products with thiee or more adjacent S+ factors.

The next important remark 1s that supertranslations must leave
invarisnt the manifold of states with fixed h-momentum since St commute
with PH . On such a manifold the anticommutator {S+ 3 S_} becomes
equal to a fixed set of nurmbers, and the operators S+ and S5_  are seen
to generate a Clifford algebra. Since this algebra has just sixteen in-
dependent members - the products with up to four factors of S+ and S5_ -
its one and only finite-dimensionsl irreducible representation is in terms
of % x4 matrices. The manifold of stabes with fixed L-momentum is
therefore reduced by the ection of supertranslations into four-dimensional

invariant subspaces.

On the other hand,the manifold with fixed bh-momentum is reduced by
the Wigner rotatioms into (2] + 1l)~dimensional subspaces where J , the
intrinsic spin, ie integer or half-integer. Taken together, the combined
acticn of Wigner rotations and supertranslations must give rise to invariant
subspaces with 4(2j+1) dimensions. We now show in detail how this comes

about.,

Following the method of Wigner we start with a state at rest,

Py =M , B =0 . (T.1b)

“17=

In this frame the Wigner rotations coincide with the space rotations

generated by J = (7 Jlal and one can ascie that the chosen state

23 J31’
carries a definite anguler mementum J and z-comporent ,jz . The basis
states for an irreducible representation of the Poincaré group are obtained
by applying to the chosen state firstly the space rotations which serve teo

generate the 2341 values of ‘Jz and, secondly, the Lorentz transformations

which generate states with an arbitrary I and P0 = Vge + M2 .

To generate the basis states for an irreducible reprasentation of
the extended Poincaré group we can apply the operators S+ » 5_ and their
products toc the 23+1 rest states and then apply Lorentz transformastions
to the 4({2J+1) states which resuit. We shall suppcose that the original
2J+1 states are amnihilated by S+ . (This is not a restrictive
assumption since, if the original states were not annihilated by S+ s We
could have multiplied them either once or twice by 5, and picked out from
among the resulting states a set of 23"+l states which certainly are
annihilated by S+.) Now multiply each of the 2]J+1 states by 8_ to
generate 2(Ej+1} new states. Since S_ carries one-half unit of
angular momentum,these new states will comprise a pair of multiplets with
spins ,j—% and j-%" .+ Next apply the operator 5 _5_ to the original
states. BSince, in view of the anticommutativity, the product S 5 hes
only one independent component, this operation will generate another
muitiplet of spin J . The rest frame basis is now complete since products
with three or more facters of 5_ must vanish. TIf the original states
carried fermion-number f then, since 5_ carries one unit of this
number, the gtates generated in this way carry f£+1 and f+2 . In sumary,

the rest frame states have the spin-fermion number content

3

1
Jf > (J _Ef‘i'l » (j +§f+l 3 Jf+2 (IuhS)

(For the case J =0 the miltiplet J% is of course absent.)}

Starting with the states |Jz>f which satisfy

Bligre = 13,24

u

28,7, aQ
T.08.%0 = 13,2 3, PO I I L SO

18~



Fl$, >, = 13,7, -

S, >p= 0 (1.L6)
the rest frame basis iz completed by adjoining the states !Jz’l>}+l )
=4+ L
A=tz and 1) 7, defined by
1 _ T
i_s—lj'z>f - z l'szl\;.f#l € X+(A) ?
A
S8 13,0p= =l (1.47)
where the pair of chiral spinors X*ﬂl) satiafy
1 =
z 92 ¥ ) = e (A, (I.L8)
and are normalized such that
XA ygx (A1) = 6,,, ¥ {1.49)
The normalizations are chosen so that all states have the same (positive)
norm. The positivity of the norm is basie to the unitarity of the
representation and it is a consequence of the reality condition
- =T
s, = €35 (1.50)

and the anticommutation rules{I..L2). The last of these rules reduces on
the rest states to the form

1+ iy
—-
{s, ,8} - % Yo€ M

b
or, on taking account of (I.50)

H

1~ iy
{s_, 8} —2-——2 Yo ¥

By means of these rules it is gtraightforward to construct the action of
S on the

states defined by (I.46)} snd (I.47). One finds

-19-

1812 = = I, CEy @),
1 S lhl)!ﬂ = ‘lt>’- X_,(l) + ‘lz>§n leﬂrtl) ’
S |1‘>f4"3 = 2

=T
1 ,cx, (
A h)>fﬂ (C X {I.51)
The states |jz,l> may be resolved into multiplets with angular momentum
1 1
§+% and j -3 but thig will only complicate the formulae (I.51).

