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ABSTRACT

We present a computation of one-loop ef fec t ive p o t e n t i a l s for

elementary systems placed in a s t rong magnetic or a laser-produced e l e c t r o -

magnetic environment. This permits a de terminat ion , in p r i n c i p l e , o f a

hierarchy of transition field strengths, for vhich the systems concerned

may (for appropriate values of the parameters in the theory) maie transitions

from a spontaneously broken asymmetric phase to one of restored symmetry.
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* To bs submitted for publication.

I . IHTRODUCTIOH

1)In an earlier note i t was suggested that i f present notions of
spontaneously broken symmetries In particle physics are correct then
elementary systems may make transitions from the asymmetric phase to a
symmetric one in an environment provided by laser-produced electromagnetic
or strong static magnetic fields. An analogy was drawn with the case of
superconductors where a strong magnetic field destroys the state of order.
This analogy has as I ts basis the Ginztmrg-Landau equations for the Cooper-
pair field in superconductivity theory. These equations also happen to be
the prototypes of field equations currently used in spontaneously-broken

2)gauge theories of particle physics

The main purpose of this paper is to present the formalism for
determining transition fields rather than to discuss any specific model.
Our approach is similar to that followed by a number of authors who
determine the effects of a (high) temperature environment on particle
asymmetries. Like these authors, we compute the effective potential
(in a one-loop approximation) but in an electromagnetic environment. We
show that the non-zero expectation values of certain (neutral) scalar fields
which in a field-free situation signal spontaneously broken symmetries - may
make transitions to zero - signalling symmetries which axe restored - when
strong external fields are present. The existence and the numerical

values of these fields depend on the values of parameters in the model
considered. We show in particular that the case of laser-fields is more
directly analogous to the case of a high-temperature environment - in that
(like temperature) laser-fields affect the mass parameters for the scalar
particles in the theory, while strong magnetic fields, more subtly, affect
their kinetic energies.

*) By a curious inversion of terminology (which unhappily is the source of

a fair amount of confusion to the non-cognoscenti).the "state of order"

in condensed matter theory is the state of "spontaneously broken symmetry"

in particle physics. A magnetic field which destroys the "ordered-phase"

I-Ji condensed natter physics terminology, in fact, "restores symmetries"

in the language of particle physics!

•*) Prof. S. Feldman has suggested that there may be analogous transition

effects in strong gravitational environments.
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The plan of the paper ia as follows. In Sec.II ve obtain a completely

general expression (2.11!) for the effective potential in the presence of a

uniform external magnetic field, H

expression can tie approximated by:

To the leading order in H , this

vbere the s ™ extends over charged particles and c*t is a (complex) space-

like vector which is used to represent the amplitude and phase of a mono-

chromatic laser beam:

+ ••• (1.1)

In this formula VQ is the classical potential expressed as a function of

neutral scalar fields 4> , with charged fields set equal to zero. The

functions M .(*) are the mass values associated with particles of spin j
nj

in the background of constant neutral scalars <t> . In particular, the
spin-zero masses W {$) are given "by the eigenvalues' of the matrix of

nC

second derivatives of the classical potential VQ evaluated for arbitrary

values of the neutral fields, while the spinor and vector mass functions, MnJ>
 Mjj

are obtained in the standard manner of spontaneously broken theories from the

classical Lagrangian, in the unitary gauge. The one-loop contri-

bution to the potential is interpreted as a shift in the vacuum energy

density (a gauge-independent concept) due to zero-point oscillations (see

Sec.II for details), then it is reasonable to suppose that only physical

excitations should contribute. The first correction term in (l.l) involves

a sum over all physical particles (and antiparticles where these are distinct)

of spins J = 0,5,1. This is the term in the effective potential first

given by Coleman ana Weinberg . The second correction term involves a

sum over all charged particles (of one sign) only. (It can tee identified

with the (^-dependent part of the photon vave function renormaliiation.)

The effect of a laser team on particle symmetries is also of interest.

