e
i)
]
-
[ 4

4

oy,

INTERNATIONAL
ATOMIC ENERGY

AGENCY
AP
N’

UNITED NATIONS
EDUCATIONAL,
SCIENTIFIC

AND CULTURAL
ORGANIZATION

(

e N T L IC/Th/1h40
I (R ST el S

INTERNATIONAL CENTRE FOR
THEORETICAL PHYSICS

TRANSITION ELECTROMAGNETIC FIELDS IN PARTICLE PEYSICS

Abdus Salam
and

J. Strathdee

1974 MIRAMARE - TRIESTE



e

i AN G A M ok o eV

. Lt i B

ER



1¢/74/140

International Atomic Energy Agency
and
United Nations Educational Scientific and Culiural Organization

INTERNATICNAL CENTRE FOR THEORETICAL PEYSICS

TRANSITION ELECTROMAGNETIC FIELDS 1IN PARTICLE PHYSICS
Abdus Salam

Internaticnal Centre for Theoretical Pbysics, Trieste, Italy,
ahd
Imperiel College, London, England,

and

J. Strathbdee

International Centre for Thecreticsl Physics, Trieste, Italy.

ABSTRACT

¥We present a computation of one-loop effective potentials for
elementary systems placed in a strong magnetic or a laser-produced electro-
magnetic enviromment. This permits a determination,in principle,of a
hierarchy of transiticn field strengths, for which the systems concerned
may {for appropriate values of the parameters in the theory) make trensiticns
from a spontaaneously broken asymmetric phase to one of restored symmetry.

MIRAMARF ~ TRIESTE
21 November 1974

* To be submitted for pubdblication.

I. IRTRODUCTTCN
1)

spontanecusly broken symmetries in particle physics are correct then

In sn earlier note it was suggested that if present notions of
elementary systems may make trensitions from the asymmetric phase to a
symmetric one in an environment provided by laser—produced electrcmagnetic
or strong static magnetic fields. An analogy was drewn with the case of
superconductors where a strong magnetic field destroys the state of order .')
This analogy has as its basls the Ginzburg-Landaw equaticns fer the Cooper-
pair field in superccnductivity theory. These equations also happen to be
the prototypes of field equations currently used in spontsasnecusly-broken

gauge theories of particle physices 2).

The main purpose of this paper is to present the formslism for
determining transition fields rather then to discuss any specific meodel.
Our approach is similar to that followed by a number of authors 3) who
determine the effects of = (high) temperature enviromment on particle
asymmetries. Like these authors, we compute the effective potential
{in & one-lcop approximation} but in an electromagnetic enviromment. We
show that the non-zero expectation vaiues of certain {meutral) scalar fields -
which in a field-free situstion signel spontsneously broken symmetries - may
make transiticns to zero - sigralling symmetries which sre restored - when
strong external fields . are present. The existence and the mumerical
walues of these fields depend on the values of parameters in the model
considered. We show in particular that the case of laser-fields is more
directly snalogous to the case of a high-temperature enviromment - in that
{1ike temperature) laser-fields affect the mass parsmeters for the scelar
particles in the theory, while strong megnetic fields, more subtly, affect

their kinetic energies.

‘) By a curicus inversion of terminology (which unhappily is the source of
s fair amount of confusion to the pon-cogmoscenti),the "state of order”

in condensed matter theory is the state of "spontaneously broken symmetry”
in particle physies. A megnetic field which destroys the "ordered-phase™
i1 condensed matter physics terminology, in fact,"restores symmetries"

in the language of particle physies!

'*} Prof. G. Feldman has suggested that there may be anslogous transition

effects in strong grevitetionel envircnments.
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The plan of the paper is as follows. In Sec.II we obtain a completely
general expression {2.1L) for the effective potential in the presence of a
uniform externsl magnetic field, H . To the leading order in H2 y this

expressicn can be approximated by:
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In this formula VO is the elassical potential expressed as a function of
neutral scaler fields ¢ , with charged fields set equal to zero. The
functions Mnj(¢) are the mass values associated with particles of spin ]
in the backgrqund of constant neutral scalars ¢ . In particular, the
spin-zero masses M§0(¢) are given by the eigenvalues of the matrix of
second derivetives of the classical potentiel VO evaluated for arbitrery

2
values of the neutrel fields, while the spinor and vector mass functions, Mn}’ Mnl’

are obtained in the standard manner of spentanecusly breoken thecries from the
classical Lagrengian, in the unitary gauge. The one-loop contri-

bution to the potentisl is interpreted asg a shift in the veacuum energy
density {a gauge-independent concept) due to zero-point oseillaticns [see
Sec.II for details), then it is reasonable to suppose thet only physical
excitations should contribute. The first correction term in {1.1) involves

a sum over all physical particles (and antiparticles where these are distinet)
of spins J = 0,2,1. This is the term in the effective potential first

given by Coleman snd Weinberg * . The second correctien term involves s

sum over sll charged particles (of one sign} only. (Tt can be identified

with the ¢-dependent part of the photon wave function renormalization. )}

The effect of a laser beam on particle symmetries is also of interest.
Insofsr as this can be treated by means of an effective potential,the

relevant correction takes the form:

