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I. INTRODUCTION

When Roger Penrose and Dennis Sciama assigned me the task of reporting

on the impact of quantized gravity theory on particle physics, I am sure they

did this with a certain amount of positive anticipation. Sadly, the burden

of my remarks will "be - there has been very little impact. Principally this

is occasioned by the belief - erroneous as I hope to show - held,by and large,

by the particle physics community., that quantum-gravitational effects will manifest,

"themselves only for energies in excess of 10 EeV "•* G , lengths < 10 cms .

This has meant that, though there has been some impact of quantized gravity

theory on the development of field theories as such, particle physicists have,

in general, made no attempt to enrich the concepts of their subject with the

geonetrical or topologieal notions which, after all,are - or should be - the

crowning glory of Einstein's gravity theory, in its final quantized form. It

is in fact these geometrical and topologieal notions towards which I wish to

build in my remarks to-day. I shall, however, approach them, not by imposing

them from outside - in the manner of a differential geometer - but as something

emerging from the experience of the particle physicist with quantum fields

with which he is familiar, and of which. quantum gravity field should be

but one - though of course the supreme - example.

II. THE PARTICI£ PHYSICIST'S APPROACH TO QUANTUM GRAVITY

From the particle physicist's point of view, quantized gravity theory of

Einstein is no more than the theory of spin 2+ quantized massless gravitons. The

physical graviton exists in two helicity states, but is described by a 10-

component field g^V(x) , vhich supports an extraordinarily elegant, group-

theoretically simple, but (in the relativist's notation) fearsome set of gauge

and space-time transformations.

After having said this, I1 must however repeat what Chris Isham has

already stressed^ there are the two problems absolutely peculiar to the

quantization of gravity, which one does not encounter for other field theories.

1) In the canonical or in theLSZ approach, the concept of space-like

separated points - so essential to the setting up of any sort of commutation

relations - cannot be defined till after the theory is solved and the "light-

cone" structure at each space-time point constructed and specified.

2) For the exotic - and often singularity-ridden - topologieal

manifolds vhich may emerge as solutions of Einstein's classical equations,

the defining of concepts of positive- and negative-frequency boundary
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conditions, and the completeness of quantum-mechanical Hilbert—space

description present new problems which one encounters for gravity theory alone.

One may approach these problems in one of the two

ways; Either one starts by considering the most general geometrical and

topologically complex classical situations likely to be encountered and set

about quantizing (classical) geometry - somewhat in the manner of Dirac's

attempts to solve the classical electron equations and to quantize them after-

wards - or one proceeds in the reverse order, heuristicallyj as a particle

physicist normally does.

a) Start with an (asymptotically flat) Minkowskian manifold and build

a conventional field theory of a classical tensor field g (x) satisfying

Einstein's equation* using Feynman's path-integral formulation.

b) In this approach, gravity theory is distinguished from

other field theories the particle physicist encounters in that the

theory employs two tensors gyV and g^y, one of which is

simply the inverse of the other. This makes Einstein's Lagrangian an

intrinsically non-polynomial Lagrangian, when expressed in terms of one of

the two tensors. To preserve quantum field-theoretic localizability in the

sense of Jaffe, one adopts a convenient parametrizatian for the two fields*)
Wg and g;jV :

where 41 is & k x 1+ symmetric matrix and K = (G/I6TT) , Note that this demand

for localizability, implying as i t does that det g f 0 for finite <Ji(x} ,

excludes space-time singularities associated with the vanishing of det g

c) For this parametrization the Einstein Lagrangian has the form

of an infinite power series in < :

Einstein

d) To implement the gauge conditions, Einstein's Lagrangian is

supplemented by an appropriate gauge term. Using, for example , a "conformal"

'*) A group theoretical significance has recently been accorded to the

exponential parameterization in a "beautiful paper by A.B. Borisov and

V.I. Ogievetsky (Dubna Preprint E2-T684, 197M. They remark that general

relativity is the simultaneous non-linear realisation of affine and conformal

symmetries. The exponential parameterization of gUV represents the standard

manner in which non-linear realizations of GL(^tR) are constructed.
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gauge of "weight" to (for details see Ref.l) , and after imposing appropriate
boundary conditions on Feynman's path integral, one can show that the free
spin 2 graviton propagator for the incoming (or outgoing) field $ in .
this gauge is given by:

where D(x) is the zero-mass scalar propagator and c = di(tii-l) + — . (w = 1

corresponds to the well-known De-donder gauge.)