Insofar as this can be treated by means of an effective potential,the

relevant correction takes the form:

AV (1.2)

•) For problems connected vith the renormalization of W in log K , see
li) n 5) "the discussion given "by Coleman and Weinberg or Weinberg
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H and H , corresponding to

f 0 at which the various transitions are brought about. The

with k = 0 and k rf+ = 0 . The formula (1.2) is discussed briefly in

Sec.II.

We briefly consider a simple example in Sec.IIIin order to illustrate

and make more concrete the formalism developed in Sec.II. This example,with

local 0(3) symmetry, includes two spin-zero triplets: a scalar $ and a

pseudoscalar x • The classical potential involves six independent

parameters and, depending on their values, may give rise to a CP-violating

vacuum, <^x^ £ 0 , In any case there would he a set of distinct zeroth-

oraer vacua amongst which transitions may be expected when the H-dependence

of the effective potential is taken into account. Although this model is

not a realistic one, it may serve as a prototype from which to deduce (by

seeking for minima of the effective potential) a hierarchy of critical fields

for example H__ and Hn , corresponding to ($} £ 0 , <x^> = 0 and

<( *̂ > - 0 ,

expressions for these critical fields are displayed in Eqs. (3.23), (3.2*0 and

(3.25).

One may enquire, which of the broken symmetries in particle physics

are likely to be affected ty the considerations of this paper and for whpt

transition fields (if any)? Clearly this depends on the model considered.

However, the following are some of the typical situations:

1) Broken strong interaction symmetries like colour, or SU(!O or

SU(3) , with the associated mass differences (for example) between n and ^

(quarks), which are commonly generated by postulating non-zero expectation

values of certain scalar fields. For field-strengths exceeding the critical

value, these mass differences would disappear.

2) Asymmetries of unified weak and electromagnetic interactions,

e.g. (y.v1) or (e,\)) mass difference in the simple SU(2) x U(l) model.

3) Parity-violation in those models where (V+A) currents are

introduced symmetrically with (V-A) currents. These include Weinberg's

EU.(3) x SUR(3) based on the Konopinski-Mahmoud triplet of leptons

and the SUT(2) x SU.(2) x SU'tM model of Pati and Salam T' . For these

models, P-asyranetry (and vith it C-asymmetry responsible for K ~Kp m a s s

difference) vould disappear above the appropriate transition field strength.

6)

-U-
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U) Cabibbo angle (and associated hyperon-decays) which would reduce

to zero, for strong fields and vas discussed in Ref.l,

5) Milliweak(or superwea]OcF-violation (for example in the

models of Lee, Pais, Mohapatra and Fati ) also considered "briefly in

Eef.l.

6) Finally, baryon- (and possibly fermion-) number violation •

As remarked above, one may expect a whole hierarchy of transition

electromagnetic fields associated with the restoration of one or more of

the symmetries listed above.

Our considerations in this paper are limited to the one-loop

corrections to the effective potentia] . (Even e.t the one-loop level we are

excluding corrections to the kinetic energy terms ) What the effects of

two-loop and higher corrections (leading, far example, to dynamical phenomena

like the composite Cooper-pair field vith its non-vanishing expectation value

in superconductor theory) on the transition fields.will be - that is,on their

existence and their magnitudes—is difficult to conjecture. (As a rule, higher

loops contribute terms of the type MU(log KSf and e2H2(log M2)n.) There is

also the interesting possibility, studied by a number of authors, where

some of the scalar field expectation values are generated "by the quantum

corrections to the potential. The model of Sec.Ill is relevant to such

•situations though we do not discuss the problems raised in complete generality.

II. EFFECTIVE POTENTIAL - GENERAL FORMULAE

It is generally agreed now that the most compact and elegant way to

treat the symmetry properties of the vacuum is by means of the so-called

"effective potential". Our purpose here is to compute the dependence of

this function - in the one-loop approximation - on a uniform magnetic external

field. The magnetic perturbation may be expected to cause significant

shifts in the extrema of the potential and even, when the field is strong

enough, to alter the internal symmetry of the vacuum. (Analogous effects

due to an external laser "beam will also bo discussed.)

