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ABSTRACT

We snalyse the effects of the intensity~dependent mass shift
predicted for electrons in en electromagnetic plane wave on Yound atste‘a.
It iz shown thet the nuil result of the experiment of Mowat et sl. on
the 133Cs ground-state hyperfine splitting was to be expacted, although their
hypotheticel explanation of it 1s inccorrect. The recent suggestion that
sn intense leser beam might e_ffect the restcration of a spontaneously
broken symmetry is examined in more detall, and it is demonstrated that
slthough a pure plane will will not suffice, a superposition of plane
waves, for example s standing wave, would do so. At present, however, the
effect is unobservably small.




I. INTRODUCTICN

‘

Some years ago a mass shift of free electrons in an intense plane-

1)-3)

wave electromagnetic field was predicted and became the subject of

lengbhy controversy (summerized with full references in Ref.l). Later it
was suggested 3 that & similar effect might exist for bound electrons,
leading to intensity~dependent shifts in the frequencies of spectral lines.
However, g.z; experimental search for such & shift in the hyperfine splitting
of the ©

Cs ground state ylelded negative results &) On a naive elassical

argument, this negative conclusion was to be expected,because the mass shift
T

of a free electron can be understood &s a mean kinetic energy of the Jarge

amplitude oscillation indueed by the fleld, which i1s precluded for bound
electrons. The gquantum-mechanical explanation, on the other hand, is less
clear. Mowat et al. 6) suggested that the eEAz term which is respcnsible
should be regarded as a contribution to the energy rather than the mass,
50 yielding an unobserveble uniform shift of all levels. However, this
seems a rather unnetural interpretation in view of the fact thaet in the

Klein-Gordon {(or second-order Dirac) eguation the e2a?

additien to m2 . Tryan 8l

term 1s clearly en
in a treatment of quantum electrodynamics in a
coherent photen background finds lowest-order energy level shifts independent
of the mass shift,but neither the underlying reesons nor the extent of
velidity of this result are wholly cleer.

In this paper we re-examine the status of the electron mass shift

2
and show that, while the e2A

tern alone would yield level shifts
corresponding to a change in mass rather than a uniform addition, the effect
is almost exaectly cancelled in the long wavelength limit by the secondw
order shift arising from the ep-A term.

9) two of us suggesied a different rcle for the mass shift,

Recently
as & possible mechanism for the restoration of spontaneously broken
symmetries, as we showed in the case of intense magnetic fields. Here we

examine this possibility in more detail.

The mass shift directly affects only charged particles, whereas what
is relevant in deciding whether & symmetry is broken is the effective
potential evaluated as & function of the vacuum expectation value of some
neutral field. An effect ¢an be produced by virtusl charged-particie loops
but since the neutral partiele is thus to be treated as a bound state, one
might anticipate that the effect would be suppressed as in the case of an

electron bound in &n atom.

-2

There is a simple invariance argument which shows that in a true
plane wave the suppression is in fact complete. By gauge invariance, the
effective potential V(¢,Au) must depend on the plene~wave vector potential
ALE only through the field tensor FLN .

and for a plene wave no scaler can be formed from Fuv s 80 that V must be

But it must also be & scalar,
& functicn of the wvacuum expectation value ¢ alone. This conciusion
will be verified by more explicit exsminstion of the effective potential.
It follows that a spontanecusly broken symmetr: cannat be restored by a

simple plane~wave laser beam,as has alsc been j~inted out by Becker 10).
However  the argument clearly fails for other con=
figurations. In particular, = contribution to the effective

.
potential can be expected from a superposition of two plane waves in different
directions, for example from a standing wave produced by reflecting a laser

(A

beam from & mirror, since the invariant F FW 1s non-zero in that cese,

It may mlsc be worth remarking that,even in s pure plane-wave beam,
symmetries might be broken (not restored) by e different mechsnism, in which
a symmetric tensor field acquires a vacuum expectation value propertional to
P . 2
FIJ va , or equivalently A kuk\) .

It has been pointed out by Neville and Rohrlich 1)

that & null-plene
formalism is particularly well suited to the treatmeni of processes in a

plane-wave field. In Sec.Il we introduce a version of this formalisn e¢losely
Ppased on the work of Bjorken, Kogut and Soper 12 s in which the relativistic
trestment closely parallels the non-relatiwistic, However we use & modified
{non~orthogonal) co-ordinete system recently employed by Bell and Ruegg 13)
in a treatment of the hydrogen atom. This method is interesting in its own

right and may well have other applicstions.

