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INTRODUCTION

Without doubt the invention of supersymmetry , a possible fundamental

symmetry between fermions and bosons (their contrasting statistics notwith-

standing) is one of the most elegant creations in theoretical physics. The

recognition of this type of symmetry has enriched the mathematics of relativistic

particle theory in a number of basic ways.

1) In supersymmetric theories it is possible to group specified numbers

of mesons and fermions (e.g. spins zero and —, or 0, T- and 1, or — and 2) in

supermultiTilets of the same mass. The existence of one member of such a super-

multiplet must imply the existence of all the other members if supersymmetry

is a law of nature. Before the discovery of supersymmetry it had erroneously

been assumed that basic tenets of quantum field theory forbade associations of

different spins in the same multiplet.

2) One can associate multi-component "superfields" with such supermultiplets
2)

and write supersymmetric Lagrangians for these. Such Lagrangians are extremely

restrictive in form. In particular, if renormalizabiltty is required then

they are very special indeed. The most exciting property of these Lagrangians

is their "softness" In that many of the ultraviolet infinities of conventionally

renorraalizable theories do not appear (as a rule only wave function renormal-

izations are divergent}.

3) Internal symmetries like ' isospin, SU{3), etc., can be incorporated with-

out any difficulty into the structure of the supermultiplets. These internal

symmetries can be gauged, i.e. made into local symmetries. For supersymmetric

and gauge invariant Lagrangians the vector gauge bosons are necessarily

accompanied by spin-^- supersymmetry partners. These gauge fermiona with

their universal gauge coupling are a new phenomenon in particle theory. (The

universal couplings manifest themselves not only in the interactions of gauge

fermions with their vector partners, the gauge bosons, but also in their

interactions with what one may call "matter" supermultiplets.)

h) Supersymmetry can be broken spontaneously in exactly the same way as

internal symmetries are broken when the appropriate scalar fields develop a

vacuum expectation value. In the lowest approximation this phenomenon is

governed by the scalar field potential. In supersymmetric theories these

potentials are highly restricted in form, unlike the case of non-supersymmetric

Lagrangian theories where there is usually an embarrassment of possibilities.

ofv ox

v To our knowledge the f i rs t appearance isupersymmetiy occurs in ttie work

of GoL'fand and Likhtman. I t was rediscovered independently by Akulov and

Volkov and by Wess and Zumino.
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This circumstance is a great but austere virtue - r.ot easily can one set up

a model which is flexible enough to meet one's requirements. Among the

suprising properties of supersymmetric theories one finds that if the super-

symmetry is not broken in zeroth order then it will not break in any finite

order and, moreover, the scalar field expectation values - which may describe

spontaneously broken internal symmetries - are given exactly by the zeroth

order result (i.e. are not renormalized).

5) A basic aspect of supersymmetry - and on which may be associated with

developments of physical significance - concerns its relation to the curved

spacetime of gravity theory. This would be the generalization of spacetime

to a manifold which includes anti-commuting c-numbers 8 (a = 1,2,3,^) along

with the familiar x . The notion of such an extension of flat spacetime

was used to define superfields *(x,9). But the curved space generalization

in which the metric field g u v W becomes one part of a superfield remains

to be made convincingly. The problem of finding a supersymmetric extension

of Einstein's gravity theory is being tackled now by many authors and much

progress has been made. However, the picture has not yet become quite clear

and we shall not attempt to discuss the generalization of Einstein's theory.

It is our purpose in this paper to elucidate the developments (l)-(U)

using the superfield notation throughout. Some of the results are published

already; others are new. We feel, however, that it is worthwhile to cover

the entire development from this unified viewpoint. One feature of our

presentation is that, from the outset, a fermionic quantum number is defined

in the supermultiplets - often at the expense of space reflection symmetry.

In the past this has been done more or less as an afterthought. In view

of the intrinsic importance of this quantum number in particle physics we

believe the present treatment may be more apposite.

One should ask the question: is this very elegant development made

use of by nature? At present the answer seens to be in the negative. How

the photon and a neutrino could have shared a superwultiplet - this would

be especially plausible after the recent developments concerning unification

of weak and electromagnetic interactions - but, as we shall show In Sec.Y,

it seems that if there is a neutrino accompanying the photon it is probably

a Goldstone particle. Such a Goldstone neutrino, arising from the spontaneous

breakdown of supersymmetry, is unfortunately subject to lov-energy theorems

which make its identification with the observed v or v unlikely. The

neutrino which partners the photon may yet be founa. The spin-?- object which

accompanies the graviton (spin-2) may have a fundamental role in full gravity

theory - for example in circumventing singularities of spacetime. On the

*? A number of reviews with extensive lists of references are available.
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strong interaction side, the only indication of a symmetry among baryons

and mesons appears to be the unversality of Regge slopes but this could, no

doubt,,toe explained in other wavs.

SECTION I

(A) SUFERSYMMETRY AS A HIGHER KELATIVISTIC SYMMETRY

The concept of a fundamental symmetry between fermians and bosons i s an

intriguing one. It belongs to the class of so-called "higher" or relativistic

symmetries in that i ts basic aim is to unite in a single multiplet, particles

with different intrinsic spins. In the past such relativistic schemes have

been concerned with the problem of uniting, for example, pseudoscalar with

vector mesons or spin ^-baryona with spin jjbaryons. Supersymmetry, however,

is concerned with the uniting of scalar and vector bosons with spin -r fermions.

In order to clarify the relationship of the new symmetry to the old

proposals for uniting different spins in one multiplet, i t is necessary to

digress briefly on the structure of the latter. One of the simpler such

was arrived at in the attempt to make relativistic the SU(lt) and SU(6)

symmetries of Wigner, Gtirsey, Badicati and Sakita. The SU(6), for example, is

a phenomenological attempt to classify the hadronic multiplet structure which

could be expected to emerge from the quark model if the dominant forces are

independent of spin. Thus the low-lying meson states, pseudosealar and vector,

are expected to f i l l out a 35-dimensional representation of SU(6) while the

low-lying baryons, spins ~- and -r , are expected to f i l l a 56-fold. In predicting

these states as well asjfseveral other respects the symmetry STJ(6} is successful.

However, and this is the main point to~r our discussion, the Wigner-Gursey-

Radicati-Safcita symmetry ia essentially non-relativistic. Its most distinctive

feature is the presence among i ts infinitesimal generators of a set of operators

which carry one unit of angular momentum. These are the operators which

connect the states, such as IT and p , whose spins differ by one unit.

These generators behave in a well defined way under space rotations but not

under Lorentz transformations. In a relativistic theory such operators make

no sense; if the symmetry is to be taken seriously, they must be supplemented

by new operators so as to f i l l out Lorentz multiplets. A number of attempts

vere made in this direction. One of the simplest was to embed the 3-vectors of.

Gursey_, Radicati and Sakita in antisymmetric It-tensors and this was achieved by

anlarging SU(6"1 to Sl(6,l) . The latter is in fact the smallest relativistic

symmetry which, can contain SU(6),

- 3 -

Unfortunately for SL{6,C), i t is a non-compact group. This means that

i ts irreducible unitary representations are all infinite dimensional. If the

particle spectrum is to be classified in unitary representations of this

group, the ir and p mesons must then be accompanied by an Infinite sequence

of particles, making the scheme(at the least) unattractive. All attempts at

relativistic versions of the spin-containing symmetries met this phenomenon

which came to be known as a no-go theorem.
was also based on

Like many no-go theorems in physics,this one apparently^certain hidden

assumptions and we shall explain shortly how i t is circumvented in the super-

symmetric framework.Briefly,the difficulties with SL(6,l) were concerned with

extra internal "dimensions11 implicit in the symmetry. A rather pictorial
unitary representations

understanding of the infinite-dimensionality of SL(6,1)'s/cac be obtained by

the method of induced representations. Thus, if SL(6,(E) is resolved into

cosets with respect to its maximal compact subgroup SU{6) then one obtains

a 35-dimensional coset space on which the full group can act. Now what can

these 35 real variables signify? The answer is that they must constitute an

"internal" space with 35 degrees of freedom. It is these internal degrees

of freedom which manifest themselves as an infinite degeneracy in the particle
can

spectrum: theyj[contribute any amount of spin but no energy. In another version

of 51,(6,t) symmetry, one of the Lorentz tensors - an £U(3) singlet - among

the infinitesimal operators is identified with the generator of Lorentz trans-

formations on space-time itself. Tor this to make aense i t Is necessary to

embed the space-time co-ordinates, x , in a 72-dimensional Banifold. This

time the new degrees of freedom contribute to the energy and one finds that,

in the rest frame, energy ranges over a continuum. It is difficult to

imagine how all the new dimensions could be accommodated In a physically

meaningful theory.

The difficulties Just outlined can all be avoided by the simple

expedient of associating the new dimensions with antieommuting variables.

Indeed, i t is now rather hard to understand why such a simple solution was

not thought of long ago. The idea is to consider fields, $(x,8), which

are defined over the product of the usual space-time, labelled by four co-

ordinates x , with a new space labelled by a set of anticommuting c-

numbers, 6 In order to see how the new degrees of freedom are controlled

one has only to expand the field *(x,9) in powers of 8 and notice that

the series must terminate after a finite number of terms:

-h-



*U,e) e
(I.I)

where H denotes the number of independent components 9^ . Because of the
ant loommut at Ivlty among the 9. , the coefficient fields <f1 • tx) must be

1 12""
completely antisymmetric and there can therefore be only a finite number of

them.

It remains to he shown, of course, that a consistent group theory can

be established on the apace of x and 0 . Such extensions of the Poincare

group do exist and a minimal example will be discussed in detail in the

following sections. At this stage we remark, only that the new dimensions

must have a spinorial character in keeping with their anticommutativity

as demanded ~by the TCP theorem. Thus, if in the above

expansion (fifx) is a commuting scalar field, we should like the next member,

<)>. (x) , to be an antieommuting spinor field. For this reason the new

relativistic symmetry must combine bosons with fermions and its infinitesimal

generators must include some which carry a half unit of angular momentum.

(B) THE MINIMAL FEKMONIC EXTENSION

The smallest spinorial representation of the homogeneous, proper
Lorentz group is the two-component spinor. I t follows that the minimal
fermionic extension of four-dimensional space-time which can be conceived
is made with the two complex (or four real) components of such spinors. This
is the manifold on which is based the re la t iv i s t ic symmetry known as super-
symmetry. In order to establish a notation,we discuss now some of the
elementary features of this manifold and of the functions defined over i t .

Since the concept of the four-component Dirae spinor and the
associated apparatus of Dirac matrices is more familiar to physicists than
the two-component (dotted and undotted) spinors and their associated matrices,
we choose to work with the former. This is purely a matter of notation:
the two-component spinor is identifiable as a chiral projection of the Dirac
spinor. Now, a Dirac spinor has two chiral projections (for the aefinition see
Eq.(l.lO) and in general these are independent. However, if the Dirac spinar
is subject to a reali ty condition (the Majorana condition) then the two
chiral projections are related by complex conjugation. This means, in effect,
that the four real components of a complex 2-spinor are identifiable with
the four real components of a Majorana spinor. I t is possible to set up a.

one-one correspondence between 2-spinors and Majorana spinors.

- 5 -

Our main conventions are as follows. For the metric of space-time

we take

(1.2)

and write the scalar product of two ^-vectors

A-B = A, " A1B1 " A2B2 " V :A2 B2 3°3
(1.3)

(There is usually no need for the more exact but cumbersome

The only point where confusionnotation A-B = r\VV A B^ = A B^ = Â B
could arise i s in the use of the gradient 3 = 3/3x_ , -3/3x, , -9/3x- ,

x .) The Dirao matrices, Yu , satisfy the anticoramutation rule

The frequently employed tensor and pseudoscalar combinations are defined by

V> = 2 (1.5)

With these definitions it is always possible to choose a representation in

which the matrices Yo» °12'
 ff23' °31 a r e n e r m i t i a n while Y1> Y2. Y,. Y 5

and a , <J__, a are antihermitian. Another important matrix in the

considerations which follow is the charge conjugation matrix, C , which
1!

relates y to the transposed matrix y ,

c'1 - Y,. (1.6)

The matrix C is necessarily antisymmetric. (it can be fixed, apart from a

C~ C =sign, by imposing the further requirements C~ = C = C.)

The infinitesimal Lorentz transformations are defined by

<5x
UV

(1.7)

where in is real and antisymmetric. The ^-vectors A and B are

required to transform l ike x

product

A and B

and th i s ensures the invariance of the

A B The Dirac spinor, i|> , i s required to transform according to

-6-



•i (1.8)

The adjoint spinor $ = t|) YQ then obeys the transformation rule

Sil • f is J a . (1.9)
4 UV T UV l ? '

(This comes about because the matrices YQQ" V . l ike Yo» YQY-J. ^0*5 a n d

iY_Y Yc > *re a l l hermitian.)

The transformations (1.8) are reduc ible. From (1.4) and the definitions

(1.5) i t follows that Yq commutes with O . The subspaces on which y = - i

and +i are invariant and this means that the ehiral projections

(.1.10)

separately obey the rule (1.8). These ehiral projections are of course the

two-component spinors of which the Dirac spinor is comprised.

From (1.9) and the properties of the charge conjugation matrix one cs

show that the "conjugate" spinor, iji , defined by

t (I.11)

transforms exactly like 41 i tself . The relevant property of C is expressed
Tin the equation Ctr = - o~ C. This identity is one of a number involving

C which may be summarized in the statement:

Y C and 0 C are symmetric
(1.12)

C , f Y5
C a r e antisymmetric

A Majorana spinor is one for which \|i =• i|i or , in terms of ehiral

projections,

^ = Cif? . (1.13)

The Majorana spinor therefore contains the same information as a two-component

spinor (and i t s complex conjugate).

-7-

*„ He a pair of spinors,

Then the symmetries(1.12) are expressed in a statement about bi l inear forma:
\y ^2 and " i l ^ ^ are antisymmetric while ^ ^ , \y^l>s and \^vf^\>2

are symmetric under the interchange of l)i and l/j . {Hote in particular
that I y ty-, and If a 1(1 vanish identically for Majorana spinors.)

Mow consider some of the detailed properties of the expansion ( l . l ) for
the case of a Majorana spinor 9 . Because of the anticommutativity among
the four components of 6 ,there are altogether sixteen independent terms
in the expansion. These can be conveniently grouped as follows:

A(x)

where A, F, G, V and D are Bose fields, ty and It is

clear that,with respect to the proper Lorentz group. A, V, G and D are
scalars, V is a vector while ip and x » r e ^-spinors. We shall defer
discussion of the improper transformations.

The product of two such expansions must again have the same form

and this can be verified. Thus if

^(x.e) *2(x,e) = »3Ci.e} (1.15)

then the components of t, are given by

F3 "

V3v VlvA2

-8-



(1.16)

In deriving these expressions we have assumed that 9 commutes with Bose

fields and anticommutes with Fermi fields. A further assumption we shall

make is that the order of anticommuting factors is reversed by complex

conjugation. With this understanding the bilinears 9*6 , 5Yc& a n d

5iYuYc9 are "real1'while, for example,

and t h i s b i l i nea r i s r ea l i f !p i s a Majorana spinor.

Derivatives with respect t o the Majorana co-ordinates 9 are

defined by

—
3B

*(x,e) + 55 —
B

(1.17)

to leading order in 66 . Since 9 and 66 are anticommuting quantities

it is important to remark that the infinitesimal S@ is placed to the left of

3*/36 in (1.17). This is a convention we shall adhere to. The derivative defined

here has the usual properties of a differential operator with two important

exceptions. Firstly, when applied to the product of two functions its

effects are distributed according to the rule

3

35 35 39
(I.18)

where the +(-) sign applies when 0. is bosonic (fermionie), i.e. when

65 commutes (antieoimites) with * . Secondly, the product of two such

differential operators is antisymmetric,

34> (1.19)

-9-

Applied to a general function like (1.1*0 the derivative takes the explicit
form:

~

This formula will prove useful when we come to define the action on component

fields of the extended Poincar^ group (Sec.(C)).

Finally, It is necessary to make some decisions about the discrete

transformations P and CP . There are two possibilities. The first is

to refuse to assign any distinctive quantum number to the spitiorial

components ty and x • In this ease, if the scalar and vector components

of <Kx,6) are real, then the spinors should also be real (in the Majorana

sense), i.e.

*(x,0) = »(x,9)» (1.21)

and there is no concept of fermion number. With such an Interpretation one

c&n associate the transformation

9 + iY06 (1.22)

with space reflection. The component fields A, T and D are scalars,
G a pseudoscalar, V̂  an axial vector.

is that we arrange that
The alternative possibilityjthe spinor components !(i and x are distinguished

from the Bose components by a fermionic quantum number. There is only one way
to do this and it means sacrificing the space reflection. Suppose the positive
chirality combination of co-ordinates 6 carries unit fermlon-number (aa
well as one-half unit of spin). It follows that 9 carries minus one unit•
Clearly the transformation (1.22) reverses the fermion number,

This transformation can no longer be associated with a simple space

reflection. Rather it must be associated with combined space reflection and

antiparticle conjugation.

-10-



The phase transformations associated with fermion-number,

±io (1.23)

can now be applied to the function *(x,6) . Suppose this function trans-

forms according to

«U,e) + *U,e 56) .

Then the component fields transform according to

(I.2k)

F ± iG (F ±

D + D U.25)

To summarize, the boson fields A, V and D carry no fermion-number while

F + iG carries two units and F - iG carries minus two units ; the chiral

spinors \ji_ and x+ carry one unit while IJJ+ and x carry minus one

unit. These assignments are of course compatible with the real i ty condition

(1.21).

We shall return la ter to the problem of defining both parity as well

as fermion-number in this framework.

(C) SUPERTKANSLATIOH5

Having established a notation and described some of the properties
of the extended space-time and the functions *{x,6) defined over i t , we
are now in a position to discuss the Poincarl group and i t s extension.

Firstly, the action of an infinitesimal Poincare transformation on

x and 9 is given by

-11-

x = h + D x

56 = - r "> 0 84 yv yv

(1.26)

where b and 03 •a are infinitesimal real parameters. The newto

transformations, which we shall call supertranslatlons, are given by

«e
(1.27)

where £ is an infinitesimal antieommuting Majorana spinor. We shall assume
that the components of e anticommute among themselves, with 8 and with
all spinor fields.

The peculiar feature, expressed in (I.2T). that a "translation" in the

Majorana co-ordinates 9 is associated with a 6-dependent translation in

the space-time co-ordinate x is highly significant and gives rise to the

many unusual characteristics of supersymmetric theory. But first we must

verify that the infinitesimal transformations (l.£6) and (l.27) form an algebra.

