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ABSTRACT

We analyse the effects of the intenfity-dependent mass shift

predicted for electrons in an electromagnetic plane wave oo bound states.

It is shown that the null result of the experiment of Mowat et al. on

the Cs ground-state hyperfine splitting was to be expected, although their

hypothetical explanation of it is incorrect. The recent suggestion that

an intense laBer beam might effect the restoration of a spontaneously

broken symmetry is examined in more detail, and it is demonstrated that

although a pure plane will will not suffice, a superposition of plane

waves, for example a standing wave, would do so. At present, however, the

effect is unobservably email.
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I. INTRODUCTION

Some years ago a mass shift of free electrons in an intense plaae-

vave electromagnetic field vas predicted and became the subject of
lengthy controversy (summarized with full references in Ref.lt). Later i t
was suggested that e similar effect might exist for 'bound electrons,
leading to intensity-dependent shifts in the frequencies of spectral lineB.
However, an experimental search for such a shift in the hyperfine splitting
of the Cs ground state yielded negative results . On a naive classical
argument, this negative conclusion was to be expected,because the mass shift
of a free electron can be understood as a mean kinetic energy of the large
amplitude oscillation induced by the field, which is precluded for bound
electrons. The quantum-mechanical explanation, on the other hand, la less
clear. Mowat et al . suggested that the e A term which is responsible
should be regarded as a contribution to the energy rather than the mass,
so yielding an unobservable uniform shift of a l l levels. However, this
seems a rather unnatural interpretation in viev of the fact that in the

9 pKlein-Gordon (or second-order Dirac) equation the e A tern is clearly an
o ft ^

addition to m . Tryon in a treatment of quantum el-ectrodynaaics in a
coherent photon background finds lowest-order energy level shifts independent
of the mass shift,but neither the underlying reasons nor the extent of
validity of this result are wholly clear.

In this paper we re-examine the status of the electron mass shift
2 2and show that, while the e A term alone would yield level shifts

corresponding to a change in mass rather than a uniform addition, the effect
is almost exactly cancelled in the long wavelength limit by the second-
order shift arising from the ep-A term.

9)Recently two of us suggested a different role for the mass shift,

as a possible mechanism for the restoration of spontaneously broken
symmetries, as we showed in the case of intense magnetic fields. Here ve
examine this possibility in more detail.

The mass shift directly affects only charged particles,whereas what
is relevant in deciding whether a symmetry is broken is the effective
potential evaluated as a function of the vacuum expectation value of some
neutral field. An effect can be produced by virtual charged-particle loops
but since the neutral particle is thus to be treated as a bound state, one
might anticipate that the effect would be suppressed as in the case of an
electron bound in an atom.
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There is a simple invarianee argument which shows that in a true
plane ware the suppression is in fact complete. By gauge invariance, the
effective potential Vtif.Al must depend on the plane-wave vector potential
A only through the field tensor F . But i t must also be a scalar,

and for a plane wave no scalar can be formed from F , so that V must be
a function of the vacuum expectation value 1J1 alone. This conclusion
will be verified by more explicit examination of the effective potential.
I t follows that a spontaneously broken symmetry cannot be restored by a
simple plane-wave laser beam, as has also been jointed out by Becker .
However the argument clearly failf for other con-

figurations. In particular, a contribution to the effective
potential can be expected from a superposition of two plane waves in different
directions, for example from a standing wave produced by reflecting a laser
beam from a mirror, since the invariant F F is non-zero in that case.

I t may also ~be worth remarking that, even in a pure plane-wave beam,
symmetries might be broken (not restored) by a different mechanism, in which
a symmetric tensor field acquires a vacuum expectation value proportional to
P . 2

It has been pointed out by Neville and Hohrlich that a null-plane

formalism is particularly well suited to the treatment of processes in a
plane-wave field. In Sec.II we introduce a version of this formalism closely
based on the work of Bjorken, Kogut and Soper , in which the relat ivist ic
treatment cloBely parallels the non-relativistic. However we use a modified
(non-orthogonal) co-ordinate system recently employed by Bell and Ruegg
in a treatment of the hydrogen atom. This method is interesting in i t s own
right and may well have other applications.

In Sec.Ill we show that the electron Green's function in a plane-
wave field haB a particularly simple form in these co-ordinates, and use i t
to examine the contribution to an effective potential function. The
conclusions are summarized and discussed in Sec.IV.