The general form of the one-loop correction to the effective potential

is easily described. Thus, given the classical action functional S(<j>,H)

vhich governs the system of fields 4> in a magnetic environment, one

constructs the propagation functions G ( according to the definition

-5-

(2.1)

which must be inverted subject to the usual causal boundary conditions. Then

the effective action functional is given by

= S{tj>,H) G(4>,H) (2.2)

The terms of order -fi are represented by the one-particle irreducible

graphs with two or more loops in which the lines are associated with the

propagator (fi/i) G(<|>,H) and the vertices with the third- and higher-order

functional derivatives of the classical action (i/fl) S(<f,H).

The functional r($,H) is far too complicated to be computed in

general. Even with the neglect of 0(* ) terms,the best one can obtain is

the value of T [or any one of its functional derivatives) for constant,

x -independent,* or the first few terms of an expansion in powers of the

derivatives of a slowly varying <t>(x):

(2.3)

In this note we are concerned with the function V(^,H) » VQ($) +

+ •£ V ($,H) + ••• The one-loop contribution to this function is given,

according to (2,2) , by

| r - in Det d(<fi,H) = | r Tr Jin G(*,H)

G((f.,H)|x> ,

(2.U)

where, in a rathar obvious notation,the matrix elsmanta of the one-body

operator 0 are defined by (2.1) ,
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( 2 . 5 )

evaluated at constant ij> and H . To obtain V , therefore, we need the

diagonal elements of tnG.

The definition (2.5) reads, for the case of a single charged particle

acted on by a uniform magnetic field directed along the 3-axis,

eg

(2.6)

where the mass term, Jl (<t>) > is allowed to depend on any neutral (constant)

fields which may be present. JTCifi) is simply the second derivative with

respect to the charged fields of the classical potential VQ evaluated at

the origin QT - 0 . (Dependence on the charged fields themselves will

not be considered since we shall assume that the enviTonment is electrically

neutral, i.e. <^T/ = 0.)

The operators satisfy the commutation rules

and their respective eigenstates are normalized such that

- k'l

The gauge combinations

have the commutator

—
2 (2 .7)

(2 .8)

- 7 -

A formal device for computing 0 , inS , e t o . f i s the i n t e g r a l

r ep res sn ta t ion

and, in particular»

dt t" 1 + V

i fr v J f
dt

M
2- iej ]

where we have used the fact that KQ and K3 commute with G . After

rotating the kQ and k contours through *ir/\ and -ir/U , respectively,

we may reverse the orders of integration and tarry out the resulting

Gaussian intergals over SQ a n d k3 ' W e t h e n r o t a t e t h e * e o t l t o l i r

through - T / 2 and take the limit £ - t 0 , The result is

which appears to converge for Rev > 1 . The matrix element in the integrand

can lie evaluated explicitly.

To do this introduce the new states I ^ Q ^ defined by

The new statea are orthonoraial and they have been chosen such that

- 8 -



The eigenvalues of this operator are well known. It is now a simple matter to

show that

| [ ^ ^ = §f^Texp[-t(n + I ) (2eH )

(£.11)

UTT sinh(teH)

The diagonal Blements of G are therefore represented 'ay the integral

(2.12)

which converges for Rev > 2 . The result can be analytically continued

in the complex v-plane and expressed in terms of the generalized Riemann

zeta function ,

- 1
v - 1 , M

2. eH
2eH (2.13)

The derivative with respect to V at V = 0 of this equation gives the

diagonal element of SlnG ,

<x|4n G|x> = - J.n(2eH) + {2eH)£ ?• f-

This expression is exact. For practical purposes one needs only the leading

terms in an expansion about H = 0 . After discarding such terms as can

be absorbed by a finite renormalization one finds for the contribution of

a charged scalar particle and its antiparticle to the effective potential,

(2.15)

-9-

The contribiitions of charged spinor and vector particles can likewise
be evaluated Trot with considerably more difficulty. In fact i t is not
necessary to have detailed knowledge of the various propagators in order to
evaluate their contributions to the effective potential. Only the excitation
spectrum is needed. We now give an alternative (and abbreviated) derivation
of the formula (2.15) which generalizes more readily to the spinor and
vector cases.