Apply to x and 9 two successive infinitesimal transformations

1 1 1 2 2 2
characterized, respectively, by the parameters b , Oi , e and b , to , E ;

• i

-12-
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Now apply these variations in the reverse order and subtract to obtain

from vhich it is clear that the commutator [6^,6.] is equivalent to a third

infinitesimal transformation 6 , characterized by the parameters

* =

uup ^pv ~ wup wpv

(1.28)

The infinitesimal transformations do indeed form an algebra and, what is

more, they can te integrated to yieia finite transformations.

A pure supertranslation integrates quite trivially to the finite

form

-13-

(1.39)
+ e

It is interesting to note the form taken by the product of two successive

supertranslations,

2 ^ V
(1.30)

which indicates that a space-time translation, -r £ Y £ emerges when two

supertranslations are compounded.

In order to treat the representations of the symmetry defined by (1.26) and

(1.27), we shall set up an abstract algebra of the infinitesimal generators.

Firstly, notice that the application to x and 9 of the first-order

differential operator,

U.31)

reproduces the formulae (1.26) and (1.27). This differential operator can be

looked upon as a particular realization of the abstract operator.

F(5) = T b
i [_

b P - 7-u) , J , S , (1.32)

which defines the infinitesimal generators P, J and S . Moreover, the

commutator [<5p,S, ] ~ <5, , derived above, can be looked upon as a particular

realization - in terms of differential operators - of the algebraic statement,

[F(62), F(fi3) (1.33)

To deduce commutation rules among P, J and S is now straightforward. On

the left-hand side of (1.33) substitute for F(<5. ) and F(6 ) the linear ex-
1 1 1 2 2 2

cress ions (1.32) with parameters b , ui , e and b , m , £ , r e spec t ive ly .
On the right-hand side substitute for ) using the values for b , ID , £

given in (1.28). The resulting, formula is an identity in the parameters
1 1 1 2 2 2

b , OJ , e and b , in , £ . By comparing the coefficients, of these
parameters one arrives at the following set of rules:

- l i t -



[PU,PV] = o

V PX " V Pv

V

(1.31.)

+ \ \ JVK " V

Is ,p ] = o
a' \i (1.35)

(1.36)

These rules are of course obeyed by the particular realization ( l . 3 l ) , in terms

of differential operators, from which we started:

V '

W

S fe-M
(1.37)

The aubalgebrs (J.3I*). is,naturally, the familiar set of Poincare rules. The pair

Cl.35l merely indicates that the supertranslation generator S transforms

a3 a Dirac spinor under Lorentz transformations and is unaffected by space

translations. The anticommutator (l.36)vhich closes the system reflects the

truly novel aspect of this symmetry. That i t must be an anticommutator

rather than a commutator can be seen in several waya. Notice firstly that

the matrix y C is symmetric. Secondly, the differential operator expression

for S Involves the anticommuting operator 3/35 . This differential

operator anticommutes vith S , which means that, in general, S should aati-

commute with e .
2

and e one finds

Going back to the commutators(l,33)ana keeping only £

[eh , '\'\ (1.38)

and, on using the anticommutativity of s with S , this yields the anti-

commutation rule (I.36).

-15-

Tte appearance of an anticommutator In the algebraic structure is

a new phenomenon in particle symmetry. In the mathematical terminology the

system (1.3I*)-{1.36) is called a graded algebra. The linear operators F(i)

given by (1.32) 'belong to what is called an "extended Lie algebra" in that

some of the co-ordinates E belong to a Grassmann algebra. ( Mathematical

precision in such matters will not tie emphasised here . Most of

the mathematical operations needed here are quite elementary and are

familiar to particle theoreticians. )

We conclude with a remark on the fermionic quantum number.

Corresponding to the phase transformations (1.23) which serve to assign one

unit of fermion-number to the positive chirality component 6 , one can

define the operator

(1.39)

which commutes with P and

r
ae

and with S gives the commutator

[S , IF] (1.1*0)

This shows that S

minus one unit.

carries one unit of fenaton-number vhile S+ carries

(D) UNITAHY BEPRESEHTATIONS

In order to generate a unitary representation,the operators P, J

and S must be real. More precisely, the linear form

1FC6J

must be self-adjoint. Since the parameters "b and (0 are real numbers

while £ is a Majorana aplnor, this reali ty means simply

= J (1.1*2)

How the unitary representations of the Poincare group are well known,so our

problem is to find out how these must be combined so as to fora representations

of the extended group. In solving this problem the chiral projections S+

play a crucial role.

-16-



The antloc:.-, -ator (1.36) resolves into three distinct pieces when

t;hiral projections are taken,

{S+ , S+} = 0 , (S_ , SJ = 0 ,

(1.1*2)

That this must happen is clear from the fermion-number assignments: since

there are no operators-in the algebra which carry two units of fermion-

number, the anticommutator {S_ , S } must equal zero, and likewise for

(S+ , S+} .

Since the chiral operator S has only two Independent components

and since these antieommute with each other, it follows that the product

of three or more of them must vanish,

a- 6 = 0 (1.1*3)

The same is true of products with thof-ee or more adjacent S+ factors.

The next important remark is that super-translations must leave

invariant the manifold of states with fixed It-momentum since S+ commute

with P . On such a manifold the anticonmutator {E+ , S_} becomes

equal to a fixed set of numbers, and the operators S and S_ are seen

to generate a Clifford algebra. Since this algebra has just sixteen in-

dependent members - the products with up to four factors of S+ and S_ -

i t s one and only finite-dimensional irreducible representation is in terms

of h x 1* matrices. The manifold of states with fixed -̂momentum is

therefore reduced by the action of supertranslations into faur-dimensional

invariant subspaces.

On the other hand, the manifold with fixed It-momentum is reduced by

the Wigner rotations into (2j + l)-dimensional subspaces where j , the

intrinsic spin, is integer or half-integer. Taken together, the combined

action of Wigner rotations and supertranslations must give r i se to invariant

subspaces with l*(2J+l) dimensions. We now show in detail how this comes

about.

Following the method of Wigner we s tar t with a state at res t .

tl.M*)

-17-

In this frame the Wigner rotations coincide with the space rotations

generated by J = (J,23 J,. , J,pl and one can ass;~s that the chosen state.

carries a definite angular momentum j and z-component j . The basis

states for an irreducible representation of the Poincare group are obtained

by applying to the chosen state firstly the space rotations which serve to

generate the 2j+l values of J and, secondly, the Lorentz transformations
z

which generate states with an arbitrary F, and P =VP_ + M

To generate the basis states for an irreducible representation of

the extended Poincare group we can apply the operators S + , G and their

products to the 2J+1 rest states and then apply Lorentz transformations

to the U(2J+l) states which result. We shall suppose that the original

2J+1 states are annihilated by S . (This is not a restrictive

assumption since, if the original states were not annihilated by S , we

could have multiplied them either once or twice by S + and picked out from

among the resulting states a set of 2j T+l states which certainly are

annihilated by S+.) How multiply each of the 2J+1 states by S_ to

generate 2<2j+l) new states. Since S carries one-half unit of

angular momentum,these new states will comprise a pair of multiplets with

spins j - — and S+-? . Hext apply the operator S S to the original

states. Since, it) view of the anticommutativity, the product S_S_ has

only one independent component, this operation will generate another

multiplet of spin j . The rest frame basis is now complete since products

with three or more factors of S_ must vaniBh. If the original states

carried fermion-number f then, since S carries one unit of this

number, the states generated in this way cariy f+1 and f+2 . In summary,

the rest frame states have the spin-fermion number content

(J - |) , (J + h. Jf+2

(For the case j = 0 the multiplet j-^- is of course absent.)

Starting with the states |j \ which satisfy

J 1 2 | J z > f = | j z > f

- 1 8 -



the rest frame basi3 Is completed by adjoining the states | j >X/ -. •

X = ± | and iJ z> f + £ defined byz > f + £

where the pair of chiral splnora X.(X) satisfy

| a l 2 y+(X) = Xx+U) ,

and are normalized such that

Y0X+U') = «xx, M (1.1.9)

The normalizations are chosen so that all states have the same (positive)

norm. The positivity of the norm is basic to the unitarity of the

representation and It Is a consequence of the reality condition

(1.50)

and the anticommutatioti rules (1.1+2). The last of these rules reduces on

the rest states to the form

T^ V M '

or, on taking account of (1.50)

{S , S
1 - il

2~

By means of these rules it is straightforward to construct the action of

S on the states defined by .(l.h6) and (I A T ) . One finds

-19-

1 S
it (1.51)

The states |j ,X̂ > may be resolved into multiplets with angular momentum
1 1

i + g" and J ~ f t u t this will only complicate the formulae (1.51).

To complete the basis system it remains only to apply the Lorentz

boosts. There are many vays to do this,but perhaps the most commonly

used conventional scheme Is the one due to Jacob and Wick. The rest

frame ^-momentum

p y = (M, 0 , 0 , 0)

is boosted to the general form

p = M (eosha, sha sin8 cosij), aha sin9 sinifi, shct cos6)

(1.52)

(1.53)

by the Lorentz transformation

where the angles a, 9, (p are restricted to the ranges

Under this convention the so-called hel ici ty states are defined by

etc. The action of the supertranslation operator on these boosted statea

is obtained from (1.51) oy applying the operator Cl.53) to both sides. From

the fact that S is a Dirac spinor it follows that

-30-



s ,

where the matrix a(L } is given by

e e e (1.55)

On multiplying toth sides of the boosted form of ( l .5 l ) "by the matrix a(L )
one obtains the formulae:

(1.56)

where the spinor coefficients u+(p,X) are defined,

1 i iv
u+(p,X) = 1 — - uCp,X)

(1.57)

The spinors u(p,X) are positive energy solutions of the Dirac equation,

u = 0 , and are normali led ty

= M

u{p,A) u(p.A') = 2M

i.e.

The formulae (I.56) which express the action of S on the states of

an irreducible representation of the extended symmetry take the form given

regardless of the 'boosting conventions. Such conventions affect only the

functional form of the spinors u(p,\).

-21-

This completes the discussion of unitary irreducible representations

with a finite mass. These representations are labelled "by three parameters,

M, i and f , and generally incorporate four distinct irreducible

representations of the Poincare group (as indicated intl.^5))-' In

the remainder of this paper, which is concerned mainly with renormalizable

Lagrangian models,we shall meet only two of these.

(l) The fundamental representation, f = j = 0, with Poincare content

(o)

and of course the antiparticles

C0)Q ©

to) a

(0)
_2

(2) The "vector" representation, f = -1, J = =-,with Poincare content

which is self-conjugate.

(E) GENERALIZATIONS

To conclude this chapter on the purely group theoretic aspects of

the relativistic symmetry we shall consider very briefly some possible

generalizations. The fermionic extension of the Foincase' group dealt with

above was a minimal one in that it employed a single Mojorana spinor. The

most significant sacrifice imposed by the minimality requirement - combined

With the idea that the new spinor co-ordinates should carry a fermion-

nuraber - is the loss of space reflection symmetry. If this is to be

restored then a generalization is needed.

-22-



The simplest generalization is from Majorana to Pirae spinors which

can be subjected to complex supertranalations. The formulae (1.27) are simply-

replaced by

(1.58)

where 9 and £ are anticommuting Dirac spinors. It is a simple matter
to prove that these form an algebra. The anticommutator (1.36) is here
replaced by the set

{Sa • V

L ot * J ~ M u a u ' (1.59)

where S and S are independent generators. (in unitary representations

they are related by herraitian conjugation, 3 = S Y^.)

The complex extension characterized by (I.59)is certainly compatible

with reflection symmetry and fermion number. Thus, for example, all four

components of S can carry one unit of fermion-number and this is clearly

consistent with the parity transformation S -+ YQS .

The fundamental representation has sixteen independent rest frame

states. These can he defined by successive applications of S to a

"lowest" state |0̂ > (carrying zero spin and fermion number -2) which is

annihilated by 3 . The successive states (all of the same mass) are;

3aSB |0>-2

(1.60)

- 2 3 -

They comprise: a scalar difermion and. i ts
antiparticle; two spin ^-particles of opposite parities and their anti-
particles; two scalars, one pseudoscalar and one polar vector, all
fermionically neutral.

In Section TV we shall present a renormalizable Lagrangian model for
this multiplet. It is arrived at In a rather Indirect way as a special
example of a class of models which, although based on the Majorana super-
symmetry, are set up in such a way that parity conservation emerges.

Further generalizations of the supertranslations are easily invented.
For example,

46, Ci-61)

where 6^ and e^ , k = 1.....H, are Majorana spinors. This scheme admits

an 0(H) symmetry with a consequent enrichment of the multiplet structure.

This multiplet appears to exhibit an SU(2n) structure in the reBt frame.



JIT',*, .: .

(A: LC 'AL SUPEP.FIELDS

In Section I a <:. : jyiametry was defined in abstract terms.

Through their action on the co-ordinates of an enlarged "space-time" the

super-translations were seen to constitute an extension of the group of

inhomogeneous proper Lorentz transformations, the Poincare group. Con-

sideration of the algebra of infinitesimal transformations led to the

formulation of commutation and anticommutation rules among the generators.

On the basis of these rules the unitary irreducible representations, or

"supermultiplets", were analysed.

By aeans. of such considerations a general understanding of the new

symmetry is achieved and it becomes possible to formulate dynamical statements

in the form of selection rules, identities among scattering amplitudes, etc.

To reach a deeper understanding it is necessary to formulate a local field

theory for the supermultiplets and to set up Lagrangian models for its

realization. A necessary first step in this programme is the concept of

the local superfield which we now consider.

The prototypical local superfield is the real scalar function #(x,0),

whose expansion in powers of 8 was given previously.

A(X)

vv(x) -| (ee)2

This field is local if it commutes with itself at spacelike separations,

[*(x,6) , *(i',6')] = 0 < 0 (II.2)

This definition of locality is compatible vith the usual requirement that

ordinary Bose fields commute among themselves and with fenoionic fields

while fermionic fields anticommute among themselves (always at relatively

spacelike points). To ensure this compatibility i t is necessary only to

require that the spinor co-ordinates 9 and 01 anticommute with each

other and with the spinor field components ^(x) and x(x) , on the one

hand, and commute with all boson field components on the other.

- 2 5 -

The ticlion on $(x,B) of -:.\._ Ltifln. '^imal t ransformation from

the algebra of the extended Poincare group i s /:.' -:n, according to ( l . 3 l ) ,

toy

( I I . 3 )

This formula defines the "scalar" nature of the superfield $(x,9) . From

it can be deduced (by substituting the expansion (ll.l))the transformation

properties of the various component fields. Thus, with respect to the

group, A, F, G and D are scalars, V isPoincar^

a vector, \(i and X a r e spinors. The "behaviour of these components under

a pure supertranslation is given by:

6A = EI|J

6F

j (F + Y G + i y T T - ISfA)d 5 U 5 u
Y G + i y T

5 U 5

| ex - | Ii/i(i

\ £-Y5X + | ei

\ av5^
+ \ ^

Fermion-number is assigned according to the convention of Section I,

i.e. 8 carries unit fermion-number, IP = 1 . If the superfield $(x,8)

as a whole is required to carry F = 0 , then the following distribution of

F values is implied:

F = 2 F + iG

$_ , X +

IF

IF

IF

= 0

•« - 1

= - 2

: A , V y ,

•• * + > 5 C

: F - i d

- 2 6 -
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These assignments are compatible with the reality condition

(II.6)

which may be imposed. This condition would imply that Bose components A,

F, G, Vv ana D are real, while splnor components are subject to the Majorana

condition,

ii = cf , x = cf •

(in taking the complex or hermitian conjugate of a superfield it is always

necess

etc.)

— * — —T
necessary to reverse the order of anticommuting factors; (6t|>) = tjj6 = iJcty

In general the superfield t(x,9) is locally irreducible. By this

we mean that It cannot be decomposed into a sum of distinct, independently

transforming components without the intervention of non-local operations.

(In this It Is analogous to the ordinary vector field V (x) which can be
t

expressed as the sum of transverse and longitudinal par t s , V = V + 3 4 .

only with the help of the non-local operator 1/3 , i . e . 4> = (1/3 ) 3
U

V
U -

However, such a non-local decomposition is of considerable help in understanding

the structure of the representation (ll . l t) and i t s derivation will be our

f i rs t task.)

An Important role is played in the derivation by the operation of

covariant differentiation. The covariant derivative of $ is defined by

Dt(x,e) = [ — - |

It Is covariant In the sense of transforming like a spinor.

(II.T)

(II.8)

with respect to homogeneous Lorentz transformations and an Invariant with

respect to translations and supertranslations,

{D , S} = 0 . (II.9)

-27-

These results are easily verified with the help of the differential operator

expressions for the generators CI.37J. From (lI.Ti it follows that the

covariant derivatives generate a "supertranslation" algebra of their own,

• V (11.10)

Again it is useful to distinguish the chir&l components D+ since, for

Instance, positive chirality components anticommute and the successive

application of three such differentiations must annihilate any superfield.

The covariant derivative is basically a Majorana spinor and for this reason

it is useful to define the conjugate from D by

or D ± = -D
—1

(11.11)

The usefulness of these operators lies in the fact that D D + and

D D are invariants of the extended group. Applied to one superfield

$(x,8) they yield another whose components transform In exactly the same

way. Out of these operators and their products we can construct invariant

projections. We begin with some simple identities.

The most useful identities are those which spring immediately

from the anticommutativity among components of the same chirality,

D+(D_D+) 0 and D (5+D_) = 0 , (11.12)

which imply the identities

(D+D_) D±(D_D+) = 0 . (11.13)

Repeated use of these identities together with the anticommutation rules

{D± , D±} =

enables one to demonstrate

(D_D+H5+D_)

C5+Dj
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These formulae then imply that the. nonlocal operators

E^ = - -^5- Cp\p I (P D.I ,
+ h*

E = - - ~ CD D. ] ID D 3 ,

are idewpotent and orthogonal, i . e .

, E2 = E , E^E_ = 0 . (11.15)

t i l .11*)

E E+

The operators (lI.lU) are two of the projections needed for the decomposition

of S(x,6) . There exists only one more and it is given, of course, by

Ej_ = 1 - E + - E_ ,

= 1 + - — (D_DJ_ , E^D_} ,

2 t i l . 16)

The decomposition of $(x,6) corresponding to this non-local

resolution,

*(x,9) = (E, + E + £,) *(x,6) ,

(x,e) + $ (x,e)

is given explicitly by

(11.17)

A = A+

F = F + + F_ .

G = IF - iF .

V 1S

X = - i

- i 3 u A -

p o
D = - 3 A+ - 3 A (11.18)

-29-

where V is transverse and ^ are
1]1 -

solved for the irreducitle components,

. The expressions (II.18) can Toe

1 ±

F± - | tF T iGl ,

V

t i l . 19)

(11.20)

some of which are seen to he non-local . Only i f the components x a n d D

are themselves f i rs t and second derivatives (^x1 a n d a D ' o f some local

fields x' axii D ' ) - a n t n e original aoperfield be considered locally

reducible; otherwise i t is not.

