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ABSTRACT

The appearance of Majoraras fermions in supersymmetric theories makes the
conservation of fermion-({baryon-or leptond number - particutarly in those models
which are rencrmelizable - something of a vproblem. To solve this problem, it
8ppEArs necessary to tolerate some hosons with fermicon-number two, and to generate

masses through s radistive spontaneous symmetry-breaking mechaniem.
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1. INTRODUCTION

A deep symmetry between Losons and MsJorana fermicns is the supposition
which underlies the recently propesed supersymmeiric models 1). However, in
nature there are no MajJorana fermions., It Is necessary tc define a conserved
fermion-number (F) such ss baryon-(B) or lepton-mmber (L) . This guamtum
nurber must distinguish the fermion mewhers of a supermultipiet from the
bosons. It ls cleear that simply complexifying the spinor composents will
not dc, since the supersymmetry will impose a corresponding complexificstion
on the boson components as well: the associated guantum pumber is shared
egually by all members of the supermuitiplet and eannct represent fermion
mumber F .

There have been two distinct propossls for defining a conserved fermiom-
number. One of them 2) makes use of Y. transformations oh the space of co-
ordinstes eu and is applicable to & ;'airly broad class of models: those in
which the chirel comporents 115‘+ and fb_ have no mitusl Intersmctions, Thia
class includes also the interactions with gauge fields provided the left-and
right-handed types are treeted as independent dynamical varisbles. A draw-
back of this kind of scheme ig the difficulty cone generally finds in writing
& mass term for the partizles. In additiocm, 1t is pesesible to have renormal-
izable couplings among the system of matter (non-gauge). fields only at the
price of introducing bosons with fermion-mumber F = 2 {"deuterons™).

3) is of more limited applicability. It is based

on the judicious combination of a set of gauge potentials wlth a supermultiplet

The second proposal

of matter fields in the adjoint representation of some local symmetry. In
this kindof model no mass terms and no self-ccouplings of the matter multiplet
are peruitted.

The purpose of this note is to review these proposals and indicate

gome problems associated with them.

A quite different approach would be to enlarge the supersymmetry
group, replacing the Majorans geverator of supertransistions, Su s by a
pair of Dirac spinors Su and 8% . In this case the fundamental represent-
ation will contain Dirac spinors (F = 1) in addition to real scelars.
Unfortunately, it will contain deuterons (bosons with F = 2) and, worse, it
will most likely not lend itself to the building of renormalizable models.

We shall not consider this approach here.



II. THE Y METHOP

In the superfield notation the fundamental supermultiplet i{s represented

by

1 . Sl % iy g 1%y
4‘:(1,3) = e:p[“ ﬁ;ysﬂ] At(X) + 8 —5—-5- Plx) + 5 5 —2-—-§- 8 thx) s

{2.1)

vhere A, and F, are spin-zerc parity mixtures and Y is s Dirac spinor.

The superfields ¢, and ¢_  ‘transform independently under supertransformations

and proper Poincaré transformations but are interchenged by space refiecticns.

It is possitle to impose a reslity condition, th_ = lb: . Or

which halves the number of independent componenis. However, if this is not
dope one may contemplate the effects of a new kind of transformation,

2,(x,0) + ™ o (x, explar,le) | (2.2)
or
A+ e A Ly emii)al ¥, F, > expli(me2lal F, .
(2.2")

The quantum number associated with these phase transformations is clearly
a scalar whichk takes the values, n, ntl, n+2 in the supermultiplet. We

propose to idemtify it with "fermior-nunmber".

A simple model jin which this number is conserved 1s given by the
L)
Lagrangian

4= § ()° (d’:’@‘ + 1.:@_] - £ 8p [@f T R R ] I (2.3)

where the weight D must teke the value -2/3 . The invariance of (2.3) is

readily proved witb the help of the transformation ruies for the covariant
derivatives,

L
" This is a direct generslization of the Wess-Zimino model )

with zero mass.
-

to complex fields

2'0,(x,8') = '™ expl¥ av,] D 8,(x,0)

+ expli(n-1)a} D &,(x,8} ,

where 8' = explz UYB] 8 . TFotice that the choice = = -2/3 preciudes
the possibility of & maea term in {2.3).The fermion-mumber assigments

-2/3 , 1/3 and 4/3, respectively, to A,V and F are viable cnly for mass-—
less particles. As we shsll see,this problem is a persistent one.