e) One can now make a perturbation expansion (in powers of K) for the
Green's functions of the theory in terms of Feynman diagrams. Besides the
necessity to take account of Feynman-deWitt-Faddeev-Popov-Man deist am unltarity—
preserving ghosts, the peculiar feature of gravity theory {arising from the
non-polynomial nature of 5C . , . ) is that at every Feynman vertex there
impinge indefinite numbers of graviton l ines . Mathematically this is seen
by considering the example of the free Green's^function

/ ^ > • (2)

Using ( l ) , and after some imaginative though ferocious algebra, Ashmore and
2)Delbourgo have shown that the exponentials appearing on the right-hand side

of (2) can be evaluated to give the propagator in the form! "" "

d(K2D) l 8 . I . .

(3)
I • _I_O " t

where

a(D) = (2 - 3z +'^ z2) exp(-2cz) + F(2 + 3z - z2 +

- 2c)), z = ^ , (It)

Here L_ and L. are the Struve functions (Fig.l), . (j'or the definition of

exp(X2D) for x2-»• 0,. one uses'a Euclidean ansatz. explained in Sec. IV.)

f) So far no geometry has entered in the formalism developed. We

have simply built up a perturbation representation of Green's functions in a

Minkovskian manifold. This manifold may have"nothing, whatever to do with

the space-time of general relativity. My contention is that with this humble

apparatus available, the heuristic techniques of the particle physicist, like

analytic continuation, renormalization, summation of aeries and the like -

techniques vhich are so far foreign*to the general relativist's experience -

are sufficiently powerful to yield what may be recognised as geometrical aspects

of gravity theory* . . • . . _ . . „



One example of this is the well-known discussion of Thirring

starting with the "bare" unobservable metric of the Minkowskian

: manifold shows how one builds up the physical space-time metric

through a ̂ normalisation of lengths and time intervals, following the

very familiar procedures of renormalization theory in particle physics. A

second example is the Duff-Sardelis reproduction of the Schwarzschild

and Reissner~Nordstrom classical metrics, including of course

a description of their singularities, by a summation of infinite sets of tree

diagrams in the "Minkowskian" version of Einstein-Maxwell theories (S"ig.2).

The analogy of the Duff-Sardelis work is with the particle physicist's

treatment of the 'bound state problem. Biy summing infinite sets of perturbation

diagrams, the particle physicist builds up expressions for Green's functions which

exhibit bound-state poles in the energy momentum plane -poles which, before the

diagrams are summed, are naturally nowhere in evidence. In the Duff-Sardelis work,

one is recovering space-time singularities of the metric^ without starting with these.*)

Finally to mention one more weapon in the armoury of the particle physicist. The

perennial problem of classical vs. quantum aspects of the gravitational field -
uv

the difficulty which one continually encowters in reconciling g as a

quantum operator and g as a classical function - may possibly be resolved

through the use of Wilson's operator product expansions. For example, one may

conjecture (from the non-polynomiality of gravity theory and as a generalization

of expressions like (2), (3) and (h)) that a typical operator product for

operators in gravity theory [like g- (x) g (o)] has the form:

, (5)

where 0 g is operator-valued. This operator expansion is reminiscent of

Newman-Penrose expansions for gravitational field components for large x . The

difference with Newraan-Fenrose expansion, however, is that we are conjecturing

its validity as an operator product expansion not only for large x but for
2 £l

all x including x » 0 .

*) To be sure, in the large, it is the class of asymptotically flat metrics only

whose singularities one will determine, by starting with the Minkowskian manifold.

My excuse for emphasising these is that firstly this class embraces most metrics

of interest; secondly, I believe that, topology in the small> will also be

recoverable by the use of the diagrainmaticTheuristio techniques I am

speaking about, {̂The universe and its (quantum) topology are determined by

where gravitons are and what space-time interaction patterns they give rise

to. But I shall not elaborate on this.)