The transformation behaviour of the reduced components (11.19) and

(11.20) can be deduced from (il.l*). One finds,

<5F, (11.21)

5V, (11.22)

- 3 0 -



The so-called chlral scalar,representations (II.2JLJ. and the transverse vector

representation Cll-22l are of fundamental importance in the development of

renormalizable Lagrangian models. For this reason it is necessary to discuss

their properties in some detail and,to gain a deeper understanding, from other

points of view. We begin with the chiral scalars.

Since the superfield *(x,9) from which $ and <}_ are obtained

could have been subject to the reality condition (II.6), it is clear that the
#

chiral representations are conjugate, $ <v $ + . We shall therefore restrict

our attention to the positive chirality * + . The existence of this kind of

superfield rests on a very simple fact. The behaviour of x and 8 under

super-translations is such that the complex ^-vector

z,. = x,. - f 5Y,,YC6 (11.23)

transforms according to

= i£. (11.210

That i s , <5z depends on 6+ (or 9 ) but not on 9 (or 6+) . This means
that the space of complex-valued functions, <p(z,6+) , must be invariant
under the action of the extended group. Since 6+ has only tvo independent
components, the expansion of <p in powers of 9+ must terminate in the
second order rather than the fourth. Indeed, one can write

A+(z)

e 4 | 5 _ e + F+(x)J

= *+ { x"8 ) (11.25)

where, in the second line, we have effected the translation z •+ x by

means of a displacement operator. If the displacement operator is expanded

in powers of 8 and the terms in (II.S5) are arranged in the standard form

(il.l) then one will find precisely the coefficients which are indicated

for *+ in the expressions Cll.l8}.

Another way to characterize the chiral superfield $+ is by means

of a differential condition. Thus, the covariant derivative of * is:

-31-

•'fe-W

indicating positive chirality with respect to the spinor Index. In other

words, * + is annihilated by the negative chiral part of the covariant

derivative,

D_*+ = 0 . (11.26)

This set of covariant constraints has as its general solution the expansion

(11.25). The positive chiral scalar is therefore defined by (11.26).

A property of the chiral scalars which is of crucial importance in

the construction of Lagrangians is their closure with respect to

multiplication,

*+(x,8) *+(x,9) . (II.27)

That the product of two positive chirality scalars (at the same point)

should yield a third becomes evident when they are expressed as functions

of z and 6+ . Alternatively, the linearity of the differential operator

D implies that it will annihilate the product if it annihilates the

separate factors. The component fields of 0 defined by (11.27) are
1 +

given in terms of the components of 9 and $ as follows:

A+(x) = A+(x)

A+(x) ij/(

= A+(x) C"1 F+(x)

(11.28)

Generalization of (11.27) and (11.28) to products with any number of factors

is clearly possible. Indeed, it is a simple matter to show that the local

function v(^[x,9)) has the component expansion
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" F ^

(11.29)

where v1 and v" denote the first and second derivatives with respect to

the complex variable A+ of the function T ( A + ) . This function must be

analytic in general but, in practice, will be restricted to polynomials.

The above properties of the positive chir&l scalar 4 + are easily-

translated for the conjugate representation * . Thus, the negative chiral

scalar * is expressible as a function of 2* and 9 and one can write

for it the expansion

*_(x,e) = e U) + 5+e_ Fjx) . (11.25'

Such superfields are characterized by the differential constraint

D ^ = 0 (II.26'

Finally, the product of two negative chiral scalars at the same point yields

a third: negative chiral scalarB are closed with respect to local multiplication.

The local product of a negative chiral scalar with a positive one

does not yield a chiral result. This can be seen from the rather trivial

observation that the product of two functions, <p(z,6+) and (p'(z*,8_) .

must depend on both z an d z* as well as 6+ and t>_ . The result

must therefore be a superfield *"(x,6) of the general type with which we

began this section. Its components are given, in the standard notation,

by

A" = k+k'_ ,

= A+F + F+A .

G" = -i1+F_ + i?+A_ .

- 3 3 -

V v =

X =

D" = (-32Aj A' + 2(3 1 ) u / ) + A f-s

F+F]_ + 2 ^ c " 1 ! ^ - 1$) *' (11.30)

This superfield is clearly not locally reducible.

The fermion-nuaber content of the chiral superfields is easily

established. Since 9+ and 0 carry IP = 1 and IF = -1 , respectively,

i t follows from an examination of the expansion (II.25) that A+ , I(J and

F+ must carry F = f, f-1 and f-2, respectively. The value f ,

associated with A is an invariant of the representation. CWe shall

normally take f = 0 so that <J>+ carries IF = -1 , i . e . t|J+ serves to

annihilate one fermion and ty. creates one.) The negative chiral components

A_ , i|J_, F_ carry the values -f, -f+1, -f+2 if *_ is identified with

<$* . (As a general rule we shall not identify $_ with t but treat i t

as an independent field with f = 2 . With this notational convention,

ijj carries F = -1 and annihilates a fermion. Hote that A annihilates

a difermion.)

New categories of local representations are obtained by generalising
the scalar superfields to spinors and tensors of arbitrary rank. That i s ,
one regards Ofx,9} not as a single scalar superfield but as a set of
superfields belonging to one of the finite-dimensional representationsof the
proper Lorentz group. With respect to translations and supertranslations,
these fields transform as scalars, but under the homogeneous (proper)
group they transform according to

•Kx.e] -* S ' U ' , 6 ' ) - D(A) *(x,9) (11.31)

where the matrices D(A) belong to- one of the fajiiliar (2J+ l ) (2J2 + l ) -

dimensional representations, 2j[j , , j ? ) - or a direct sum of such

representations. This kind of generalization applies equally to the chiral

* ) types. Two examples will i l lus t ra te the main{$ } or non-ehiral

features.



The first example employs a chiral spinor auperfield, (.? ] ,

which has negative chjirali'ty with rejspect to its external spinor index,

and positive chirality vith respect to its internal structure,

D_ ?_+ = 0 .

The expansion in component fields has the general form (II.25]

- r- 53Y 8

(11.32)

ClI-33)

Cll.3lt)

where U and V are negative chiral spinors and My is a U-vector.

Under an infinitesimal supertranslation these components transform

according to

SU'- = V+
Mu

<SM

(11.35)

This representation is basically complex. Thus, even vith the most favourable

assignment of fermion-numbers F = 1, 0, -1 to U , M and V ,

respectively, it is not possible to treat M as a real vector. However, if

certain constraints are applied,this representation will turn out to be

equivalent to the real ^ . We shall return to this question after setting

out the second example.

The second example employs a chiral spinor, ¥ + + , which has positive

chirality both internally ana externally, i.e.

(1 - = 0 and D (11.36)

Again the expansion in component fields has the general form (11.25),
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C11.37)

where U and V are positive chiral spinors, D is a scalar and F i3

a self-dual antisymmetric tensor. ( i t i s of course the opposite external

chira l i t ies that govern the appearance of a vector My in V_+ and of a

scalar-tensor combination D,J" in V++ .) The component fields transform

according to

D,J" in

ST

(11.38)

This representation also is basically complex but capable of being made

real by means of certain constraints.

Now consider the representation (11.35) to see i f i t can be made

self-conjugate. Since U_ and V carry (F = 1 and -1 , respectively,

we should identify the conjugate of one with the other. For the correct

balance of dimensions and also to have the correct ch i r a l i t i e s , the

association must taJce the form

V = (11.39)

where w is a number to he determined. If the identification (11.39)

be compatible with supertranslations we must have
t o

<5V

i.e. according to (11.35) ,
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for arbitrary $ , This gives constraints on M . viz.

(11.1*0)

Finally, i t Is necessary to verify the compatibility of (11.39) and ( I I .

with the expression (II.35] for fiM . This requires \ia\ - 1 . The

phase factor can always tie absorbed and so ve shall take w = 1 . To

summarize, taking

2 [ lvi y l

r l -

(II.Ul)

where V is real and transverse, JL is real and lit is Majorana, we

fina that the transformations (11.35) reduce to the form (11.22), i . e . a

real transverse vector representation.

Similar considerations applied to the representation (11.38) show
that i t too can be real . In this case the reali ty conditions are

2F
(II.4

with V and D real. The transformation rules (II.3S) then take the

form

6U. - w

\ e+ (II.

This representation also is related to $, though it is not locally

equivalent. The eonnectionis made through the non-local relations,

- 3 7 -

3 3
1U

CU+

o r , more compactly,

(B) GREEN'S FUMCTIONS ME INVARIAMT AMPLITUDES

One of the main object ives of loca l f i e ld theory i s the computation

of Green's functions. The s t ruc ture of these many-point functions i s

r e s t r i c t e d by symmetry considerat ions and, in the present ca se , by the

requirement of invariance under the act ion of supe r t r ans l a t i ons . Such

s t r u c t u r a l cons t ra in t s are best exhibi ted by expressing the Green functions

in terms of invar iant amplitudes and we sha l l examine here some appl ica t ions

of t h i s idea.

Since i t i s our purpose to reveal the Implications of the new t r a n s -

formations in the extended r e l a t i v i s t i c symmetry, we sha l l pay l i t t l e

a t t en t i on to the subgroup of Poincar^ t ransformations, which can be handled

in the usual way. I t w i l l therefore be su f f i c ien t to deal with a system

of f i e lds comprising only c h i r a l soa la r s * + and t h e i r complex conjugates.

The appending of Lorentz indices to such f ie lds so as to include non-

scalar representations is a relatively t r i v t a l modification and would not

affect the main argument. (Notice also that the non-chiral real field ^

can always be represented by a chiral spinor, *+ = D *, , and so included

in the general scheme.)

To begin with we shall ignore the fermionie quantum number which
distinguishes $ from <f> . Insofar as supertranslations only are
concerned, these fields are equivalent. I t will therefore be sufficient
to analyse the structure of many-point Green's functions referring to
products of the fields 4 and $ , only. Afterwards we can introduce
the fermion-number and quite easily pick out the amplitudes which conserve i t .
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A considerable simplification in notation is achieved by amputating

the displacement operators, exp(T r- 9jfy6), which always appear as factors

in the chiral superfields. Thus, we define the amputated fields,

exp ±

A±(x)

»±U,e) ,

0 + | e T 8 ± F ± C x ) ' ( I I . kk)

which depend on only one chiral component, either 8+ or 6_ Cana 5 or

S+), of the spinor co-ordinate. This property is expressed analytically by

1 -

36+

3$

35

39

39
= 0

(11.1*5)

Under supertranalations the amputated chiral fields transform according to

36,

On occasion in the following we shall use the abbreviated notation ?+(

The n-point Green's functions G are expressed as vacuum expectation
values,

n) = <O|T*S+(1) •••»+( $_(n)|0> , {IIM)

in which the T*-ordering is used so as to simplify the transformation

properties (i.e. avoid the complications due to non-covariant surface-

dependent terms). Our main purpose here is to consider the implications

of the requirement that G be invariant with respect to the transformations

(11.1(6). This requirement is embodied in the single equation
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0 = £

or, equivalently, in the ehiral pair,

9J- r • 1

t ̂ v

(II.U8)

(II.U9)

Fortunately it is quite easy to find the general solution to these equationB.

One starts by looking for solutions of the form

S - e"tfM ,

where W is chosen to satisfy the inhomogeneous equations

til.50)

L—• J j+ ' CII.51)

There are many ways to satisfy these Inhomogeneous equations and we-shall
return to this question. For the moment assume that one solution has been
found. On using this W in (11-50) and substituting i t into the conditions
(II.li9) one finds that the amplitude M must satisfy the simplified equations

0 =
3M

(II.52)
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Thus, quite generally, the amplitude M can depend on the chiral co-

ordinates 61+ 9^ and e
r+1_»--->

e
n_ only through their differences.

For example,

M = M(e l r + , . . . ,e r_ l r + ;e r + l n_ en_lnJ , (11.53)

w h e r e 8, = 6,. - 8 . and B = 6 - 6 . There are a l t o g e t h e r n-2
jr+ 0+ r+ jn- J- n-

suoh differences. Further restrictions must arise for disconnected contri-

butions to the Green functions: only differences between co-ordinates

referring to a connected piece are admissible. To simplify the discussion

we shall tacitly assume that only connected amplitudes are concerned. The

expression (11.53) incorporates the supertranslation invariance requirement

for all chiral Green's functions with only two exceptions. The exceptional

cases involve the products of fields all of vhich have the same chirality,

i.e. r = 0 or r = n, and these must tie treated separately. The reason

for this is the impossibility of constructing,a W satisfying {II.51) when

all 6's have the same chirality. We shall return to the exceptional cases

after considering the form of W .

It is a simple matter to verify that the linear operator

Vr + 1
(II.

is a solution of (II.51). (One needs only to draw on the fact

n

resulting from Poincare invariance.) The expression (II.51*) meets all the

requirements hut it is not very symmetric in appearance. While regretting

this asymmetry,we do not feel that it is a very serious shortcoming. We

remark only that alternative solutions to (11.51] must take the form

¥ ¥ + ¥•
rn

where W' is any linear operator constructed entirely from co-ordinate

differences and hence satisfying the homogeneous form of (II.51). By

exploiting this arbitrariness one could construct a more

symmetrical solution but we shall not pursue the point.

-1+1-

F ina l l y , we must deal with the except iona l , or what might be ca l l ed

"raonochiral" oases r = 0 and r = n . Suppose, then, that r = n and the

constraints (11.1*9) take the form

0 = (11.55)

The f i r s t of these equations ind ica te s t h a t G must be a function of the n-1

co-ordinate differences 6 + . The second i s solved by p a r t i t i o n i n g the

n-1 terms of the sum

n - 1

Z 13 .6 . + = > P, .k+ (11.56)

1 k

in all possible ways. The partitions involve from one up to n-1 pieces,

3. e, . + •••+ 13, e. .
Jl J l n + Jk Jk n +

(11.57)

For each partition form the monomial

which clearly is annihilated by each member of the partition and hence by the

sum. The equations (11.55) are therefore satisfied by

(11.58)

partitions

where the sum runs over all independent partitions to each of which there

corresponds a scalar amplitude Mrpi.

The other monochiral amplitudes, r = 0, are decomposed in the same manner.

Some examples of these decompositions are given in Appx. B,where they play

an important role in the softening of ultraviolet divergences.

The supertranslation invariance requirement is fully met by the

expression (11.58) in the monochiral case and by the expression (11.50) with

M and W given by (11.53) and (II.51*) in the mixed cases. If we had been



dealing with chiral spinor and tensor superfields, these expressions would

still be valid, the appropriate Lorentz indices being tacit in the amplitudes

M and Mjpj . These amplitudes must of course respect the Poineare group.

Their decomposition into scalar Invariants would follow "by standard methods

which we need not go into. (Even for the case of scalar superfields the

decomposition of M into invariant amplitudes, which is just the problem of

resolving multispinors of ranis ^ n-S, can be quite complicated.)

Having dealt with the supertranslations it is necessary to consider

now the phase transformations generated by fermion-number. On the chiral

scalar superfields these transformations take the form

IT
1

$_Cx,eiaeJ ,
(11.59)

and so *_ must be distinguished from * + . The implications are clear.

In the general case the amplitude M must satisfy an identity of the form

H(e-la9+ j e
la8_) e 2 1 a H- M{9+,e_) ,

where N is an integer defined as the number of times

minus the number of times t occurs,

H = H(* ) - H(.*")

(11.60)

occurs in G

(II.61)

The condition (II.60) plainly constitutes a fairly strong restriction on the

form of the amplitude M .

To illustrate the application of the synmetries discussed here we

list a few simple examples. Firstly, from among the 2-point functions we

have

where a and M are scalar functions of the invariant x. „ = (x.-x,)

The only other non-vanishing 2-point functions are those which result from

(ll£2 ) by reversing the chirality assignments. We shall have more to say

about expressions (II.62) when we come to the insertion of intermediate

states.
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From among the 3-point functions ve have, for example,

*+(2)

(11.63)

where the scalar amplitudes M , VL and M depend on the invariants

X13 • X23 a n d ' l y ^ •

The importance of Green's functions in local field theories l ies

in their close relation to the quantities of more immediate interest, the

scattering amplitudes or S-matrix elements. The latter are extracted from

the former by means of the limiting procedure known as the LSZ reduction

technique. It is not our intention to derive and JustifjT this procedure

as applied to superfields but only to point out some of the novel features

and exhibit a final formula. To this end we begin with a discussion of the

1-particle contribution to the 2-point functions: the so-called free

propagators.

A scalar supermultiplet of mass M comprises the particle states

|p^> , |p,X"^ , |p^>p defined in Section I . How we must allow also for

the antiparticles IP^Q 1 IP>^^_I > 1*^ 2
 w n l c i l belong to a distinct

supermultiplet of mass M . The action on these states of the super-

translation generator S is given by

1 s
c"

r s

j.S

Is
(11.65)



where u and v denote the usual positive and negative energy Dirac

spinors. From (II.6k) and (II.65) and the field transformation laws (

expressed in the form

one can derive a number of relations among the matrix elements of the

component fields between the vacuum ana the 1-particle s ta tes . On suitably

normalizing the components A and A one finds the following non-

vanishing matrix elements:

<°lA+|p>0 = 1 , 0
<P|A+ |0> = 1

< O | A _ | P > 2 = 1

<O|4i_|pX>1 = u

<0|F_|p> 0 = -M

_2<p!r+ |o> = -M

_2<PSA_|O> = 1

U l < 6 6 )

= v_(pA) ,

- -H .

With a standard covariant normalization for these states we can compute

their contribution to the absorptive parta of the 2-point functions.

Firs t ly , with x ^ > *2Q ,

+ ( l ) **(2)>

<P|A*|O>

£_ e 1 2 +

Similarly, wben x^0 < x , . the antipart icle multiplet gives the negative

frequency part . TaJcen together,these expressions clearly take the form

(11.62) with the amplitude, a , given ty

= -M 111.68)

For the other 2-point function one finds a different complexion. Taking

*10 > x20 o n c f l n d s

- x 2
+{i) t"c2)> = f ^ _ e(p

J (2Tr)

<O|AJP> O O<P|A*|O> >

; H2} .

Similarly when x^Q < x £ 0 . This again conforms with (11.62), the amplitude

M being just the Feynman propagator Â , . Free propagators for the various

component fields are easily picked out from these expressions.

Finally, we give the supersymmetric version of the LSZ reduction

formulae. Consider one of the Green functions

<p|T*+U,e} (11.69)

vhere H(?) denotes a product of superfields the details of which do not

concern us. According to well-known arguments,the asymptotic behaviour

{x ->• ±00} Of (11.69} i s dominated by the 1-particle contributions. Thus,

formally, as xn •"= ,



[<° |A + U) |P> 0 0 <PIH|O>

"j5_u+(px) 1<Px|n|o> - | 5 _ e + 2 < p | n | o > j

More exactly, the 1-particle matrix elements of II are given by

<p|ir|o> 1<Px|n|o> - £ 5_e+ 2<P |n|o>

e ipx <o|T»+tx,e)n|o> J
(II.TO)

evaluated on the mass shell, p = M , with p > 0 . The various matrix

elements are associated with distinct 6-coeffieients and so can easily be

picked out from (II.70). Likewise, the antiparticle matrix elements are

given by the integral

-§e_e+

<o|T»J+(x,e)n|o>] .