Note that the above assignment of fermion-numbers can be rescaled,
so that the spin—--é- particle carries F = 1 while the ‘bos.ons Ai carry
F=-2 . The sauxiliary fields 1"‘+ carry F =4 but are not associated

with particles. This 1s in fact a model of "barycns end anti-~deuterons”.

Gauge interactions can be irested in the same way provided the
local symmeiry governing them acts independently on chiral superfields ¢+
and ¢ . For example, if these fields belong to the fundswental represent-—
ation of B local symmetry,

Y (2.8)

then the gauge potentials ¥ and ¥' are required to transform mccording to

+
ik =14
eEg‘i‘ + e ¥ eEg‘l‘ e ¥ ,
. (2.5}
- ' iﬂ'_ - ] 'i“n’
et e 28 T
The gauge-invariant kinetic term for the matter fields is given by
- k=2 [t 2e¥ +  =2g¥ 2.6
Lotter = F (DD [w+ R N M L 20 I {2.6)
The gauge-invarimt kinetic term for the gauge potentials is given by
1 - —— -—t L]
= = 2.
Z gauge g [‘?a‘,u * Ta u.] * (2.7)

‘ L}
where the {spinor} superfield strengths '!"u and ‘l’u are defined in terms

L 1

1]
of the potentials by ‘Fu = H’a+ + ‘Fu_ . ‘?a = ‘Fm_ + '!'a_ with
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1 F iy - 1t 1y .
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(2.8)

Introduction of gauge potentlais in m Lagranglian which respecte the
¥, transformatious {2.2)} will pot disturb this inverimnce provided the
poteptials transform eccording to

¥(z,0) » 'z[x.e-Cprs e]

(2.9)
@Y
¥'{x,8} -+ '!"[x,e - G] .
This means that the components defiped by
1= 1l == 1 2
Y = -0y y 0W + —— BEBY.A + — (B8 D {2.10)
T IR Ry iz 50 16
{and likewise for ¥') should transform according to
L] [}
W,. ¥, * W, ,¥ 3 DD + b0
and (2.11}
oY g
A+ e A A Ao

These field components mre essentially real. That is, in a suitable basis
for the local symmetry, the boson compopents WV and D are real and the
fermion components XA are h-component Majorans spinors. The Majorana pair

A, A' may now be replaced Ly a Dirac spinor

1 - iy 1 + iy
X o= —p2 e —02 (2.12)

and its conjugste ¥ . These fieldstransform according to

X~ ei‘a X+ X e-ia X {2.13)

and thus carry unit {11) fermion-number. The invarisnce of iga.uge in {2.7)
for the transformations (2.11) may be verified by roting that under (2.9)

[] ii 1]
!at+e*i“wv_ . T “?ai’- In detail,

-5~

+%—§(1 + 1v,)0 EVA]BJ , {2.14)
where

ww "p“'u -~ aku -ig [";w"’vI

Vi = -
u aua ig ['viu,l] ’

L3
und likewise for Wai . In terms of these componernts aind Epecializing to the

cdase of g = g', one can write‘{gauge in (2.7) in the foym:
T
. 1 1.2 - 1.2.1 3
xgauge Ir EEVﬁU—EAuU +Xiix+2D +§D5], {2.,15)
where
¥ = -J—'- (W +H‘) . D =—l- (D—D')
M JE‘ It} *] =
1 1
= ~= (W - W) D, = —= {D+D'}
A'u N H s z

= - - ie
LAREAAEE A 7 {[vu.v\,] + [Au.ﬁ\,]]
fr
A:\-l\, = auA\) - av.ﬂu - ‘3?‘ !llvu’%] + [-A.u:v\,}]

= - 4 £ 4
VX = A i«a ([Vu.x} 1[Au.vsx]] . (2.16)

