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I. INTRODUCTION

A number of renormalizatile lagrangian models have "been given recently

which exhibit an underlying symmetry between fermions and bosons . Although

this so-called supersymmetry has yet to manifest itself in the real world,it is
2)

characterized by some unusual features which make it worthy of study .

Fundamentally, supersymmetry represents an extension of the Poincare"

group and could, indeed, be looked upon as a reflection of the structure of

space-time. In this quasi-geometrical view,the extended Poincare group can be

made to act upon an 8-dimensional "extended spacetime" whose points are labelled

by the pair (x , 9 )» where x denotes the usual minkowskian coordinate and 8

is an anticommuting; c-number Majorana spinor. The action of the new

transformations on this space is given by

e -*- e + e ,
a a a (l<l)

where the parameter e is an anticommuting Majorana spinor. Our purpose here

is to discuss the formulation of field theories on the extended sp&ce-time . •

A typical field, the scalar $(x, 6), may be expanded in powers of 0.

Owing to the anticommutation property, {6 ,0-} = 0 , such expansions must

terminate. In fact only sixteen independent monomials can be made from the 9's.

A convenient form of the expansion is given by

*(x,6) = A(X) + e>(x)

+ j~ 09 F(x) + £ 8y 6 G(x) + J- 6 1 ^ 6 Av{x)

+ ̂ 59 6X(x) + rj (00)
2 D(x)

• k 3 2 (1.2)

where the coefficients are ordinary fields : A, F, D are scalars, G is a

pseudoscalar, A is an axial vector, ty and x a r e Dirac spinors. One sees

that half of the components are bosons and the other half fermions. The new •

dimensions' of the extendedspace-ti^ne thus give rise to new degrees of freedom

that are spin-like and finite in number.

*) We shall be concerned with linear realizations only. One can avoid the

extension of apace-time by working with non-linear realizations wherein the

supersymmetry is broken spontaneously. This approach was taken by Volkov

and Akulov, Hef.3,and extended by Zumino, Hef.2.
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It is possible to define the operation of differentiation with

respect to the anticommuting coordinate 9 and, in particular, the covariant

derivative

D # = 3 * i ( Y e ) |2- . (1.3)

This operator transforms as a spinor under the action of the Lorentz group and

is invariant with, respect to the "supertranslations" (l.l) whose action on $

is given by

A number of properties of the operator D is derived in Ref. h- The most

important of these is the anticommutation rule

where C denotes the charge conjugation matrix.

The operator D is used to define the so-called chiral superfields

^(x, 6) by means of the covariant differential constraints

(1 + iy5)D $±(x, 6) = 0 • ( l i 6j

These equations" imply a number of relations among the coefficients in the

expansion (1.2), viz.,

G± - ± iP± , A ^ - ± i%A± , D±•- - 9
2 A ± , x

±

where (l T iYc)^± =* 0 . It follows that the chiral superfields can be

represented by the expansions;
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-̂ ] [A ±U) + e^U) + led ± iy5)e p±(x)j . (1.7)

The set of chiral superfields is closed under multiplication,

*+(x, 6) $|(x, 0) = «J(x, 6) .

This property, which is a direct,consequence of the linear defining condition. (1.6)

is very useful in the construction of renormalizable Lagrangians, and the following.

sections will deal exclusively with chiral superfields.

It can "be objected that the proposed transformation law (l.l) is not

consistent in that to the coordinates x , which are usually taken to be real

numbers, are added the quantities (i/2)£y 9 which are not numbers. (Notice,

for example, that (ey 8) = 0.) Clearly some generalized interpretation of

the space-time coordinate x is needed here. However, this is not a matter of

any practical importance since one could easily suppress all reference to

anticommuting c-numbers. Physical consequences of the supersymmetry could be

extracted by requiring the scattering operator to commute with the "supercharge",

S , whose action on the field components is defined by substituting

• ' 6* = [4, ieasa]

on the left-hand side of (lA) and comparing coefficients. (For consistency, one

must suppose that the spinorial quantities £ and 9 anticommute among themselves

as well as with the fermionic components \J» and X-) The commutation rules

satisfied by P and J , the generators of infinitesimal Poincare trans-

formations, must be supplemented by new rules involving S . These are;

[S ,P ] = 0 ,
ay

(1.8)
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The problem of constructing unitary representations of this system and deriving

selection rules has been considered elsewhere . In this paper we are

attempting to show that adherence to superfields and anticommuting c-numbers

does not appear to lead to any difficulties.