2 _2
again with p = VT and p. > 0 . The equations (II.70} and (il.Tl)

constitute the reduction formulae for $ . The same considerations applied

to & yield the reduction formulae

£<p|n|o> +u_(pW 1<Px|n |o> - | 5+e_ O X P | H | O >

= i f dx e l p x <0|T»_(x,e)n|0>] , (11.72)

-1.7-

dx e- i p x

- f 5+e_ <o|n|p>o

<o|T«_(x,e)n|o>] . ClI>T3)

It will be remarked that the two formulae (il.To) and (II.72) give

precisely the same matrix elements although with different coefficients.

This is a reflection of the fact that, in the asymptotic region, the super-

fields t+ and * are related in a simple way. They behave like free

fields and satisfy a pair of linear differential equations,

- h ED* . + M« = 0 .

DD M*+ 0 ,

or, in component form,

MA+ = 0

M*± = 0

MF+ = 0

Such differential equations, and their generalizations to the interacting
regions where they become non-linear, are properly the subject of Lagrangian
field theory and it is to this subject that -the following section is
devoted.



! •

I I I . SUPERSYMMETRIC UGEWJGIMS

(A) KINETIC ENERGY TEEMS MH RENORMALIZABLE INTERACTIONS

In t h i s section we shal l he concerned with the se t t ing up of Lagrangian

models t o i l l u s t r a t e various aspects of the theory. Only through a study of

such models can one see how the new symmetry in t e rac t s with the standard

considerations of u n i t a r i t y , l o c a l i t y , causal i ty and renormalizabi l i ty .

Now in ordinary Lagrangian f ield theories the l oca l i t y requirement i s

met by s t a r t i n g with a l oca l act ion which i s a space-time in t eg ra l over a local

density function of the f ie lds and the i r f i r s t de r iva t ives , the Lagrangian. We

shal l adopt t h i s rule also for the superfields . However, with f ie lds which

are defined over the eight-dimensional space of x and 6 , i t i s necessary

to decide what "density" means. A new concept seems to he needed, tha t of

in tegra t ion on the anticommuting 9 . Such a concept has in fact been

described in mathematical l i t e r a t u r e . Nevertheless we shal l avoid any

exp l ic i t reference to t h i s concept in the following.

One reason for avoiding the 9 in tegra l i s t h a t , so far as we are aware,

techniques for dealing with surface terms have not yet been developed and,

while no doubt they wi l l be , we suspect tha t they wi l l turn out to be f a i r ly
our

elaborate . But j[ main reason for avoiding these i n t e g r a l s , however, i s simply

t h a t we find we can do without them. All we need to do i s make sure t h a t

any 8 dependence in the act ion functional i s confined to surface terms of

the usual (space-t ime)variety. That i s , we must ensure tha t the 9-dependent

terms in the act ion density always take the form of space-time grad ien ts .

Such surface terms do not influence the' Euler-Lagrange equations which are

governed en t i r e ly by the volume par t of the act ion. These equations wi l l

be supersymmetric ( i . e . covarient with respect t o the extended r e l a t i v i s t i c

symmetry) provided the volume part of the act ion i s an invar ian t . The

volume par t w i l l , in i t s tu rn , be invar iant i f the Lagrangian i s a scalar

superf ield a l l of whose B-dependent terms are space—time grad ien t s . Therefore,

the act ion associated with a region of space-time must take the form

volume

= dxs£(x,0) + surface in tegra l ,

volume

where £. transforms like a scalar superfield,

u
The corresponding <5S will clearly be represented by a surface integral.

This asymmetrical treatment of x and 8 does not do full Justice

to the underlying extended space-time structure and our only excuse is that

i t is expedient.

The 9-independent part of the action density may be characterized

very simply. I t must transform like a mixture of at most three local

representations, viz, the D component of the real (non-chiral) scalar

$(x,9) and a real combination of the F components of the chiral scalars

$ and 4> . Recall that these components transform under the action of

an infinitesimal supertranslation according to

SD(x) =

5F(x) = -

Because of the gradients in these formulae it follows that the volume

integrals of D and

and

F (F ) are Invariant. Another candidate for the

action density, a real combination of F+ and F , must be rejected
+ and F

because of the fermion-number which these components carry. There are no

other candidates.

Now the D component of * iB simply the 0-independent part of

(DD) 4 and the F component of $ is the 8-independent part of DD $

Moreover, the 9-containing parts of these expressions are a l l space-time

gradients. This can be understood by noting that every application of the

covariant derivative D = C3/&9 - -% p8] either removes one power of 6 or

adds one power along with a space-time derivative,

which the action density is to be made,
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+ D D c* +• **

Our use of the covariant derivative here rather than the ordinary 3/39

has no significance for the equations of motion.

Given a single positive chirality scalar * + and its conjugate <t>+

what possible Lagrangians can one make? Naturally one must start with

bilinears in order to generate linear, free field, equations of motion. It

is not difficult to convince oneself that only one bilinear is admissible,

(III.2)

In terms of component fields the 6-independent, part of dfn is given by

9=0

|SA+1
2 + + |F+|

2 + gradient term

* + + \?+\

(III.3)

The gradient term can be gathered into the 6-dependent part and forgotten.

The active part of £. is Just what is shown explicitly in (III.3). It

has the form of a kinetic term and, taken by itself, would yield the

equations of motion

= 0 = 0 F+ = 0 ,

and their complex conjugates. The main interest of the Lagrangian (ill.3)

is that it determines the dimensionality of the fields. Thus, in natural

units,

[A+] = M = M"3/2

which is canonical for scalar and spinor fields with the kinetic term always

required to have dimension It ,

M

- 5 1 -

With 4 having dimension 1 i t is clear that no interaction terms

can be constructed from this single field without doing violence to the

requirement of renormalizafcility if fermion-number is conserved. To see

this , note that simple powers of $+ are forbidden since

DD(*+ + *^ + *l + • • - )

carries two units of fertnion—number. The only terms which conserve fermion-

number are of the form

ana these have dimension 2n+2. On a power-counting oasis , these terms

conflict with renormalizability for n > 1 . (Recall that DD has dimension 1

and for renormalizability a Lagrangian must not possess dimensions in

excess of four.)

Similar arguments applied to the case of a single negative chi ra l i ty
*

scalar * and i t s conjugate 4>_ lead to the conclusion that the only

possible fermion-number-conserving renormalizable Lagrangian i s given by

Q = i (DD)2 | t _ | 2 - | -DD (Ill.lt)

where Ji/ is a parameter of dimension 2. This expression reduces to

|3A_ Cili.5)

plus gradient terms. The equations of motion are

32A =

and their complex conjugates.
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Thus, for a single chtral field of either type there is no possibility
eltner

of setting up a non-tflvial theory -gitlicrnt violating ,ffermion-number conservation or

, for a system containing two distinct fields and

4_ , one can construct a non-trivial interaction term. This makes essential

use of the closure property discussed earlier, viz. that the product of tvo

scalar superfields of the same chiral type is itself a chiral scalar of that

type. Thus, since t_ and *+ have positive chirality, so too do their

products t_*+ and t *+ . In both of these products the F components

carry zero fermion-number and can be used in the Lagrangian. Thus, for the

t+ , 4 system, the renormalisable fermion-number-conserving Lagrangian

takes the form:

= \ (DD)2 (III.*

vhere h.c. stands for the (hermitian) conjugate terms. The

parameters & , M and g have dimension 2, 1 and 0, respectively. Bo other

terms are admissible. Notice, hovever, the lack of symmetry of (ill.6)

between # and <S> type fields, later, when we consider the question of

parity conservation for the Lagrangian,this asymmetry will be relevant.

Of the three parameters in (ill.6) only two independent combinations

can appear in physically significant quantities such as scattering amplitudes.

This fact results from the invarianee of the kinetic terms under the c-

number shift,

» + 4. + c , (III.T)

where c is independent of x and 0 Such transformations affect only

the scalar component A and it is clear from formula (III.3) that they do

not alter the volume terms in (l/8) (DD) |*+j . The remaining terms in

(III.6), hovever, change as follows:

4 •* 4 + Me + gc2

H •* M + 2gc

g g
(III.8}

Otherwise expressed, the field transformation (ill.7) is equivalent to the

parameter transformation (III.8). But quantities of pnysics.1 interest (the

- 5 3 -

quantum field theoretic analogues of canonical invariants! should not be

affected by a field transformation. Therefore, they should not be affected

by the parameter change (III.8I; they must depend on only two invariants,

g and J - ̂  ,

for example. We may conclude that no generality is lost by taking one of

the parameters, M or s! , equal to zero.

It will be instructive to examine the component structure of the

Lagrmgian (ill.6}. Bjr means of the formulae (.n-28)and (.H-30)

one obtains the result

|3A+|2 + *+ijl*+ + ]F+ | 2 + |3A_|2 + $_ifo._ + |F_|

T_(i + MA+ + gAp - ip (M + 2gA+} \j>+ +

+ A* (CM • 2gA+) F+ + ^ C ~ \ ) + h . c ]

plus surface terms whien include al l the 9 dependence. The expression
( i l l . 9 ) is a Lagrangian of the usual sort and one can deal with i t by
standard methods. First of a l l one notices that the complex scalars F
and F are not independent dynamical variables since their derivatives So

not appear in sC { i .e . no canonical momenta can tie associated with them).
These auxiliary variables can therefore be eliminated from the Lagrangian
by means of the Euler-Lagrange equations which give

-P = MA+

k_ + 2gA+A_ t i l l .10)

Elimination of the auxiliary fields leads to a Lagrangian which describes

the interaction of two complex scalars, A+ and A (the l a t t e r of vhich

carries fermion-number F ~-2), and a Dirac fermion t(i => i|> + i(i ,

= | 3 A j 2 - irf+

+ |3A_|2 - |

+ ij(ijl - MH - 2gA+$JJ+ - gA^C" 1 ^ + h.c.l

2gA*) A_|2

(Il l .11)



The 'behaviour of this Lagrangian -with, respect to supertranslations has teen

obscured by the elinsinatton of the auxiliary fields. These tjransformations

are non—linear, viz.

<5A+

-CM - 1st

and the corresponding change in sf is a space-time gradient. However, the

physical content of (ill.11) is fairly clear. The free field part is most

easily read in the parametrization with sJ = 0 where the bilinear terms

take the form

Sf(2, - |3A +|
2- |MA+j

2

* I"A-I " lm-l (III. 12)

Thus we are clearly dealing with a supermultiplet of particles of mass M

(and, of course, the corresponding supermultiplet of antiparticles). The

renormalizable interactions of these supermultiplets are characterized

by the dimensionless coupling constant g .

The generalization of (ill.6) to systems containing several chiral

sealars is immediate. With the set of fields * , J = 1,2 m.and

<t _ , a = 1,2,... ,n (where m and n are not necessarily equal),the

Lagrangian must be

jk

(III.13)
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where rf , M and g « g . , are parameters of dimension 2,1 and Q,

respectively. Ho generality is lost by assuming s. diagonal form for the

kinetic terms since i t can always tie arranged tiy choosing appropriate linear

combinations. Again i t will be possible to eliminate some of the parameters

by making an appropriate shift 0. + 4 + C, . However, there can now be

symmetry or algebraic considerations which restrict this freedom. To formulate

a general rule concerning this would be complicated and, in the long

run, futile since i t is always simpler to deal with specific cases as they

arise.

An obvious but nevertheless important remark concerns the field

count. If the numbers, m and n , of positive and negative chirality

fermions, i)J.+ and iji , are not equal then one of two things must happen.

Either some particles remain without mass, or else there must occur a

spontaneous violation of fermion-number conservation (reflected, for example,

^y <[A "> + 0). We shall postpone further a. discussion on Lagrangians of

the general form (III.13) to Sec.IV. For the present we shall consider the

simpler form (111,6).

# + and

First of all, what are the equations of motion for the auperfields

$ 1 A direct if not very illuminating answer to this question

could be obtained by first setting up Euler-Lagrange equations of the

usual sort for the component fields. One can deduce these equations from

the expression (ill.9). Then, knowing that the component equations must

be compatible with supersymmetry, one should be able to arrange them in 3uch

a way that the supersymmetry is manifest, i.e. convert them back into the

notation of superfields. However, such an approach to the

problem is not very satisfying. One is left with the uneasy feeling that

an unnecessary detour has been made - that the underlying geometrical

structure has not been allowed- its due role. A more

aesthetically pleasing formulation should be possible,and this is indeed

the case. It is based on the notion of variational derivatives with

respect to superfields.

Consider the question of functional derivatives. Suppose we have
m

a functional M which depends on the chiral fields $ + and *+ . This

is equivalent to saying that it depends on the component fields A + , iji ,

F and their conjugates. Derivatives with respect to these components

can be defined in the usual way by expressing the infinitesimal 6M as

a linear form in the component variations,
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<5M = i^Ul +

(III.ll*)

Likewise, we must be able to express <SM as a linear form in the superfield

variations 5*+(x,9) and <S4+(x,6) . A convenient way to write this is

•SM =
• t n i- 1 5 )

The coefficients SM/i54+(x,6) , SM/fiO*(x,9) are the required functional

derivatives. They are superfields in their own right and their component

structure is determined by comparing (ill.15) with (iII.lM. One finds

that the linear forms are identical if the superfield derivatives are given

by

SM

SifcW

(III.16)

The superfield derivatives are thus seen to have the structure of chiral

superfields with components given hy ordinary functional derivatives. For

example, on substituting M • <t>(x',e'} in (ill. 16], one finds
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(III.IT)

which defines a supersymmetric analogue of the Dirac delta function. It

is characterized "by the integral property

dxf- | T 5 D J | * + ( X , 8 ) 6+(x,e;x',e
l)J = ^(x'.Q1) (111.18)

for an arbitrary positive ehirality supei-field 4 + . Similarly, the negative

chirality delta function is defined by

S, Cx. 0 ; »', * 7 .
(in.19)

Let us now compute the derivatives of the action functional

corresponding to the Lagrangian (ill.6),

dx |-DD

till.20)

Only the kinetic term causes any difficulty and to deal with this we need

to express the operator (DD) in a different form. Two identities are

needed for this,
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and

whence

= CB_D+ + D+D_l

= C5_D+ , 5+D_}

= D D+ DJ)

= D+D 5 D
t i l l . 21 )

Using {III.21) together with the ehlral property

D <t = 0 , D $+ = 0 ,

one can put the variation of the kinetic term into the following form:

1 - 2 f, ,2
6 jr tDD) • + *
8 {' +'

h.c.

H i D+ B+D_ -

DD +

+ i- JS+D DD

<5**

- +

* _

* * 5

+ i - D+D_ fi** 5_D + * + + 6*_ D_D+*_

+ i - D^ysD 5$ * - * S t + -

r- DD 6** DD * + + (S* DD * + h . c . f +

(III.22)

With the help of this formula we can put the variation of the action into the

form;

6S
r r i - \ l~ • 1" i * , *,

dx - x DD [ 6$ < - 7T DD$ + {M + 2gO ) (J { 2 J [_ + | 2 +

• r i - 2 1 1
+ 5 $ -I - — DD$ + C r f + M 4 + g # ) r + h . c .

- |_ 2 - + + J J

• Dv V D 6$ ̂  - 5$ $ - h.c. . till.23)

v 5 L + + - - J
+ <P dCT
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Thus the variation 5S reduces to a surface term when the functional

derivatives of S are set equal to zero .

54*
j DD*+ + CM

These are the equations of motion. They are manifestly supersymmetric.

(B) LOCAL SYMMETRY AND GAUGE LAGRANGIANS

We have just seen in Section III(A) that the inclusion of global

internal symmetries into a supersymmetric scheme gives rise to no difficulty.

Supermultiplets are combined into sets which support representations of the

internal symmetry and this is effected by arranging the corresponding super-

fields into multiplets of the internal symmetry. Thus, expressing the

positive and negative chiral fields as two independent columns, $ + = {$.+}

and 4> } , the action of a global transformation is given by

ClII.35)

where the parameters A are real numbers and the matrices Q + and Q

are hermitian. (in a later section expressions for the corresponding

conserved currents,

t i n .26}

will be derived.)

Generalization of the transformations ClII.25) to local form is

straightforward. Indeed, if the parameter's A are allowed to vary with

x then they must necessarily depend on 9 as well and in such & way as

to preserve the chiral character of the transformed fields. In view of the

closure property of chiral products noted before, it is

clear that chirality preservation requires that the local parameters A {x,9)

be themselves chiral, viz.
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Cm. 27)

with
These transformations have an unusual structure. As ^ any chiral field, these

matrices can be expanded in povers of 8 ,

exp exp(- u+(x) + 5_V+{x) + \ 5 J + W+(x)} ,

(III.26)

where, of course, V+(x} carries a spinor index. The product of two

transformations yields a third with

V 3 +
 = U l * V 2 +

 + V l +
 U 2 + •

T —1
V = U W + V C V +
3+ 1+ 2+ 1+ 2+

TU2+ Cin-29)

. rp

lln the last formula V:r denotes the transpose with respect to the spinor

index of V, .) The matrices U(x) which represent a subgroup are complex

tut not, in general, unitary. One might expect that such transformations

could not be compatible with the usual requirements of a physically acceptable

theory. It is remarkable that no conflict arises: all negative metric

excitations are suppressed by the gauge mechanism.

As in all gauge theories,the principal vehicle of the local symmetry

is a set of potentials. In this case they take the form of real (.non-chir al)

superfields, ¥ {x,8).. Their role here is to provide a "metric" for the other

fields in the system. Thus, the kinetic terms are to be expressed in the

form

1 ,- ,2 t *+ tg- (DD) *+ e *+
 + * till.30)

This form is gauge invariant provided that the potentials transform according

to

till.31)
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Q* = Q^ . (she choice of an exponential parajnetrlzation for the metric

in (.111.30] is merely a convenience. It is conceivable that other types of

co-ordinates might prove useful in specific problems.) For some purposes it

is useful to represent the potentials ¥ in the form of a hermitian matrix-

For example, in the case of SUt3) one may write

till.32)

where X , k = 1,2,... ,S,denote the Gell-Hann matrices.

A superfield analogue of the field strengths can be defined. I t

takes the form of a chiral spinor

D L+ I (III.33)

where the numerical coefficient is ehoseji: for later convenience. This Buper-

field is cbiral with respect to both its 6 structure and i ts spinor index,

and (1-iy,-)?.. = 0 ,
J Tt

and so belongs to the transverse vector representations discussed

in Sec.II, Eo_.(ll.36) ff.Under the gauge transformation (ill.31) one finds

-iA
(III. 31*)

The complex conjugate of T, is a negative chirality field T . Thus

V - = l«.V» • (III.35)

This field can also be defined by a formula analogous to (III.33], via.