For compsriscn we glve the component structure of the matter field
kinetic term (2.6):

. U + to o of
 tter Trl:VuA VA+TUBVE+ Py + Fr+c'e

. lf; [E{D,A] + 3"[1;,3]] + —é [A+[D5,B] - B*(DS.A]]

+g [i,ﬁ* + YB*.H’ -8 ;[A + TSB’XI} s
(2.27}
where



- _E . ig
VuA BuA 7 [vu,Al 7 [AU,B]
. £ ig 1,
qu au:s 7 [vuyB} + = {%.Al
T o= 2v-E [V 4+ iy,
U u \E‘ u 5A (2.18)

One sees that the Ys transformations (2.2) and (2.5) can be used to generate
a conserved fermion-number in a gauge Lagrangien provided the system of
*
superfields resolves into two independent chiral sets {¢ *,¢+,‘F} and
*
%, ¥},

III. TOWARDS A REALISTIC MODEL

Given & set of B chiral superfields ¢+p s P=1,2,...,0, and their

conjugates ¢ z ¢

*
o +p , the most general renormalizable interaction is given
by

- L (502 . _1s
L g% (00 )-F% [Mm B 0 v e 0,0 0, h.c.] ,
{3.1)

where Mpq {Summations over repeated indices

are implied.)

and gpqr are gymmetrical .
As a8 rule one is interested ip systems which diepley a

global symmetry. (Later we include local symmeiries as well.) This means
there will be many identities smong the parameters M and g . For example,

the largest conceivable global symmetry would be SU(N),which obteins if

M =M & a =gd 3.2}
g ra ¢ Epar © & “por (

{(for K 233 Ffor H =2, g venishes).

We shall nol ettempt to categorize those subgroups of SU{N} which
would be compatible with a fermion-mumber symmetry f the type discussed In
the last sectiorn. A mumber of genersl remarks can however be made. If a

typicsl boson contribution is extracted from the mass term, s8y
Mok % v

-T—

PO

or fronm the intersction term, eay

Blog Ay B2 Fy s
then, if fermion-number is to be conserved, we must have
Fla)) + F(F,) =0 if M,$0 ,
FlA)) + F(A;) + F(Fy) =0 4f g, #0 ,

where F(A), etc. signify the fermiob-number of the field in the parenthesis.
From the rule (2.2') it follows that

F(Al) + F(Az) = -2 ir M, +0
F(a) + F{A,) + F(AB) = .2 1T gy to.
This means gimply that even if spome of the bosons cerry F = 0 there must be

others in the theory which carry F = 2, Deuterons are thus a necessary
fenture of any fermlon-number ccnserving theory in which either mass or

intera.cfc_.}.pp terms mre present. (This does not apply tc intersctions with

gauge potentimls which enter through the kinetic term.) Two examples follow.

A. su(r), * SU(n)_

, D= 1,...,n2 - 1, belong to the adjoint
The only way to obtain

Let ¥ and ¢
+p

representation so that dpqr
T conservation is by imposing the rule

existe for n 33 .

@ip + expl- % ia] Qtp [x, exp[*m‘s]B] 4

so that gll bosons A, will carry the fractional mmber F = -2/3 {or,after

regealing F = -2 , assuming that these are the only flelds in the theory).

To obtain some fields with zero fermicon-number, it is necessary to introduce
t [}

a second pair ¢ and % and to postulate that:

o ~p

o ~ ofe, emlvarle] |

e, = 2l @;[x, erp[*urys}ﬂ]

(3.3)
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In this case, flelds A, carsy ferpionwoumber F = 0, ) carries ¥ = 41,
; +

vhile A, are anti-deuterons (F = -2) and ' carries F = -1 , The non-

+*

- L}
dizgonel "mass term" M Q'Pp Q'*p snd the interscticn tem

t
. + h.c.
dpqr ¢+p @'l'q $+r h.e

ure both Fe-conserving though the djagornal "mass terms" M ¢+P tI{,_p and
L] L}
M ¢+p @+p does not conserve F . One could g0 on to deal with e triplet cf
octets:
1l .2