Firstly, one must recognize that the one-loop contribution (2.1) is
nothing more than the <$- and H-dependent part of the shift in vac-aum energy
density due to the zero-point oscillations of the charged field considered

15)as a set of harmonic oscillators. For example, when H » 0 one writes

f J ^ - , - £n(-k2
 + M2 -

Differentiating Doth sides with respect to M'? gives

after integration over k. , This means,

fr + constant , (2.16)

which is manifestly a sum over zero-point energies.

When a magnetic field is directed along the z-axis the excitations

are labelled by k and the integer n ,

M2 + (n + j) 2eH (£.17)

-10-



Mid the plane wave density of states factor d3k/(2ir) is replaced by

(efl/2ir) (dk /2ir) . The sum over zero-point energies then takes the fond:

f d k s eH V^* (2.18)

To evaluats this sun we use the representation

V - \ -t(a

and replace (2.17) by the expression

(2.19)

This result has a simple pole at v = 0 ,

1
x - -

which reflects the fact that the sum (2.l8) is divergent. To extract the

"finite part" from (2.19) one should multiply it by v and compute the

derivative vith respect to v at V = 0 , One sees by comparison with

(2,13) and (2.l>t) that this prescription for the finite part of the vacuum

energy shift agrees (up to an unimportant finite renormalization) with

-11-

The generalization of (2.17) to particles which carry spin ; or 1
17)has been given by Tsai

nifk ,n,S ) = \\? + M2 + (2D + 1 - 2q S ) efl] (2.20)

where q = ±1 denotes the charge and S the z-component of spin. The simple

formula (2.20 ) applies only to spin-i particles whose magnetic moment is

given by the Dirac value and to spin-1 particles vhose magnetic moment is

fixed by a non-ahellan local symmetry SU(2) containing the electromagnetic

gauge group.

It is nov straightforward to write down the general expression for

the one-loop part of the effective potential,

V(1)(*,H) = # v u ) W + •••

to leading order in H . The neutral term is given by

* w * > f E Z (-)2J(2j+i)M-J
j n

(2.21)

{2-22)

where the sum extends over all particles (and antipartielas where these

are distinct) of spins j = 0,^,1. The first magnetic correction is

given by

*) Mote the sequence of signs for charged scalar and Fermi versus charged

gauge fields so that the absolute sign of the coefficient of the H term

in the effective potential is model dependent. From Tsai's work, it

becomes clear that the reason for the opposite signs for scalar versus the

gauge-mesons in (2.23) (in what is essentially a one-loop contribution to

the photon wave-function renonnalization parameter Z,) is to be sought in

the anomalous magnetic moment carried by the charged Yang-Mills particles

vhich (together with the photon) make up the SU(2) gauge triplet. This

presumably is also the reason behind the mysterious circumstance that the

function 6 in the renormalization group formalism is negative for non-

abelian gauge theories - a circumstance which plays such a crucial role

in these theories being asymptotically free.

-12-
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96r? Yl
v h e r e t h e sum e x t e n d s o v e r cha rged p a r t i c l e s ( o f one s i g n ) o n l y . I t i s

2
perhaps worth pointing out that the H -term in the effective potential can be

identified with the ^-dependent part of the photon wave function renormalization,

i . e . 1 = 1 + 2 v, ,($) , This indicates also that in a moving frame one
2 2 2

should make the replacement H ~* H - E s i n c e ! is invariant.
^ - •" • "•" * ' """" "" * ' " ~ ' " 3