To summarize, the particle physicist has, after years of experience,

learnt that there are very few systems he can quantize exactly - very few cases

where he can solve the equations of quantum field theory. His experience has

taught him that a frontal attack on any problem in quantum f^eld theory is

pointless. He has learnt to proceed heuristically, conjecturing solutions,

extending the domains of the solutions he knows by methods which may appear

atrociously vile to those brought up in strict mathematical disciplines like

differential geometry. . His auccesaea^howeyer, have not teen inconsiderable. I

feel, that the'same procedures,may help in making a dent on the-problem of
quantizing geometry, . • -,'• ,, • . . ' . . . . . . .

I I I . f-g GRAVITY THEORY AND EFFECTS OF "GENERALIZED CARTAN TORSION"
IK PARTICLE PHYSICS

I sha l l now turn a t tent ion t o the subject proper and discuss a number

of topics where one has sought for a physical - and not jus t a mathematical -

impact of gravity on pa r t i c l e physics and vice versa. The f i r s t topic i s

f-g mixing, the two-tensor theory of gravity and " tors ional" effects in p a r t i c l e

physics.

If gravitons represent spin-2 par i ty-plus quantum s t a t e s , these s t a tes

must superpose with every other spin-2 quantum s t a t e , unless there i s a

rigorous select ion rule excluding such a superposition from manifesting i t -

se l f physical ly. The analogy i s with the photon-p-raeson mixing phenomena

which, when elaborated in to the so-cal led vectors-dominance hypothesis,has

played a considerable role in p a r t i c l e phyaics during the l a s t decade.

Now 2 quantum s ta tes - indeed a 9-fold of 2 s t rongly- in teract ing

SU(3) octet + SU{3) s inglet s t a tes - w e r e discovered some ten years ago. The
0 0' 0± *i *0 ~A*

members of this nonet are f , fv , A,r , K , K • and IT , with
0

masses ranging between 1200 and 1600 MeV. Concentrating on the neutral f

field, quantum-mechanical superposition implies that there must exist tran-

sition matrix elements between the field f (x) representing f and the

gravitational field g ^ x ) (Fig.3). The physical eigenstates (the physical

particles) would be obtained by diagonallzing the appropriate f-g mixing matrix.

So much for general principles.. One;.can now-elaborate this mixing of

fields into the so-called two-tensor theory of gravity, proposed by Isham,

Strathdee and myself, by Wess and Zumino and "by E. Lubkin. There are three

basic postulates of this theory.

l ) The dynamics of the f-meson is described by an Einstein Lagrangian

dv{t) (with the Christoffel symbol I*{f°) occurring in this Lagrangian

defined using the"metric"tenBor r^ in complete analogy with T(g) for the



gravitational tensor g^ V). The only difference from j£E(g) is that the

Newtonian constant G m2 ( ~ 10~ } ia replaced "by the constant G_ mJ « 1),

characteristic of strong interactions. ,The two "metric" tensors, f » g ,

are completely at par at this stage and,in fact,independent of each other.

2) To the Lagrangiaji

we add a generally covariant f-g mixing term

This has the effect that f and g fields mix. The eigenfields in the

I M} } "'UV UV UV
approximation 0 hr- are described by a massive field: f = f - g

f V f GTStYX( V G N v\
and the graviton field *g = 1 + ~ g + TT~ f I which.to a good

I GfJ I G
f J

approximation, represents the massive physically observed f particle and the
massless graviton, respectively. (The field g corresponds to the "true" metric.)

3) For interaction with matter we make a postulate (in analogy with

the p photon case) which states that leptons interact with the g field (in

the standard Einstein manner, with the coupling parameter G } while the f

field interacts with hadrons alone, with the coupling parameter G . Hadrons

have no direct coupling with the g field. To the extent that f -g mixing

can be neglected, the f -meson exchanges between hadrons will give rise to

a strong (nuclear)force only. Insofar as the equations describing this inter-

action are Einsteinian in form,thi3 force may be called strong gravity. When ,

f-g mixing is taken into account, the mixing term describes (correctly) the

conventional gravitational interaction of hadrons. The effective gravitational

potential involving hadrons arises from the f's transforming into g's

through the mixing term. There may be differences between the conventional

•• gravity theory where gravitons interact directly with hadrons rather than

through the intermediacy of f mesons, but these differences will be of the

order of (see Fig.l

*) Recent CEA and SLAC experiments which seem to indicate that electrons may also possess;

anomolously strong"interactions when interacting with hadrons at sufficiently high energies

may necessitate a reformulAtion of this postulate. The important and basic point i s the
-lit

assumption that space-time geometry at distances & 10 i s dominated by the

f-tensor with its stronger coupling rather than the weakly coupled Einstein's

g-tensor.