' 3 ) \
[f apqr + 7 qur] p ¢+q o, +h.e., (3.4)

ang agelin have integer F values if cne of the multiplets (WB say} contains

an sati-deuteron. {In this example if we keep only f' # C then a mew "colour"”

symmetry SU(3') between g R ¢2 and 93 emerges. )

B. (30(3) = 80{3)), = (s0(3) x su(3))

A special circumstance for m = 3 allowa the construction of a more
ecopomical model. Let d5+ end @_ be independent 3 x 3 matrices. The
symmetry (SU{3) = SU(3))+X (8U(3) = sU(3))_ is respected by the interaction

f[det@_._ + detd_ + h.c.] . (3.5)

The F values are integers if we let the flelds At in the first two
columng of detlbt carry F = 0 while the third cclumn carries F = -2, 1In
this case the fermion-number has a component which transforms as en cctet

wvith respect to the columm SU(3)'s.

Ho mmaa terms are permissible unless we discard the column SU(3)'s
and restrict the row SU(3)'s to 0{3)'s . This would permit the “off-

diagonal” mass terms, consistent with F conservation
S My @& @j + M?_ @j @g + h.c. {3.6)

and will produce masges for at leest some of the gtates.

The possibility that mass can be genersted spontaneously through the
radiative mechanism of Coleman and Weinberg remnins to be investigated. Te
realize this, one may consider the eronomical model (2.5) sbove, together
with a (parity-conserving} gauging of ibte column SU(3)+ x gu(3)_ . The

G

resulting Lagrangien will contain the coupling parameter f in edditiom to
the gauge parameters g . Barring sp unexpected catastrophe, following

Coleman and Weinberg, the existence of the two parsmeters {f and g) should
make it possible {even after dimensionel trensmutation) to cowpute =213 the

messes in the model, even if no intrinsic mass term Is introduced.

Iv. A JUDICIOUS MODEL

A quite different scheme for cbtaining a conserved fermion-nmumber is
obtained by the Judicicus combination of the fermion perte of s gauge potential

and a real mabter supermuitiplet. Consider the case of local SU(S),‘

& -1,
@i_ > e o, € s

vhere &, =and A are traceless 3 * 3 matrix superfields subject to the

reality conditions
+
p_ =9, and A=A .
The splonor part of &, is a Majorana octet, P(x) . ILikewise,the spinor part
of the gauge potentiel ¥ is a Majorena octet A . It is only a question
of straightforward, though tedious, computation to show thet the spinor

contributions to the gauge inverient Lagrangiasn can be expres.sed jin the form

T - max{a-+ £10 SIS
where ¥ deactes the complex octet
1
x = = A+ 1)
Wz .

and where A and B denote the (real) scalar and peeudoscalar parta of the

matter cctet. Invariance under phase trsncfermations on X is evident.

In this somewhat accidental fashion,two real supermiltiplets are made

to co-operate in such B way &s to yield & conserved fermion-number. Agnin



[
there is no mass term {and no self=intersction) for the matter supermultiplet. 2

The Lagrangian for the model is given by

. o
eelv2.livm?eliign?. £ 2
L= AN (VA" + 5 (98)° - & (axB)

+ Xt - e X x (A4 yBlx
.where
v = auvv—avvuq»gvuxvu
VA = 3 A+ x
LIA g‘v’u A
VX = 3ux+svu*x

This andel is extremely tight; 1t comtains just ome coupling parameter,
and no parameter with dimensions of length,

)

In the one-loop epproximation there appears to be a difficulty associated

with this model; it has no steble Polnearé Iinveriant pround state. This

peculiarity was discovered in the ccurse of an attempt {earried out together
with Dr. M.J. Duff} to generate particle 7ms.sses through radistive corrections.
The one-loop econtribution to the effective potentisl v{A,B} is finite and
complex (for real A and B). It is possible that & more elsborate computation
of the pctentisl, following the methods recently discussed by Dolan and Jackiw
may cure the sickness of the one-loop epproximation in this otherwise truly

3)

remarkable model.
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