In Sec.IIT we show that the electron Green's function in a plane-
wave field has a particularly simple form in these co-ordinates, and use it
to examine the contribution to an effective potential function. The

conclusions are summarized and discusseé in Sec.IV.

1I. DIRAC EQUATION IN NULL-TIME CO-ORDINATES

We use the system of co=ordinates

T= t=-2, [4

u
(o]

. %= (xy) , (1)

=

s

P

p———



comprising a mull-time co-ordinate together with the three cartesian spatisl
eo=ordinates., The distinction between 7 snd z 1is required wheno we come

to the contragredient tresnsformations exemplified by the partial derivatives:

. L s ac=az+at, £=(3x,3y) .

(In using the two-vector notatiocn we regard sll vectors other then 4 as
contravariant. Thus pu = wu but r= -ig .) The metric tensor and
its ipcrease in the co-ordinate system (1) are;

1 . . 1 -1 . .

B ' gw = -
. -1 . -1 .
. . . -1 . . -1

Since TT is singular, two of the four components of the Dirac

equation take the form of constraints so that it can be reduced 12) to &
two-component form which in our co~ordinates reads:
. - .
2 T pix) = [Tl‘C + (-« g.lr)'n_'r’ (m+<g_-.'r::)] Plx) .
o {2)

Here

T = - ef = -

w = Py n(x) 18, eAu(x) (3)

and Tr;,l is the integral operator defined by

. ) : .
T, $0 = = Sdc'e(;-c') expiﬂi"-ildd' ASS C’E)} fle,glz).

Let us Tirst suppose that the external field Is time-independent,
A, = 4,(Z.x) . Tnen Eq.{2) bas siationary solutions of the form

-iE 1
plx) = (z,5) e °

The u, are elgenfuncticns of the Hamiltonian
o= eAy 4 £ o2 (moig ) wz' (maigm
< 5 1'% +-2-' -4ig- K z +e8.T)

end are cbtainsble from the familiar Dirac wave functions by multiplying by
-iE €
e ° and spplying the projector P, = _Jé._,YC,{T »  The bound-state waveg

functions mey be normalized sc that
2t ’
J &z gy w (g =38, . {1)

The scattering states are lsbelled by the tﬁree—mmenttm p and 2
component of spin 3 . We use n to denote P » 80 that p = (11,,2) .
The covariant normelization of these states 1s

jdc T wp (LR (G%) = 21y m;’sw—ms,cg’-p b .

{5

For a free particle,
Yo ilp.x -
w e = Jen|™ HRE M)

where L {8 a two-component spinor, [g)'] or [2] . The corresponding °
energy eigenvalue is

21 2 2 6

E =5 + (m +B)/2r|. (6)

For n<0, uPB 1a of course & negative-energy eigenfunction.



Fow let us consider in addition to the time-independent field A,
s pisne wave field nu('r) + Using standard perturbation methods, we lock
for & solution to the Dirac equation of the form:

lx) = Z e (1) u_{z,x)

n

Choosing a gauge in which only the transverse components g of au are
non-zers, we find the eguation

. dLintt)
dt

= Ep CalD 4200 2V 0 CelT) c‘g;(r)%_'wm, Clt),

(1

which coincides in form with its non-relativistic counterpart, save for the

definitions of ¥ and W . These are;

L2 1%

W, o= Lldgdr ulz o T u.g.%)
25 " ¢ Yw il (8)

and

Yo = o4 fe Wl (g Ty

+ 120"5 [“_C—|’ *T-F]) u_“,(g‘!) R

{9)

where LY is still  Aefined by (3) and *1 denotes the dual two-vector,
ko kbR

For a free particle both ¥ and W are diagonal in the momentum

representation. In fact,
¥ = -3/17 R W o= 1/2'7 .

14),1),3),15)

Hence we recover the solutions found earlier but in & simpler two-

component form:

—E6a

RN, L L g el T T T I % W BN e

€,y (T2

T N
= c”(e) exp -4 jcw EPt-c)
[ ]
with
” .0t *at(r)
' E.tx) = B, - Q__g_.g—‘.z) * f_t'_.--

29

[z-ag(t)]}-& w

‘1*—-—‘—;;]———' .

(10}

-

The absence of any explicit spin-dependent factor, simllar to the ope thet

appears in the four-component solution, is particularly interesting.