Now, what are the virtues of f gravity? To the extent that f-g

mixing (and thus also the mass of f particles) can be neglected, we have a

"two-metric" theory for two non-communicating worlds of hadrons and leptons.

Concentrating on hadrons alone, if the geometrical aspects of Einstein's

ideas are indeed relevant for quant-urn physics, here» in "f gravity",we have

created a physical model, where a geometrical description should begin to

manifest its virtues, around lengths of the order of R,, . . ...,
senwarzscnila

for ,strong gravity, i.e. around lengths of the order of 2Gjn »(l/m|.) m ~
-Ik r r f ,

~10 cms. One may inquire, for example, if it is profitable to
-14describe normal hadrons with sizes around 10 cms, as "black holes" -

or perhaps, more correctly, as "grey holes"(when f-g mixing ai>d thus the massiveness of

f mesons is taken into account)- in the strong f-gravity field. (The nomenclature

"grey holes" is meant to convey that the absorptive characteristics of these

objects must be accompanied by the peculiarly quantum-mechanical phenomena

of diffractive shadow scattering.) Could this description and the

attendant physics possibly be one way to resolve the dilemma of quark imprison-

ment inside normal hadrons? The surface of a black hole is the one surface

which truly confines everything that is inside.. Do "grey" holes lie on

Regge trajectories? What are the collision mechanisms of "grey holes", their

diffraction scattering, their absorption processes, their directional properties
tor

(for example/charged Kerr black holes), and the like? The f-gravity hypothesis, i.e., the

hypothesis which describes the strongly interacting f-meson-hadronic system,

using Einstein's equation,with f (x) acting as a metric field (in the

approximation that f -g-mixing term and thereby the mass of the f mesons

is neglected), clearly provides us with the most favourable laboratory system

one could devise to observe quantum geometry at work. Of course, the entire

hypothesis could "be false; f-mesons may not be described by an Einstein-like

Lagrangian, or alternatively the treatment of f-g mixing and the neglect of

f-mass as a perturbation may be totally unjustified. Only further investigation

can tell.

But besides the possible metrical aspects of the neutral f (x) field,

there is one other aspect of the f-meson system treated as an SU(3) nonet

where one may possibly observe the impact of space-time ideas upon the internal

symmetry notions of particle physics, As you are aware, one of the unresolved

dilemmas of particle physics is the dilemma of internal symmetries of isospin

(associated with an "internal" SU(2) group structure and its extension - the

unitary spin (associated with "internal" SU(3)))•The dilemma was deepened in

when one discovered that the hadronic system appears to exhibit even

-T- . . . . .



higher symmetries like Wigner's SU(M and i ts extension SU{6),which combine

internal SU(2) (or SU(3)) with the spin group SU(2)O , (SU(U) C S0T(2) x SUQ(2)

SU(6) C SU(3) x SUg(2)). Since f ron the one hand,belongs to an SU(3)

nonet and,on the other,may play the role of the strong graviton, the question

is , what generalization of the gravitational space-time formalism is needed

to accommodate thexinternal SU(3)?i Isham, Strathdee and myself have tried to

give one possible answer.

We start by generating the Einstein Lagrangian for the neutral SU(3)-

singlet field f^V(x), using Weyl-Cartan-Fock-Ivenenko-Sciama-Kibble-Trautman

vierbein formalism which has SL(2,C) gauge invariance as i ts key feature. We

then generalize the SL(2,c) gauge structure to SL(6,C), which contains the

internal SU(3) as a subgroup,thereby obtaining a Lagrangian which describes a •

nonet of strongly-interacting spin-2 fields and their interactions. The

distinguishing geometrical feature of this Lagrangian is the emergence of a

generalized torsion density, which, we associate with the physically observed

generators of the mysterious SU(6) spin-unitary-spin-containing symmetry

observed in hadronic physics. From this point of view, besides the concept

of f as the "strong metric", Cartan's torsion, suitably generalized, could

be the second conceptual gift of gravity theory to particle theory insofar as

this concept can embrace within i t both the notion of internal symmetries like

SU(3) as well as marry these symmetries with spin^syrametry to give rise

to the particle physicist's SU(6).