Up to now the concept of the superfield has played a subsidiary though

useful role in guiding the construction of lagrangian models. In effect these

fields have "been used to make action functionals which are manifestly super-

symmetric. To proceed with any dynamical calculation, however, one was forced to

relinquish the manifest symmetry and express the Lagrangian in terms of component

Fermi and Bose fields of the usual kind. With the Lagrangian so expressed,one

could follow the standard programme for computing Green's functions and scattering

amplitudes. This approach seems to us a retrograde one. It would be more

satisfying if one could set up the Feynman rules and make calculations in the

manifestly covariant notation. The purpose of this paper is to show that such

a course can indeed be followed. We do not claim any computational advantage

for the methods presented here. Rather, we should like this formulation to be

seen as a preliminary exploration of a methodology wherein supersymmetry is

realized in a succint and obvious manner.

II. THE FUNCTIONAL DERIVATIVE

For simplicity, we shall "begin by considering functionals of a neutral

scalar supermultiplet ^(XjB). The chiral components of $+ are defined by

the expansions

$±(x,9) = expR v e.p ±
A±(x) + 5 ^"^ ^(x) + t ®(1 X i Y 5 ) Q F ± ( x )

(2.1)

where ij)(x) is a Majorana spinor and A , F are complex "boson fields subject

to the reality conditions A_ = A + , F_ = F* . Under space reflections the

fields' A + and F+ are^carried into A and F , respectively.

Let T be a functional of . 4 and . $ . Corresponding to the

infinitesimal variations 5$+ the variation in T may be written

*) This integral defines an invariant bilinear form. The forms

• F A

are invariant under supertransformations and proper Lorentz transformations
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ar = - | B D (2.2)

This formula serves to define the derivatives of T with respect to $ and

$. These derivatives, 6F/5$+, are themselves chiral superfields and their

components may be expressed in terms of the derivatives of T with respect to

the component fields- A+(x), etc. It is natural to define these latter

derivatives by the linear form,

* dx

(2.3)

Comparing the expressions (2.2) and (2.3) one finds

" e x p
ST

<5F (x )

^ 1

1

_ e _

9(1 ±

± 1*1
2 sijICx}

6A±(x)

This formula serves quite generally for translating ordinary functional

derivatives into the superfield form. A particular application of it -

with T set e^ual to $ (x1,6') - serves to define what might be called the

"super delta-function". Thus, one finds

L ̂

= 6+(x,eix'e')

Cee 1

(2.5)

and, on the other hand,

= 0 (2.6)
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The functions 6+(x,6; x'9
1) enjoy the following properties;

(a) symmetry under the interchange (x,6) ++ (x'.S*);

(b) Poincare' invariancej

(c) supersymmetry, viz.,

<5±(x + i £ Ye , 6 + £ ; x' + i £Y8' , 6' + e) = 5±(x,6;x
I ,6') ;

(2.7)

(d) chirality

(1 =FiY5)D 6±(x,6; x',6
1) = 0 ; C2.8)

(e) the integral identities

1) = Y+(x'.e«) {2.9)

for arbitrary chiral superfields y + (this means that the functions

6+ serve as identity distributions).

It would appear that, although we do not have a measure of the usual

sort on the space of x and 8 , it is possible to treat the operation

dx(-sDD)

as a kind of generalized integration. Pursuing the analogy, we may define the

functional Taylor expansion,

n+m

n,m

n+m

« U e ) • • • $ (x e ) o (x 8 } - •. $ (x . e . )
+ 1 1 + n n - n+1 n+1 - n+m n+m

(2.10)
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vhere the coefficient distributions K satisfy the chiral conditions
nm

(1 - lY5)Dj K^tl,..., n + m) = 0 for 3=1,...,n- ,

(1 + ,..,, n + m) = 0 for j = n + l,...sn

A typical example of a functional defined over the superfields

is the classical (local) action

S(*+,*J = [dx [i (DD)2($J>+) - |DD(V(*+) + V(*_))! , (2.11)