In deriving the above expressions for the effective potential we

have taken the view that the shift in vacuum energy density is to be identified

with a sum over the zero-point energies of a collection of oscillators

corresponding to the physical one-particle excitations. In theories with a

local symmetry it is of course true that the excitation spectrum is gauge

dependent. If the only vector in the problem were the photon, then Z,

would be gauge independent and there would be no difficulty. However, if the

photon is contained in a multiplet of vectors which mediate a non-abelian

local symmetry (as is the case for (2.23)) then Z • and the effective

potential in general do involve gauge parameters. In such models it

is not clear how seriously to take the effective potential. To us,the most

plausible alternative is to adopt the so-called unitary gauge insofar as

this can be done consistently, since in this gauge only physical excitations •

appear in the intermediate states. A potential difficulty here is the lack

of renormalizanility of gauge-dependent quantities in the unitary gauge.

(However, Dolan and Jackiv have demonstrated the renormalizability in

one—loop approximation of the scalar electrodynamics potential V(p) in this

gauge. Our considerations above, based on Tsal's formulae with the Yang-

Mills value for the magnetic moment of the charged vectors, would appear

to bear this out.)

Another kind of electrodynamic environment which may prove to have

a significant influence on particle properties is that provided by a laser

beam. An interesting effect, discovered by Brown and Kibble ' , is the

purely classical shift in the masses of charged particles moving in the beam.

For a monochromatic beam characterized by the (Landau gauge) vector potential

J^Ul = E e l ^ e""**) ,

vith k = 0 and k tA = 0 , the mass shift is given by

C2.210

(2.25)

-13-

2 2
from the term I e $*$ A in the scalar-electrodynamics Lagrangian

(which is positive since J4 is spacelike). An Indication of the magnitude

of the influence of this phenomenon on the effective potential is obtained

"by substituting M —>JT + Atr for the charged particle masses in (2.22).

For each charged state one obtains the contribution

AV
(1) 11 V

(2.26}

The factor (l + 2.EnM ) in this formula should presumably be read as "a number

of order unity". The factor is certainly not reliable since it Indicates

a logarithmically divergent coupling of two photons to the neutral fields

which Is clearly out of place in a gauge-invariant theory. The formula (2.26)

is therefore indicative at best.

It is interesting to note the significant difference between the
2 2 ?

laser and magnetic environments. The one gives a perturbation ~ e A^M and

the other ~e2H Arm . This is due to the fact that the magnetic field

affects the propagation of charged particles through their kinetic terms while

the laser field appears to act through their masses.

III. AN EXAMPLE WITH A HIERARCHY OF TRABSITION FIELDS

It is quite easy to invent models which can incorporate a hierarchy

of spontaneously broken symmetries. We take a relatively simple example in

which the effective potential depends on only two neutral spin-zero fields,

a scalar, (p , and a pseudoscalar, X,an<i take the discussion far enough to

exhibit VT , JTi , M without actually solving for the numerical values

of the critical fields. If there are two vacuum expectation values <̂ !f7 •

<^Xy in the model, these are determined, in principle, by solving the pair

of algebraic equations

= 0 and f ••
where V takes the form

V0(<p,x) +1i V1(cp,X,H)

-Hi-



with V1 computed according to the rules set out in Sec.II. One chooses

the (renormalized) parameters in V such that, for example, the vacuum values

<P0 <*>H=Q = X0
a r e non-vanishing. This corresponds to the case of

two broken symmetries. One then ra-solvas the equations with H £ 0 and

determines the function A critical field, H , for restoration

of one of the two symmetries is then obtained by solving the equation

the resulting being expresses as a function of the renormalised couplings

and masses from the H = 0 theory. A second critical field H would

correspond to the solution of <̂<f))> = 0 .

To illustrate, consider a simplified version of a CP-violating model

(due to Lee ). The Lagrangian, which has local 0(3) symmetry, involves,

in addition to the gauge vectors, a fermion, a scalar and a pseudoscalar:

all triplets,

where the covariant derivatives are given as usual by

(3.1)

W = 3 W - 3 W + e W x W ,

etc. , and the potential by

2 £ a-, a a

For stability it is necessary to have

but the parameters y and K may be positive or negative.