It transforms according to

< -<
f - e T e

' ) : (III.36)

(III.3T)
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A gauge-invariant kinetic term for the potentials is given by

oc- . 38)

where g is a dimensionless coupling constant. In general there can be one

independent constant for each simple component In the local symmetry group.

If this symmetry contains a commutative abelian subgroup, i.e. if the

k kinfinitesimal algebra contains certain linear combinations, Zr i Q i which

commute with all Q , then the expression

(HI.39)

is gauge invariant (up to surface terms) and can be included in the Lagrangian.

The parameters £ have the dimension of (mass) and are very important in

the models of massive vector supermultiplets.

On combining the expressions (III.30),(ill.38) and (III.39) one

obtains a gauge-invariant and supersymmetric Lagrangian for the interacting

system. The corresponding equations of motion are necessarily degenerate to

a degree which reflects the gauge freedom. In other words, those degrees of

freedom which are associated with gauge transformations will not be governed by

the equations of motion. They must be dealt with by an external mechanism.

This problem is familiar from electrodynamics and Yang-Mills theory. Its

treatment in the supersymmetry context is of course more complicated in detail

than for these well known cases but will be seen to follow essentially the

same lines. We begin with an abelian local symmetry.

For local U(l) symmetry there is just one potential, V , a real super-

field. The transformation law (III.31)reduces in this case to the linear

inhomogeneous form

¥ •* ¥ - |-A+ + |-A* , (111.1*0)

and the implications are clear. Thus, since 1 can always be reduced, i.e.

represented uniquely as the sum of chiral and transverse vector pieces,

N+ (111.1*1)
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i t follows that the transverse, vac-tor part , ^ , is gauge invariant while
the positive chiral pajrt, W+ , transforms according to

(ill.1*2)

(These formulae are analogous to the following, drawn from electrodynamics,

\ + \ + V •

A = 3 A 1 + A* ,
V U u '

t t
A + A + A

(III.1*0')

(111.1*1')

(111.1*2')

where A.̂  , the transverse part, satisfies 3 A = 0 , The supersymmetric

analogue of this transversality condition is, of course, D D ? • D B I =0.)

The chiral part, N + , is therefore completely arbitrary. It cannot be

determined by any gauge covariant equations of motion and so muet instead be

fixed by convention. At the classical level this convention or supplementary

condition may be taken in the convenient form

= B + D_D+Y (III.1*3)

where B+ is an arbitrarily chosen ehlral field.

The supplementary conditions (ill.1*3) are manifestly superaymmetric

and so are the most useful when it is desired to set up the Feynman rules

in an explicitly supersymmetric way. However, it is sometimes more convenient

to sacrifice this visible supersymmetry with its attendant unphy3ical modes

in favour of a description in terms of physical components. (Analogous to

the loss of explicit Lorentz invariance in going from, say, the Landau

gauge to the Coulomb gauge.) Indeed, one can choose the components of N +

in such a way as to compensate some of the components of V , In this type

of gauge the potential T may be presented in the form

— (in.

where X and D are unconstrained but V Is subject to the supplementary

condition
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- BUI ,

with B(X] an arbitrary real scalar. One very considerable virtue of this

gauge is that it implies the reduction of exp^T) to polynomial form since

^n"= 0 for n 5- 3 . The Lagrangian then assumes a manifestly renormalizable

form.

Similar considerations apply to the nan-abelian symmetries where a

set of real potentials Y are involved. The linear transformation law

(ill.ltOj is no longer relevant and the transverse vector pieces ¥ are

therefore not gauge invariant (Just as in the ordinary non-abelian gauge

theories) but it is still possible to remove the gauge degrees of freedom

by means of subsidiary conditions like (111.1+3),

D D f = I 1 5 D <T = BK

+ - + ' - + +

or, alternatively, to represent each T in the form [III.M) with 3 IT = B

On quantizing, the usual Faddeev-Popov complications are encountered. These

will be discussed below.

In manifestly renormalizable gauges of the type (lll.l)lj) the field

strengths are given by

(ni.vr)
where the Yang-Mills covariant derivatives appear.

V = " Vu -

V_ [III.1*

The normalizations in (III.kk) are chosen for later convenience. The y

which multiplies \{x) is an unfortunate relic of the early development of

the subject when the rale of space reflections was not understood. Its

removal would probably cause too much confusion at this stage, however.
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(Note that \+ is related to A by conjugation, A 1= CV"" , since T~

is real .) If such a gauge is used,then i t :? be-t to discard the superfield

notation and express the Lagrangian entirely in terms of component fields.

The contributions ClII.30), (III.3&1 and (.111.39) then become, respectively,

V A

V2

Cm. 51)

where the covariant derivatives in (III.U9) are given by

. 52)

There may be,in addition,a gauge—invariant self-interaction (or generalized
mass term) among the matter fields.

*

ip+Aj

+ h . c .

provided it is compatible with the global symmetry.

-66-



The Lagrangian defined lay the expressions C l I l A g M j U . 53) is

manifestly renormalizatile Capart, possitfl^r, from anomalies) and respects both

ferraion-number and gauge symmetry. I t i s not manifestly supersymmetric owing

to the choice of gauge (IIl .Wi;. An important feature is that the left-handed

gauge spinor X carries fermion-number F = - 1 , l ike il+ and <i> . The

right-handed spinor X+ therefore carries P = +1 l ike if and $ . This

fact will prove significant when we come to consider the problem of parity

conservation.

Although the gauge ( I I I .H) appears to conflict with the requirements

of super symmetry-, the contradiction is a superficial one since only gauge-

dependent quantities such as Green's functions are affected. Gauge-invariant

quantities such as scattering amplitudes and matrix elements (between physical

states) of the energy momentum tensor should not be sensitive to the choice

of subsidiary condition and should therefore respect supersymmetry (unless of

course i t is spontaneously violated). A formal way to see this is "by a (non-

linear) transformation law for the fields,which reflects the action of super-

translations on them and which does leave the Lagrangian invariant. The

method,although somewhat tortuous, can be carried through without difficulty.

The idea i s to follow an infinitesimal supertranslation - which destroys the

form (ill.Ult) - by an appropriate gauge transformation (III.31) which restores

i t . The combined effect will then leave the Lagrangian invariant (up to

surface terms).

Firstly, the infinitesimal aupertranslation applied to (111,41*) gives

_ i e*ig^ e

(III. 510
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Next, consider an infinitesynal gauge transformation,

where A+ has no 9-independent term,i.e.

K =

Cm. 55)

Cm. 56)

With this special form for A + it is possible to solve (III.55) for S.t

by one iteration,

* B
CIII.5T1

where we have defined 5 such that e
+C_ * C+6 . The gauge parameters

S+ and f must now be chosen such that

vv + -i-

This is achieved by taking

$D . Cm.58)

ClII.59)

and the resulting variations of V̂  , X and D are given by

5\ =-i

JL ̂ Cni.60]
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Applied to matter f ields $+ i the •trangformattons <5g*+ + $**+ take the

form

SA± B 5|i± ,

vhere the covariant derivatives are defined by {ill.hi) and t i l l .52) . The

transformations (III.60) and (III.61) necessarily preserve the form of the

Lagrangian <III.l*9)-(lII.5l).

(C) PARITY CONSERVATION

In thl3 section we wish to prove the important result that a super-

symmetric, renormalizable, fermion-number—conserving Lagrangian theory which

also preserves parity must be a gauge theory of a very special form.

First consider the fermion-number-conserving, renormalizable non-gauge

type Lagrangian ( i l l . 1 3 ) . For a pari ty operation to be defined, the super-

multiplets t + and 4 must be put into correspondence. Fi rs t ly the spinor

components can transform only according to a rule of the form

>ii+ -+ toy dj , ( i l l .62)

where u is some unitary matrix subject to the constraint u2 = ±1 .

Secondly, the fermion-number F = 2 spin-zero components A_ must transform

among themselves,

A + W'A . (III .63)

where to' is another matrix l ike in .

Now consider the particular interaction term in (III.13)

1 * T -1 .
o" 8 A it. C %
2 ajk a— J+ k+

Application of the transformations (ill.62) and (ill.63) to this term changes

it to a form which is clearly not present in (III.13}. This shows that inter-

actions of the form (ill.13) cannot support space reflections.

We shall prove now ' that if a local symmetry is present it is

possible to set up a parity-conserving interaction-

For defiBiteness consider the case of local SU(n) symmetry. Since

the gauge field f — an n x n heraltian traceless matrix — contains a set

of negative chirality fermions, X , in the adjoint representation, it is
necessary that the matter system should contain at least a set of positive

chirality fermions, £+ , alao in the adjoint representation. These fermions

must belong to a {traceless) supermultiplet S + which we shall call the"sup-

plementary gauge fields. Under the action of local SU(n) the augmented

gauge field system transforms according to

t

1A -IA+

(III.61*)

where A+ is a traceles3 n * n matrix of positive chirality and g is a

dimensionless coupling constant.

Other matter fields may also be present in the form of supermultiplet8

* + and 4_ . It is necessary that t+ and * should transform eontra-

grediently. For simplicity we take just a pair of n-component columns trans-

forming according to

(III.65)

The most general supersymmetric! fermion-number-conserving and

renormalizable Lagrangian for this system is given by

1™ i"*!*-**+?+*-)

* I (5D)2 [»+ e2«* *+ + / e"2«¥ •

- \ DD W_ (M + h S+) * + + h . c . l , (III.66)

vhere h is a dimensionless coupling constant and M Is a mass.
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In order to deal with th» parity question it is necessary to express

(HI.66) in terms of the component fields. For *+ and * we adopt the

expansions (11,25) and(ll.l .^Irrespectively, and for S+ the expansion

7f+(x)J . (III.67)

For convenience of writing we introduce the negative chirality antifermion

J, defined as the conjugate of C+ . i.e.

6C_ = (8C+)
+ » 5+6 . ( H I . 66*)

This means that the sum, t = ? + £ , i s a Majorana spinor like X .

Applying the formulae (.111.1*9), (III.50), (ill.53) to the Lagrangian

(III.66) one finds

V*

v*
AI D A+

V A J V A_

- g

F + + F^A+ - $J+ + h . c . l

F^a+A+ + A^f+A+ + A*a+F+

- A^_V+ - <('_a+1'+ - i_^+A+ + h .c . J

Vhere tt3 various covariant derivatives are given by

(III.69)
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V+ " V+ "

V±

V±

A± " l g V ±

(in.70)

The appearance of (in.69) can be greatly simplified if the coupling parameter

h is given the specific value

h = g •J?
(III.71)

Indeed, with this restriction the system is parity conserving. This can be

seen more easily by eliminating the auxiliary fields, 7 + , f and D ,

resolving a+ into hermitian and antihermitian parts,

a. » — (a + ib) ,
(III.T2)

and introducing U-component spinors,

(III.73)

The Lagrangian (in.69) then reduces to

= \ Tr[" F Uu

- g

- V

- g

(III.7I*)

where the covariant derivatives are easily deducible from (III,70),(III.72) and

(III.73).The conjugate spinor x° ls defined in the usual fashion
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ex
c (III.75)

The potential V has "the form:

V = F+F+ + F'F + T Tr|f!f. + 4 D
2 (in.

where the auxiliary fields are given by

F+ = - (M + g(a-ib))A_

F = - (M + g(a+ib))A

f+ = -g 2 V? (A_A+ - i A+A_

(III.77)

(Recall that f and D are traceless n x n matrices.) On substituting

the expressions (ill.77) into (ill.76) one finds

2
V = - g - Tr[a,b]2

+ A* HM + ga)2 + g2b2]A+ + A^M + ga)2 + g

+ f j (A^A_1 (A+A+)

Parity conservation In the Lagrangian (in.74) with the potential (III.78)

is now manifest. For the spinors we take

(III.79)

- 7 3 -

Among the bosons: U is a vector; a, A+ and A are scalars; b is

a pseudoscalar. (The odd relative parity ;f v and x results from the

definition (III. 75) .) Alternative parity assignments are equally feasible. Thus,

instead of (HI-79) one could take

-1 c
ii) and x •+

.0 -1

(III.80)

where to i s a un i t a ry matrix sa t i s fy ing oj = 1. The corresponding ru l e s

for the bosons are then'.

UQ ID UQ of1

uT

+ -u U±

-u b «* ,

± ±
(III.81)

This completes the discussion of the parity-conserving local SU{n)

model. Other local symmetries are treated in exactly the same way and any

number of matter supermultiplets may be introduced in the form of contra-

gredient pairs $ + , t . In every case the couplings are determined

entirely by the gauge principle.

(D) CONSERVED CURRENTS

¥e conclude this section on Lagrangians hy considering the local con-

served currents which can be constructed corresponding to a given Lagrangian.

A Lagrangian of the general form (i l l .13) may admit a global symmetry,

fi*+ = iwQ+*+ , Cm.82)

wherethe matrices Q+ and Q are hemitian. In such eases one expects to

find a conserved 4-vector. This current vector must of course helong to a

supermultiplet and one would like to know what significance the other members

can have. We now consider this question.



Notice firstly that the Lagrangian can be expressed quite generally in

the form

(III.83)

where the chiral part £+ is given by

An arbitrary infinitesimal variation of the fields 4>. and * gives
1+ Q--

< ( * . ; + ^ ^ ) S^
till-85)

and this expression can 'be arranged in a more appropriate form vith the help

of the variational derivatives of the action functional, S . The derivatives

of S are given oy formulae like (III.2U), viz.

f ft

=

*« •

Cm. 86)

Using these in ClII.85) one finds

u.

(H.*
- t+it. -

(111.87)
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and for variations of the type (ill.82) which correspond to a symmetry this

must vanish. The identity (III.87) then assumes the form

{III.88)

where the "current" J(Q) is a real (non-chiral) superfield defined by

J{Q) = $+ Q+ *+ - * Q * . (ill.89)

When the equations of motion are satisfied,

« S _ - SS _

~ +

then the right-hand side of Eq.(lII.88) vanishes and i t becomes a aupersymmetric

conservation law. More generally, i t can be used to generate Ward-Takahashi

identities.

The components of the current J(Q) are defined by the usual expansion

J(Q) = A(Q) j 8

^ tee)2

Cm.90)

where the bosonic components A, F, G, V and D are real and the fermionie

components tj) and x a r e Majorana spinors. They are given explicitly by

F(Q) =
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( I I I .91)

where 3 = 3 - 3 . The component s t ructure of the "divergence" of J(Q) i s

given by

(F + iG)

5 J + | CD - 32A) - 13pV

-D+D_ J(Q) = expf-

(.111.92)

• When the equations of motion are satisfied, the identity (ill.88) gives

the "conservation law"

D+D J(Q) = 0 (III.93)

and, since J(Q) is real, this implies U D+ J(Q) = 0 as well. In terms of

component s,

0 .

(III.

of which the last is the familiar conservation law.

In summary, the current l+-vector, V (Q) , belongs to a real non-

chiral supermultiplet J(Q) whose components (III.91) are listed. The

divergence, 3 V (Q) , 'belongs to a chiral supermultiplet D+D J(Q) all of

whose components must vanish when the equations of motion are satisfied. The

corresponding Ward-Takaiiashi identities could be set up in a manifestly super-

aymmetric form with the help of the classical Identity (III.88).
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Since the chiral part of J(Q) must vanish when the equations of

motion are used, the remaining part must take the form of a transverse vector
supermultiplet (t. ) . In these circumstances J reduces to

J ( Q ) = A(U) + &JJ(Q> + ^ 8 % Y 5 e VV(Q) + ^MSijhMQ) + 3 ! C5e)2 32A(Q) .

( i n .95 )

The matrix elements of J(Q) between physical ata-tes belonging to the

fundamental representation are characterized t>y two invariant amplitudes.

We shall pursue this exercise in some detail now since it provides a good

illustration of the methods developed in this section.

As a first step in treating the matrix elements of <j(Q) i t is

necessary to replace i t by an equivalent chiral superfield to which the de-

compositions of Section II(B) can be applied directly. Therefore we shall

deal with the spinor superfield

(III.96)

which has positive chirality in i ts 6-strueture and negative chirality in i ts

external spinor index, i .e .

D V_+ = 0 , (1 + iY5)H'_+ • 0 ,

and i t carries one unit of fermion-number.

The required matrix elements can be extracted from various 3-point

functions. A convenient one i s ,
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(III.97)

where a and b are scalar invariants. This expression, the most general

one compatible with supersymmetry and fermion-number conservation, is of the

form (II.63} . The LSZ reduction formulae (II.TO)-(II.72) can be applied to

(III.97). Thus

- V tft V - f V b If, ,f.

t i l l . 98)

The various matrix elements are obtained by expanding the right-hand side in

powers of 9 and comparing coefficients. Thus, with 6 and x set

equal to zero.

\> Lf,.Jf»

t i n . 99)

-T9-

The terms linear in 6 give

(III.100}

The terms quadratic in 6 give no further information. To extract particular

matrix elements from (ill.99) and (III.IOO) is straightforward. One finds,

X - -(a + h[f±,i2])uJVlX2) ,

= (a + b [ ^ 1 , ^

0<P1|A(Q)|p2>0 = a + CUM2 - t)b ,

- t}b ,

(III.101)

where a and b are real functions of t = {p - p ) . Matrix elements

of c a n ^ e obtained from these by complex conjugation.

The Hoether-like technique used here to treat a global symmetry Is

not readily applicable to the geometrical symmetries: Poineare and super-

translations. For example, although it is possible to construct a current

T = J(i3 ) corresponding to space-time translations, which satisfies

D+D T = 0 , it is not real and it does not satisfy D D+ T = 0 . It does

not contain the canonical energy momentum tensor among its components. At

present it is not clear whether such currents will be at all useful. To deal

with the geometrical symmetries we shall adopt an indirect approach based on

the requirement of fermion-numljer conservation.
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The conserved current It-vector corresponding to the fermion-number

symmetry is given by

» + •*> (III.102)

This is the standard Noettier current obtainable by the usual considerations
applied to a Lagrangian made out of the fields A+ , <|i+ , i|>_ , A_ which carry
the fermion-numbers 0, - 1 , - 1 , -£ , respectively. It satisfies the identity

. iS , . 6S (III.103)

from vhich the Ward-Takahashi identit ies can be derived.

The supersyrametric versions of (ill .102) and (III.103) can be obtained

directly by application of the "boost" exp(i9S) , where S denotes the

supertranslation generator (to be distinguished here from the action functional,

S). The supertranslations act on the component fields according to the rules,

j [A±,e~s] = e^± ,

Y E«|i±,es] = r±e± - iu±eT

I t i s a simple matter to integrate these formulae to obtain

»±Ci,6) = e l 6 § A±(x) e - 1 0 § ,

D*±(x,S) = e ip+(x) e ,

- | DD *+U.B) = e i 9 S F±(x) e" i 9 S

and, in similar fashion,

(III.ICA)

(III.105)

ss
(III.106)

Recall that the derivatives <SS/6$+ are chiral superfieids with the com-
ponent structure

Define the supercurrent J (x,9) by applying the boost t o the fermion-

number current (III.102), i . e .