As is well, known the SL[2,C) Weyl-gauge formalism starts with the 16-

component vierbein field L^a(x) which is related to the gravitational field

f (x) through the relation

' 1

(det fuv)"s fyv(x) = na-b LUa{x) L (x) , nab
-1

-1
-1

Here,Greek u are the space-time and Latin "a" the SL(2,C) indices. To make

it possible for the particle physicist to see the elegant group theory behind

Weyl's ideas, so totally obscured in standard treatments using clutters of

indices, I shall use Dirac's y and a matrices as bases to exhibit the

SL(2,C) transformations. Thus write

The SL(2»C) transformations are generated by the matrices

Q = exp i [aab c ] ,

-8-



and IT transforms as LU •*• fl LU Sf . I t Is easy to shov that i f tht SL(2,C)
ab

parameters e are functions of x , and i f there exists an SL(2(C) "gauge"
connection B which transforms like

V ^ / " 1 - 1 1 2 3y n-1 *
ab

with B = B a , then one can define "Weyl-covariant" derivatives, using

the "gauge-connection" B , such that, e.g.

transforms as:

and the "covariant curl"

B (x) a 3 B - 3 B + i [B,B ]\iv ] J V v y y v

transforms as

B ( x ) •*• ! J E , S 2 1

yv y\)

If matter is present, represented for example by the Dirac spinor ip(x) , the

covariant derivative for ip(x) is

With this preparation, one immediately sees that the generally covariant Weyl-

Fock-Ivenenko Lagrangian

^ = - 1 T r [ I |M>I |V] B I W + ll) ^ % + ± \ H + m ^

is also SL{2,C) ^auge Invariant describing the propagation of a 2

field L(x) . (The trace is taken over the Dirac matrices and I have in-

corporated {det j—• L^LV)"S into the definitions of the fields ty and L .)

The equations of motion which result Toy varying L and B ore:

i[L ,B ] - T •*• Einstein's "curvature" equation,

9y[L
y,LV] + i[By[Ly, LV]] = SV •*• Cartan's "torsion" equation ,

where T and S are the matter stress-tensor density and matter-spin

densities, respectively.

-9-



Identifying

./ V . r _ r U \ln V

T - i [B [L ,L jj - S

with Cartan's spin torsion density, the second equation of motion tells usthat

Consider now the generalization of this formalism to include SU(3).

All one has to do is keep precisely the above Lagrangians aa well as the field

equations; simply change SL(2,C) generators a to SL(6,C) generators

where the AX's are the nine U(3)<3 x 3) Gell-Mann matrices, and the SL(2,C)

ideals y 's are generalized to SL(6*»C) ideals

with

Y &

One can nov show that the L's represent a nonet of 2 fields vhich we

identify with the f nonet.

I shall not go into the details of how one adds a mass term for the

Lagrangian, and. how the f-g mixing term introduced earlier to describe the

neutral (f } sector of this SU(3) nonet becomes part of the enlarged formalism.

This is described in Ref.T> where also following Trautman's ideas on spin-

torsion, ve consider how torsion affects large-scale collapse when f-gravitational

effects are taken into account. Here I wish merely to stress the following:

a) As we anticipated,the SU(6) spin-internal-spin symmetry of

particle physics does emerge as a generalization of spin-torsion concepts of

Cartan and can be incorporated into a dynamical set of generally covariant

equations describing an SU(3) nonet of strongly interacting particles.

b) One may conjecture that the combination of parameters

m G

-10-



which occurs in the charged Kerr solution to Einstein's equations (where Q

is electric-charge, S the spin and m the mass) will generalize for the

above SL(1+»C) or SL(6,C) gauge-invariant generalization of Einstein's equation

to the characteristic SU(U) - or SU(6) - combination:-

1 ) + .
m Gf

Since it is this type of combination which occurs in mass formulae for

hadronic states, this lends support to the point of view

that hadrons are indeed "grey" holes of the Kerr-Newman variety. Note that the

charged Kerr black hole radius

r = r+ = m +Vm
2 - Q2 - S2/m2

(here modified with Q2 •*• ,l{i + l) and S2 + J(J + l) is smaller(for same m)

for particles carrying non-zero I~spin and J-spin. A confinement heirarchy can

therefore be built up among I and J-spin carrying objects.