*)
vhere V is a polynomial . . To evaluate the derivatives of S it is necessary

M
to make use of the operator identities

-
= D

-
D D

1 +
= D 2. D D

1 - IY
—2- D

Make an infinitesimal variation in (2.11),

(DD6S 5* * + 6*.
+

V'(*

dx
i _

D (6*_4+)

_ 1 + iyc _ 1 - iYc
D D D

(2.12)

One may- ask whether the action functional C2.ll) can Toe expressed in the

multilocal form (2.10). The answer is, indeed, yes. The coefficient

in particular, is given "by

K (1,2) = - £ (BD)1 6.(1,2) - I (DD)2 S+(l,2) .
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Making use of the chiral properties of $+ and 5 $+ one can reduce this

immediately to the form

6S = | dx |- ~ DD ~

f 1 - f

J d y J* % V i*+ *-." - V ,
(2.13)

Discarding the surface term and comparing the remainder with (2.2), one

obtains the functional derivatives

|f-= - |DD* T + V'(*±) . (2.110
+

Setting these equal to zero gives the classical equations of motion in

superfield form. In Sec. Ill the problem of quantizing this system will be

considered.

The functional derivatives with respect to chiral superfields are

now seen to-"be satisfactorily defined by (2,l). Derivatives with respect to

non-chiral superfields, however, must be independently defined. Such non-

chiral fields are needed to represent the gauge dependent potentials in models

which carry a local symmetry . A suitable definition for the derivative

with respect to the non-chiral field ¥(x,8) is given by

&Y = | dx \ (DD)2 [«¥(x,0) 6 y (^ B )] • (2.15)

With the component structure of ^ defined by the expansion (l.2) and derivatives

with respect to these components defined by:

*0 The surface term is of course important for the derivation of conserved

currents but we shall not consider them here.
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sr =

(2.16)

one finds the following component structure for the derivative with respect

to ¥(x,9) :

sr <sr

32 (ee) 2

(2.17)

The corresponding super delta-function is given by

32

-9-
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This invariant function acts as the identity distribution,

,e) 6(x,e;x',9')] - V U ' , (2.19)



III. COVARIANT QUANTIZATION

The formal derivation of Feynman rules proceeds very much as in any

ordinary quantized field theory. To illustrate this we consider the case of

a neutral scalar supermultiplet whose dynamics at the classical level is governed

by the .action functional (2.11). A straightforward method to obtain the

Feynman rules is to perturb the system by means of an external current distribution,

S •* S + d x ( - j DD) J + $ + + J_$

and represent the corresponding vacuum transition amplitude by a path integralr

exp - |S(*+,*J +. J dx (- |

(3.1)

One proceeds by separating the classical action into a free (bilinear) and an

interaction piece,

V(*±) = j < + Vint(*±) , (3.2)

where V^ contains cubic and higher order terms . In (3.1) make the

formal replacement

int ± rnt^i oJ+J

*) ' '
In general the expansion of S must be taken about a stationary point,

For simplicity, we are here assuming that $+ = 0 is such a point.
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so as to represent the vacuum amplitude in the form

exp ~ Z(J+,Jj = exp-j dxl-^DD mt [i oJ+J 6J
exp|-Z0{J+,J_),

(3.3)

where Z Is represented "by a gaussian path-integral,

e x P^ Z O ( j
+ ' J J + d$_) exp- dx DD)2± CDD)

- | DD [|

Being gaussian,this integral can "be evaluated "by the usual trick of translating

the integration variables. An equivalent method is to obtain functional

differential equations for Z from the identities

0 *
| (DD)2

| D D

_)

i
2

•a exp k z o

exp H-H-

M
6J.
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The linear inhomogeneous equations

6Z0
(3.5)-

are easily solved (with the help of the identity, (DD) = -k T, on chiral

fields ') to give

(3.6)

These equations in turn can "be integrated to give

ZQ(J+,J_) « I dx

+ M
2

+ M
2 "

(3.7)

The perturbation development of the connected vacuum amplitude

(±/Ji)Z is obtained from (3.3) "by expanding in powers of V ^ and substituting

the expression (3.7) for ZQ . The "bare propagators are of course the second-

order functional derivatives of 2Q . Their explicit forms are given by

+ M

P
+ it

6-(x,6 ; x'6')

-12-
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where the delta-functions <5 are defined in (2.5). In terms of the causal

function

yx-x-iM).. ~^T~2-—2
J (2ii) k - W + ie

exp[-ik(x -

the propagators (3.8) can "be written,

>̂

= - M (e-e') (L±IY5) 0-9')

exp ~ 6(l±iY5)/e'

(3.9)

These expressions are to be associated with the internal lines of any graph.