To complete the basis system it remains only to apply the Lorentz
boosts. There are many ways to do this,but perhaps the most commonly
used

conventional scheme is the one due to Jacob and Wick.
frame 4-momentum

The rest

p, = (M, 9, 0, O)

is boosted to the general form

pu = M (coshy, sho sin® cos¢,sha sin® sing, sho cosd)

by the Lorentz transformation

(1.52)
~1pJ -16J 1pJ ~iaJ
12
U(LP) = e e G 03 {I.53)
where the angles a, 0, (¢ are restricted to the ranges
0 g < s 0L8x<m R - <@g .
Under this convention the so-called helicity states are defined by
etc. The action of the supertranslation cperator on these boosted states
is obtained from (I.51)} by applying the operator (T1.53} to both sides. From
the fact that S is a Dirac spinor it follows that

-20-
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A =)
L u " S ,
Ul pl 8 (Lpl E(LPI
where the matrix a(Lp) is given by

i i . i i
S99, - 80, TP0,, =08
e 2712 2% 2%%2 2 o3

I.
A(Lpl {1.53)

Onmultiplying both sidee of the bocsted form of (I.51) by the matrix a.(LP)
one obtains the formulae;

5 l? h>f

LYTE

= 2 gAYy, CEON

28 lppi), = a2 W R+ 1pad, (B
.} S I?1t>f-“ = - §. IP2!1>'FN CEI[?.)) )
{1.56)
where the spinor coefficients ui(p,)t) are defined,
1+ :l.'»f5
w (p,d) = ulp,i)

1% 1y

= 2 al) U+ y,) X, -

The spinors u(p,A) are positive energy solutions of the Dirac equation,
(M) u = 0, and are normalized by

LZ_'_(_p,A) u_(P:A') = M 61)\' »
j.e
E(Pa}\) u(PaA') = 2M S}A'

The formulae (I.56) which express the sction of S on the states of
an irreducible representation of the extended symmetry tske the form given
regardless of the boosting conventions. Such conventions affect only the

functional form of the spinors u(p,A}.

-21-

Thiz completes the discussion of unitary irreducible representations
with a finite mass. These representations are labelled by three perameters,
M, J and f , and generally incorporate four distinct irreducible
representations of the Poinearé group (as indicated in(I.L5)}.- 1Inm
the remainder of this paper,which is concerned mainly with renormalizable

Lagrangian models,we shall meet only two of these,
(1} The fundamental representation, £ =J = 0, with Poincaré content

. .
0, ® &, & (),

and of course the antiparticles
1
(O)0 @ (2)_1 @ (0)_,
{2) The "vector" representation, f = -1, 3 = %. with Poincaré content
L L
(1, @ (0)0 @ (1), @ (2)1 »

which 1ls self-conjugate.

(%) GENERALTZATIONS

To conclude this chapter on the purely group theoretic mspects of
the relativistic symmetry we shall consider very briefly some possgible
generslizetions. The fermionic extension of the Poincaré group dealt with
above was a minimal one in that it employed a single Majorana gpinor. The
most significant sacrifice imposed by the minimality requirement - combined
with the ldes that the new spinor co-ordinates should carry a fermion-
nurber - is  the loss of space reflection symmetry. If this is to be

restored then a generalizetion is needed.

~22=



The simplest generalization is from Majorans to Direec spinors which
can be subjected to complex supertranslations. The formulee (1.27) are simply
repleced by

- i G
-——— £
EY“B 2 OV

] [

Gxu =

% (1.58)

vhere @ and ¢ are anticommuting Dirsc spincrs. It is a simple matier

to prove that these form an algebra. The anticommutator (I.36) is here

replaced by the set

(s, .80 =0 , 8,80 o

B

?