IV. EFFECTS OF SPACE-TIKE CURVATURE: QUANTUM GRAVITY. THEORY AND
REGULARIZING OF SINGULARITIES AND INFINITIES OF QUANTUM FIELD THEORIES

So far I have dealt with possible effects of torsion and Its

generalizations for particle physics. Turn,now to.the possible effects

of space-time curvature. It is an old conjecture of Landau, Pauli, Klein,

deWitt, Deser and others that it is the neglect of .•Space-time curvature which

is responsible for the ultraviolet infinities of particle physics. I shall '

describe some of the work done at Trieste and in London in this connection .

Apparently,not only does quantum gravity regularize the ultraviolet infinities

of other theories, it also regularizes its own - at the same time possibly

' quenching the space-time singularities. Further, gravity is perhaps the

only theory with the property that there are no "ambiguities" in the

regularized magnitudes ve obtain at the end of the calculation .

This is a big claim. Part of what I have asserted has been rigorously

proved; part is heuristic and part conjecture. The chain of arguments will

go something like this; mathematically, quantum gravity (as we have formulated

it in Sec.II) is a non-polynomial theory; it must therefore be treated non-

perturbatively and contributions from millions and trillions of exchanged,

quantum gravitons must be summed. This summation(whose neglect physically

amounts to neglect of space-time curvature) is responsible for quenching of

infinities; the lack of "ambiguity" for the results in the summation

procedure stems from the peculiar gauge and other invariances of gravity theory.

-11- .



Not surprisingly, after the summation we shall see that the effective parameter
2 1for the crucial gravitational effects will not be the tiny number Qm £; 10

? e

but instead more like [log G m (a 100 .

Consider the Dirac-Maxwell-Einstein Lagrangian describing an electron

interacting with photons and gravitons. Its form is:

eff ""'

Here A is photon field, <f> represents gravitons (I am ignoring spin),
—1

^ is the electron field and K equals YG /16TT' « 0.25 x 10" m

(Since I am concerned here vith showing you what the "basic ideas are, the

formalism will be presented in its simplest form. For rigorous details

refer to Ref-9.) The electron self-energy graphs are shown in Fig.5. The

basic graph is the 1-photon-exchange gi-aph; all the others simply show this

process taking place in the environment of millions and trillions of gravitons,

A neglect of these millions and trillions of gravitons is a neglect of apace-

time curvature ("Space-Time (and its Curvature) Is where Gravitons are").

Now.

= ~(iY3 + ml -̂ - + less singular terms

x
1

<AA>

X

2 , 2

The contribution of a l l graphs shown in Fig.5 to the self-mass of the

electron is given by the Fourier transform (evaluated at fi - m) of the

function

F(x) = a exp(-K2/x2) [- ^ J Ciy3 + m) M j

If the gravitons are neglected (K = 0),

6m = F(p) - f F{x) e l p X

m

So that 6m is logarithmically infinite (the well-known infinity of electron self- mass

discovered first by Weisskopf in 1935)- However,the inclusion of the quantum

-12-



gravity factor exp(-X /x ) acts as a regularizes One can easily shew (using

a Euclidean ansatz to define this factor exp(->^/x ) , a topic to which I

return} that the effect of this damping factor is to give:

6m a ^ m

+ terms involving OK jlog Km| .

Clearly the self-mass infinity of electron self-energy has gotten regularized

at energies corresponding to the Sehvarzschild radius B of the electron.
s

A somewhat remarkable feature of this calculation is that when the value of
K is substituted in the formula, numerically — « — , in other words.

m 1 1 •> T

in the lowest order of a , gravity-modified electrodynamics gives the

result that a substantial fraction of electron self-mass (6m) is electro-

magnetic in origin. Inclusion of gravity not only quenches the electro-

magnetic infinity of electron self-mass; it also appears to give support

to Lorentz's conjecture that all of electron's self-mass, may be a result

of its interactions. Indeed,one may conjecture that if all the higher orders

in a and multiphoton exchanges were included in the calculation (.with the

effective parameter for the problem being a flog Km|),one may recover theresult

m
n

\a log Km| - 1 ,

i.e. 6m = m . In other words, there ia possibly a fundamental relation

between a , GN and me .which has the form 1 *= §3L m-Ja log[-4 j and where

the function F is a power series'with the first term given by*)

3a ,._ (V)2

<m

••) It.is amusing that the notion of gravity acting as the final regularlzer

and the relation a log G^u sa 1, have begun to be accepted as representing

respectable physics by the orthodox opinion in particle physics (Summer 197*0.

