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I, INTRODUCTICH

When Roger Penrose and Dennis Seciema assigned me the task of reporting
on the impact of guantized gravity theory on particle physiecs, I am sure they
did this with a certain smount of positive antieipation. Sadly, the burdeﬁ
of my remarks will be - there has been very little impact. Principelly this
is occasioned by the belief - erronecus as I hope to show - held,by and large,
by the particle physics community, thet quantum-gravitational effects will manifest
19 33
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themselves only for energies in excess of 10 BeV [ﬁw G-, lengths < 10~

ems |,
This has meant that, though there has been some impact of guantized gravity }
thecry on the development of field theories as such, particle physiecists have,
in general, made no attempt to enrich the concepts of their subject with the
geometrical or topoiogical notions which, after sll,are - or should be - the
crowning glory of Binstein's gravity theory, in its final quantized form. It

is in fact these geometrical and topological notions towards which I wish to
build in my remarks to-day. I shall, however, approach them, not by imposing
them from outside = in the manmer of a differential geometer ~ but as something
emerging from the experience of the particle physiciast with quantum fields
with which he is familiar, and of which guantum gravity field should be

but one - though of course the supreme - example.

II. THE PARTICLE PHYSICIST'S APPRCACH TO QUANTUM GRAVITY

From the particle physicist's point of view, quantized gravity thecry of
Einstelin is no more than the theory of spin ot quantized massless gravitons. The
physical graviton exists in two helicity states, but is described by a 10- '
component field g"¥(x) , which supports an extraordinarily elegant, group~
theoreti;ally simple, but (in the relativist's notetion) fearsome set of gauge

and space-time transformations.

R T e p— - e

After having said this, I must however repeat what Chris Isham has
already stressed; there are the two problems sbsolutely peculiar to the

quantization of gravity, which one does not encounter for other field theorles.

1) In the canonical or in thelSZ approach, the concept of space-like
separsted points - so essential to the setting up of eny sort of commutetion
relations - cannot be defined till after the theory is solved and the "1ight~

cone" structure at each space-time point constructed and specified.

2} For the exotic - and often singularity-ridden ~ topological
manifolds which may emerge as solutions of Einstein's classical equstions,
the defining of concepts of positive~ and negeative~freguency boundsary
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econditions, end the completeness of quantum—mechﬁnical Hilbert—space

description present new problems which one encounters for gravity theory alone.

One may approach these oproblems in one of the two
ways: Either one starts by considering the most general geometrical and
topelogically complex classical situations likely to be encountered and set
about guantizing {eclassical) geometry - somewhat in the manner of Dirac's
attempts to solve the classical electron equations and te gquantize them after-

wards - or one proceeds in the reverse order, heuristiecally, as & particie

physicist normelly does.

a) Start with an (asymptotically flat) Minkowskien manifold and build
a conventional field theory of a classical temsor field guv(x) satisfying

Binstein's equation, using Feynman's path-integral formulation.

b} In this approach, gravity theory is distinguished from

other field theories +the particle physicist encounters in that the

theory employs two tensors g”v and g, one of which is

simply the inverse of the other. This makes Einstein's Lagranglan an

intrinsically non-polynomial Lagrangian, when expressed in terms of one of

the two tensors. To preserve guantum field-thecretic 1océlizability in the

sense of Jaffe, one adopts a convenient parametrization for the two fields ¥

Hv

g and gUU :

AV} v
g (exp kp)¥¥

H

g (exp -K¢)uv )

(Y

where ¢ is & 4% x 4 symmetric matrix and «% = (G/167) . Note that this demand
for localizability, implying as it does that det guv £ 0 for finite ¢(x) ,
LV
e

excludes space~time singularities associated with the vanishing of det

¢} For this parametrization the Einstein Lagrangian has the form
of an infinite power seriec in K :
| 2.2 .
Z., .= 90 8¢ + Ky 3G 3¢ + kP 3 3 + ---
Einstein
d} To impleﬁent the gauge conditions, Einstein's_Lagrangian is

supplemented by an appropriate gauge term. Using, for example l), a "conformal”

LI group theoretical significancé has recently been accorded to the
exponential parameterization in & beautiful paper by A.B. Borisov and

V.I. Ogievetsky (Dubna Preprint E2-T684, 19Th). They remark that general
relativity is the simultaneous non-linear reslization of affine and conformal
symmetries. The exponentidl parameter;zation of guv represents the standard

menner in which non-linear realizations of GL{L,R) are constructed,
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gaugelof fweight" w {for details see Ref.l), and after imposing appropriate
boundary conditions on Feynman's path integral, one can show that the free
spin 2+ graviton propsgator for the incoming (or outgoing) field ¢f in
this gauge is given by: '

P - L -2 D(x) » (1) .
<T¢ul ¢W> = 3 [nw Myt My My ~ 22 0 nW] (x)
where D{x) is the zero-mass scaler propagator and c = w(w-1) + %-. (w=1"
corresponds to the well-known De-donder gaugel

¢) One can now make a perturbation expansion (in powers of ¥} for the
Green's functions of the theory in terms of Feynmsn disgrams. Besides the
necessity to take account of Feynman-deWitt-Faddeev-Popov-Mandelstam unitazity-
preserving ghosts, the peculiar feature of gravity theory (arising from the
non=polynomial nature of o( Einstein

impinge indefinite numbers of graviton lines. Mathematically this is seen

) is that at every Feynman vertex there

by considering the example of the free Green's function ==
o L TP = £ af Y 8
L8 (x) g (0)>free <exp(|<¢ (x))™  explre’(0))70)

Using (1)}, and after some.im@ginative though ferocious.algebra, Ashmore and
Delbourg02 have shown that the exponentials appearing on the right-hand side

of {2) can be evaluated to give the propagetor in the form:

% l:na‘r nBG . nous nBY _ %nuﬁ nﬂ(ﬁ : d2 ' hclg 1 [now nBG .
- a{LD) SR _
+ HBY] + _E'ﬁ?&nqs nYa] a(D) , | (3)

where

a{D}) = (2 - 32 +'%-z2) exp(-2¢cz) + [(2 + 3z - 2% +

2
1 1 | 1,2 _ XD
+ 5 z{z + EJ 3wL0(z) -5z T Li(z?] exp(z(1 2c{),z =5 (h)
Here Ib and’ Ll are the Struve functions (Fig.1l) (For the definition of

exp(k D) for X2 - 0, one uses a Euclldean ansatz explained in Sec..IV )

f) So far no geometry has entered in the formallsm developed. We
have simply built up & perturbation representatlon of Green s functions in a
Minkowskian manifold, This manifold may have rothing. ‘whetever to do with
the space-time of general relativity, My contention 1is that with this humble
apparatus available, the heuristic techniques of the particle physicist, like
analytic continuation, renormslization, sumation of series and the like -
techniques which are so far foreign %o the general relativist's experience -
are sﬁfficiently powerful fo yield-wha? may be recognized as geometrical gspects

of gravity vheory. L
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One example of this is the well-known discussion of Thirring 3] Wwho

starting with the "bare" unobservable metric of the Minkowskian
'manifold shows how one builds up the physical space-time metric

through & renormalization of lengths and time intervels, following the

very familiar procedures of renormalization theory in particle physies. A
sécond eiamplé "is the Duff-Ssrdelis reproduction of the Sghwarzschild
and Reissner~Nordstrom classical metrics, ineluding of course
‘& description of their singularities, by a summation of infinite sets of tree

dlagrams in the "Minkowskian" version of Einstein-Maxwell theories (Fig.2).

The analogy of the Duff-Sardelis work is with the particle physicist's
treatment of the bound state problem. By summing infinite sets of perturbstion
diagrams, the particle physicist builds up expressions for Green's functions which
exhibit boundwstate poles in the energy momentum plene - poles which, before the

disgrams are summed, are naturally nowhere in evidence. In the Duff-Sardelis work,
one is recovering space-time singularities of the metria without starting with thege,¥)

Finally to mention one more weapon in the armoury of the pgrticle physicist, The
perennial problem of classical vs. queantum aspects of the gravitational field -

the difficulty which one continually encounters in reconciling guv as &

quantum operator and guv as & classical function - may possibly be resolved
through the use of Wilson's operator product expansions. For example, one may
conjecture {from the non-polynomiality of gravity theory end as a generalization

of expressions like (2), (3) and (4}) that = typical operstor product for

operators in gravity theory El.ike_ gﬁ'v(x) gdB(O)] has the form:
g (x) 8,400) = |35 exp(®(x)) + v | 0 ,(0) (5)
uv of X2 pvag' "’

where OHVQB is operator-valusd., This operator expansion is reminiscent of

2
Newnman-Penrose expansions for gravitational field components for large x . The
difference with Newman-Penrose expansion, however, is that we are conjecturing
its validity as an operator product expansion not only for large xe but for

all x2 including x2 50 .

¥ To be gure, in the large,'it is the ¢lass of asympitotically flat metrics only
whoge singularities one will detarminé, by starting with the Minkowskian manifold.
My excuse for emphasising these is that firstly this class embraces most metrics
of interest;_secondly, I velleve that, topology in the smsll, will alsoc be
recoverable by the use of the diagrammsfiéfgéuristie techniques I am

speaking about, ‘gThe universe and its (quantum) topology are determined by

vhere gravitons are and what space-time interaction patterns they give rise
to. But I shall not elaborate on this.)

—dfm




To summarize; the particle_physicidﬁ hes, after years of experience,
learnt that there are very few systems.he can quantize exactiy - very.£9w cases
vhere he can solve the equations of quantum field theory. His experience has
taught him that & frontal attack on any-proﬁlem in quentum field theory is
pointless. He has learnt to proceed ﬁeﬁristicalxy;_conjecturing solutions,
extending the domeins of the solutions he-knqws by methods which may appear
atrociously vile to those brought up in striet méthematical diseiplines like
differential geometry.. Hla auccesses,hnwever, have not. been inconsiderable. I

feel that the seme procedures-may‘help in maklng & dent on the- problem’ of
quantizing geometry, . C T .

III. f-g GRAVITY THEORY AND EFFECTS OF “GENERALIZED CARTAN TORSION"
IN PARTICLE PHYSICS -

I shall now turn attention tothe subject proper and discuss & number
of topics where one has sought for a physical - and ndt'Just & mathemetical -
impact of gravity on particle physics and viece versa. The first topic is
f-g mixing, the two-tensor theory . of gravity and "torsional" effects in particle

physics.

1f gravitons represénﬁ spin-2 parity-plus quahtum states, these states
must superpose with every other Bpin-2+ quantum.§tate, unless there is a
rigorous selection rule excluding such a superposition from manifesting it~
self physically. The analogy is with'the photon-p-meson mixing phenomena
which,when elaborated into the so~called vector-daminance hypothesis.has

played a considerable role in particle phjaics"duringzthe lest decade.

Now 2° quantum states - indeed a 9-fold Q:.2+ strongly-interacting

SU(3) octet + 8U{3) singlet states - were discovered some ten years ago. The
G o' 0% - *t #0: Kp
mermbers of this nonet are £ , 'AE , K., K7 and s With
masses ranging between 1200 and 1600 MeV. Concentratlng on the neutral f
field, quantum-mechanical superposition implies that there must exist tran-
: : renE v o

sition matqix elements between the field fuv(x) representing f  snd the
gravitational field g''(x) (Fig.3). The physical éigenétates (the physical

particles) would be obtalned by diagonalizing the appropriate f-g mixing matrix.