2
woom EL (A
Bln® ¥

¢
U)ZMi (1+21n Mﬁ) . (1.2}

%) For problems connected with the renormalization of Mi in log Mﬁ s €%

h)

the discussion given by Coleman and Weinberg or Weinberg .
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where the sum extends over charged particles and d‘u 18 a (complex) space-
like vector which 1s used teo represent the amplitude and phase of a mono-
chromatic laser beam:

Au(x) = Re(d4IJ e 1k-x)

with k2 =0 and kudiu =0 . The formuile {1.2) is discussed briefly in
Sec.II.

We briefly consider a simple exemple in Sec.IITin order to illustrate
and make more concrete the formalism developed in Sec.II. This exemple,with
local 0{3) symmetry, ineludes two spin-zerc triplets: a scalar ¢ and o
pseudoscalar ¥ . The classicel potentiml involwves six independe:t
parameters and? depending on their values, may give rise tc a CP-violating
vacuum, (%) +£ 0, In any case there would be a set of distinet zeroth-
order vacu; amongst which transitions may be expected when the H-dependence
of the effective potential is taken into mecount. Although this model is
not a realistic one, it may serve as a prototype from which to deduce {by
seeking for minime of the effective potential) a hierarchy of critical fields
[for example Hc and H;, corresponding to <¢> £F0, {x» =0 and
<¢> =0, <,(> + 0] at which the various transitions are brought sbout. The

expressions for these critical fields are displayed in Egqs. (3.23), {3.24) and
{3.25).

One may enquire, which of the broken symmetries in particle physics
are likely to be affected by the considerations of this paper and for what
transition fields (if any)? Clearly this depends on the model considered.

However, the following are some of the typical situations:

1) Broken strong interaction symmetries like eclour, or SU{4) or
suU(3} , with the mssociated mass differences {for example) between n and A
{quarks), which are commonly generated by postulating non-zero expectation
velues of certain scalar fields. For field-strengths exceeding the critical

value, these mass differences would disappear.

2) Asymmetries of unified weak and electromsgnetic interactions,

e.g- (Y,v') or [e,v) mass difference in the simple SU(2) x U{1} model.

3} Parity-violation in those models where (V+A) currents are
introduced symmetrically with (V-A) currents. These include Weinberg's
SUL(3) * SUL(3) based on the Konopinski-Mehmoud triplet of leptons
and the SU (2) x sU (2) x SU'(M) model of Pati and Balem 7
models, P-asymmetry (and with it C~asymmetry responsible for Kl—K2 mass

For these

difference) would disappear sbove the appropriate transition field strength.
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4) Cabibbo angle {and mssociated hyperon-decays) which would reduce

to 2ero, for strong fields and was discussed in Ref.l,

5) Milliveak(or superweak)CP~violation (for exemple in the

models of Lee, Pals, Mohapatra end Pati S)J 8lso considered briefly in
Ref.1.

6) Finally, baryon- (and possibly fermion-) number violationg)-

As remarked above, one may expect a whole hierarchy of transition
electromagnetic fields associated with the restoration of one or more of

the symmetries 1isted abova.

Our considerations in this peper are limited to the one-loop
corrections to the effective potential. (Even at the one-loop level we are
excluding corrections to the kinetic ensrgy terms ) What the effects of
two=lcop and higher corrections (leading, for example, to dynamical phenomens

like the composite Cooper-pair field with its non-vanishing expectation value

in supercandubtor theory) on the transition fields.will be = that is,on their

existence and their megnitudes —is difficult to conjecture. {As a rule, higher

loops contribute terms of the type Mh(log M2f1 and e2H2(log M2)nJ There is
10)

also the interesting possibility, studied by e number of authors, where
some of the scalar field expectation values are generated by the gquantum

corrections to the potential. The model of Sec,III is relevant to such
gituations though we do not discuss the problems raised in complete generality.

II. EFFECTIVE POTENTIAL - GENERAL FORMULAE

It is generally sgreed now that the most compact and elegant way to
treat the symmetry properties of the vacuum is by means of the so-called
"effective potential”. ! Qur purpose here is to compute the dependence of
this function - in the one—loéﬁ approximation - on & uniform magnetic external
field. 11 The magnetic perturbation may be expected to cause significant
shifts in the extrema of the potential and even, when the field is strong
encugh, to alter the internal symmetry of the wvacuum. {Analogous effects

due to an external laser bedm will also be discussed.)
The general form of the one-loop cerrection to the effective potential
is emsily described. Thus, given the classical action functional 5{é,H)

X i . N
which governs the system of fields ¢~ 1in & magnetic environment, cne

constructs the propagetion functions 'G13(¢,H) sccording to the definition

o
G-l = - m’%‘- » (2.1}
B setee!

which must be inverted subject to the usual causal boundary conditions. Then

the effective action functional is given by

T(¢,H) = 5{p,E) + Trin Det G(4,E) + ols®) . (2.2)

The terms of order ﬁe are represented by the one-particle irreducible
grephs with two or more loops in which the lines are associated with the
propegeator (¥/i} G(¢,H) and the vertices with the third- and higher-order
functional derivatives of the classical asction (i/n) s{¢,H).