=B _ B
{Sou . 571 = (Yu)cu. Pu ’ {I.59)

where 8§ and § (In unitary representations
= _ af
§=8 YO.)

are independent generators.

they are related by hermitiasn conjugation,

The complex sxtension characterized by (1.59)1is certainly compatible
with reflection symmetry and fermion number. Thus, for example, all four
components of 5 can carry one unit of fermion-number and this is clearly

congistent with the parity transformation S - YOS .

The fundamental representation has sixteen independent rest frame
states. These can be defined by succeasive applications of So; to a
"lowest" state |0>_2 {carrying zero spin and fermion number -2) which is

annihilated by g* . The successive states {all of the same mass) are;:

o>,
lay 5
I0‘5>0

logy

]a8Y5> o

4190 2
smsB|0>_2
sasBsY|0> =

8,8 BSYS 5 | 0> >

{1.60)
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They comprise: a scaler difermion and its
antiparticle; +two spln J-z_;-particles of opposite parities and their anti-
particles; two scalars, one pseudcscalar and one polar vector, all

fermionically neutral.

In Section IV we ghall present a renormalizable Lagrangian modei for
this multiplet. It is arrived at iIn a rather indirect way as a special
example of & class of models which, although based on the Maj)orana super-

symmetry, are set up in such a way that perity conservation emerges.

Further generalizations of the supertransiations are easily invented.
For example,

= 1=
Sx, = FE T8
B 75 {1.61)
where ek and e:k , k=1,...,N, are Majorana spinors. This scheme admits

an O(N) symmetry with a consequent enrichment of the multiplet structure.
This multiplet appears to exhibit an SU(2n) structure in the rest frame,
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ATwsy :s
W LC.'AL SUFERFIELDE

In Section T a +t ¢ symmetry waz defined in abstract terms.
Through their action on the co-nrdinstes of an enlarged "space=time" the
s{lpertransla.:ions were seen to constitute an extension of the group of
inhomcgeneous proper Lorentz transformations, the Poinceré group. Con-
sideration of the algebra of infinitesimal transformations led to the
formulation of commutation and anticommutetion rules among the generators.
On the basis of these rules the unitary irreducible representations, or

"supermultiplets", were analysed.

By means of such considerations a general understanding of the new
symeetry is achieved and it becomes possible to formulate dynamical statements
in the form of selection rules, identities among scattering amplitudes, etc.
Te reach a deeper understanding it is necessary to formulate & local field
theory for the supermultiplets and to set up Lagrangian models for its
realizaticn. A necessary firet step in this programme is the concept of

the local superfield which we now consider.

The prototypical local superfield is the real scalar function @¢(x,8},

whose expansion in powers of O was given previously,
1 1
o(x,8) = Alx) + Byix) + T BOF(x) + T §Y59G(K) +

+ EBIv Y0 V00 + 88 B(x) + 55 (B0 D) . (1ra)

This field is loeal if it commutes with itself at spacellke separations,
[8(x,8) , ®(x',6")] =0 , (xx""<0 .  (1I.2)

This definition of locelity is compatible with the usual requirement that
ordinary Bose flelds commute among themselves and with fermicnic fields
while fermionic fields anticommute among themselves {always at relatively
spacelike points). To ensure this compatibility it is necessary cs.nl_\,r to
require that the spinor co-crdinates 9 and 6' anticommute with each
other and with the spinor field components y(x} and x(x) , on the one

hand, and commute with all beson field compenents on the other.

-25-

The wcliom on @(x,8) of = infin. -3imal trensformation from

the algebra of the extended Poincaré group is ¢ -n, according to (I.31),
oy
80(x,8) = b3 - 2w e -x3 +28c vl Lyt stk
TR 2R VAVE an TRAY! vV 2 uv B‘e“ 35 s ?
{11.3)
This formula defines the "scalar" nature of the superfield ¢(x,8) . From

it can be deduced (by substituting the expansion {I1.1)) the transformaticn

properties of the various component fields. Thus, with respect to the

Poincaré group, A, F, G and D are scalars, V is
a vector, ¢ and ¥ are spinors. The behayviour of these components under

a pure supertransiation is glven by:

S84 = EY ,
0 = (P4 yG+iv YV - ifa) e
2 5 w5y
1- 1-
F = '2'8)(-'2'31#4’ '
S 1.,
66 = FErX * 3 Ez}?’ysw .
- 1= 1 -,
8V, = ZELYYeX * 5 ELfLy vob,
I : s dur
dy = s (D - ifF + Yslﬁc - iyvyslﬁvu) €,
= -Efx . (31.4)

Fermion-number is assigned accordlng to the convention of Section I,
i.e. 6+ carries unit fermion-number, ¥ = 1 . If the superfield &(x,0)
as a whole is required to carry F = 0 , then the following distribution of
F values is implied:

F = 2 F + iG

F =1 Vs X,

F = 0 A,V, D,

F o= -l LA G

F = -2 : F - iG . (I1.5)
26~



These assignments are compatible with the reality condition These results are easily verified with the help of the differentisl cperator

expressions for the generators (I.37}. From (II.7}! it follows that the

#(x,81% = o(x,6] {11.86) covariant derivatives generate a "supertranslation" algebra of their own,

which may be imposed. This condition would imply that Bose components A,

F, G, V.u and D are real, while spinor ¢omponents are subject to the Majorana {Da ’ DB} = '(YUC}O-B iau . (1I.10)
condition,

Again it is useful to distinguish the chiral components D since, for

54

T =T
= Cx instance, positive chirality components anticommute and the successive

b= d$ » X
application of three such differentiations must annihilate any superfield.
(In tsking the complex or hermitian conjugste of a superfield it is always

_ % _ _
necessary to reverse the order of anticommuting factors; (By) = yo = ECwT ,
ete.)

The covariant derivative is basically a Majorsna spinor and for this resson

it is useful to define the conjugate from i) by

In general the superfield ®(x,8} 1is locally irreducible. By this 5 = '1)“'8 D

(c Dg or B, = D3¢ (11.11)

we mean that it cannot be decomposed into a sum of distinet, Independently

transforming components without the intervention of non-local operations.

The usefulness of these operators lles in the fact that i) D+ and
(In this it is anslogous to the ordinary vector field Vu(x) which can be =

. t DD are invariants of the extended group. Applied to one superfield
expressed ss the sum of transverse and longitudinel parts, Vl-l =V + 3¢, -

> 2 $(x,8) they yield another whose compcnents transform in exactly the same
only with the help of the non-lccel operater 1/3° , i.e. ¢ = (1/3%) BUVU.

wey. OUut of these operators and their products we can construct invariant
However, such a non-local decomposition is of considerable help in understanding , ) . . . .
projections. We begin with some simple identities.
the structure of the representation (II.h) and its derivation will be our
first ta.sk) The most useful identities are +those  which spring immediately

from the anticommutativity ameng components of the same chirality,
An importent rcle is played in the derivation by the operation of

; . : . . p : £ _ _
covariant differentiation The govariant derivetive o ® is defined by D+(D D+) - 0 and D (D+D_) -0, (1I.12)

3 s . s : .

D¥(x,8) = [ .. % (?ja)] ¢lx,8) . (I1.7) vwhich imply the identities

30

It is covariant in the sense of transforming like a spincr, (D+D_) Di(D_D.,.) =0 . (11-13_)
fo, 7.1 = L g D (11.8) Repeated use of these identities together with the anticommutation rules
uv 2 Tpw 77 )
1% iy

with respect to homogeneous Lorentz transformations and an invariant with {D+ . ]‘j+} = 2_2 i? ,

respect to translations and supertranslaticnsa,

enables one to demonstrate

[}
o

[0, 2,

o, s} 4° (5p,) o)

1}
o

2
(11.9) [(5-D+)I (f’+]:}-]| ]

. 2
[(ﬁ+n_)(ﬁ_n+)] - 4% (5,p) (Bn,)

27
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These formulae then imply that the nonwlocal operators

1 =
E, = -~ 7 (ﬁ_.p_l (D_D+l R
43
E = - == (5p,) B,0)
- 132 -+ +7. (IT.1h4)
3
ere ldempotent and orthogonal, i.e.
2 _ 2 _
E, = E . E = B_ , EE =0 . {(11.15)