S0 much for general-principlesm' One Can now. eldborate this. mlxlng of
fields into the so-called twt'&ﬂﬂ“'théoxy’of grav1ty, proposed by Isham,
Strathdee and myself, by Wess and Zumino S.gnd}by'E. Lgbkin. There are three
basic postulates of this theory. '

' 1) .The dyﬁamics of the f-meson is described By an Einstein Lagranglean

af (£) (with the Christoffel symbol P(f ) océurring in this Lagrangian
derined using the"metric 'tensor fpv in complete analogy with P(g) for the
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gravitational tensor guv). The only difference from ;{E(g) is that the

- 2
Newtonian constant G mi {(~ 10 hh) ig replaced by the constant GF mN(}H i),

N
s . ) = * n = 1 uv u'\.’
charscteristic of strong interactions. | The two "metric” temsors, f » &,

are completely at par at this stage and,in fact,independent of each other.

2) To the Lagrangisn
. 0
Lo(e:6) + (2,6,

ve add a generally covariant f-g mixing term
2

. R ST |

=

This has the effect that f and g fields mix. The eigenfields (in the

FHY v R

G
appreximation O(EE% ] are desceribed by a massive field: g

£ G 1 G
and the graviton rield B = (l + aﬁqﬁ[guv + EE-fuv} which,to a good
f f

approximation, represents the massive physically observed fO rarticle and the

massless graviton, respectively. (The field § cortrespends to the "true" metriec.)

3) TFor interaction with matter we meke a postulate (in analogy with
‘he p photon case) which states that leptons interact with the g field (in
the standerd Einstein menner, with the coupling parametefa GN) while the. f0
field interacts with hadrons alone, with the coupling parameter Gf . Hadrons
have no direct coupling with the g field. To the extent that fo-g mixing
can be neglected, the fo-meson exchanges between hadrons will give rise to
a strong {nuclear)force only. Insofar as the equations describing this inter-
action are Einsteinian in form,this force may be called strong gravity. When
f-g mixing is taken into account, the mixing term describes (correctly) the
conventional gravitaticnal interaction of hadrons. |{The effective gravitetional
potential involving hadrons arises from the f's transforming into g's
through the mixing term. There mey bhe differences between the conventioﬁal
fgravity theory where gravitons interact directly with hadrons rather than

through the intermediacy of f mesons, but these differences will be of the
G

, N2
order of &f% {see Fig.h]]
by

*) Recent CEA and SLAC cxperiments which seem to indicate that electrons may also possess
anomolously sirong interactions when 4{nteracting with hadrons at sufficiently high energies
may necessitate a reformulation of this postulate, The important and basic point is the
assumption that space~time geometry at distances aflo-lh is dominated by the
f~tensor with its stronger coupling rather than the weakly coupled Einstein's

g-tensor, b




Now,what are the virtues of f gravity? To the extent that f-g
mixing (and thus also the mess of f particles) ean be neglected, we have a
*two-meTic” theory for two non—commnnicaxing'worldé of hadrons and leptons.
Concentrating on hedrons alone, if the geometrical aspects of Elnstein's
ideas are indeed relevant for quentum physics, here, in e gravity",we have
created a physical model, where a geometrical descfiption should begin to
menifest its virtues, around lengths of +the order 6f RSchwarzschild

for strong gravity, i.e. around lengths of the order of 2Gfmf #(l/mé) Do ~
-164 |

~10 cms., One may inquire, for example, if it is profitable to

describe normal hadrons with sizes around 10—'.14 cms, as "black holes" -

or perhaps, more comrectly, as "grey holes"( when f-g mixing and thus the massiveness of

f mesons is taken into account)- in the strong f-gravity field. (The nomenclature
"grey holes" is meant to convey that the ﬁbsbrptive characferisﬁics of these
cblects must be accompanied by the peculiarly quantum-mechanical phenomena

of diffractive shadow scattering.) Could this description and the
attendant physics possibly be one way to resolve the dilemma of quark imprison-~
_ment ins;de normal hadroqs? _ Thg_surfacg‘pf‘é_black hole is the one surface
which truly confines éverything that Iis- inéidé;j _ Do."gréy" holes lie on

Regge trajectories? What are the collision mechanisms of "grey holes", their
dlffract%on scattering, their absorption processes, their directional properties

(mruxampktharged Kerr black holes), and the Like? The. f-gravzty hypothesis,i.e. the
hypothe51s which describes the strongly interacting f-meson-hadronic system,

using Einstein's equetion,with fuv(x) acting as a metriec field (in the
approximation that fo—g-mixing ferm_and thereby the mass of the ° mesons
-is neglected), clearly provides us with the most fsvdurable leboratory system
one could devise to observe gquantum gecmetry at'ﬁork. Of course, the entire
hypothesis could be false; f-mesons may not bé_described by an'Einstein—like
Lagrangian, or alternatively the treatment of f-g mixing and the neglect of
f-mass as a.perturbation may be totally unaustifié&;l Only further investigation
~ean tell. ' o . ' _ _
But besides the possible metrical aspects of the'neutral fo(x) fielad,
there is one other aspect of the f-meson system ireated as an SU(B) nenet
where one may possibly observe the impact of space-tlme idess upon the internal
symmetry notlons of particle physics. As you are aware one of the unresclved
dilemmas of partlcle physies is the dilemma of internal symmetries of isospin
(a55001ated with an "internal" SU{2) group structure and its extension - the
witery spin (associaxed with "internal” SU(3))) Toe dilemma was deepened in
1964 when one discovered that the had:onic system a@pcara to exhibit even

i




higher symmetries like Wigner's SU(L) and its extension SU{6),which combine
internal 8U{(2) (or SU(3)) with the spin group sU(2), , (sU{k) c SUI(2) x SU (2) ,
Su{6) € su(3) x SUg(2)).  Since 50 , on the one hand,belongs to an SU(3)

nonet and,on the other,msy plsy the role of the strong graviton, the gquestion
is , what generalizetion of the gravitational space-time formalism is needed

to accommodate thetinternal SU(3)% TIsham, Strathdee and myself have tried to

give one possible answer.