The functional T{¢,H) is far too complicated to be computed in
general. Even with the neglect of O(hz) terms, the best one can obtain is
the value of T (or any one of its functional derivetives) for constant,
xu-independent,¢ or the first few terms of an expsnsion in powers of the

derivatives of & slowly varying ?3) ${x):

r{¢,B) = Jax[ - v{plad B) +1 2(p0x),B)(3 007 + ] , (2.3)

In this note we are concerned with the function V{(g,H) = V,(¢) +
+ %R Vl(¢,H) v The one-loop contribution te this functien is given,

ascording te (2.2), by

4 =5
5y fn Det 6(¢,H) = 27 T &n G{¢,H)

=L Jax Gxlam slem)xy
i.e.

AV, (¢,H) = _‘g-i— {x)in ale,B)|x)
{2.4)

where, in a rather obwvious notation,ihe matriz elements of the one-body

operator G are defined by {2,1),



-
rlote,my™ | = - iR, (2.5)

evaluated at constant ¢ and H . To obtain Vl s+ therefore, we need the
diagonal elements of EnG.

The definition {2.5) reads, for the case of a single charged particle
acted on by a uniform megnetic field directed along the 3-mxis,

<x|G] x‘>

-1 .
T S SR e

1

G- 2+ fr+ Bx)? (k- En) s vftor - ae] )

(2.6)

where the masss term, M2(¢) , 1s allowed to depend on any neutral (constant)
fields which mey be present. M2(¢) iz simply the second derivative with
respect to the+charged fields of the classical potential VO evalusted at
the origin ¢~ = 0 . ({(Dependence on the charged fields themselves will
not be considered since we shall sssume that the enyvironment is electrically
neutral, i.e. <¢t> = 0.)

The cperators XH’KU satisfy the commutation rules

[Kp ’K\J = “i'rl'}.m

and their respective eigenstates are normslized such that

Cebxd o= gyl —x) <kl o= @0 sbe-w) , (xlr) = o7
The gauge combinations
m - 24 = S
1=K Y, L =K - 5x (2.7}
have the commutator
), ) = tex . (2.8)
-7-

A formal device for computing & , a0, eto., is the integral

repressntation
=14V -1

o
v_ 1 _s
(- 16)" = o7 Jodt t o-its

and, in particular,

-1
{xl (- i6)” [xy = -]:%:)-J’ a 7 < ito x>
0

-] (-]
= 'ﬂ.d_kik_i 1 J a1tV axp[-it [kg + kg + M'g' ig]]
)t o

<xlx2| exp[—it [Hi + Hgﬂlxlx2> »

s -1
where we have used the fact that KO and K3 cormute with G . After

rotating the k;, end k3 contours through +774 and -mL , respectively,

we may reverse the orders of integration and carry out the resulting

Gaussian intergals over kg and k3 ., We then votate the t contour

tkrough =7/2 and take the limit £-—0 , The result is

w

- 2 2 2
<x|Gv|x> = Wf}(vj[ at t 2 <x1x2| exp[—‘t[]’[:L + HE + M ]]1xlx2> 5 {2.9)
Q

which appears to converge for Rev > 1 . The metrix zlement in the integrand

can be evaluated explicitly.

To do this introduce the new states |Q1Q2> defined Dby

Coglnyy Eeln o B onf Hu-a) ] e

The new states are orthonormal and they have been chosen such that

-5
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<"1"2‘[“§ ¥ ]in°‘2> -3 ;qf T ECRRL

The eigenvalues of this operator are well known. It is now a simple matter to
show that
<ngx2Eexpl:-t[He + I H[x x2> 2]:: exp -t(n + 5)(2e}{)]
n
1 el

™ sinh(teH)
“ (z.11)
The diagonal elements of G are therefore represented by the integral

o

V)~ i -2+ R 2
G = — Tty ool
<x| |x (h-n)gr(\;) {[ as t TToTioET © ", {2.12)

vhich converges for Rev > 2 . The result can be smalytically conmbtinued
in the complex v-plane and expressed in terms of the generalized Rlemenn

zeta function s

. 2uv
W
x|y = 12(—?%— cv-l,%‘ﬂ . {(2.13)

The derivative with respect to Vv at v = Q0 of this eguation gives the
diagonal element of 2nG,