There is one crucial difference between {T) and the corresponding
non-relativistic formulae, nemely that W as given by (8) is no longer a
constant {1/2m) but the matrix element of an operator (1/2'rrc). Thus it
yields an energy shift which is not eonstant but given spproximately by

E
2,2 2,2 n
bE = e {a >av Wowme Y >a.v —-2m2 s {11)

Just the shift one would expect from a change in the electron mass.

If the frequency w of the plane wave is ‘small compared with a
characteristic atomic frequency Wy s then cne may expect higher-crder terms
in the perturbation series to be negligible beceuse of their large energy
denominators. However, {11} cannot represent the true level shift, since
for a wave of fixed intensity it tends to infinity in the long-wavelength
limit, In fact, the matrix elements of E ere of order (molm)1/2 + BO
that the second-order term in ¥ Is of the same order of magnitude (ea,q.,z/m)
as the first-order term in W . That they actually cancel is seen most
easily by making a gauge transformetion of the type sometimes used to in-
troduce the dipcle approximaticn. This reduces a to zero while generating

& new compenent

a;{'r.gg) = -x-(aa/dr)

-7-

i
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In this gauge the coefficients c; satisfy the equation

-

'
M) = E‘ﬁ cv:(':) - ¢ ;‘g . 2
"

‘
it dv Lotny, (12)

with

Xow = Si.;d,‘zt_ W) x we ltn), (13)

This is an interesting formula because, although (12} locks like
the familiar noo-relativistic expression in the dipole approximation,it is

in fact exact. [Recall that ms compared withthe usual integral, the integrand
i(E ~E_,)5
of (13) coptains an extra factor of e = ©® . This is just the standard

exponential evalugted for an "energy-conserving” wave vector of magnitude
E. - En in the z direetion.]

Since the matrix elements of X are of order lnlmo)'l/2 and the

diagonal matrix elements venish,1t is ¢lear from (12) thst the leeding
tern in the energy-le'wel shift is of order (m/w )2 (e ) /m) , showing that
the terms of order (e & /m) must cancel exactly, A5 w + 0 we obiain

precisely the usual second-order Stark shift, as we must.

III. ELECTRON GREER'S FURCTIOK AND EFFECTIVE POTENTIALS

The electron Green's functlon in a plane wave has been calculated by
numercus authors . Bere we want to put it in a pertieularly convenient
form. In the two-component formelism, and using the notation (10), it may
be written as

%' = . 2 _ G- t-)
Glmw) = 2 [dqa [eﬁ])e(n) oe-1) 6¢ r]
—~anlr-T’) vip (x-%) x
r3 AR exp |- jdt ALy
t
(ak)

Kote that in common with the wave functions, it hag no expliecit spin
dependence.

8-

beosts,

One can extract the geuge dependence as s lipe integral factor 16

'G(x,x'] =& -leAlx,x") G(x,x‘)

{15)

with

‘ x
AMxx') = [ ax? au(x) = -(5- 2>

.

where the angular brackets denote s time average between T' end T1: °*

T
{a> =_T_%| I at" g(t") .

Tf

The gauge-invariant factor 6 may be written,

- o—ipe {x=x?)
Blx,x") = [ ——21,- ——~——-——D- . (16)
(2m (1,79 - p° - ie

where ME denctes the mass operator

M(,m) =« & P> - e (g

The non-Lorentz-invariant factor 2r in the integrand of (16} is required
by the Lorentz transformation properties of Y(x) . (Under longitudinel

n-l/z is inveriant.)

Because of the plane-wave character of the field, three components

of energy momentum are conserved. In fact,the Fourier transform of (16) is

8(eap) = 2n(2m 3 8(nen") &,(p-p")

5 I ar ei(E-E’)T rd“ e-iu[ME(T+2rx‘n,T) - PQ] . (n
o]



A particularly simple and interesting case is that of a circularly
polarized monochromatic wave

~1WT 2
)

a(t) = Relge s a =0 . (18)

For this case a simple calculation shows that Mz depends only on the
difference of its arguments, ’

51112 [—;- w{t-1* )]

FE w(‘r—‘r'):[z

I{E(T,T') m2+Am2 1-

M (t-1") s

(19)

say, where

2

1l 2
Am 5 e

gt

is the intensity-dependent mass shift. In this special case, 8 conserves
&ll four components of energy momentum and can be writtern in s particularly
compact form,

. 2
8p,p) = 2n (2n* §(pp') 1 r' 20 e~tol (2an)-p°] C (e

<]

Physically, this means that the ebsorption and emission of photons from a
clrcularly polarized plene wave 1s completely described by the time-integral
factor in {15).