We start by generating the Einstein Lagrangian for the neutral SU(3)-
singlet field f£'V(x), using Weyl-Cartan-Fock-Ivenenko-Sciama-Kibble-Trautman
vierbein formalism which has SL{2,C) gauge invariance as its key feature. We
then generalize the SL(2,C) gauge structure to SL(6,C), which contains the
internal SU(3) as a subgroup,thereby obtaining a Legrangisn which describes a
nonet of strongly-interacting spin-2+ fields and their interactions. The

distinguishing geometrieal festure of this Lagrangian ig the emergence of a

~generalized torsion demsity, which we assoclate with the physically observed

generators of the mysterious SU(6) spin-unitary-spin-containing symmetzy

cbserved in hadronic physics. From this point of view, besides the concept

v , . .
of £ as the "strong metrie"”, Cartan's torsion, suitably generallized, could

be the second conceptual gift of gravity theory to particle theory insofar as
this concept can embrace within it both the notion of internal symmetries like
SUfB) as well as marry these symmetries with spin—symmetry to give rise

to the particle physicist's SU{(6).

As is well known the SL{2,C) Weyl-gauge formaslism starts with the 16-
component vierbein field 1M®(x) which is related tc the gravitational field
¥ (x) through the relation

UV =3 LUV ~ Ua Vb -1
(Get £77)7% £77(x) = ny L (x) L7(x) »  n, = T4

Here,Greek | are the space-time and Latin "a" the 5L(2,C) indices. To meke
it possible for the particle physicist to see the elegant group theory behind
Weyl's ideas, so totally cbscured in standard treatments using clutters of
ind{ces, T shall use Dirac's ¥ and ¢ matrices as bases to exhibit the
8L{2,C) transformations. Thus write

Mx) = )y,
The SL(2,C) transformations are generated by the matrices

_ ab
Q=expilo, €]

»
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and I” transforms ss I* + 0 I* 81 . It 4s essy to show that 12 the SL(2,C)

. parameters edb are functions of x , and if there exists an SL{2,C) "gauge"
connection Bu which transforms like

-1 -1
B, ~QB Q- -1iR3 0
| U ’

with Bﬁ = Bﬁb O, » then one can define "Weyl-covariant” derivatives, using

the "gauge-connection" Bu , such that, e.g.
v v v
L =3 L +1il[B L
i ) i(B,L]
transforms as:
v - akx) (v1)) a4 ) ,
H u .
and the "covariant curl"
. PR . o
Buv(x) aqu BvBu i [Bu,Bv]

transforms as
. . -1
Buv(x) > 0 Buv 0 .
If matter is present, represented for example by the Dirac spinor y(x) , the
covariant derivative for Y(x) is

v, pix) = (au'+ iBu) vix) .

With this preparation, one 1mmedlately sees that the generally covariant Weyl-

Fock-Ivenenko Lagrangian

o s MoV v Tt (3 e . m Tl

aCWeyl i Tr [LM,1V] B, *i0L (au 1Bu)¢ m Py
is also SL{2,C) gauge invariant describing the propagation of a ot
rield LY(x) . (The trace is taken over the Dirac matrices and I have in-

1 .
corporated {det %E-LuLv) 2 into the definitions of the fields ¢ and L .)

The equations of motion which result by varying ! ana Bu are:

i[Lu,pr} - Tv + Binetein's "curvature"” equation,

y .
3u[Lu,Lv] + i[Bu[Lu; L']] = 8Y > Cartan's "torsion" equation ,

where Tv and Sv are the matter stress-tensor density and matter-spin

densities, respectively.

. =9~




Identifying
v,
V=1 {Bu[Lu,Lv]] -5
with Cartan's spin torsion demsity, the second equation of motion tells us
that

3J" = 0 .

Consider now the generalization of this formalism to include SU(3).
ALl one has to do is keep precisely the above Lagrangians as well as the field

equations; simply change SL(2,C) generators Uab to BSL{6,0) generators

31

Uab 3 TSX

where the A''s are the nine U(3)(3 x 3)Gell-Mann matrices, and the SL(2,C)
ldeals vy _'s are generalized to SL(6,C) ideals

i . i
YB)\ s lYE_Ysl

with
B uei i uais | i
=My e L y,Ys A
abi i i i 51 .1
B =3B 4] A+ B + B .
o % Yap y A w MY
6)

One can now show that the L's represent a nonet of 2+ fields which we

identify with the f nonet.