II. DIRAC EQUATION IH KULL-TIME CO-ORDINATES

We use the system of co-ordinates

t - z , t • x , x = (x,y) , (1 )
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comprising a null-time co-ordinate together vlth the three cartesian spatial
co-ordinates. The distinction between £ and z is required vhen ve come
to the contragreaient transformations exemplified by the partial derivatives:

x'V

{in using the two-vector notation ve regard a l l vectors other than Z as

. 'bu* p = -i3 .) The metric tensor and
it8 increase in the co-ordinate system (1) are:
eontravari ant • Thus p

- 1

- 1

1

1 -1

- 1

Since y is singular, tvo of the four components at the Dirac
12)equation take the form of constraints so that i t can be reduced to a

two-component form which in our co-ordinates readE:

Here

and Tr" is the integral operator defined hy

(2)

(3)

(

Let us f irs t suppose that the external field is time-independent,
(?,x> . Then Eq.{2) has stationary solutions of the form

- i i -

-iE T
n

The u n are eigenfunctions of the Hamiltonian

H = •

and are ohtainable from the familiar Dirac wave functions fcy multiplying tiy
-iEnC

e and applying the projector P+ « — y Y . The bound-state

functions may be normalized so that

(it)

The scattering states are labelled hy the three-momentum p and 2

component of spin s . We use n to denote p , so that p •> (n.»p) •

The covariant normalization of these states is

For a free particle,

(5)

where wg is a two-component splnor, L or

energy eigenvalue is

The corresponding

Ep = \ (6)

For n < 0 , u is of course a negative-energy eigenfunction.
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Now let us consider in addition,to the time-independent field A

a plane wave field B^CT) , Using standard perturbation methods, ve look

for a solution to the Dirac equation of the form:

Choosing a gauge in which only the transverse components ja of a are

non-zero, we find the equation

V

(7)

vhieh coincides in form with its non-relativistic counterpart, save for the

definitions of J and W . These are:

(8)

and

*1* < ( < , - >

(9)

where Tr is s t i l l defined by (3) and £ denotes the dual two-vector,

V = (" IT* .

For a free particle both V and W are diagonal in the momentum

representation. In fact,

V = -pA, , W = 1/2^ .

Hence we recover the solutions found earlier ' * but in a simpler two-

component form:
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m

. i j V Eptx') J

with

(10)

The absence of any explicit spin-dependent factor, similar to the one that
appears in the four-component solution, is particularly interesting.

There is one crucial difference between (T) and the corresponding
non-relativistic formula, namely that W as given by (8) is no longer a
constant {l/2m) but the matrix element of an operator (1/2TT ). Thus i t
yields an energy shift which is not constant but given approximately by

AE = e2<a.2> Wn N S ' av nn e2<a2> -$-•" 'av „ 22m
(11)

Just the shift one would expect from a change in the electron mass.

If the frequency <J of the plane vave is 'small compared with a.
characteristic atomic frequency (j , then one may expect higher-order terms
In the perturbation series to be negligible because of their large energy
denominators. However, ( l l) cannot represent the true level shift, since
for a wave of fixed intensity i t tends to infinity in the long-wavelength

1/2limit. In fact, the matrix elements of V are of order (uJm) , so
that tbe second-order term in V Is of the same order of magnitude (e a, /m)
as the first-order term in V . That they actually cancel is seen most
easily by making a gauge transformation of the type sometimes used to in-
troduce the dipole approximation. This reduces ja, to zero while generating
a new component

a^{T,x> = -x-(da/dx)
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In this gauge the coefficients c satisfy the equation

(12)

with

(13)

This is an Interesting formula because,although (12) looks like
the familiar non-relatifistie expression in the dipole approximation,it is
in fact exact. [Recall that as comparedvj&the usual integral, the integrand;

i(E-E ,)5
of (13) contains an extra factor of e . This is Just the standard
exponential evaluated for an "energy-conserving" wave vector of magnitude
E , - E in the z direction.]n n

—1/2Since the matrix elements of X are of order (n^O" an^ the
diagonal matrix elements vasish,it is clear from (12) that the leading
term in the energy-level shift is of order (u/u ) (e a /m) , shoving that

2 2the terms of order (e a /m) must cancel exactly. As ti> •+ 0 we obtain
precisely the usual second-order Stark shift, as ve must.

I I I . ELECTRON GREEN'S FUHCTIOH ASD EFFECTIVE POTEHTIAIS

The e lect ron Green's function in a plane wave has heen calculated by
X)numerous authors . Here we vant t o put i t in a p a r t i c u l a r l y convenient

form. In the two-conponent formalism, and using the notat ion (10), i t may

be wri t ten as

,

dx'

Rote tha t in common v i t h the wave funct ions, i t has no exp l i c i t Bpin

dependence.
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One can eartract the gauge dependence as a l i n e in t eg ra l factor 1-6)

t ) S(x.x')
(15)

vith

hi**')

•Hhere the angular bracket 6 denote a time average hetveen T1 and

. ^ T f dT" a(T") .