The operators (II.14} are twe of the projections needed for the decomposition

of ¥{x,8) . There exists only one more snd it is glven, of course, by

a2 m -
R
2

= 1+ (Ep)° .
b3 {I1.16)
The decomposition of &(x,8) corresponding to this non-loecal
resoluticn,
®(x,0) = (E+ +E_+ El) 2(x,0) ,
= ¢+(x,9) + ‘D_(x,@) + ¢l(x,6) . (IT.17)
is given explicitly by
A = A+ +A + Al .
o=y vy 4 ‘JJl .
F = F, +F_
G = iF+ - iF
Vo ARA - HBA 4V
X o= -ipy, - 1R+ 1fy -
_ 2 2 2
D = =3 A* -3 A_ + 3 _Al (1I.18)

-20.

where le is tranaverse and V¥, are chiral. The expressions (I1.18) can be

solved for the lrreducible components,

- AN I A
Ai = h—[ﬂ—azD]*'eazauvu.
1t iy
1 5 1
‘l’t = 'é' 2 [‘P—g){]-
= =
F, = g (FF18), (11.19}
1
Al = E[A*-;?-D)s
= 1 1
¥ o= 2[¢+1—;X]-
39
v, = |n -—u]v
1u Y 32 v ? (1r.20)

some of which are seen to be non-local . Only if the components Y and D
are themselves firat and second derivatives (d)(' and QED' of some local
fields x' and D'} =an the original superfield be considered locally

reducible; otherwise it is not.

The transformation behaviour of the reduced components (II.19} and
(II.20) can be deduced from (II.b4). One finds,

Sa, = EQM, ,
sy, = T~ iface .
oF, = -E,ij, (1r.21)
sA, = B,
1.
8, = % [lYustlu - i#Al] e,
8y, = -e9ivsid gl . (11.22)
-30-



The so-called chiral scalaf.representationa (I1.21) and the trangverse vector
representation {IT.22] are of Pyndamental importance in the development of
renormalizable Lagreangian models. TFor this reason it is necessary to discuss
their properties in some detail and,to gain a deeper understanding, from cther
points of view, We begin with the chiral scalars.

Since the superfield &(x,8) from which ¢+ and ¢ are obtained
could have been subjJect to the reality condition (IT.6}, it is clear that the
chiral representations are conjugate, 0_ LY @: We shall therefore restrict
our attention to the positive chirality ¢, - The existence of this kind of
superfield rests on a very simple fact. The behaviour of x and & under

supertranalations is guch that the complex lL-vector

1
= -=B 2] IT.2
zu x‘Pl N YUYS ( 3)
transforms acc¢ording to

qu = iE+Yu6+ . (I1.2L)
That 1z, 0z depends on 8, (or B ) but not on 68 (or 5;) This means
that the space of complex-velued functions, ¢(z,9+), must be invarlant
under the action of the extended group. Since B+ has only two independent
cemponents, the expansion of ¢ in powers of e+ must terminate in the

second order rather than the fourth. Indeed, cne can write
1
plz,0) = a(z) +F v (z) +5 88, Fl(2),

1
- Bpy_8
e ¥ P {A+(x) + By, (0 + 286, 7],

o (x.0) (11.25}
where, in the second line, we have effected the translation z+x by
means of a displecement operator. If the displacement cperatcr is expanded
in powers of 6 and the terms in (II.25) are arranged in the standerd form
(IT.1) then one will find precisely the coefficients which are indicated

for ¢_ in the expressions (II.18}.

Another way te characterize the chiral superfield ¢+ is by means

of a differentisl condition. Thus, the covarlant derivetive of ¢+ is:

-31-

1
TP (g 1
e [ ;-é- - i?a_} [A+ + §_\f)+ + Y 6_._B+ F+} .

1+ 1y
225 g,

indicating poaitive chirality with respect to the spinor index. In other
words, 0+ iz annihilated by the negative chiral part of the covariant

derivetive,

Do = 0 . (11.26

This set of covariant constraints has as its general sclution the expansion
(II.25). The positive chiral scalar is therefore defined by (II.26),

A property of the chirel scalars which is of crucial importance in
the construetion of Lagranglans is their closure with respect to
multiplicaticn,

B,(x,0) ¢,(x,8) =4 (x,8) . (11.27

That the product of two positive chirality scalars (at the same point)
should yield a third becomes evident when they are expressed as functions
AMternatively, the linearity of the differential operator
D_ implies that it will annihilate the product if it annihilates the

of =z and G+ .