I shall not gec intc the details of how one adds & mass term for the
lLagrangian, and how the f-g mixing term  introduced earlier to describe the
neutral (fo) sector of this SU{3) nonet bdecomes part of the enlarged formalism.
This is described in Ref.T, where also following Trantman's ideas on spin-
torsion, we consider how torsion affects lsrge-scale collapse when f*gravitat;onal

effects are tsken into account. Here I wish merely to stress the following:

a) As we anticipated,the SU(6) spin-internal-spin symmetry of
particle physics does emerge as & generalization of spin-torsion conceplts of
Cartan and can be incorporated into a dynamical set of generally covariant

equations describing an SU(3) nonet of strongly interacting particles.

b) One may conjecture that the combipation of parameters

=10




which occurs in the charged Kerr solution to Einstein's equdtions (where Q
is electric .charge, 5 the spin and m the mass) will generalize for the
above SL{4,C} or SL(6,C) gauge-invariant generalization of Einstein's equation

to the characteristic SU(4) - or SU(E) - combination:

J(T + 1)
m.EGf

I{I+1) +

Since it is this type of combination which occurs in mass formulse for

hadronic states, +this lends support to the point of view
thet hadrons are indeed "grey" holes of the Kerr-Newman variety. Note that the

charged Kerr black hole radius :
r=r_=mn +ﬂ/;2 - Q2 - 82/m2

(here modified with Q2 + I{I + 1) and g2 -+ J(J + 1) is smaller{for seme m)

for particles carrying non-zero I-spin and J-spin. *© A confinement heirarchy can

therefore be built up among I and J-spin carrying objécts.‘

Iv. EFFECTS OF SPACE-TIME CURVATURE: QUANTUM GRAVITY THEORY AND
REGULARIZING OF SINGULARITIES AND INFINITIES OF QUANTUM FIELD THEORIES
So far I have dealt with possible effects of torsion and its

generalizations for particle physics. .Turn now to.the possible effects

of space-time ecurvature. It is an old éonjecture of Landau, Pauli, Klein,

deWitt, Deser and others that it is the neglect of space-time curvature which

is responsible for the ultravioletinfinities of particle physics. I shall
describe some of the work done at Trieste and in London in this connection'a).
Apparently,nct only does quantum gravity regularize the ultraviolet infipities
of other theories, it also regularizes its own - at the sameée time possibly
quenching the space-time singularities. Further, gravity is perhaps the

only theory with the propertj that there are no "ambiguities” in the

regularized magnitudes we obtain at the end of the calculation ;).

This is a big claim. Part of what I have.aséerted.has been rigorously
proved; pert is heuristic and part conjecture. The chain of arguments will |
go something like this; mathematically,quantuﬁ gravity(as'ﬁe hsve formulated
it in Sec.II) is a non-polyncmial theory; it must-therefbxe.be treated non-
perturbatively and contributions from millions and tfillidﬁs of exchanged
guantum gravitons must be summed. This summation(whosg;heglect physically
amounts to neglect of space-time curvature) is responsible for quenching of
infinities; the lack of "ambiguity" for the results in the summation
procedure stems from the peculiar gauge and other invariances of gravity theory.

-1)m=-




Not surprisingly, after the summation we shall see that the effective parameter
for the crucial gravitational effects will not be the tiny number GNmilx 10-hh

‘but instead more like |log GNm§| ~ 100 ,

Consider the Dirac-Maxwell-Einstein Lagrangisn describing an electron

interacting with photons and gravitons. Its form is:
L oo %0 2 + FTSUIv(aan) 4 0]

Here A is photon field, ¢ represents gravitons (I am ignoring spin),

¥ is the electron field and K equals YG /167 & 0.25 x 1070 b .

(Since I am ccncerned here with showing you what the basic ideas are, the
formelism will be presented in its simplest form. For rigorous detalls

refer to Ref.9.) The electron self-energy graphs are shown in Fig.5. The
basic graph is the l-photon:exchange goaph; all the others simply show this
process taking place in the'environmenf of millions and trillions of gravitons.
A neglect of these millions end trillions of gravitons is a neglect of space-

time curvature {"Space-Time {and its Curvature) is where Gravitons are").

Now
W
<y = -

i

. 1 ' .
~{iYd + m} = + less singular terms

»

L}
1

o>

Hnﬂhl HNIP

exp(-KzfxE) .

I

<eK¢ eK¢> |

The contribution of all graphs shown in Fig.5 to the self-mass of the
electron is given by the Fourier transform (evaluated at p = m) of the
funetion

F(x) = o exp{-K2/x2) [—- 1—2] (iy3 + m) [-1-5] .
X X

It the gravitoné are neglected {(k = 0),

dm = F(3) = J P{x)} eipx

y =nm

=m

So that &m 1is logarithmically infinite (the well-known infinity of electron self- mess
discovered first by Welsskopf in 1939 However,the inclusion of the gquantum
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gravity factor expl H?/xe) acts as a regularlzer One can easily show (using
& Fuclidesn snsatz to define this factor exp(- i 15°) , & topic to which I

return) that the effect of this damping factor is to give:

2
~ S0 L 30 1
Sm Ty B fn Ezﬂ % iy B An [ﬁ;EJ

+ terms involviag akllog Km[

.
-

Clearly the self-mass infinity of electron self-energy has gotten regularized
at energies corresponding to the Schwarzschild radius BS of the electroen.

A somewhat remsrkable feature of this calculation is that when the value of

K is substituted in the formula, numerically éﬁ»ﬂ:%; + , In other vords,

in the lowest order of o , gravity-modified electrodynamics gives the

result that a substantial fraction of electron self-mass (6m) is electro-
magnetic in origin. Inclusion of gravity not only quenches the electro-
magnetic infinity of electron self-mass; it also appears to give support
to Lorentz's conjectﬁre that all of electron's self-mass may be a result

of its interactions. Indeed,one may conjecture thet if all the higher orders
in & and multiphoton exchanges were included in the calculation {with the -

effective parameter for the problem being allog Kml) one may recover the

result .
fm ' n
ol a o log m|® = 1,
L) n .
i.e. dm=m ., In other words there is possibly a fundamental relation

N 2y
betweén o » GN and m pWhiCh has the form l = % = F[a log[hﬂJ ] and where

the Tunetion F is & power series with the first term given by¥

3o Ly
B ol

'#) It.is amusing thaet the notion of gravity acting as the final regularizer
and the relation o log GNm =21, have begun to be accepted as representing
respectable physics by the orthodex opinion in particle physics (Summer lQTh).
See recent papers by G. Parisi, D. Gross, H. Fritsch and P. Minkowski, )
H. Georgi and S.L. Glashow and others. The motivation is as follows:

‘Unify wesk, electromagnetic and Btrbng interactions using Yang-Mills wvector
(end axial-vector) fields gasuging a simple Lie grou@ desciribing internal

-13- ' (conty.)