(3.2)

(3.3)

-15-

The extrema of V,Q^ are determine^ by the equations

= 0

(3.1*)

It will be assumed in the following that y > 0 so as to exclude the 0(3)-

symmetric solution X^ ° • Another solution, one with no

residual symmetry, is excluded by requiring a, < 0 . The possibilities which

remain preserve an 0(2) symmetry which is to be associated with electro-

magnetism. Thus, We have

< O

while a n d

= 0 < X ± > = 0 ,

S H - t i s f y t h e p a i r o f equations

( 3 . 5 )

p + a, = 0 ,

av,(o) [-K2 +

There are essentially two alternatives here:

= 0 .

(I)

(II)

pQ = V / and 0 (or *<> = ° ' X 0

(3.6)

(3.7)

(3.8)

Solution (I) respects CP while solution (il) violates it (the order of magnitude

of CP violation being ss -^—r^- which is empirically a 10 ) . To test the
fl *0

viability of these solutions it is necessary to examine the mass matrix.

This matrix decomposes into two pieces, charged and neutral:

- 1 6 -



-U2 + eyp2 + a3x
2

\<PX

2 2 2

(3.9)

M2 =
n

3*,

3*.

32V
3*3

32V

-y2 +

(3.10)

By substituting the values (3.T) into (3.9) and (3.10) one sees that solution

(I) is viable if

..2
u2 > 0 and (3.11)

In this domain solution (II) is not viable (i.e. x < ° according to (3.8)).

On the other hand, solution (I) is excluded vhile (il) becomes viable if
2

y > 0 and either

if K < 0 , (3.12)

+ ai) < min Ug \ , »1 ~j if K2 > 0 . (3.12')

-17-

For the folloving discussion we shall assume that one of the

conditions (3.12) or (3-121) is satisfied. Substitution of the values (3.8)

into the charged mass matrix (3.9) yields the singular form

*0

and this result shows that the field combinations

T 0 't A Q X+
0± = (3.13)

2
X0

are Goldstone nodes. At this point we can exercise our option to choose the

unitary gauge by imposing the constraint

G± = 0 . (3.11*)

The remaining charged scalar in the system, the Higgs-Kibble meson,

carries the mass

where the angle 3 is given by

tang

sin2B ,
(3.15)

(3.16)

-16-



To list the other stateB in the model we have, in addition to H+ ,

1) tvo neutral scalars whose masses are given by the eigenvalues

of (3.10),

2) a neutral fermion vith mass m ,

3) a. pair of charged fermlons with mass "ym + ff<f> + fpX

h) the photon,

n 2 0 P
5} a charged vector vith mass JC = e (<p + x ) •

Nov according to the formulae of Sec.II, the one-loop correction to

the potential is given (for H = 0) by *)

'<•> • S 7 ["*Jin

2 ) 2+ 3 e><= + x<)

- 8 (m2

+ Tr

2 2

+ f2*0
(3.IT)

where t£ is defined by (3.15), (3.l6), and M̂  by (3.10). The magnetic

correction is given by

H 2 V
(1) - 8 Jin + 21 In

These expressions must be combined with the classical term,

'to). - f- X + IT

(3.16)

(.3.191

tn order to find the corrections to ^qp) and <[x^ a^d, ultimately, the two

critical fields by using the minimizing procedure outlined in the beginning of

this section. (Note that for neither of the crit ical fields, H'(<|4i/'H= 0,

<^Xy ¥ o), H (̂ (t" )̂ ?* 0, <fxV- OJ. assuming both exist, would the"mass"of
R *!• K- 2 2 r 2 2

t h e c h a r g e d g a u g e p a r t i c l e nL v a n i s h , s i n c e m ^ d f . x ) - e U + X ) • ) w i t h t h e