L
separate factors. The component fields of O defined by (II.27) are

)
given in terms of the components of ®+ and ¢+ as follows:

A lx) = Al ALK,
00 = 8,(x) v (x) +y,(x) ALGx)
Flix) = a,(x) Pl + 8700 ¢ ulx) + 7 (x) 4](x)

}

)

(11.28)

Generalization of (II.27} and (IT7.28) to products with any number of factors

is clearly possible. Indeed, it is & simple matter to show that the lceal

funetion v(%{x,3))} has the component expansion

-32-
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g, ) =

+

1
- = By D
e v 7 ? [v(_A+l + §_w+ V‘(A+)

+

ne

30, [F+ v'(a,) 4 %wfc‘lw,, V"(AJ] * o (11.29)

where v' and v" denote the first and second derivatives with respect to
the complex varisble A of the function V(A+) . This function must be

analytic in general but, in practice, wiil be restricted to polynomlals.

The sbove properties of the positive chirael scalar ¢+ are easily
translated for the conjugate representation fb_ . Thus, the negative chiral
gealar & is expressible as a function of z¥ and ©_ and one can write

for it the expansion

+ &84y 0
o(x,0) = e ' O [alx)+By (x)+1T0 F_(x)} . {rn.esy)

Such asuperfields are characterized by the differential constralnt
D¢ = 0 . (IT.26")

Finally, the praduct of two negative chiral scalars at the same point yields

a third: negative chirel scalars are closed with respect to local multiplication.

The local product of a negative chiral scalar with a positive one
does not yield a chiral result. This can be seen from the rather trivial
observation that the product of two functions, go(z,B_‘_) and Lp‘(z*,B_) .
must depend on both 2z an d z¥* as well as 8+ and ¢_ . The result
must therefore be a superfield ¢"(x,0) of the general type with which we

began this gection. Its components are given, in the standard notation,
by

A" = A.

.

" 1 1

U= A+ UA

" 1 1

F' = AF +FA .

L 1
G" = -iA JJF_+ irA_ .
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. 1 ' T < 1
v, = WaAl A +A(ABA) Y C oy

(13,8,0 ¥p_ * vyb, (13800 - (139, R N BRI

>
I

2
1

(-3°,) ]+ 2038 (3 A1) + A, (-3%)

v bEF vyl G -y (17.30)

This superfield is clearly not loecally reducible.

The fermion-number content of the chiral superfields is easily
established. Since B+ and €_ carry F =1 and F = -1 , respectively,
it follows from an examination of the expansion (I1.25) that A, llJ+ and
F+ must cerry F = £, f-1 and =2, respectively. The value T ,
associated with A+ is an invariant cf the representation. (We shall
normally take f = 0 so that w+ carrles F = -1 , i.e. LIJ+ serves to
annihilate one fermiocn and $+ creates one.) The negative chiral components
A_ . m_, F_ carry the values -f, -f+l1, -f+2 1f @_ is 1dentified with
CD: . (As a genersl rule we shall pot identify ®_ with ‘P: tut treat it
a3 an independent field with f =2 . With this notationel conventicn,

w_ carries [F = -1 and annihilates a fermion. Note that A ennihilates

a difermion.}

New categories of local representations are obtained by generalizing
the scalar superfields to spinors and tensors of arbitrary rank. That ia,
one regards ®(x,9) not as a single scalar superfield but as & set of
superfields belonging to cne of the finite-dimenslonel representaticrnsof the
proper Lorentz group. With respect to translations and supertranslations,
these fields transform as secalars, but under the homogeneous {proper)

group they transform according to

{x,0) -+ ¥ (x',8") = D(A) ¥(x,8) , (11.31)

where the matrices D(A) belong to. one of the familiar (2.11* 1} (2.]2 + 1)-
dimensional representations, ‘L(Jl,,]z) - or a direct sum of such
representations. This kind of generalization applies equally to the chiral
(*ﬁi) or non—chiral -(Q,tbl) types. Two examples will illustrate the main

features.
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The firat exsmple employs a chiral spinor superfield, (‘J’a_}+ ,
which has negative chirslity with reppect to its externsl spinor index,