(continuatioa of footnote)

symmetries. The theory possesses ane unique coupling constent o . Assume
that the presently manifested, disparate strengths of wesk versus electro-
magnetic versus strong forces is a manifestation (from spontaneous symmetry-
breaking) of a heirarchy of differing masses for the Yang-Mills gauge mesons.
Now for asymptotically free theories (e.g. & Yang-Mills theory) the effective
‘strength of couplings decreases a8 energy increases. At what energy does the
effective coupling of hadrons,(étrong:;l at presently accessible Mev energies)
become equal to o ? To answer this question , use renormalization group
ideas, or more sgimply the_conventional caleculations of self-charge which give
632/32'3 a log AQ/M§ where A 1is the relevant energy. Assuming 6g2/32,= 1,
we recover the result that when A approaches 1019 BeV the effective strong

constant will equal the constant for electromagnetism and weak interactions.

Up till now we have considered gravity~as'quenching the ultraviolet
infinities of quantum electrodynamics. What about gravity quenching its own
ultraviolet infinities? So far as the appesarance of damping factors like
exp(~u2/x2) are concerned, there is no difference between calculations in
gravidynamics or electrodynamics and one masy fully expect that gravity will
act aé its own regularizer. (The principal difficulty in meking precise
statements for gravidynamicé comes sbout because of the preblem's formal
complexity. The major problem in all these summations is the srranging
of the summation in such & menner a5 %o secure the gauge invariances of

gravidynamics and this is hard.)

As an illustration of quantum gravity quenching the space-time
singulerities of classical gravity, let me consider the guantum corrections
to Duff's graphical generation of the Schwarzschild solutions for a massive
static source. What Duff essentially did was to sum all tree graphs where
a static source repeatedly emits free gravitons, with a propagator which has

2
X

simplifying things in order to illustrate the idess involved - when all these

the essential form [ - ;—1 for gach graviton line (Fig.6). DBasically - and

graphs are summed and the static character of the source taken inte account

(i.e. we take the "static" approximation %- of-ls-),one obtains for the

- appropriate co-ordinate system an expression like

* ji

o

2
-+ g-Mé- g ﬂl— o v
r ‘.

1l




This sums to the charscteristic exterlor Schwarzschild expression lﬂ&-2M)

for © > 2M . As is well lmown,the invariant quantlty g*°¢d g for the

abcd
metric thus obtained exhibits a 51ngular1ty like I/r for r =0 - the true

Schwarzschild singulerity. Does the singularity survive quantum corrections?

My conjectuﬁe would be No. If we replace each free propasgator in the tree
diagrams by the millions and trillions of quantum gravitons which are
inevitably exchanged - and even if we do not take into account any other
closed loop correctlons which arise in quantum grav1ty = we shall replaece the
free propagstor -l/x by an expression like —l/x exp(- R?/x ) . Very
roughly speaking, the Duff geries

L, o2,
r r T

is likely to be replaced by a series of terms like

1 -l
r

. ol

Tr

The conaeéture would be that this will modify the Schwarzschild metrie to

1

- i
re /r - 2M

The horizon. would be shifted, but 1t is the true singularity at

= 0 which will finally diseppear, and the mean value of gaPed
R abeq W1l be proportlonal to lfG3 log o . I realize that this is a
big conjecture. Even ff it is plausxble to replace -l/x by —1/x2 exp(-xz/xe)
for the propagator factors, in the Duff tree diagrem aspproximation, the.final
result may get drastically modified when other quantum loops are teken into
account. &nd such loops must be considered if the gauge invariancesof the
theory are to be preserved. My own feeling is that such loops notwithstanding,
the civilizing influence of damping "curvature" factors like exp(-H?/xz) will
 persist and that gravity quenches its own infinities and its own space~time
singularities. Just to be provocative, let me remind Professors Wheeler and
Penrose of a wager we had in 1971 at a lunch in & Strand restaurant

hosted in sbsentia by Professor Bondl. The bet from thelir side was that Duff

could not p0551bly recover the Schwarzschlld solution and its singularities by
[
summing a perturbation series of Feynman diagrams, They were bound to lose their

bet. May I now offer a wager that a further closed loop summation carried cut
in the appropriaste co-ordinate system (gauge)in the manner I have indicated will’

quench the Schwarzschild-like space-time singularity itself?
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Let me now turn to a technical matter; I wish to define the so-called
Euclidean ansatz, which specifies the manner in which X = 0 in exp(-Kgfx Vs
and show that gravity theory is "awbiguity"-free. The Euclidean ansatz, whicn
one uses for all non~polynomial theories, is the following. GCiven a Green's
finction G(xl,...,xn), we can consider its Fourier transform for the so-called
Symanzik region in momentum space for which all momente are space~like, Symanzik
shows that such regions exist and that Green's functions are essentially
discontinuity-free ("real") in this region of momentum space. We consider

Fourier transforms of Green's functions,
~ ipx b
G(p}. = G{x) e dx

defined in the Symanzik region (p = O,EQ vwhere x,p, etec., stand for (xl"'”xn) s

(pl""’Pn) . In the integral on the right, one may unambiguously continue

% —ix, , NN -xﬁ - x =-—|R|, so that in particuler when G(x) G(x ) .
G{p) hes the form:

Ep) = i JhG( izfx dxip d x .