<x|in G|x> = - “‘i)z %—[Mh - -lé-eel{2] tn(2eR) + (2eH)2 C' [—-1 , o s EH]
LB

This expressicm is exact. For practical purpcses one needs only the leading
terms in an expansion sbout H = 0 ., After discarding such fterms as can
be absorbed by a finite renormalization one finds for the contribution of

e charged scalar particle and its sntiparticle to the effective potential,

<x|2n olxy = liam}‘ Ll - g it + ] ; (2.15)

The contributions of charged spinor and vector particles can likewise
be evainated but with considersbly more difficulty. In fact it Is not
necessary to have detailed knowledge of the various propagators in order to
evaluate their contributions to the effective potential. Only the excitation
spectrum is needed. We now give an alternative (and abbreviated) derivation

of the formuls (2.15) which generalizes more resdily to the spinor and

vector cases,

Firstly, one must recognize that the one-loop contribution {2.4) is
nothing more then the ¢- and H-dependent pert of the shift in vacuum energy

density due to the zero-point oscillations of the charged field consldered

13)

as a set of harmenic oscillators. ~ For example, when H = 0 one writes
k] ksl [dhk
"1 {xlin alxy = E_J(_)E tn(-k% + M - ig) .
21

Differentiating both sides with respect to M2 giveas

12 o ﬁ 4k i
—m- — L x|in G|x>
gt Hiem® @+ o - ic

_@J £ 1
2 (211)3 EZ_E + F

after integration over ko . This mesns,

- ‘]21_1 <xii?.n GJx>

+ constant , (2.16)
{2n

which is menifestly a sum over zero-point energies.

When a magnetic field is directed along the z-sxis the excitations
are labelled by kz and the integer n ,

(kz,n) =Jk$ T (n + %) EeH’ {2.17)

=10~



and the plane wave density of states factor dsl_(/(21r)3 is replaced by
{em/2m) (dk /2w) . The sum over zeroc-peint energies then takes the form:

o
.o
B k1)
f__zﬂz E 5L wpe, ) (2.28)
4 a

To evaluate this sum we use the representation

2

w1—2v = \J-%, e-t'.c,..\

0
oI jdtt
e

and replace (2.17) by the expressiecn

RS A S
2r 2wl 2Tv - 1)

n

8

2
it VR gt

of——y

- 2nirtv) % (EeH)E'v c[v -1, !fgtisﬁ
v = 3) m2 v-1 e

(2.19)

This result has a simple pole at Vv = 0

]
1
er® T(v} . _ L
v - 3 ~ I Y
which reflects the fact thet the sum {2.18) is divergent. To extract the

"finite part" from [2.19) one should mulbtiply it by v and compute the

derivative with respect to v at v=0. 16 One sees by compariscon with

(2.13} and {2.14) that this prescription for the finite part of the vacuum

energy shift agrees {up to an unimportent finite rencrmalization) with

(an/2i) Lalinolx)y .

-1}=-

The generalization of (2.17) to particles which carry spin Jorl
has been given by Tsal 17)

3
m(kz,n,sz) = [kz + M2 + (2n+1 -2q Sz) eH:| R (2.20)

where g = 1 denctes the charge and Sz the z-component of spin. The simple
formula {2.20 ) applies only to spin-2 particles whose magnetic moment 1s
given by the Direc value and to spin-l particles whose magnetlc moment is

fixed by & non-sbelian locel symmetry SU(2) contairing the electromagnetic
gauge group.

It is now stralghtforward to write down the genersl expression for
the one~loop part of the effective potantial,

V(l){¢:H) v(:_)("f”) *+ H2 V(l)(¢) + o (2.21)
to leading order in H2 . The neutral term is given by
. n 423 b .
k1 Vm(d)) = ] Z Z (=) (25+1) L tn Mid , {£.22)
J n

where the sum extends over all particles (and antiparticles whera these

are distipct) of apina j = 0,3,1.
«

given ~ by

The first magnetic correction is

#) Note the sequence of signs for charged scalar and Fermi versus charged
gauge fields so that the absolute sign of the coefficient of the H2 term
in the effective potential is model dependent. From Tsai's work, it
becomes clear that the reascon for the opposite signs for scalar versus the
gauge-mesens in (2.23) (in what is essentially a one-loop contribution to
the photon wave-function renormalization parameter Z3} is to be scught in
the anomalcous megnetic moment carried by the charged Yang-Mills particles
which {together with the photon) meke up the SU(2) gauge triplet., This
presumably is also the reason behind the mysterious circumstance that the
function £ in the renormalization group formalism is negative for non-
abelian gauge theories - a circumstance which plays such & crucial role

in these thecries being asymptotically free.