The gauge-invariant factor G may he written;

»•> - [
.-rt - p2 - ie

where W denotes the Bass operator

T.T') = m2
< a > 2

The non-Lorentz-invariant factor 2n in the Integrand of (16) is required

hy the Lorentz tranEformation properties of IMJC) . (Under longitudinal
-1/2boosts, Ti is invariant.)

Because of the plane-wave character of the field, three cojnponentB
of energy momentum are conserved. In fact,the Fourier transform of (l6) is

S(p,p') = 2n(2ir)3 s
2(p-p')

ei(E-E'h
(17)
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A particularly simple and interesting case is tnat of a circularly

polarized monochromatic vave

a(r) 0 .
(18)

For this cose a simple calculation shows that W depends only on the

difference of its arguments,

2 2 I
m + AB J 1 -

say, where

Am

C19)

1 .2

is the intensity-dependent mass shift. In this special case, G conserves

all four components of energy momentum and can tie written In a particularly

compact form,

9(P.P-) = f (20)

Physically, this means that the absorption ana emission of photons from a

circularly polarized plane vave is completely described by the time—integral

factor in (15).

It is clear from (19) that while *T approaches the shifted mass
2 2

m +im as T - T ' - » - O O , for short time intervals i t is approximately
p

equal to the unshifted mass m . In particular G(x,x) is independent

Sov let us consider the possible effect of a plane-wave field a

on the effective potential function V(q>) for some neutral scalar field Cp 4

There is only one way to couple zero-Bomentum tp lines to a charged—

fermion line, vhich amounts to replacing the fermion

mass m by m + g<p . In particular, the one-loop contribution to V(<p)

is obtained from the single vacuum loop by this replacement. Since the

vacuum loop involves G(x,x), the one-loop potential Is independent of a .

-10-

As ve noted in the introduction, thiB conclusion holds n»re generally,

to all orders in the loop expansion, as a consequence of gauge and Lorentz

invarianee. However, it is true only for a plane-vave field, and only for

vanishing external momenta. In other situations we may expect an effect.

Consider for example the one-loop contribution to the scalar field

self-energy function ir (Fig.l), assuming the simplest invariant coupling of

ip to the charged fermions. For the case of circular polarization (lS),

TT-j is transle-tionally invariant and its Fourier transform is:

J d V <S(p + p' - q)

r da e dp e
- p'2]

Using dimensional regular!zation to handle the quadratic divergence, the

momentum integrals can he readily evaluated to give

J da j dg hurl (a + B)l
-n/2

exp

(21)

This formula exhibits

aand

as a function of the invariants
2

Clearly, the coefficient of a vanishes when q or k

to zero like

tend

isIt) , as i t should since the combination (q»k)

the gauge-invariant quantity (F q ) . For a neutral particle at rest,

the energy shift induced by the plane wave is therefore smaller than the

electron mass shift by a factor u /m . Nevertheless,in suitable

circumstances it might be observable.

Another case in which the external field could have an effect is

that of a non-plane-wave field. The effective potential function V((f)

must be a scalar function of F , and can therefore have a non-trivial

dependence in the external field when FyV FUV + 0 . The contribution of a

single plane wave vanishes essentially because there is only one wave vector

case. In particular we may consider a superposition of plane waves travelling
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in opposite directions^ described (in cartesian co-ordinates)

U ( ami k V = {

yj such a wave is readily produced lay reflecting a laser beam from

a mirror. Unfortunately, diagrams Buch as Fig.2 with only two external photon

lines, and any number of zero-momentum <p lines, will give no contribution

because of the delta function restricting the photonB to have equal and

opposite energy-momentum vectors. However, diagrams with four external
2 U \photon lines will give a contribution of order e UJ a_ to V{qp) . In present

circumstances this contribution is far too small to have observable

consequences, but this may not always be true.

IV. COMCLUSIOMS

6)
We have shovn that the null result of the experimental search

for intensity-dependent level shifts in an atom in a plane-vave field was to

be expected, despite the fact that the e2A interaction tern is more

properly regarded as generating a nass shift rather than a uniform energy-

shift. Indeed the shift is not uniform but is cancelled by second-order

effects of the ep.A term.

Similarly we have shown that a pure plane^wave field will not induce

restoration of spontaneously broken symmetries, because its contribution to

the effective potential function vanishes for reasons of invariance. In

principle, at least, a non-plane—wave field can have the desired effect. The

simplest practical example is the standing wave produced by reflection from

a mirror. However, at the present time the effect is far too small to be

seen.
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