{1+ iys) ¥, =0 . {11.32)

end poaltive chirality with respect to its internal structure,

D_¥, =0 . (11.33)

The expansion in component fields has the general form (IT1.25]

1
- By, 0
RAC (.60 + 3t v, + S50, v ]

‘F_+(x,6) =e
(11.34)

vhere U_ and V_ are negative chiral spinors and M isa Y—vector.

Under an infinitesimsl supertranslation these components transform
according to

8u_ = YHE* Mu .
- Jlz.y l:
&, = -SEYV_ -3 s+1p’yuu_ .
&V = i M .
e T A (11.35)

This representaticn is basically compléx. Thus, even with the most favourable
agsignment of fermion-numbers F =1, 0, -1 to u_, Mu and V_,
respectively, it 1s not possible to treat Mu as a real vector. However, if
certain constraints are applied,this representation will turn out to be

equivalent to the real ¢1 . We shall return to this question after setting
out the second example.

The second example employs a chiral spinor, ‘P++ ,which has positive
chirality both internaily and externslly, l.e.

(1-175) ¥, = 0 and D ¥ _ =0 . (I1.36)

Again the expansion in component fields has the general form (II.25),
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' N
AP Y

‘P_H_(x,el =

1
-+ Bfy0
e ! s [U+(x1+ GG+ Fo,, P Glle, + $88, v+(.x)} .

(11.37)
where U+ and V+ are positive chiral spinors, D is a scalar and Fu\J is
a self-dusl antisymmetric tensor. (It is of course the opposite external
chiralities that govern the appearance of a vector M, in ‘!’_+ and of a
scalar-tensor combination D’Fl.lv in ‘P_H_ .} The component fields transform

according to

U, = P*2% FW] N

® = -Liv, -3 140, .

o, = - L €V, - TE1 o0, -

av, = [D + -12-%\, Fuv] ife_ . {11.38)

This representation also is basieally complex but capable of being made

reel by means of certain constralnis.

¥ow consider the representation (II.35) to see 1f it can be made
self-conjugate. Since U_ and V_ carry F = 1 sand -1 , respectively,
we should identify the conjugate of one with the other. For the correct
belance of dimensions and also to heve the correct chiralities, the

asgsociation must take the form

v o= mi?CﬁE N (r1.3%}

where @ is a pumber to be determined. If the identification (IT.39) ia to

be compatible with supertranslations we must have
sv_ = wjestt
i.e. according to (II.3%),

TT ¥
Yuiﬁs_Mu = wi;fc-rﬁcf*Mu ,

*
e,

v ; L

S

R

e

R Sy



Tor arbitrary ¢_ . This gkvea constrajnts on M ., viz.

3,00, + w{l |

L] *
3,01, - w()l - a0t - w)

o
]

o
L[}

{I1.40)

Finally, it is necessary to verify the compatibility of (II.39) and (II.4Q)
with the expression (II.35] for SMu . This requires Jw| =1 . The

phage faptor can always be sbsorbed and so we shall take w=1. To

sumarize, taking

1
M o= =]V, -1
u 2 [ 1p 1311&1]
u = ¢1- .
v_ o= gl = igy (11.81)
- 1~ 1+ * )
where Vlu is real and transverse, Al is real and ml is MaJorana, we

find that the transformations {(IT.35) reduce to the form (II.22), i.e. a

real transverse vector representation.

Simllar considerations applied to the representation (II.38} show
that it too can be real. In this case the reslity conditicns are

v, = 1ol |

i
F 3V - BVVD +

n u'v 2 Buvip (BAVQ = aovk) .