12

i
R T R P 1

L 0

P

T

(e

oS



2

' £ee i
* v(l)(¢) = E6W2 ZE:: [;Ln Mio -4 in Mi% + 21 &n Mil] , {2.23)

G

where the sum extends over charged particles (of one sign) only. It is

perhaps worth pointing out that the He—term in the effective potential can be

identified with the ¢~dependent part of the photon wave function rencrmalizaticn,

T
fe. Z,=1+2 V(l)(¢) . This indicmtes elsc that in & movipg frame one

should make the replacement HE — o - B since 23 is inveriant.

In deriving the sbove expressions for the effective potential we
have taken the view that the shift in vacuum energy density is to be identified
with a sum over the zero-point energies of a collection of oscillators
corresponding to the physical ome-particle excitaticns. In theories with g
local symmetry it is of course true that the excitation spectrum is gauge
dependent. If the only vector in the problem were the photon, then 23
would be gauge independent and there would be no difficulty. However, if the
photon is contained in & multiplet of vectors which mediate a non-abelian
locel symmetry (ms is the case for (2.23)) then Z_ - &nd the effective

. 3
potential in general do involve gauge parameters. In such models it

is not clear how seriously to teke the effective potentisl., To us,the most
plausible alternative is to adopt the go—called unitary gesuge insofar as

this can be done consistently, since in this gauge only physical excitations .
appear 1ln the intermediate states. A poténtial difficulty here is the lack

of renormalizability of gauge-debendent quantities in the unitary gauge.
{However, Dolan and Jackiw 18 heve demonstrated the renormalizability in
one-lcop approximetion of the scalar electrodynsmics potential V{¢) in this
gauge. Our considerations above, based on Tsai's formulae with the Yang-
Mills value for the magnetic moment of the charged vectors, would appear

to bear this out.)

fnother kind of electrodynamic enviromment which mey prove to have
& signifieant influence on parficle properties is that provided by a laser
beam. An interesting effect, discovered by Brown and Kibble 19), is the
purely classical shift in the masses of charged particles moving in the beam.

For a monochromatic beam characterized by the {Landau gauge) vector potential

Ax) = Re(sd iRy (2.24)

2

“with k¥ =0 end kucsiu = 0, the mass shift is given by

né = (-7 &) (2.25)

e
2

-13-

frem the term 3 e2 ¥ Ai in the scaler-electrcdynemics Lagrangian

{which is positive since u4u is spacelike). An indication of the magnitude
of the influence of this phenomenon on the effective potentisl is obtalned
by substituting ME-—+M2 + AWF for the charged particle masses in (2.22).

For each charged state one obtesins the contribution

egﬁ *

A = 2D A A 12 m) . (2.26)
(1) 6hn2 o

The factor {1 + Eanz) in this formula should presumsbly be resd as "a mumber

of order unity". The factor is certsinly not relisble since it indicates

a logarithmicslly divergent coupling of two photons to the neutral fields

which is clearly out of place in a gauge-invariant theory. The formula (2.28)

is therefore indicative at best.

Tt is interesting to note the significant difference between the
laser and magnetic enviromments. The cne gives a perturbation nzee 2M2 and
the other ~32Hg£nM2 ., This is due to the fact that the magnetic field
affects the propagation of charged particles through thelr kimetic terms while

the laser fieid appears to act through their masses.

I1I. AN EXAMPLE WITH A HIERARCHY OF TRANSITION FIELDS

It is quite easy to invent models which can incorporste a hierarchy
of sponteneously broken symmetries, We take s relatively simple exemple in
which the effective potential depends on only two neutral spin-zero fields,
a scalar,@ , and a pseudoscalar, X,8nd take the discussion far enough to
exhibit Mio . Mi% , Mil without actually solving for the numerical vaelues
of the eritieal fields. II there are two vacuum expectation wvalues <3P>,
{x» in the model, these are determined, in principle, Dy solving the pair

of algebraic eguations

v av
% ax
where V takes the form

Vo= Vylpax) + 1V (@ax,E) + e

=14~



with Vl computed mccording te the rules set out in Sec.TI. One chooses
the {renormalized) parameters in V such that, for example, the vacuum values

<¢)>H=O ) <X>H=Q = XO are non-vanishing, This corresponds to the case of
two broken symmetries. One then re—solves the equations with H F0 ang
determines the function <X>H . A eritical field, Hc , for resteration

of one of the two symmetries is then obtained by solving the equation
<X>H = 0,

the resulting Hc being expressed as a function of the renormalized couplings
1

and masses from the H = 0 theory. A second critical field ]-Ic would

correspond to the solution of <¢>H =0 .