It is clear from (19) that while M2 approaches the shifted mass
m2 + in° as T - T' 4o » Tor short time intervals it is approximately
equal to the unshifted mass m2 . In particular G(x,x) is independent

f a .
A
¥ow let us consider the possible effect of a plane-wave fleld au
on the effective potential function V{(g) for some neutral scalar field ¢ .

There is only cne way to couple zero—momentum P Yines to a cherged—
Termion line, which amounts to replacing the fermion

mass m by m + g - In particular, the one-loop contribution to V(¢
is obtained from the single vacuum locop by this replacement. Since the
vacuum loop involves G(x,x}, the one-loop potentiml is imdependent of & .

=10~

D R R T - T

As we noted in the introduction, this conclusion holds more generally,
to all orders in the loop expansion, as a consequence of gauge and Lorentz
invariance. EHowever, it is true only for a plane-wave field, and only for

vanishing externsl momenta. In other situations we may expect an effect.

Consider for example the cne-locp contribution to the scalar field

self-energy function 11(9 (Fig.1), assuming the simplest invarient coupling of

¢ to the‘che.rsed fermions. For the cese of circular polarization {18),

“‘P is transletionally invariant and its Fourier transform is:

ig® y "
mela) = B J da'p f ap' &(p + ' - q)

{em)

J” & e—ia[Mz(Ean)-pE] Im 2 1Bl (28n1) - p?)
8]

Using dimensionsl regularization te hapndle the gquadretic divergence, the

momentum integrals can be readily evalusted tc give

5 -n/2
“'P(Q) = -g r da r 4R [hﬂi(u + e)]
0 4]

exp [i—aé"— qe-i(a*'B)ME?aEE—BqC]J .

a+ B
(21)

This formula exhibits "RP as & function of the invariants q2 s QK = QW

end a.E . (Clearly, the coefficlent of 32 vanishes when q or k wt.emic
to zero 1ike (q-k)2 , ms it should since the combimstion (g-k)Z &® 1is
the geuge-invariant quantity {F“\,q\'\)2 . For a neutral particle at rest,
the energy shift induced by the plane wave is therefore smaller than the
electron mass shift by s facter u2/m2 . Nevertheless,in suitable

¢lrcumetances it might be cbserveble.

Angther cese in which the external field could have an effect is
that of a non-plene-wave field. The effective potential function V{g)
must be a scalar function of FW , and can therefore have a non-trivial
dependence in the external field when Fu\) Fuv $ 0 , The eontribution of &
single plane wave vanishes essentially because there is only one wave vector

ku involved, but when two or more such vectors appear this is no longer the

Case. In particulsr we may consider a superposition ¢f plene waves travelling

-11-

T T T - e T

— =

P

g -



in opposite directions, described (in cartesian co—ordipates) by
u W
¥ = (0,00 and % {20, 00r0) -

Physically, such & wave is readily produced by reflecting a laser beam from

& mirror, Unfortunately, diagrams such as Fig.2 with only two external photon

lines, and any pumber of zero-momentum @® lineg, will give no econtribution
because of the delta function restricting the photons to have equal and

opposite energy-momentum vectors. However, diagrams with four external

photon lines will give a contribution of order 52(”‘3;4 te V{p) . In present

eireumstances this contributlon is far too small to have observable
consequences, but thls may not always be true.

Iv. CONCLUBIONS
6)

We have shown that the null result of the experimentel  search
for intensity-dependent level shilfts inan atom in a plane-wave field was tec
be expected, despite the rfact that the 242

properly regarded as generating a mass shift rather than a uniform energy

interaction term is more

shift. Indeed the shift is nmot uniform but is cancelled by second-order
effects of the ep«A term.

Bimilarly we have shown that a pure plane-wave field will not ipduce
restoration of spontanecusly broken symmetries, because its contribution to
the effective potential function vanishea for reasoms of inveriance. In
principle, at least, a non-plane-wave field can have the desired effect. The
simpleet practicel example is the standing wave produced by reflection from
a mirror. Huwever', at the present time the effect is far too small o be

geen.

-l2—
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