(11.42)

with Vu and D real, The transformation rules (IT.38) then take the

form

1

U, = [D+3 OuU (auvu - avvu) £,
SVU = U+Yu€+ + E+YUU+
- Lg% _Lzgy
D= 3 O,ife, - 5 E, 190, (II.43)

This representation also is related to ¢ though 1t is not locally

1
equivalent. The connectionis made through the non-local relations,
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1
= = D,
A ¥
) av
Yip < [nuv T TE } Vo o
= 1 =T
b= 33 (Ul
or, more cempactly,
v, = i?D_Ql .
(B} GREEN'S FUNCTIONS AND INVARIANT AMPLITUDES

One of the main cbjectives of lceal field theory is the computation
of Green's functiona. The structure of these meny-point functions is
restricted by symmetry consliderations and, in the present case, by the
requirement of invariance under the actian of supertranslaticns. Such
structural constraints are best exhibited by expressing the Green functions
in terms of inveriant amplitudes and we shell examine here some applications
of this ides.

Since it is our purpose to reveal the implications of the new trans-
formations in the extended relativistic symmetry, we shall pay little
attention to the subgroup of Poincaré transformations, which can be handled
in the usual way. It will therefore be sufficient to deal with a system
of fields comprising only chirel scalars ¢+ and their complex conjugates.
The appending of Lorentz indices to such fi;lds g0 as to include non=-
sealar representstions is a relatively trivial modificetion and would not
affect the main argument. (Notice also that the non-chirel real fileld 01
can always be represented by a chiral spinor, W+_ = D+¢1 , and so included
in the general scheme.)

To begin with we shall ignore the fermionile quantum number which
distinguishes ¢_ from ¢: . Insofar as supertranslations only are
concerned, these fields are equivalent. It will therefore be sufficient
to analyse the structure of many-point Green's functions referring to
products of the fields ¢+ and ¢ , only. Afterwards we can introduce

the fermion-number and quite sasily pick out the amplitudes which conserve it.
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A considersble simplification in notation is achieved by amputating
the displacement operators, exp(¥F llfgﬁysﬁ), which always appear as factors
in the chiral superfieids. Thus, we deflne the smputated fields,

$I(x,0} = exp[i %-5#758} @i(x,e) s

A (x} + B, (x) + 258, F(x) , (11.L4)

which depend on only cne chiral component, either 6+ or B&_ (and 6_ or
§+), of the spinor co-ordinate. This property is expressed analytically by

Bl T SN
- 2 - r
, o
2 1+1 od
- . YE -— = 0
- 2 8 {II.k5)

Under supertranslations the smputated chiral fields transform according to

- ~
66+ = E [--_3;-—+ 1;e+] A
aex
A
- a¢+ -
= E o+ E,10,8, . (I1.46)
98, ,

On occasion in the following we shall use the abbreviated notation $+(l) =
N *
¢i(x1,91).

The n-point Green's functions 6 are expressed as vacuum expectation
values,

G(1,...,m) = LojT*d (1} ---8, (r) &_(re1) -+ 8 (m)|0) , (I1.07)

in which the T*—ordering is used so as to simplify the tranaformation
properties (i.e. avoid the complications due to non-covariant surface-
dependent terms). Our main purpcse here iz to consider the implications

of the requirement that & be invariant with respect to the transformations
(I7.45). This requirement is embodied in the single equation
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s

r n
= 3 3 “~
= et —_ G
0 £ Z [ = + iﬁjej+] + E [ = + iﬁdej_]
1 J- r+1l )+
{II.L8)
or, equivalently, in the chiral pair,
r n
= 3 3
¢ [Z 5 Z i’aea—] ¢
1 J- r+1
41 T
- 3 a
0 = [ E =t Z 13‘593+] g .
r+1 J+ 1 (II.hQ)

Fortunately it is quite easy to find the ceneral solution to these equations.
Cne starts by locking for sclutions of the form

& = ey (11.50)

where W 1is chosen to satisfy the inhomogeneous equations

I n

Z —.2..?— = i’ 0 ’
38 } ' 3=
1 J- r+1
n by
W ‘
E ol Z e, - (11.51)
r+1l J+ 1

There are many weys to satisfy these inhomogenecus eguations and we-sghall
return o this question. For the moment assume that one sclution has been
found. On using this W in (II.50) and substituting it inte the conditions
(IT.49) one finds that the amplitude M must satisfy the simplified equations

0 = Z BM ]
T QBJ_
n
0 = Z -~ {11.52)
oy BBJ+
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