To ié.lustra.te, consider e simplified version of a CP-violating model
{due to Lee )). The Legrangian, which has local 0(3) symmetry, involves,

in addition to the gauge vectors, a fermion, a scalar and a pseudosecalar:
all triplets,

d{=‘%fw2 +E-(_jﬁ—m)’1g+.?_’.(f1$x¢+f21x753}

~L ~

1 2.1 2
+ E (vu?‘) + E (vuz(‘) - V{O) (9;;2(') »

(3.1}
where the covariant derivatives are given 2z usual by
VUQ': au£+eﬂu x;?z ?
B = 0H, -3 rel, ~ 8,
ete., and the potential by
v (¢)=—L2¢2 Ef- 2+;-}—2+a22+33-22+a—h( )2
(0} '2X T b Xx Tty ty s x ty W
(3.2)
For stability it is necessary to have
2
31>0’&2>0=515'2>(9'315'h) . (3.3)

but the parameters ]_:2 and |<2 may be positive or negative.

_15_

The extrema of V are determineu by the eguations
(o)

it

Wioy/3; = byl + e’ +and) Hx(ag0 = 0,

|
o

W 0) /3% xy (- + aEx2 + et?) + 6 (a,0%)

(3.4)
It will be assumed in the following that 1.12 » 0 s0 as to exclude the 0(3)-
symmetric solutlon <¢i> = <Xi> = ¢ . Another scluticn, cne with no
residual symmetry, is excluded by requiring &, < 0 . The possibilitlies which
remain preserve an 0(2) symmetry which is to be asscciated with electro-

negnetism, Thus, we have

¢, = 1¢ X, t iy
<¢¢>=<'}7§"“g> =0 ama (%) = (1?-2-> =0 ,

(3.5)
while <¢3> = (po and <)(3> = )(0 satisfy the pair of equations
av
0 _ 2 2 2 _
_BJF)' '"”[’“*al‘f’o”as*“u)xo]‘o'
ov
(0} _ 2 2 2] _
% _1['K+“2Xo+(33+ah)q’0]_° )
(3.6}

There are essentially two alternatives here:

(1) Cp% = uzlal and Xg = o (or Py =0 x:é = J:e/az) N
(3.7}

a ue - {a_+s )K2 a2 - (a +ah)u2
2 _ T2 3k 2 _ 1
(1) @y = ———— e xp =

28, - (agte, )?

3
B8, - (&3*’&1‘ )2
{3.8)

Soluticn (I) respects CP while solution (II) viclates it (the order of magnitude
fox _

of CF wvioclation being = fE ¢0 which is empirically =« 10 3) . To test the
1

viebility of these solutions it is necessary to exemine the mass matrix.

This matrix decomposes inte two pieces, charged and neutral:
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2%y 2%y
39, w9_ 36, ox_
Mi =
v v
ax, 9 X, OX_
2 2 2
=4+ alq) + 33)( ah¢x
n @Y ~Eraf + ey
{3.9)
f 2
3%y 3%y
¢, 39 ap, 3
3773 33
W =
n .
3%y v
RERAE My g
2 2
—uT o+ Za @ 4 (a3+ah)x2 2(a3+ah)¢x
2 2
2(a3+ah)¢x -7+ 3a,x" 4 (a3+ah)¢2
(3.10)

By substituting the values (3.7) into {3.9) and (3.1C) one sees that solution

(I) is visble if

2

In this domain soiution (II) is not viable {i.e. ¥° < 0 according to (3.8)).

2

>0 and agtay > &) 55 . (3.11})

n o=

On the other hand, sclution (I} is excluded while {II) becomes viable if

p2 > Q0 and either
I
-2 B T | 2

or

“17~

if 2 <0, (3.12)

For the following discussion we shall assume that one of the

conditions (3.12) or (2.12') is satisfied. Substitution of the values (3.8)

into the charged mass matrix (3.9) yields the singular form

2
%o =Xg %p
<M2> = oy
e 2
% %p Py
[ %] (xp -wp)
= -,
—(po

and this result shows that the field combinetions

(P0 ¢i + Xo X

t
Vog+ 3

(3.13}

pre Goldstone modes. At this point we can exercise our optior to choose the

unitary geuge by imposing the constreint

The remaining charged scalar in the system, the Higgs-Kibble mescn,

§ = Py X ~ Xg % ,

2
o * %

carries the mass

Mi(gp,x) = (_KE + g X2 + a_3q>2) cosES - EaWX cosB sinf 4+

2
+ (-pg + afPE + a3X2) sin2B s

where the angle B is given by

. X o€ - (ag + )2
tenf = " = /73
%y CINT (53 + 2 )

(3.18)

(3.15)

{3.16)



To 1list the other states in the model we have, in addition to H, ,
1) two neutral scalars whose masses are given by the eigenvalues
of (3.10},
2) a peutral fermion with mass m ,
2

3) e pair of charged fermions with mass 1:12 + i‘icp2 + fgx .
4} the photon,

2,2 2
5} a charged vector with mass Mg = e"{p° + x°)

Now according to the formulae of Sec.ll, the one=loop correction to
the potentisml is given (for H = 0) by *)