The passage to ), from xo and x° to =RZ is the Euclidean ansdtz
carried through(without embiguities) in the Symanzik-region. - The-Basic
hypothesis of Symanzik's field thesry is that once one knows the Fourier
transforms of Green's functions in the Euclidean~Symanzik reglon, one may
pass to all other regions af space- and time-like momentea by analytic

*)p

continuations carried out in the momentum spacée

Now following a suggestion fist made by Efimov, for computations with non-

polynomisl theories, one adopts Symanzik's Euclidean ansatz. (As you are

aware, the Buclidesn ansatz has recently been embraced by the Harvard-Princeton

schools of fundamenial field_iheorists,'so that I do net have to apologize for it.)
However, even with the Buclidean snsatz ., there are further problems for

-pon-polynomial theories. Consider

P

2 K
exp(~K /xe) =exp 5 .

R

<e’<¢(x) eK¢(O)> =

®) In all fairness to Symanzik, he has only claimed that for conventional
renormalizable theories, such anelytic continuation in momentum space yields
results identical with those obtained without following this procedure.
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Clearly the Buclidesn Limit x2 = wxf ex® = -R2 +'6 exists only for k2 <O.
For a hermitian Lagrangian, K, however, is resl and K2 > 0. Thus we nust
make & new - a second - ansatz; compube Fourler transforns of Green's
functions, involving factors like exp(K XR ) for negative K2,_ and then
_continue in the 52 plane to positive value of K2. This continuation, '
~even, 1if it " can be Justified, introduces embiguities. As we saw

vefore when we were computing electron self-mass, &s & rule

the Fourler transforms of Green's_ functions 'in_ these theories

involve .exprESsions like 1log K2p2 ; Which Dbranch of the logarithm
represents physics? The likeliest conjecture would be - it is the principal
branch.  But why? This is the standerd "ambiguity" problem of non-polynomial
theorlES, which perslsts even after. . the Fuclidean ansatz is. accEpted

Our claim is, that there is one non-polynomial theory which is free of
this problem - and this is quantum gravity. This remarkeble distinction is a
consequence of the gauge invariance of gravity theory. Let us go back to the
propagator exp(KE/Rg). In order to compute its Fourier transform, K2 nfust
be negative. This is indeed the case for theories with ghosts., Can we

tolerate ghosts in quantum gravity?
As we well know, gravity theory isabsolutely redolent with ghosts,

Though the tensor guu represents & helicity-2 physical object, it also
describes a spin-l ms well as a spin-zero ghosts, It is the gauge invariance
of the theory which keeps these ghosts from appearing in physical states -
they are there,so far as Green's functions are concerned. Can vwe arrange

to work in a gauge which emphasises the spin-zero ghosts and where the
gffective constant Kiff is aslweys negative? The Green's functions
computed in this gauge would be ambiguity free. Raturally when we consider
the S-matrix elements on mass shell, the results must be gauge-invariant,
provided an appropriate gauge~invariance-preserving set of diagrams has

been summed. It should,in the end, make no difference which gauge we worked in.

The idea of employing & special gauge to reduce the ambigulties oz
singularities of a gauge théory is not new, In guantum electrodynamics this
idea has been used to obtain finiteness for wave function renormalization
constants, In spontaneéusly hroken Yang-Mills theories, the work of 't Hooft
and others has shown that there exists the so-called “renormalization" géuge
where the theory contains ghosts and which help to cut down the infinities of
most Green's functlons rendering the theory renormallzable. In the so-called

unltary gauge" where there are no ghosts, the Green's functions absolutely
bristle with infinities which disappear only when cne goes on %o the mass shell,
Tt is a well-known end well-tried procedure to take advahtage of special

gauges when working with gauge covariant field theories.
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How do we show that for quentum gravity such desireble gauges do exist?

Consider the "conformal” gauges of weight w introdueced in Sec.I, (see Eq.(1))

where (¢£A ¢§v) exhibits propagarion of spin-zero objects ( in additionto apin-2 obiects}
. 1
through the gauge-dependent term =2¢ Mo My D{x) with ¢ = wl{w-1) + > -

The weight  can be varied at will. In this gauge the complete 2-point

propegator for gravity is exhibited in (3) and (4). Ashmore and Delbourgo
2 . . . . 2

show that for R- - O , the asymptotic behaviour of {3) is given by exp(x (1-c)D).

Clearly, so long as ¢ 1is > 1, there will he no ambiguities so far as the

. , , §

2-point non-polynomisl Green's functions (gaB(x) EY {0}) are

2 2
(

¢ = g {1 -¢})+Q . Can wve prove that
effective - :

concerned since
the same thing will go on happening for three- and higher point

Green's functions? In Ref.l we have given heuristic arguments for such a
belief but of course a rigorous procf awaits an extension of Ashmore-Delbourgo's

formula (3) to n-point Green's functions. To summarize, we have shown that

for the 2-point CGreen's functions, the ambiguity problem does not exist for

guantum gravity, on account of its gauge invariance properties and, except for

the Buclidean ansatz, no further assumptions are needed for non-serturbative

computations in this theory.

V. THE OUTLOOK

For me the most fascinating gontfibutions to this Ceonference have
been Hawking's on the dissolution of small black holes, and Unruh's paper
(not formally presented) on second quantization in the Kerr metric. I value
these coutributions Tor the results obtained,but perhsps, if I may say so,
even more for their heuristic approach which is the only approach likely to

be fruitful in the itmediate future.