J (x.6) = e l B S

i9S

e " i 9 S

jy(x) e
(III.107)

It is a simple matter to show that this current can "be expressed in the mani-

festly supersymmetric form

Jy(x,6) = | D (III.108)

since this expression has no explicit 6-dependence and satisfies the boundary

condition J (x,0) = Ju(x) • The current (III.108) is a real vector super-

field and i t is clearly conserved when both fermion-number and supertranalations

are valid symmetries. Indeed, the identity which incorporates the conservation

law for J is obtained by boosting ( i l l .103) ,

When the equations of motion are used it is possible to show that J

reduces (like the global J(Q)) to a transverse vector supermultiplet,

D+D J = D D+ J = 0 . (III.110)

The proof is as follows. Firstly, there is a simple operator identity

V _ D 1YU Y5 D = -2D+D_ ±^ ,

which implies that
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Next, in order to show that this vanishes, an argument similar to that used in

the global case can be used. Thus, corresponding to an infinitesimal trans-

lation,

when the equations of motion are used. Further, the equations of motion imply

that at takes the simple form

V D (III.113)

Subtraction of the gradient of (ill.113) from (ill.112) gives the desired

result,

0 = |-D+D (̂<l̂ S * + - *^3 *_) (III.lilt)

and ( i l l . I l l ) vanishes. Since J is real, i t follows that D D+ J also

vanishes and the formulae (III.110) are proved.

The transverse vector part of J can be expanded in the usual

fashion.

3 2 y {III. 115)

where 1 is a Hajorsna spinor whose left-handed part is given explicitly by
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• ) - _JTI 4- m

= F Y liJ + Y Cil> F + ( 1 3 A ) v Y ^ + Y Y CiL i 8 A

(J 11.116)

(where equations of motion have been used to effect the rearrangement). This

is a conserved current whose time-eomponent S is the density of the super-

translation generator S

The tensor T is transverse with respect to both indices,

3 T = 3 T = 0 ,
VI uv v yv

although i t is not symmetric. Its explicit form is given, with the help of

equations of motion, by

! i\ ;% A_

I:?1 A,

ClII.117).

The antisymmetric part makes no contribution to the integrated 4-momentum

operator.

By its construction the current J transforms according to
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or, in terms of components,

Hie integrated quantities

Juv (oy) '

(ill. 118)

(III. 119)

can be shown to satisfy the supersymmetry algebra of Section I. (in J

the symmetrical part of T is employed.)

The components of J can be arranged into two distinct supermultiplets.

Notice firstly that the covariant derivative

1V
is a chiral superfield. Multiply this hy y t o obtain

V+ V-

(III.120)

which shows that the trace, T , and the self-dual part of Tr 1 ~ g" *VV

belong with y S in one supermultiplet. The remaining components make up

another supermultiplet.

Finally, a few words about Ward-Takahashi ident i t ies . These are

based on the identit ies (III.88) for J(Q) and (III.109) for J . A

typical Green's function involving J(Q) can be represented by a path

integral ,

<T J(Q) H(*V) = (d<D) J(Q) H(*) expl^r

where Il{$) represents a product of superfields. The identity ( i l l . 88} can

be applied directly,

after integrating by parts . (A singular term has been excluded by assuming

S+ ( l , l ) = 0 , see below.) Thus, for example,

| D + D _ < T J(1,Q) »+(

f

| D + D _ <T J ( I , 0 ,

where 5+(l,2) denotes the supersymmetric delta function

2_ D12+ •

This delta function has the important feature that i t vanishes when 6 = 62

a property used in the above derivation.

In similar fashion one can derive Ward-Takahashi identi t ies for the

supercurrent J . Only the details differ.
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IV. MODEL BUILDING

(A) SPOHTAHEOUS SYMMETRY BREAKING

So far we have tacit ly assumed that Bupersymmetry is unbroken. The

discussion of representations in Section I and invariant amplitudes in Section

I I , for example, were "based on the presumed existence of a supersymmetric vacuum.

Our purpose now is to discard this assumption and investigate some of the con-

sequences of a degeneracy in the vacuum. In other words, we shall suppose

that the underlying dynamics (as expressed in the Lagrangian) is invariant and

that a conserved supercurrent exists, but that the ground state is not invariant.

In this case the space-time symmetry is reduced to the Poincare" group and a

Goldstone phenomenon occurs. On the one hand,the most distinctive aspect of

supersymmetry - the grouping of fermions into supermultiplets with "bosons - is

lost while, on the other, a new and equally distinctive feature emerges, the
ti u

Galdstone neutrino.

The mechanism is analogous to the familiar chiral dynamics of the pion

where chiral SU(2)T x SU(2)D symmetry is realized "by means of a tr iplet of
L n

massless pseudosqalar Goldstone bosons. When the chiral symmetry breaks

spontaneously to SU(2) there necessarily appears a set of massless particles

with the quantum numbers of the lost symmetries. The associated currents

are then dominated at low energies by the exchange of these massless particles,

and various low-energy theorems result. Exactly the same thing happens when

supersymmetry is broken spontaneously.

Let the spinors i|i+(x) belong to scalar superfields of the kind intro-

duced In Section II so that, under an infinitesimal supertranslation,

(IV.1)

If the vacuum is at least translation-invariant then ^ifA^ = 0 and we have

<«*±>-<F±>e± . (IV.

If the vacuum respects fermion-nuniber conservation, then <̂ F /• = 0 but we

shall not require this .

If either <^&<l> >̂ or <C,&ty "]> is non-vanishing, then the vacuum cannot

be supersymmetric. Formally,
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, £S0(x)] ,
(IV.3)

where S is the time component of the current S introduced previously.

The vacuum expectation value of this equation can "be expressed in the compact

form

<6i(J±{0)>

provided that the vacuum is translation-invariant and the current S
UM i 3

local and conserved. Substitute the expressions (IV.2) for <S\|i± and remove

the parameter e from both sides of (IV.H). One finds

(IV.5)

In momentum space,

dx eilCX <T* V±(

A*) k k

where the amplitudes M
the form

depend on k

(IV.6)

The identities (IV.5) take

(IV.7)

The second of these serves only to eliminate M from the decomposition

(IV.6). The first gives the explicit form of M: , viz. a simple zero-

mass pole with residue <̂ F "J> . This indicates that the intermediate states

which contribute to the two-point function (IV,6) must include a massless

particle of spin 1/2: a Goldstone fermion.

A similar argument can be repeated with tht spinor components, X_ ,

in the gauge fields. According to the formula (III.60),

(IV.8)



which may be non-vcmishing if supersymmetry is 'broken.

The Goldstone spinor will In general turn out to be a mixture of the

spinor fields present in the system. The relative proportions in the mixture

are governed by the expectation values of the scalar fields, F and D .

Perhaps the simplest way to see this is through the expression for the conserved

supercurrent 5Ax) ,

(IV. 9)

On linearizing this about the vacuum solution, one finds

SJ

a* f Y w
(IV,10)

where the Goldstone spinor, v_ ,is defined by

t V = (IV.11)

and f ia a normalizing factor. If ferenion-number is conserved, then

<̂ F ̂ = 0 and v is seen to be a pure negative chirality fermion field.

Low-energy theorems can be derived for V by writing

i S u +
 = f V V - + V •

Current conservation then implies that the neutrino source jlv_ = -(l/f)3 R

is a soft operator at low energies.

(B) MASS GENERATION

Owing to the very strict controls that supersymmetry imposes on the

form of the action i t often happens that one or more particles are found to

be massless. Of these only the Goldstone spinor, associated with the

spontaneous breakdown of supersymmetry can be understood in group-theoretic

terms. Other instances of this phenomenon can usually be explained by a

particular representation content in a given system, or by the exigencies of

renormalizability which severly limit the variety of interactions. Here we

review the mass problem in general terms and l i s t the various ways in which

mass can be generated. We conclude with two mechanisms due to Slavnov where-

in the supersymmetry is broken explicitly albeit softly.

B . I Mass generation for scalar supermultiplets

To begin, consider the free spin-1/2 particle. It is usual to re-

present the massive spin-1/2 states by means of a pair of chiral spinors i|i+

and i|i which belong to independent representations of the proper Lorentz

group. They satisfy the Dirae equation

= 0

= 0 ,
(IV.12)

and, in the Lagrangian, the mass term takes the form

- M J <l>+ + h . c .

The fields I(J+ and ij) may be related by hermitian conjugation,

(IV.13)

{IV.lU)

but this is possible only if the states carry no internal quantum number

such as baryon or lepton number. Using (iV.llt) the mass term (IV.13} takes

the form

M|)+
T C"1 IJJ+ + h.c. (IV. 15)

and this term clearly violates such quantum numbers. (Of course, if M = 0

one can discard either \\i+ or \ji_ and allow the remaining one to carry the

quantum number.)

The massive spin-1/2 feroion is now considered to belong to a maasive

scalar supermultiplet of the extended Poincare symmetry. It has scalar

partners which carry fermion number IF = 0 and IF = 2 . This multiplet

can be represented by a pair of chiral scalar superfields t+ and 4_ ,which

are just the supersymmetrio extensions of l(* and lj/ . They satisfy an

extended version of (IV.12),

- | D D t + + H*_ = 0 ,

- i t ! t + M4+ * O ,

and, in the Lagrangian density, the mass term takes the form

= M(F*A - I/J i|j + A*?1 ) + h.e . ,
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(IV. 16)

(IV.1T)



which Includes the spinor term (IV.13). The f i e l d s t>+ and $ may be

r e l a t e d by complex conjugation i f there i s no ferrsionic quantum number

presen t . The supersymraetric extension of (iV.lU) i s simply

*_ = *J . (IV.18)

However, we shall continue to assume that a fermionic number is involved and

so will not identify $ with $* . To conclude, in general, mass generation

for scalar supermultiplets requires tile co-operation of multiplets <f> and

$ in a Lagrangian term of the type (IV.17). The massive supermultiplet

(represented by 4> and <P ) has the content: one spin-1/2 massive particle
* ~ with

carrying fermion-number F = 1 , one spin-zero part icle^ ¥ = 0 and one
spin-zero particle with IF = 2 . All these particles have the same

mass M .

The most general renormalizable and fermion-number-conserving inter-
actions of a massive scalar multiplet are described by the Lagrangian ( I I I .6 ) .

B.2 Mass generation for a vector supermultiTilet

So much for the scalar supermultiplet. The vector supermultiplet

is much more complicated. First of all, the only known way to set up a

renormalizable interaction for massive vector particles is through the agency

of a spontaneously "broken gauge symmetry. Hence the vector supermultiplet

must be associated with a gauge superfield ¥(x,9) . For the spontaneous

breaking of this symmetry a set of Higgs scalars is needed and they must be

carried in scalar superfields $ + . The two superfields, f and $| ,

co-oioerate to make a vector supermultiplet of massive statea - rather as

and co-operate to a scalar superoultiplet.

In general, one may consider a non-Abelian local symmetry which
involves a number of generators Q and associated gauge fields T , The
symmetries are spontaneously broken if

Now, i t i s well known that the vector components acquire in this way the

mass term,

\<£> V, <A+> = \

where the mass matrix (H ) is given by

(IV.20)
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and the gauge coupling strengths are implicit in the charge matrices Q .

The new feature of the supersymmetric gauge theory is the generation of

fermion masses in the fusion of left-handed gauge fermions A with right-

handed matter fermions i(/+ in the term

h.c . (IV.21)

There may of course be additional left-handed fermion components, ty , in

matter superfields * . The full mass matrix then takes the form,

+ h.c.

h .c .
(IV.22}

where M i s , in general, a rectangular matrix. The non-vanishing fermion

masses are included among the eigenvalues of the matrix

MM+ =

m m

I f the off-diagonal elements +

mixing between the guage fermions X

+ ^ Q m are non-vanishing, then there is

(IV.23)

and the matter fermions ij> The

fermion spectrum will then differ substantially from the vector spectrum,

(if there is no such mixing then MM includes a submatrix which is

effectively the same as the vector mass matrix (IV.20).) In other words,

this mixing term <^A+^ Q m is a signal of supersymmetry breaking - although

such breaking can happen even when there is no mixing.

B. 3 Minimization of effective potential to generate scalar masses

Scalar masses are obtained by expanding the potential

V

about i t s minimum with F

- - 2

and expressed in terms of A

(IV.2U)

and A

as discussed in S e c . I I I . I f supersymmetry i s not broken then a l l F'a and
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D's must vanish at the minimum and the masses are obtained by retaining only

their linear parts,

aF

(IV.25)

wfeere the notation ^ • " • ^ means "evaluated at the minimum" , and we have

assumed that fermlon-number is not violated, i . e . <̂ A >̂ = 0 , (if fermion-

number ia violated,then we should have more terms in the linearization,

e tc . We shall continue to assume that fermion-number is preserved since i t

means a great simplification.)

If the supersymmetry is broken spontaneously^ then some components
among the F's and D's will fai l to vanish at the minimum. In these com-
ponents i t will "be necessary to retain quadratic terms. Such terms act to
separate the degenerate terms of a supermultiplet, For instance, if

O) y ^ 0, then the scalar mass terms will contain

which separates states with IF = 2 from those with IF = 0 and both from

those with F = 1 . To find out whether such a term will appear in a given

model Is a matter of detailed investigation. One must minimize the potential

and see if any F or D is non-vanishing there. However, if the model i s

not a very elaborate one i t will usually be apparent when there are no values

of A+ end A for which a l l F's and D's vanish simultaneously.

A problem which often arises is that of degeneracy in the classical
minimum. The potential attains i t s minimum value not at a single point or
even on a set of points which are connected by symmetries of the system, but
on a larger manifold. This phenomenon indicates the presence of massless
(pseudo-Goldstone) scalar s tates . In ordinary gauge theories when this kind
of instabil i ty appears In the classical approximation i t is removed by the
quantum corrections. However, a peculiar feature of supersymmetric theories
is that such ins tabi l i t ies can persist to a l l orders. Indeed, i t can be
proved that the -pseudo-Goldatone particles remain without mass to a l l
orders in perturbation theory if the supersymmetry ia not broken in zeroth

-93-

order. On the other hand, if the superaymmetry is. broken in zeroth order,

then either the instability is removed or it ia amplified, i .e. the pseudo-
Goldstone particle acquires either a real or an imaginary mass. Again, i t

requires a detailed Investigation to decide which alternative is chosen in

any given system.

B.lt Slavnov's mass penerating terms

The appearance of vacuum ins tabi l i t ies seriously limits the u t i l i ty
of s t r ic t ly supersymmetric schemes. If such a- pathology arises in a
particular model one can only conclude that i t i s not amenable to perturbative
treatment. Whether such a model is sick in some even more fundamental way
cannot be answered at present. In order to circumvent these difficulties
we consider now the introduction of pseudo-explicit symmetry breaking terms
which serve to l i f t the vacuum degeneracy in zeroth order.

Two mechanisms for breaking supersymmetry in a particularly soft way
have been invented by Slavnov. The f irst (Type I) mechanism is applicable
to Lagrangians which admit a global U(l) symmetry. This symmetry is then
gauged in the usual supersymmetric way and then a singular limit is taken
in which the gauge coupling vanishes while the associated auxiliary field
D becomes infinitely large. At no stage is the supersymmetry of the extended
system broken explicitly and,in fact,a Goldstone spinor is present. However,
this Goldstone spinor, along with the U(l) gauge vector, is decoupled in the
limit , and the end result is a scalar mass term which, so far as the original
system is concerned, acts like an explicit symmetry breaker. The derivation
goes as follows.

The supposed global symmetry acts on the matter fields $+ through

"charge" matrices Q+ and i t is required that this symmetry remain unbroken,

Q±O±> = 0 .

It is made local through the introduction of a gauge superfield ¥Q which

couples to *+ through the kinetic terms,

I (DD)2j*|e ° ° + K
(IV.26)

where g denotes the new coupling constant and the dots indicate all other

gaiige couplings. With a U(l) local symmetry it Is possible to introduce

a linear term
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CD (IV.27)

where ji is a parameter with the dimensions of mass. The new gauge field

gives rise to a new term in the classical potential, via.

(IV.28)

and this is the only term in the entire Lagrangian which becomes singular

in the limit g •* 0 (keeping u fixed). In this limit the vector and

spinor components of ¥ will decouple and the only relic of this field will

be the terms

2go
- A+Q A (IV.29)

of which the f i r s t , an infinite c—number, is irrelevant and may be discarded.

Only an effective mass term for A and A remains.

As remarked above, this mechanism is not an ordinary sort of symmetry

breaking. AlthGUgh the term (IV.29) acts, in effect, as an explicit breaker

of supersymmetry, i t has a symmetry respecting origin in the gauge field T

of which i t Is a sort of tadpole. In other words, one can look upon the
2

mass insertion, y , as the contribution of a aero-frequency external DQ

l ine,

v2 = g0 (D ) . (iv.30)

In this view the symmetry breaking is spontaneous rather than explicit. This

viewpoint is important when one inquires into the matter of counter-terms.

In supersymmetric theories only wave-function counter-terms are needed and

this means that only one new divergence is introduced into the theory by

this mechanism: the renormalization of D , which will manifest itself as a

logarithmic divergence in V Ey virtue of this paucity of independent

parameters, Slavnov was able to set up a model which is both ultraviolet

free and infra-red stable.

Slavnov's second (Type II) mechanism is applicable to systems where

it is possible to construct jfflinears which are invariant, under any local
T

symmetries of the system. Let <P+ r\ <t+ be one such invariant, where n

is a symmetric numerical matrix. Introduce the pair of auxiliary negative

chirality singlets S and S' whose kinetic terms and interactions with

«>+ are governed by a new term in the Lagrangian,
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i ( D D ) 2 ^ ' + h.c.) -i-DD(h S**^ n. * + £ - S ' + h.c.) . (IV.31>

The non-positive definite kinetic term here indicates that one of the new

states must be associated with a negative metric,

S*S' + h,e. =
E + S' 2 S_ - S^

However, it is not difficult to show that these states do not couple to the

physically significant ones. To see this, reduce (IV.31) to component form,

3a 3a + C. i?C + f f

f
a 12h

T -1

a l - a a_ + 2hA^nF+ + h^C \il

T I 2 T 1
A ^ ^ - U A_;tlA+ + h . c .