2
Vi) = s EMII; [Mz((p’x)}wrr Mi'; zn—m——%(cp'x)
6hn® ME‘PO %o Man(q’o‘xo)
- -
+3e(q9 +x°) £n2 5
Fo * X
[ 2 £ 4 2.2
2 2,222 I LA
-8 {(n +fiq, +f2x) 5 55 5 ,

m + P! +fx
171
. 20 {3.17)

vhere Mf 1s defined by (3.15), (3.16), and Mi by (3.10). The megnetic
correction is given hy

2 2 Wi ,x) R
2 P X m a7 X 2 2
B vy = 2 ‘“[Mzc ] Ani—3 féa §2+21£“[2+2J ’
96T L @goXg) * Iy o, Po * %o
(3.18)
These expressicns must be combined with the classieal term,
2 e, &_+a,
B p_ 2 K I U - I 3 k2.2 .1
ORI A SR T E S L

in order to find the corrections to @) and <x> and, ultimately, the two

eritical fields by using the minimizing precedure outlined in the beginning of

this section. (Note that for neither of the critical fields, Hé <¢>H= o,
<X> # C) <¢> £ 0, <X>]‘L_ 0), assuming both exist, would the'mass’of

2
the charged gause partlcle m, vanish, since mﬁ(dJ x) = e (

The reference masges which fix the normalizetion here are the classical
(vacuum) values. For the neutral palr we take the larger of the two eigen-
values of Mi&po,xo)-

-19-

¢2 + XE).) With the

potential
g 1
V= V(g)(q’-x) +1 v(l](-cP:X) +AH V(n(q’.x)

5 Vip.x) + B Ulex)

(3.20)
the minimization prodlem comprises the pair of simultanecus equations
e 2 e
3P + H ap 0
-0} H2 E A
=+ = =0 .
ax N (3.21)
Eliminstion of I-l2 yields the compatibility condition
R/ 3ep /o
flp,x) = det = 0 -
v/ ay aufay (3.22)

Solution of the eguaetion

[
o

£p.0)

yields the critical value ((p)c whose suybstitution intc cme of the peir (3.21)

gives the critical field H . However, owing tc the speciml structure of
the mass functions Mz{cp,x) , ete., it is possible tc obtain guite directly
a simple formula relating <q;>c to Hc . This is done as follows.

To find the critical field Hc one solves the equations 3V/3gp =
and 8V/3% = 0 subject to the condition X = 0 . Then we have

. . [ Wig,0) ), (en)?
(3{] = — B_)(c' B 2M2(Cp,0) n = Mz *2 -3 ;15—
¥=C Bl @) L @,0)

which gives the formula
Mz(q:,o)

(eHc)2 = 3Ml;(q:,0) 2n S +1 {3.23)

M@y 4y

into which must be substituted that velue of ¢ which satisfies the other
equation, 3V{(@,0)/3p = The simplicity of the result {3.23) is due to

the fact that most of the terms in V are even in ¥ and therefore do not

-20=
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coutribite to the derivative gt ¥ = 0 . Only the function Mz(qa,x) , given
vy (3.15), con.ains an odd component {provided B # 0, m/2}). In more
complicated models there could be many such terms. The formula which

determines the critical value of P = qz iz given (igncring fermicns) by

2+ 3m g
2 2 1 2 2 1
Wo-eg = 5 |3ay(-u" + 3a.97) 42 2n w: +1
3em nl

2 2

-“+(a_+a, g

+ (a3+ah) Q—KE+(E3+%)¢2) {2 n M;’ 4
nl

2 ¥ ,0)

v 6ee? 42 tn|F—i 41 ) gnn_gc_q’__ :
 * Xo ¢ Mgy}

{3.24)

We do not know if this equation hes a real soluticn and, if so, whether it

vields a real value for H, when substituted imto (3.-23) . Y¥or have we

exsmined under whet restrictions on the parameters ue, Kz, Bys 8y s ete.
does the potentisl V possess & true minimum for Hc and ?, given by
{2.23) and (3.2h). Since the model is & simple and unrealistic one and
since we heve taken no sccount of many-loop contributicns to the potentiel,
we do nct feel that the very complicated equation (3.24)} warrants a detailed
analysis. We have exhibited it here merely to illustrate the numerical
complexity of the problem. {The formulae for the second critical field

H; are analogous, except, that roles of @ and ) ware interchanged. There
may ®lso be the possibility of a third critical field corresponding te

(¢ =y = 0), for a special set of values of the parameters. )

2 2 N
1f the choice of parameters u , K , 815 By 5 ete. is such that
Xy << ?0 (and @, is en epproximate solution of {3.2%)) one may
approximate to (3.23) by the expression:

”

i 3M§(q>0,0) [BMi(q,\O,O) - sz(q:o.xo)] .