I do gaot Dbelieve ‘a frontal differentisl-geometry inspired attack
on gquantum gravity is 1likely to lead to valid phyéics. In particle

physies, after long expefience, we  have become conditioned fo_ never

asking what the theory can do for us; instead we humbly trv to see whet

we can do for the theagry. Let me glve some examples of conjectured ideas =

some of the most important ideas we have in the sﬁbject - which were
neot derived through any logical process of deduction from gquantum field

theories:
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i) Regge poles;
i3) Dispersion theory;
iii) Duslity and Veneziano form of physical amplitudes,
iv) Scaling and "Free Field" hehayiour of “partons."
All that the theory was asked & posteriori was to confirm that these notions
I believe such will also be the

did not contradict any of its basic tenets.,
history of this extraordinarily rich theory of quantum gravity, to which, =as
.the theory of space-time and its geometry, we all lock for the eventual

' resolution of mysteries encountered in particle physics. '

Just to conclude by giving two examples of ideas which I find exciting
at present. One is the notion of multisheeted space-time and geodetic:
completion ~ an idea which has been considered in the past by Brill, Wheeler,
Israel, Boyer and Lindquist, The idea of Joining on of past and future
patches was rightly relected in the context of geodetic completion as
too contemptuous of ceausality requirements. Must it alsc be
rejected in the .context of quantum fields with their multiple-

valuedness propertles,as Dr, Sarfatt has pointed out?  And in any case, 1is

the whole notion of multisheeted space-time likely to be replaced by sométhing
else if the true singularity at r = 0 (sgy the Kerr metric) disasppears as a
consequence of guantum cofrections which ~ as I conjectured earlier - replace

%--like terms bj singularity-free terms of the type %- exp{=-k/r) .

The gecond exciting idea concerms.the reéeﬁt discovery by Wess and
Zumino of an exact supersymmetry betwéen bosons and fermions of equal mass.
Wess and Zuminé show that two spin-zerc particles of opposite parities form a
supersymmetry-miltiplet together with a Majorana fermion. The Klein-Gordon
Legrangian for the zerq-spin particles can be transformed into,the Dirac
Lagrengian by what are basically space-time transformations involving anti-
commuting parameters. A second - example of a supermultiplet combines a
spin-l boson (e.g. the photon) with a Majorana fermion (e.g. the neutrino).
Strathdee and Salam have shown that these space~time transformations provide
an extension of the Poincaré algebra in the following manner. Define super-
fields (of which the Fermi snd Bose fieldsmentioned above are components)
over the B-dimensional space whosSe points are represented by the pair (xu,ea)
vhere x denotes the ususl space-time co-ordinate and the angle aa is 'a constant
Majorqna-spinor, The varisbles Sa differ radically from co-ordinates of
the usual sort in that they anticommute;

1 ] _
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This has the important consequence that any local function £(8) must be a

polynomial. (All monomials 8, Gu "-Ga vanish identically for n %+ L
1 2 n .
We novw postulate that the following space-time transformstion
(reminiscent of the twistor formalism of Penrose) and which leaves Idxu - %'iEYud8|2

invariant)

Ga > Bd + Ea » €y = & constant Majorana spinor,

For this transformation & general superfield ®{x,8) wouid transform in the
following manner:

o' (x',8') = % o(x,0) e~iFS

Here the transformation generators Sa satisfy

(50858 = ~(1,0)e 2, -

]

[Sa,Pu] 0 .
(C  is the charge conjugating matrix in Direc y-algebrs and PU are -the
generators of space~time transﬁormations.) A scalar syperfield is naturally

a field whieh transforms according to o'(x',8') = @(3;8) .

One can now show that this scalar superfield @(x,8) consists of
the two irreducible representations mentioned above. One of these
representatibhs ccrresponds to a physical particle multiplet which contains two
(opposite parity) spin~zero particles plus a Majorans spinor; the other
contains & spin-l1 particle together.uithpanother.Majorana spinor.

The question which is exercising us is this; what supermultiplet,
if any, does the Einstein graviton belong t0? Is it accompanied by =

massless spin—g-particle, coupling universally to matter with the same

coﬁpling parameter as gravity. Is ?hngnivg;sg full of sEEh particles?

How doés general covariancé comé into this, Surély thé graviton is not thé
ébsolute "Boson". If every other Bose particle can have 8 Fermi partner,

the graviton cannot be the only particle not to share this symmetry principle.
We know that the sypersymmetric interaction Lagrangians so far invented bontain
fewer Iinfinities than one might naively have expected; g.g. there is no

guadratic self-mass infinity for scalar particles; for some supersymmetiric
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Lagrangians studled there are no intrinsic vertex part infinities. What,

influence the Fermi partners of gravity would have on infinities in gravity theory '
and on singularities of space-time manifolds? And what exactly is the geometry

of this new extended manifold constructed from the anticommiting angles By
together with xﬁ ? The extended manifold is perheps the first non-triviel and

at the same time the first physically significant extension of space-time we
possess., Can this menifold support internal symmetries? Physics is truly an
unending, an everlasting, an absorbing quest, and the physics of qQuantum gravity

evell more g80.
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FIGURE CAPTIONS

Fig.l Sums of diagrams with pillions and trillions of

gravitons exchanged build up "space~time curvature".

Fig.2 A sum of all tree diagrams reproduces the classical

Schwarzschild expression for the metrie tensor.

Fig.3 f-g transition diagram,

Fig.h Lepton-lepton gravitational potential arises from an

axchange of g-field quanta; while the lepton-hadron
and hadron-hadron gravitational potential has its
origin in the transformation of f-quanta to g-quanta.

Fig.5 The first graph shows 1-photon exchange; the others exhibit

this graph in the sea of exchanged gravitous.

Fig.6 Graphs of Fig. 2 with millions end trillions of gravitons

exchanged between space-time points. The sums of these
graphs are expected +to gquench Schwarzschild {(and
other metrical) singularities. '
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