(iv.3a)

with the neglect of surface terms. Now make a field transformation, i.e.

substitute in (IV.32) the expressions

! = a_ + ~ (2h A^ Tl F+

3

T

A + n A +

The resulting Lagrangian,

(IV.33)
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3a* 3a + 5 i? Z+ tf* + Â  n A+ + h.e.

describes a pair of non-interacting superfields S and S_ , together with

a scalar mass tern,

2 T
]i A+ n A+ + h . e . (IV.3k)

which is relevant to the original system. Again this is, in effect, an

explicit supersymmetry breaker although it has a symmetry respecting origin.

Just as in (IV.30), one can write

y2 = -h <f » > , (IV.35)

2
and this implies that u must diverge logarithmically as in the Type I case.

(if the physical system contains a singlet $ then the parameter JO - in the

term «fF - must develop a logarithmic divergence due to contributions from

(IV. 3*0.) •

(C) MODELS

To illustrate some general features we list, three example. The first

two are parity-conserving models in which an internal symmetry is spontaneously

broken but supersymmetry is preserved. "She third is a very simple model with

a discrete symmetry wherein the supersymmetry is spontaneously broken and a

Goldstone fermion appears.
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C.l Local U(l)

This parity conserving model involves, in addition to the gauge potential

If , a neutral singlet S and a pair of charged fields G>+ and 4 . The

Lagrangian is given by

- | DD I -

which reduces in the Wess-2umino gauges to

4* 5+ * + + h.e

1 V A + |

vhere the potential iB given by

V = I
with

F+ = -g(a * iTBjAp ,

f+ = -g V? A_A* ,

D - e - g( |Aj 2 - |A_|

• - v ,
(IV.36)

(IV.37)

( I V_3 8 )

On substitution of these expressions Into (iv.37) the potential reduces to

| 2 • |A j 2 ) • 2 8
2 | A j 2 lAj(|A+|2 • |Aj2) • 28

2|A+j | e
2 ( i - |Aj2 • lAj

(IV. 39).

In (IV.36) the covariant derivatives take the form appropriate to an abell&n

symmetry, v iz ,

V " Vv - Vu • V " ( V l B V * • V± • (VlgVA± •
(IV, 1*0)



Minimization of the classical potential (iv.37) is t r i v i a l . Indeed

one can aee that al l the auxiliary fields (iv.38) vanish at the point

(IV.Itl)

provided 5/g > 0 . This point la non-degenerate and, since < V > = 0 , it

Is clearly an absolute minimum. The vacuum respects supersymmetry as veil

as parity and fermion-number. The local symmetry is broken, however.

One can show that all particles in this model have a common mass.

The free Lagrangian is easily obtained by substituting into (IV.36) 4 (IV.39)

the shifted field

trv.te)

and retaining only bilinear terms. One finds

,2

* ( a A > 2 -

(IV.1.3)

where the common mass is given by

M (IV, 1+1.)

The Scalar field Ap can he removed by a gauge transformation. There re-

main two real scalarB, A, and a ; a real pseudosealaiv b ; a scalar d i -

fermlon, A ; a real vector, U ; two Dirac spinors, •i'o^ + ^ a n d

^ Y5ti|)-- X>t o f opposite jarity.
Interactions are characterized by a single dimensionless coupling

constant g • The model is presumably renormaliaable "but we have not
examined the quantum corrections.

Although this model can have no oroader interest we have included i t here as
the simplest representative of a Bupersymmetric system in which both parity
and fermion-number are conserved! In fact, i t describes the renormalizable
interactions of a single multiplet of the complex supersymmetry discussed in

Section I .
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U ( 3 }
looal

A model of the same type but with more structure is constructed from
the gauge potentials
S

(k = 1,2 8) , their supplementary pieces S+

S and a pair of matter fields * and $ in the representation (3."3).

The parity-conserving Lagrangian is

I = \ (DD)2 TrjtJ; exp(2SoT
Q + 2g¥)*+ + f - 2g4-)«

S°|2

. 1 f V

12 Tr S° + g S+)$+ + h.c
(IV.

where ¥
V If

and S = S X a r e t r a c e l e s s 3 x 3 m a t r i c e s . In t h i s c a s e

one can show that the potential is minimized at a point which respects both

supcrsymmetry and global BU<3), via.

<A ") = 0 , <A+> = /-£/3e0 * ™ " matrix

(iv. 1*6)

There are no massless particles. It turns out that the system comprises two

multiplets of the complex supersymmetry, an SU(3) singlet with mass /-2gQ£

and an octet with mass /-!*g 5

C.3 O'RaiReartaigh's model

This is the simplest model in which spontaneous breakdown is realized.

It contains three chiral superfielda, * , <& and

discrete symmetry

and admits a
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*0- 0- ' 1+ 1+ ' 2-

The Lagrangian i s

and the potential is given 'by

where the auxiliary fields are

2 -
(IV. 1*7)

(IV.

(IV. 1+9)

h AI+
A I + V

Of the three extremal conditions 3V/3A* = 0 , etc., only two are independent:

0 = Im- - r iA1+| 1+

There are two solutions, but one is deeper, viz.

1 +>= [(-2/h2)(m2 1/2

Since only the ratio A /A is fixed here the minimum is degenerate. The

system contains a massleas di-lepton in the zeroth order. To compute

and ^Ag "̂  one must take account of quantum effects.*-' Notice

<Fo->= i r >

A

which certifies the supersymmetry "breakdown.

V There i s a standard technique for obtaining the one-loop contribution to

the effect ive p o t e n t i a l . Make the c-number sh i f t s

and pick aut the terms which are bilinear in the q-numbers. This shifted

free Lagrangian determines a set of masses which are functions of a , etc.

The one-loop contribution is then given by
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(D) UNIFICATION OF WEAK AHD ELECTROMAGHETIC INTERACTIONS IN A SUFER-

SYMMETRIC APPEOACE

To conclude this discussion, we turn to the problem of incorporating
the weak ana electromagnetic interactions of leptons and hadrons in a super-

symmetric framework. As yet there exists no satisfactory resolution of this

problem and the following paragraphs are intended to point up the problems as

they appear to us now.

In the absence of any more compelling al ternative, we shall begin
with a minimal extension of the SU(2) X U(l) model of weak and electromagnetic
interactions where left-handed (matter) leptons and quarks are classified into
doublets and the right-handed are (matter) singlets. The supersymmetric
extension involves introducing doublets and singlets of scalars to go with the
fermions and a (gauge) t r ip le t plus singlet of fermions to go with the gauge
vectors of 3U(2) * tl(l) . This much is the bare minimum but in practice many
more fields are needed.

The new left-handed gauge fermions (Su(2) x u(l) t r ip le t and singlet)
in the supersymmetric approach can have nothing to do with the matter fermions
(leptons and quarks) which are supposed to be doublets. They must therefore
be very heavy (or, in some other way effectively decoupled from present-day
physics). They must therefore be given right-handed partners from among
"ew matter fields. These new matter fields may then be thought of aa part
of an "extended gauge system". No members of the extended gauge system —
apart from the photon - have yet been seen; presumably they are a l l very
heavy.

'M ( - ) 2 J vt{a) <Ln + counter-terms. (IV.50)

On restricting the variables a
1+

and a to the subspace on which

the classical potential is minimized (keeping only a , say, as an independ-

,(o)- 0-

ent variable) the counter-terms, like V , are constants. One then

minimizes V with regard to a , It is found that this minimizes at

a = a = 0 . Lepton-niiunber is conserved. One finds, in addition to the

GoIdstone lepton (left-handed), a lepton and a di-lepton of
/j5 g* /~3 a"

a pa i r of ordinary bosons of mass YiT - m and ' • • * - • -
pseudo-Goldstone d i - l ep ton i s found to have the (ma3S)

2i 2 i 2-> / 2-, 2 , 2

H = / - (mS+2i lh) ,

F ina l ly , the

-ft

I6TT2 I

2m'
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We shall continue to assume the existence of the fermionic quantum

number F associated with the chiral components of the supertranslations.

This number will not he identified with any of the known ones such as eleetron-

or muon-number. If these numbers are all separately conserved, as we shall

assume, then there will be no mixing between the gauge fermions and the matter

fermions. This is an important requirement if the universality of the weak

interaction (equality of weak (evg) and (pv ) couplings) is to he maintained.

(It follows also that the toldstone fermion,arising through spontaneous break-

down of supersymmetry, v i l l not be identified with either of the known neutrinos.)

To ensure the universal strength of the charged weak current one assigns

left-handed fermions or right-handed antifermions to doublets of SU(2)I x u( l ) v ,

e.g.

with I = 1/2

with 1 = 1 / 2

Y = -1

Y = +1

while right-handed fermions or left-handed antifermions are singlets,

e~ with 1 = 0 , Y = -2 ,

u* with 1 = 0 , Y = +2 .

Since v^ has no right-handed partner, i t must remain massless (at least if

electron-number is conserved}. Likewise for V . The quarks are similarly

assigned, e.g.

fp]
with 1 = 1/2 , Y = 1/3 ,

Pj, 1 = 0 , Y = lt/3 ,

i^ I = 0 , Y = -2/3 .

A major difficulty concerns the scalar partners of these fermions.

These scalars tend to be degenerate with the fermions.

Notice f i r s t ly that if these scalars carry globally conserved

quantum numbers, like electron-or baryon-numbers, th is will require their

vacuum expectation values to vanish. In turn, this will mean that the

masses of these supermultiplets arise entirely from their interactions with
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the extended gauge system. This extended gauge system has tvo parts: the

vectors and left-handed fermions contained in guage superfields fNx.6) >

and the scalars and right-handed fermions contained in a set of positive

chirality scalars $,+ . It is the scalar components of the lat ter which will

play the role of Higg3 fields and generate a l l masses.

Mow there is some latitude in the assignment of the scalars but,

unfortunately, a l l the versions we have examined suffer similar defects. The

main defect is the persistence of a mass formula by which the average (mass)

of fermions in any charged aupermultiplet is equal to the average (mass) of

bosons. This means, for example, that if the electron is assigned to a scalar

supermultiplet, then even after the breaking of supersymmetry, i t s two bosonic

partners must have masses "vl/2 MeV. This rule, for which we have no general

proof, persists even when Slavnov's mechanism is used. This will be i l lustra-

ted in the example which follows.^

To il lustrate the main features of a supersymmetric version of weak

and electromagnetic interactions, we present a model based on the local sym-

metry SU(2) * U(l)
1

u(l) whereln the electric charge is identified hy

Q. - i 3 + j-+ Y- • (iv.51}

The other four symmetries must be broken spontaneously. The gauge superfields

V , YQ1 and TQ2 include three electrically neutral and two charged ones

comprising the photon, two neutral vectors, the charged vectors and the

accompanying left-handed fermions. Right-handed fermions are contained in

a pair of positive ehirality doublets 4 and 4 with the (l,Y ,Y )

") An alternative one might consider is the use of vector supermultiplets.

These contain two fermions along with a scalar and a vector. One fermion

could be light and the other heavy like the bosons. However, such an approach

brings i t s ova difficulties. Firstly, if the theory is to be renormalizable

then the vector will have to belong to a gauge system and one will not be able

to make do with SU(2} x u(l) . Rather, one would have to associate an

independent symmetry generator with each lepton and quark. This very large

symmetry would then have to break in such a way as to yield one relatively

light charged vector W and perhaps a neutral Z . The leptons and quarks

would belong to the adjoint representation and i t is hard to imagine how

they could all resemble doublets of some relatively weakly broken SU(2) sub-

group. The problem of setting up a universal veak interaction would seem

to be insurmountable in such a framework.



assignments
4>1+ -v- Cl/2, - 1 , 0) ,
*2+ % t l / 2 , 0, 1) .

(IV.52)

These f ie lds , together with the gauge fields £ , VQ1 , VQ2 make up what we

designated as the extended gauge system.

Matter leptons vri.ll take one of two possible forms, either lef t -

handed doublet paired with right-handed singlet,

*3_ <v- U/2 , 0, -1) ,

S3+ -v. CO, 0, -2) ,

or right-hanaed doublet paired with left-handed singlet

<^+ ̂  (1/2, 1, 0} ,

Sj^ ̂  (0, 1, 1) .

(IV.53)

(IV.5*0

Fractionally charged quarks (to which, for simplicity, we shall con-

fine our considerations) are assigned in a similar way except that they carry

fractional hypercharges and each doublet is paired with two singlets instead

of one so that all quark states are massive. (See Eq.. (IV.91) for the

assignments of the second singlet.)

The matter interactions are severely limited with these assignments.

Only two types of coupling can be made,

h.c. ) (IV.55)

Notice the global symmetries,

(IV.56)

which may be interpreted as electron and muon number symmetry.

The gauge interactions are given by the kinetic teims,
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(IV.57)

plus the supersymmetric analogue of the Yang-Mills Lagrangian (III .3S). With

two commutative U(l) groups in the local symmetry we can have two dimensional

parameters, £. and £2 1 i n t h

The scalar potential is the standard one,

where the auxiliary fields are given by

- F 1 + = 0 , -f,.. = f A 2 + A ^ ,f

" F 2 +
A 3 - '

h V 1T2

i T 2

2+ ~ 4 - L

(IV.58)

(IV.59)

(IV.60)

where the notation for component fields Is exactly as in previous sections,

viz.

*± = exp(T £ s*y5e) (A± + e^ ± + I e,e±r±) ,

If the various quantum numbers, fermion, electron, muon etc., and

electric charge are all conserved then, in the vacuum only two fields can
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develop an expectation value,

<A°+> = vx and <A°+> = (iv.61)

where the values v and IT,, are fixed by minimizing the potential (IV. 59).

They can he expressed io terms of parameters in the Lagrangian by solving

the equations

= g,- i + 4
2, 2 2.g (vx - v2) (IV.62)

On expanding V at the minimum,one finds the following mass terms:

A°)(Re 2(g2 A°)2

(IV.63)
(where superscripts refer to electr ic charge). All non-Goldstone components,

except for A and , have mass and these masses are real if

v2 - v2 | and 2g2 |v2 - (iv.64)

The pseudo-Goldstone states A and A. could receive masses from the
radiative corrections. They are vithout mass in the tree approximation
•because of their association in supermultiplets with the neutrinos ljj , ijj, .
Couplings to the extended gauge system provide only a modestly effective
means for breaking the supersymmetry: charged multiplets are spl i t but neutral
ones are not. Fortunately, i t is not necessary to rely on radiative effects
for l i f t ing this degeneracy. Instead we can exploit the Slavnov Type I
mechanism. The necessary global U(l) symmetries are simply, electron-number,
muon-number, etc.,and so we can immediately adjoin to (IV.63) supplementary
mass terms of the type (IV.29),

(IV.65)

For the positivity of a and ai masses we must have

v2 - 2s? {v2 - v2)V2 S l V l 2 J

2 c j <i c \
(iv.66)
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Finally the masses of the two real neutral components Re A and Re A are

determined by the matrix

g)v

g)v

(IV.67)

vhose eigenvalues are certainly positive. Thus, subject to the above in-

equalities, all scalar masses are real and the minimum is established. In

particular, the assumed coaservation of charge and the various fermionie

quantum numbers is Justified. Consider now the spinor and vector masses.

The spinor mass terms are contained in the various Yukawa couplings

of A^ and A^ . They are

+i2g i2g

h.c.

(iv.68)

The masses of the charged particles can be read immediately from th i s . For
definiteness, suppose that the electron is contained in $ , S ,while the
muon is in *, , S, , i . e . that e" belongs to a left-hand=d doublet while
y belongs to a right-handed one. (i t would be equally possible if u~
were assigned to a left-handed doublet. There is no problem of electron
muon mixing if none is introduced in the bare Lagrangian.) In addition to
the two charged leptons

=-fv.

there are tvo charged fermions in the gauge system,

(IV.69)

Sgv-L

(IV.70)

Associated with the charged leptons (IV.69) are the two neutrinos,

v = ij* and vT * TJJ. 4 (IV.71}

which are without mass. Finally there is a set of mass terms for the neutral
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fermlons in the extended gauge system. These can he arranged in the form of

a rectangular mass matrix,

X° X° X 3)_ M + h.o.

with

-g1v1 0

0 R~v,

The canonical representation of this matrix would take the form

in 0

(IV.72)

M = U
, - 1

m.0

0 0

U and V a r e o r t h o g o n a l m a t r i c e s ( 3 x 3 and 2 x 2 r e s p e c t i v e l y ) and

(IV.73)

and m£ a r e r e a l and p o s i t i v e . These e i g e n v a l u e s

where

the "eigenvalues

together vith the angles in U and V are obtained in a straightforward

fashion by diagonalizing the symmetric matrices MM and MM. (It is

worth remarking that M M i s precisely the scalar mass matrix (IV.67) while,
Tas will he seen, MM is the vector mass matrix. This elegant relationship

is a manifestation of the underlying supersymmetry: the massive sealars, spinors

and vectors belong to a pair of vector supermultiplets). There are four

angles involved in the representation (IV.73), three in U and one in V .

They can all be expressed in terms of the three independent ratios,

and V V 2 •

U =

Let

'C3

S 3

0

us write

- s 3 o

c3 o

0 1

\

0

S3

0

1

0

" S c l - s

s. c,
(IV',74)

where C = cosO , S

two massive neutral spinors:

, etc. These angles can be used to define
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and one massless left-handed spinor".

" C3C1U2 "

ClV.75)

(IV.76)

The coefficients in (IV.76) can be expressed entirely in terms of coupling

constant ratios,

S-, e i" "l°2 ' I ' e U2 (IV.77)

where e denotes the electromagnetic combination,

(IV.78).

The other angles and the masses nL , nu are given by straightforward but

rather less interesting formulae. We pass on now to the vector masses.

The vector mass terms are obtained in the usual way from the Higgs

fields A and They are

(IV.79)

where (W ,W ,W~) denote the gauge vectors of SU(2) , and V , V those of

u(l) * U(l)
1

The neutral terms can be arranged in the form

2 2
g1v1

0

2 2 2
B2V2

2, 2
g i

MMT
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v° v°
V V V u

0

0

0

u i
0 0

•• i '

(IV.80)

with M given oy (IV.T2) and (IV.73). The two massive vectors and the photon

are, therefore,

Zl " (C3C2C1 " S3 S1 ) V? " (C3C2S1 + S3 C1 ) V2 " C3S2W3 •

C3 S1 ) V1 - " C 3 C 1 ) V 2 " S 3 S 2 W 3 • (IV.8l)

In summary, the system comprises the following states:

(l) A charged vector supermultiplet

1 + + + +
spin — SI = % + iX , m(n ) = 2gv ,

spin 1

spin 0

(IV.82)

s p i n | - S3 = if<~+ - IX"

and i ts conjugate.

(2) Two neutral vector supermultiplets

spin \ £1° + + i((C3C2C1 - S3S1)A° -

spin 1

spin 0 Re J2 Re A° ,

spin \ n° = ( C ^ - S^° ) + - i( ( C3C2C l ' 3 3 S 1 ^ 1 " (C3C2S1

{IV.83)
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spin \\ Q

spin 1 Z° =

u 4 + cu*°}+ + i(Cs3c2Cl + a ^ ) * ; -

spin 0

spin I C l )x° - s3s2T3)_

Civ.ait)

These multiplets are unbroken in aeroth order. Their respective massea are

given by

2 ,2
= {g

2,2
gJV , 2 2 , 2 .