A system of equations similar to {(3.23) and (3.2k) applics for the case
of leser induced transitions. The laser modified terms in the one-loocp part
of the potential: the charged particle contributions with M2 replaced by
M2 + AM2 inelude, in particular, the term

-2 -

whose derivative survives at x = 0 , unless

Mf(cp,o) + né
M‘z(:po.xo)

+1% 0,

2 (£19,0) + &F) a

2 *
oF oz & (~h o )

M%)
Y C_CP.O_X'; _Mg(c?,g),
fe (3.25)

{where ¥e is the square root of the base of natural logarithms). Intc this

formule for the critical leser emplitude must be substituted the wvalue of ¢
which satisfies 8V(®,0)/3¢ = O - an equation similar to {3.2).

It will be recognized that the formulee (3.23} and (3.25) owe their
relative simplicity to a very special choice of (unitary gauge K ¢ one which
excludes the Goldstone modes and per foree leads to the formula (3,15} for the
Higgs mass function. One could argue that another cholce of gauge would spoil
this and make all masses even funetions of ¥x . At this stage we can coly
warn that such gauges are likely to awplify the Goldstone contributions and
cause severe infra-red complications in the neighbourhocd of ¥ =0 . Our
hope 1Is thet the unitery gauge formulaticn presented above will prove = to the

spproximation considered - st least qualitatiwely correct.
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Weinberg and Dolan and Jackiw 3), in their parallel studies of critical
temperatures advocate the use of renormalizable gauges (with a Judicious
dropping of gauge-dependent terms) rather than the unitary gauge. Their
argument is that recognition of comparable crders of magnitude is performed
more relisbly in rencrmelizable gauges. We feel these are basic problems
of principle which await a convincing solution for all critical phencmena
in field theory.

22—



1)

2)

3)

4)

5)
6)
1)

8}

9)

10)

11)

12)

13}

1k)

REFERENCES

Abdus Salam and J. Strathdee, ICTP, Trieste, preprint IC/74/133

(to appear in Wature).

H.B. Nielsen and P. Olesen, Nucl. Phys. B61, L3S (1973);
Y. Nambu, preprint EFT Th/hO (1974}.

D.A. Kirshnitz and 4.D. Linde, Phys. Letters 42B, 471 (1972) and
Lebedev Institute preprinmt No.,101 (1974);

8. Weinberg, Phys. Rev. D9, 3357 (197L);

L. Dolan and R. Jackiw, Phys. Rev. D9, 3320 (1974);

C. Bernard, Phys. Rev. D9, 3312 (197L).

J. Goldstone, Abdus Salar and S. Weinberg, Phys. Rev. 127, 965 {1962);
G. Jona-Lasinlo, Nuove Cimento 34, 1790 (1964);

S. Coleman and E, Weinberg, Phys. Rev. D7, 1868 (1973).

S. Weinberg, Phys. Rev. D], 2887 {1973).

8. Weinberg, Fhys. Rev, D5, 1962 (1972).

J.C. Pati and Abdus Salam, Phys. Rev. D10, 275 {1974).

R.N. Mohapatra, Phys. Rev. D§, 2023 (1972);

R.N. Mohapatra 2nd 4.C. Pati, University of Msrylend Technical Report
Ho.74-085 (197h);

T.D. Lee, Physics Reports 3C, 145 (18T4}; Fhys. Rev.Dg, 2291 {197hk);
A, Pais, Phys.Rev. D8, 625 (1973).

Abdus Salam and J.C. Pati, Phys. Rev. Letters 31, 661 (1573};
Abdus Selem, J.C. Pati and J. Strathdee, ICTP, Trieste, Internal
Report IC/T4/121.

5. Coleman and E. Weinberg, Ref. b;

A. Zee, Phys. Rev. D9, 1772 (197k):

H. Georgi and A. Pais, "CP-viclation as a guantum effect"™, Report
No. CO0-223B-50 (1974).

This type of problem was first solved by J. Schwinger, Phys. Rev.
B2, 66k {1951).

B.S. de Witt, Phys. Rev. 162, 1195 (196T).

The exact dependence on Bu¢ for the case when all higher derivatives
vanish has been given by M.R. Brown and M.J, Duff, Oxford preprint,
197k,

See, for example, W. Magnus, F. Oberhettinger and R.P. Soni, Formulas
and Theorems for the Specigl Functions of Mathematical Physics,

third edition (Springer-Verlag,1966}.

-23-

U ) i LS -

15)

16)

17}

18}

19}

This interpretation is exploited by L. Dolen and R. Jackiw, end
S. Weinberg, Ref.3.

I.M., Gel'fand and G.E. Shilov, Géneralized Functions, Vol.I
{Acsdemic Press, 196L).

Wu-Yang Tsai, Phys. Rev. DT, 1945 (1973). This reference provides a
simple derivation of the eigenvelue formulse allowing also for
anomslous magnetic meoments. References to earlier work cen be found

here,
L. Delan and R. Jackiw, Phys. Rev. D9, 2904 (1974).

L.S. Brown and T.W.B. Kibble, Phys. Rev. 1334, 705 {1964).

ol

e -

[

N

gl -

.‘ -