The reference masses vhieh fix the normalization here are the classical

(vacuum) values. For the neutral pair we take the larger of the tvo eigen-

values of M^(q>0>X0)-

-19-

potential

(3-20)

the minimization problem comprises the pair of simultaneous equations

Elimination of H yields the compatibility condition

f(ip,X) = det

Solution of the equation

3W/3X

fto.0) = 0

(3.21)

(3.22)

yields the critical value <(C|>>C whose substitution into one of the pair (3.21)

gives the critical field H , However, owing to the special structure of

the mass functions fr{(p,x) , etc., it is possible to obtain quite directly

a simple formula relating <"a\ to H . This is done as follows.
x ' f c c

To find the critical field H one solves the equations 3V/3q> = 0

and 3V/3x = 0 subject to the condition X = ° • Then we have

2M2(cp,0) l-a
(eH

M 2 (q>, 0 >

= 0 ,

which gives the formula

2 in (3.23)

into which must be substituted that value of cp which satisfies the other

equation, 3V(cp,0)/3cp =• 0 . The simplicity of the result (3.S3) is due to

the fact that most of the terms in V are even in x a"d therefore do not

-20-



contribute to the derivative at X = ° • Only the function Vfiq.y.) , given

by (3.15), contains an odd component (provided £ f 0, ir/2). In more

complicated models there could be many such terms. The formula which

determines the critical value of
' c

2
I E -5! + «n f

2

<p is given (ignoring fermions) Toy

We do not know if this equation has a real solution and, if so, whether it

yields a real value for H when substituted into (3-2.3) . Nor have we

2 2
examined under what restrictions on the parameters u , K , ̂ , a£ , etc.

does the potential V possess a true minimum for H^ and q?c given by

(3.23) and (3.21*). Since the model is a simple and unrealistic one and

since we have taken no account of many-loop contributions to the potential,

we do not feel that the very complicated equation (3.2lt) warrants a detailed

analysis. We have exhibited it here merely to illustrate the numerical

complexity of the problem. (The formulae for the second critical field

H are analogous, except, that roles of cp and X &re interchanged. There

may also be the possibility of a third critical field corresponding to

(if, = y = 0) t for a special set of values of the parameters.)

2 2
If the choice of parameters u , < , a1 , &0 , etc. is such that

v « <b (and (D- is an approximate solution of (3.2k)) one may

approximate to (3.23) by the expression:

0*"
,0) -

A system of equations similar to (3.23) and (3.2b) applies for the case
of laser induced transitions. The laser modified, terms in the one-loop part
of the potential: the charged particle contributions with M replaced by
M2 + AbT include, in particular, the term

-21-

whose derivative survives at x = ° J unless

rf;(cp,O) + AM2

2 (ir(cp,0) + at) An —— • + 1 * 0

s § -

(3.25)

(where Ve" is the square root of the base of natural logarithms). Into this

formula for the critical laser amplitude must be substituted the value of q>

which satisfies 3V(<p,O)/8<p = 0 - an equation similar to (3.2U).

It will be recognized that the formulae (3.23) and (3.25) owe their

relative simplicity to a very special choice of (unitary gauge : one which

excludes the Goldstone modes and per force leads to the formula (3.15) for the

Higgs mass function. One could argue that another choice of gauge would spoil

this and make all masseB even functions of x • At this stage we can only

warn that such gauges are likely to amplify the Goldstone contributions and

cause severe infra-red complications in the neighbourhood of x = ° • O u r

hope is that the unitary gauge formulation presented above will prove - to the

approximation considered - at least qualitatively correct.
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*) 3)

Weinberg and Dolan and Jackiw , in their parallel studies of critical

temperatures advocate the use of renormalisable gauges (vith a Judicious

dropping of gauge-dependent terms) rather than the unitary gauge. Their

argument is that recognition of comparable orders of magnitude is performed

more reliably in renormalizable gauges. We feel these are basic problems

of principle which await a convincing solution for all critical phenomena

in field theory.
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