(IV.85)

(3) The photon supermultiplet

n n
spin 1 A

spin i-2

2 1 1

v!f = SOC^X° - S_SnX° + COX, (the tkildstone neutr ino) .
L 2 1 1 - 2 1 2 - 2 3 - (IV.86)

The vector supermultiplets (l)-(3) exhaust the gauge system. Leptonic matter

is classified in scalar supermultiplets: the $ , S and 4. , S, type

combinations of vhich there may l)e duplicates. For definiteneas we consider

one of each and lafcel them "electronic" and "muonic" respectively.

(!*) The electron supermultiplets, one charged,

spin \ e" =

spin 0 A

(note m (a ) + m

and one neutral,

Q

spin 0 A ,

*-a' - ]f- *2 ~ & 1 2

, m(e~) = fv ,

= 2m2(e"))
(IV.8T)

spin I vL =
(IV.88)

- 1 1 2 -



(5) The muon supermultiplets, charged,

spin 0 kt , m(A, ) = 1fh. vp

spin - u+ =

spin 0

(again m {at) +

and neutral,

. m(y+) » hv£ ,

2m
(IV. 89)

spin 0 A,
•lt+

= P i " f ^ - K
(IV.90)

(IV.91)

Finally, since the baryonie supermultiplets should not contain any neutrinos,
i t is necessary to adjoin extra s inglets , Si+ or S£_ . Moreover, if the
baryonie multiplets are fractionally charged,then their hypercharge assignments
and, consequently, their masses will be different from (3) and C*) above.
Consider the (l,Y ,Y ) assignments,

*3_ -v (1/2, Y, Y-l) , * t + -v (1/2, Y+l, Y) ,

S3+ -v (0, Y, Y-2) Sh_ ^ (0, Y+l, Y+l) ,

S^+ -V (0, Y+l, Y-l) S£_ -v (0, Y, Y) ,

under which the following interaction terms are permitted:

One finds the following spectrum of baryonio s tates .

(6) Supermultiplets with charges Q = Y+l , Y and masses given by

(IV.92)

Y+l

Y+l
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h'v.

! '2v^ - Y 2g2(v2 - v2) ,

and similar supermultiplets *)with Q = Y, Y-l ,

v 2 - v 2 } ' ,

CIV.93)

v l *

v 2 - Y 2g 2 (v 2 - v 2 ) ,

Y - la

.Y-l

(Y-l) v - v )

V
Y - l

- (Y-l)

(IV.9U)
To summarize, what we have shown above is that the demand of

universality of couplings can be met, i f the extended gauge sector fermiona
do not mix with matter (lepton and quark) fermions. (One important con-
sequence of this is that gauge fermions exist which are about as massive as
W and Z par t ic les . ) The chief drawback of the model presented l i e s in that
there also exist in the model (charged) spin zero particles - companions of
electrons and muons - with light masses. The hope is that radiative effects
may cure this defect of the model.

To obtain an effective Lagrangian useful for phenomenology at relatively

low energies (< 5 GeV) i t would be reasonable to integrate out a l l massive com-

ponents of the extended gauge system, i . e . the supermultiplets ( l) and (2)

which are very heavy (> 50 OeV). The photonic supermultiplet (3) must of

course be retained in the effective Lagrangian. That part of the interaction

Lagrangian which is l inear in the gauge field defines a set of currents,

•) As is well known', there are no anomalies in the theory, provided

that there are two(integer charged) leptons and four quarks among the matter
fields with their conventional assignments of Y quantum numbers. (The
extended gauge fermions do not produce anomalies.)
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J=l,2 .

[ ' "u u

Elimination of these ^auge fields yields the effective interaction Lagrangian,

±-J(fl°)
m J

J=1.2
2m!

j(fi-) j(fi')

2m?

m(W)2
W*) J ( W " )

We shall not pursue this any further in view of the unrealistic character of

th is model. All of the currents in this effective Lagrangian receive

contributions from lepton-or baryon—number carrying scalar fields vhich cannot

be ignored. Their masses must, according to formulae like (IV.87), (IV.89),

(IV.93), (rv.9lt} be of the same order as those of their fermionic partners,

(This being so, there is even a long-range pseudo-electromagnetic interaction

between scalars and spinors due to the exchange of the photonic neutrino

(iv.86).)
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APPENDIX A

FEYSMAN RULES

A number of apparently renormalizatile Lagrangian models has been given.

In this appendix rules are developed for computing tenn3 In the perturbation

series. To take full advantage of the supersysnmetry, these rules are pre-

sented in a manifestly supersyrametric fashion.

The formal derivation °f Feynman rules proceeds very much as in any

ordinary quantized field theory. Consider firstly the most general renorm-

alizable system made entirely from scalar superfields (i.e. without any local

symmetries). The action is given'by

Hai

= f d̂ x I

Introduce external sources J , J. and define the connected vacuum ampli-

tude Z(j) by the usual path integral,

exp i Z(J) = J (d* d*») exp ̂ - \ DD){/*+ + *^J+ + h.c.}J .

(A.2)

Connected Green's functions are given by the functional derivatives of Z

evaluated at J = 0 , For example,

<T*+(1) » f
6J+(2)

J=0

For many purposes it is convenient to have a special notation for the

functional derivatives of Z at arbitrary values of J . Thus we vrite

<SJfCD
(A.3)

defining the field averages as functionals of the external currents. In

principle these expressions can be solved to give the external currents as

functionals of the field averages to which they give rise. We denote field

I



averages by the same symbols as are used for the field operators since no

confusion can possibly arlae. Higher derivatives of the connected vacuum

amplitude are denoted quite generally as follows:

SJ+Cn)
ZtJ) •= G<*+Cl} *+t2] •••*]>)) . (A.U)

As an alternative to the connected vacuum amplitude Z(j) one may

choose to work vith the effective action r(*) defined by

h.c.} .

The effective equations of motion then read

art*) _ , ,,, jSrCi).
- Jf(l)

(A.5)

(A.6)

and they are solved by the expressions (A.3). The effective action ie

characterized by one—particle irreducible graphs and i t may he obtained, In

principle, by solving the Eyson-Schwinger equations:

<$S

1-^

sr

Cl)
(A.7)

^ f

In these equations the fields $ are the independent variables and one is

to solve for the functional !"(*) , In order to do this it la necessary to

have the 2-point functions 5(1,2), vhieh appear in (A.7) expressed as

funetionals of 4 rather than J . This is done by defining G(l,2) as a

functional inverse of the matrix of second derivatives of !"(*) . We

shall not pursue this matter here.

Although the perturbation series for !"(*) is simpler than that for

Z(j) In that it contains only Irreducible graphs, the latter is easier to

derive rules for. The derivation proceeds as follows.

Firstly, separate the classical action into two pieces,

S(4) = S.(«) + S (*}
0 g

(A. 8)
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where S contains all the trilinear terms Ci.e. S n is obtained from CA.
E u

by setting g ., = 01. Then the connected vacuum tBEplitude is given "by

(A.9)

where Z Q denotes the amplitude corresponding to S Q . It is easily

evaluated.

To evaluate Z_(J), notice firstly that the corresponding effective

action, P , is Just S (*) . This is implied ty Bqs, (A.7). Turn next

to Eqs.(A.6). With Y replaced by S they become linear lnhomogeneous

equations, viz.

_
T- = ~ a DD*a

Mai

(A.10)

_ H _ = - i-TTD ». + * M* - -J
0** 2 i+ a- ai i-

which can be solved with the help of the identity

One finds,

_{32 + MM +} 1 (i DDJ+ + MJ_) ,

- O 2 + H ^ ) " 1 (i- DDJ_ + MfCJ+ + si ) .

(A.11)

Finally, substituting these solutions into the right-hand sides of Eqs.(A.3),

a quadrature gives

ZQ(J) M+H)" 1

- | D D [ - J + O 2 + M^)"1 M+(J+ +a) + h . c ] ,
J CA.12)

where the Feynman inverse is understood. This functional can also be ex-

pressed in the somewhat more cumbersome form,

ZO(J) = f d^ (- \ m)x [J+( \ DD
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+ J (l)G (t ClH fe))j (2) + J (l)G (* (l)S (

which serves to define the zerotn order expectation value,

<*+>a - -C32 + M V 1 M+^

CA.I3)

{A.

and the zeroth order propagator3,

\ DD

G
0(*-

(l)*-(2)) = (31 + ̂ r 1 ^ - \ ™ ) 2 «+(l,2

The chiral delta functions are given by

vhere

(A.15)

It is practical to work with the truncated fields $ + introduced

in Sec.II.B ,

4+(x,0) = expC± £- 6^y59)*+Cx,6) . (A.16)

For these fields the propagators are considerably more simple,

M+M)" 1

MM1")"1 exp{91+ i ^

+ MM1")"1 M i ^ ei

M+M)"1
£_ e 1 2 +

(A.IT)

The perturbation series for the connected vacuum amplitude Z(j) Is

now given by substituting the expression (A.13) (or {A.12)) into (A.9) and

expanding in powers of S ,
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{A. 18)

where

This prescription may be summarised in a set of momentum space Feynman rules

as follows:

(i) Draw diagrams in the usual way with 3-leg vertices corresponding to

the interaction terms

(.There may be 1-leg vertices corresponding to the linear term,

t$ $• + h,c. , but in practice these can always be eliminated by
a s—

a suitable shift in the fields * . Such a shift would modify the

mass matrix but not the couplings.) The vertices each carry a de-

finite chirality, positive or negative.

( i i) With each vertex associate the factor

(2TT)1* $(Vl + P2 + P3) ^ g a l J (positive chirality)

or

(2TT)1* <5(Pl + p2 + p3) ^ - g j j , (negative chirality) .

These factors are represented graphically as in Fig.l

Fig.l:

1

* 1

i +

positive

3

chirality

i

negative chirality

(iii) With each line joining a pair of positive vertices associate the pro-

pagator

With each line joining negative vertices associate the propagator
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With each line joining vertices of opposite ehirality associate as

appropriate one of the propagators

f C-p2 +

f t-p2

6a_) ,

e2
,

where the It-momentum is directed from the positive vertex (1) to the

negative vertex (2). (Bote the asymmetry, 6 ^ Ji B£_ = - § g + tf 8 .)

These propagators are represented graphically in Fig,2,

Fig.2:

+--* 2
a

a i

1 -» , 2
a t

(iv) With each external line associate the wave function

(v) At each vertex apply the operator (- =-DD) , i.e. extract the co-

efficient of the ferm

TT K e±
vertices

and integrate over the momenta,

lines

(The rule (iv) applies to incoming or outgoing particles. The modi-

fications necessary to characterize lines which terminate on the

external currents J+ are easily arrived at.)
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TTJ

To conclude this appendix we list the component structure of the pro-

pagators (A.IT). These are conveniently separated into three sectors accord-

ing to value of the fermionic number T in the intermediate states. The

non-vanishing components are as follows.

1)

2)

1 = 0 sector

S ( X1 •

(F_(I) /

G0(A+Cl) F+

MM1"}"1

= - ( ^ ^ + MM1")"1 M

1 = 1 sector

M+M)'1
it

F = 2 sector

(F+(1) F+(2)) = -3
2{32 + H ^ ) " 1

MM1")"1

(A. 20)

(A.21)

H 6(xi " V

GQ (A_(1) A+(2)) = (

G Q ( A J I ) F*(2)) = - O 2 + MM1")"1 M 6 ^ - x2) ,

G Q ( F + ( I ) A^(2)) = - O 2 + M+M)"a M+ fi(x1 - x2) .

Vertices are governed by the interaction Lagrangian,

(A. 22)

- V ^ C-1

U.23)
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The formulae (A.20)-(A.23) give a good indication of the complexity of the

model described by the Lagrangian (A.I) vhose Feynman rules have been listed

above. However, they give no hint of the remarkable cancellations coming

from the supersymmetry. To see these effects it is definitely worthwhile to

employ the superfield notation and associated Feynman rules.
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APPEHDIX B

REGULABIZATION AND REHORMALIZATION

In order to regularize the model of Appendix A in a manifestly super-

symmetric fashion it is sufficient to replace the kinetic terms by the ex-

pression

R+(3) R O )

where R+(3) are polynomials in 3/3x ,

R+0) = l + 5+ 3 2 +n +0 2 ) 2

(B.I)

(B.2)

The exact form of these operators is not important. They need only be of

sufficiently high order to dampen the short distance behaviour of propagators

so as to make finite the radiative corrections to the Green's functions. The

parameters are to be taken to zero at the end of any computation.

o
(in terms of the familiar momentum space cut-off, A , we have 5 •*• I/A ,

n *> i/A1* , ,..)

Since the regularizing factors R± are introduced only in the bilinear

terms they will cause changes in the propagators but not in the vertices. It

is a simple matter to construct the regularized propagators. One has only to

modify the equations (A.10) by Introducing the factors H and R . They

become

- k OD R (3) * + d + M 4 - - J .

- | D D R+C3)
(B.3)

- J

and they are solved by

| DD

| DD J+ + M R"1

(B.lt)

Differentiation with respect to J+ gives now the regularized propagators,

' M ) - 1 M+ R I 1
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) (RJ2

C B . 5 )

where 3 = 3/3x^ . It is clear that the light-cone behaviour of these pro-

pagators can be made as soft as required by choosing the polynomials E+(3)

of sufficiently high order.

Since the regularized kinetic terms (B.l) are manifestly supersymmetric,

it follows that the regularized amplitudes constructed from the propagators

(B.5) will be compatible with supersymmetry as veil as finite. This is

important for the arguments which follow.

The renormalization of supersymmetric models is greatly simplified by

the occurrence of zeros in certain amplitudes whose canonical dimensions

would, on the face of it, seem to indicate divergence. A good analogy is

given by the electrodynamic vacuum polarization,

The kinematical factor reduces the "effective11 dimensionality of IL v0O

2 to 0 and so the divergence is logarithmic rather than quadratic. This

analogy is not perfect, however, in that the softening is due entirely to

current conservation - i.e. gauge symmetry - whereas, in the supersymmetric

system there is, as we shall see, a subtle cooperation between the symmetry

and the constraints due to renormallzability.

In order to reduce the discussion to essentials, we shall henceforth

ignore the internal degrees of freedom (including the fermionic number, I)

and deal with the prototypical system comprised of a single scalar superfield,

* + , in self-interaction,

J- (DD) 2|* +|
2 (B.6)

The simplification is only notational. It will become apparent as the argu-

ment proceeds that it is applicable to the general case as well.

Assume now that a supersymmetric propagator regularization of the kind

discussed above has been made and consider what sorts of divergence might be

expected in the limit when the regularizatlon is removed. The usual

dimensional argument would indicate the presence of divergences in the follow-

ing derivatives of the effective action,
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&V 6T
=

TO)
<5 r

c)
s3r

923+

d)

evaluated at $ = 4* = 0 . Typical components are shown on the right-hand
sides in order to reveal the canonical dimensions in a familiar way. Thus
the quantity (a) has dimension 2,and one is therefore prepared to find that
i t diverges quadratically. The amplitudes (b), (c) and {d) have dimensions
1, 0 and 0 respectively, and could therefore diverge logarithmically. These
are the only quantities which even potentially diverge 'Oand, aa i t happens,
only (d) actually diverges. Fortunately there is a simple explanation for this
suppression of divergences and there is no need to enquire too deeply into
the graphical structure.

Of particular importance are the formulae tll.58)which express super-
symmetry for the monochiral Green's functions,

n) =<T$t(l) (B.T)

The amplitude G is a function of 6 ,9 ,...,9 , which must satisfy

the constraints

*5> The absence of a quadratic divergence from the mass term (b) is to

be expected since the supermultiplet includes a fermion whose mass can, at

worst, diverge logarithmically. Quadratic divergences in the scalar masses

must therefore cancel. A third derivative,like (o) but involving one dif-

ferentiation with respect to %* , need not be considered: its finiteness is

assured by supersymmetry since there is no corresponding term, (1/8)(DD)

(<[>* j>+) in a renormalizable Lagranglan.
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(B.8)

X *s
and can therefore depend only on the n-1 differences 9 + and in a very

restricted way, moreover. Only those combinations of the 6 and momenta
1 Jn+

n-1

which are annihilated by the sum, \ p 6 + , can appear in <J+ . For

example,

8+d,2) = e^2 (fi ,

+ (p, e.9 1 3
 923 913

where, to save space, we use the abbreviated notation,

(B.9)

The scalar amplitudes Q^, G£, ... depend only on scalar combinations of

the momenta.

We shall now prove that there can be no radiative corrections to the

monochiral vertex functions (a), (b) and (c) evaluated at the origin of

momentum space. All we need in addition to the group theoretical results

indicated in the structure (B.9) is the remrk that the required amplitudes

(a), (t>) and (c) can be obtained as coincidence limits on amplitudes like

G+(l,2) , G+(l,2,3) and G+(l,2,3,^), respectively. Thus, for example,
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6* (x,e)
+U,e) 5+(x,e}> ,

= rf+ g^-G+(l,2) (B.10)

since, according to (B.9), G Cl,2) must vanish in the coincidence limit

12
0 .

The second formula of (B.9) gives

0.(1,2,3) P 2 ) 2 (B.ll)

X 2

which vanishes at p + p = 0 . If we understand this monochiral amplitude

not as the 3-point Green's function tut , rather, as the hybrid quantity

S -f£ i - \ •

then the limit (B.ll) representes the self-energy operator, i.e. the radiative

corrections to the amplitude (b) (see Fig.3)

1=2
self-energy operator

The crucial result here is the emergence of the kinematical factor (p, +

which causes the self-energy to vanish at the origin of momentum 3pace.

Equi valently,

(B.12)

Since the potential divergence vas only logarithmic we may conclude that [I

is strictly finite.

An entirely analogous argument is applied to the monochiral function

.-2

G(1,2,3,M

-lpfl-



Its structure ia exhibited in CB.9),vMoh shows the vanishing of this quantity

in the limit

3 1 2 = O , p 1 + p 2 0 .

This means the absence of radiative corrections to the coupling constant.

The amplitude (c) Is f in i te .

Evidently the arguments given here will go through in exactly the same
way when fermion number and other internal degrees of freedom are restored.
Only the t r i l inea r i ty and monochirality of the interaction was used (along with
the supersymmetry displayed in the formulae (B.9)) and these features are
common to a l l the renormalizable models made from chiral scalars.

Finally we may mention that the amplitude (d) is truly divergent and

must be compensated by a wave function counter-term of the form

(Z - l) g- (T5D)2 | 4 + ]
2 . (B.13)

This wave function resealing will of course affect the parameters J& , M

and g in the usual way

M + M = ZM ,
r

(B.14)
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