Vertices, on the other hand,are associated with the expression

(3.10)

where g is a coupling constant from the expansion *)

:±' 31 ± FT ± (3.11)

The integration over' x at each vertex - which effects the conservation of

U-momentum - gives rise to some simplifications. Many of the exponentiated

factors in (3.9) can "be seen to cancel so that the internal lines are associated

with the "effective" propagators

If the model is to he renormalizahle,then only g can differ from zero.
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* ' eff

eff
(3.12)

External lines should be associated with the wave functions

~1T^ ext £ ^ ± iY5)6 F^U) . (3.13)

The momentum space Feynman rules may he summarized as follows:

(1) Draw diagrams in the usual vay with vertices corresponding to the

various types of monomial (g /nJ)C and (g / a ! ) * in the

interaction Lagrangian,

(2) With e a ch n-leg vertex associate the factor

(3) With each line joining a pair of vertices of the same chirality (±)

associate the effective propagator

• ? -£ (9, -ej —=-^(6, - ej
d] x ^ ^ x ^ -p^ + IT - ie

With each line joining a pair of vertices with opposite chirality

associate the effective propagator

-p2 + M2 - ie

where the ̂ -momentum is directed from the +type vertex (l) to the

-type vertex (2).



(.5) With each.'external line associate'the'wave function

C6) At each vertex apply the differential operator

Lf 3 3

i.e. extract the coefficient of the term

I 5Ci ± iyje •
<+ 5

vertices

(T) Integrate over the momenta,

n
lines

To pick out a given'kind of process, one would of course specialize

the external wave functions. For examples an external on-shell 0 particle

would be represented by the wave functions

exp[-ikx]

The efficacy of this kind of approach has been demonstrated in the

work of Capper and Delbourgo who show that the divergence softening

characteristic of supersymmetric models can he understood in terms of the
T)properties of superfield graphs. In particular, Capper and Leibbrandt have

developed a formula for the superficial degree of divergence of such graphs.

-15-



REFEREKCES

1) J. Wess and B. Zumino, Phys. Letters 1*9B, 52 (19TU);

J. Wess and B. Zumino, CERN preprint TH 1857 (197M,

to be published in Nucl. Phys. B7"8 (.197*0)

Abdus Salam and J. Strathdee, ICTP, Trieste, preprint IC/7U/36,

to appear in Phys. Lettersj

S. Ferraraand B. Zumino, CERN preprint TH 1866 {197M,

to "be published in Nucl. Phys. B. ;

• R. Delbourgo, Abdus Salam and J. Strathdee, ICTP, Trieste,

preprint IC/7^A5, "to appear in Phys. Letters;

P. Fayet and J. Iliopoulos, Lab. de Physique Theorique et

Hautes Energies, Orsay, preprint LPTHE 7^/26 (PTENS

2) B. Zumino, Invited talk at the 17th International Conference

on High Energy Physics,' London (197M, CERN preprint TH 1901 (1971*). •

3) D.V. Voliov and V.P. Akulov, Phys. Letters k6B_t 109 (1973).

h) Abdus Salam and J. Strathdee, ICTP, Trieste, preprint IC/7VU2 -
to be published in Phys. Rev. - we follow the notation of this reference,

5) Abdus Salam and J. Strathdee, ICTP, Trieste, preprint IC/7^/l6,

to appear in Nucl. Phys.

6) D. Capper, ICTP, Trieste, preprint IC/jh/66;

R. Delbourgo, Imperial College, London, preprint ICTF/73A1+.

7) D. Capper and G. Leibbrandt, ICTP, Trieste, preprint ICM/79. .

-16-