See recent papers by G. Parisi, D. Gross, H. Frit3ch and P. Minkovski,

H. Georgi and S.L. Glashow and others. The motivation is as follows:

Unify weak, electromagnetic and strong interactions using Yang-Mills vector

(and axial-vector) fields gauging a simple Lie group desciribing internal

-13- (com...)



(continuatku of footnote)

symmetries. The theory possesses one unique coupling constant a . Assume

that the presently manifested, disparate strengths of veak versus electro-

magnetic versus strong forces is a manifestation (from spontaneous symmstry-

breaking) of a heirarchy of differing masses for the Yang-Mills gauge mesons.

Now for asymptotically free theories (e.g. a Yang-Mills theory) the effective

strength of couplings decreases as energy increases. At vhat energy does the

effective coupling of hadrons, (strongs 1 at presently accessible Mev energies)

become equal to a ? To answer this question , use renormalization group

ideas, or more simply the conventional calculations of self-charge which give
2 2 P .?

fig /g % a log A /UJ where A is the relevant energy. Assuming 6g2/g2 x l,

we recover the result that vhen A approaches 1019 BeV the effective strong

constant will equal the constant for electromagnetism and weak interactions.

Up till now we have considered gravity as quenchirrg the ultraviolet

infinities of quantum electrodynamics. What about gravity quenching its own

ultraviolet infinities? So far as the appearance of damping factors like

exp(-K2/x2) are concerned, there is no difference between calculations in

gravidynamics or electrodynamics and one may fully expect that gravity will

act as its own regularizes (The principal difficulty in making precise

statements for gravidynamics comes about "because of the problem's formal

complexity. The major problem in all these summations is the arranging

of the summation in such a manner as to secure the gauge invariances of

gravidynamics and this is hard.)

As an illustration of quantum gravity quenching the space-time

singularities of classical gravity, let me consider the quantum corrections

to Duff's graphical generation of the Schvarzschild solutions for a massive

static source. What Duff essentially did was to sum all tree graphs where

a static source repeatedly emits free gravitons, with a propagator which has

the essential form - ̂ yr] for each graviton line (Fig.6). Basically - and

simplifying things in order to illustrate the ideas involved - vhen all these

graphs are summed and the static character of the source taken into account

(i.e. we take the "static" approximation — of--^ )r one obtains for the
x

appropriate co-ordinate system an expression like



This sums to the characteristic exterior Schwarzschiia expression 1/<J-2M)

for r > 2M . As is well known, the invariant quantity R
a b c d

 R for t h e
/• abed

metric thus obtained exhibits a singularity like l/r for r -*• 0 - the true

Schwarzschild singularity. Does the singularity survive quantum corrections?

% conjecture would be No. If we replace each free propagator in the tree

diagrams by the millions and trillions of quantum gravttons which arc

inevitably exchanged - and even if ve do not take into account any other

closed loop corrections which arise in quantum gravity - ve shall replace the

free propagator -1/x by an expression like -l/x2 expC-J^/x2) . Very

roughly speaking* the Duff series

.2 '

is likely to be replaced by a series of terms like

1 e-|*/r| + 2M e-(2K/r| + _

r

The conjecture would be that this will modify the Schwarischild metric to

- 2M

The horizon, would be shifted, but it is the true singularity at

' r = 0 which will finally disappear, and the mean value of Rabcd

Rabcd W i l 1 b e ProPorfcional to VG 3 log GM2 . I realize that this is a

big conjecture. Even if it is plausible to replace -l/x2 by -l/x2 exp(-K2/x2)

for the propagator factors, in the Duff tree diagram approximation, the final

result may get drastically modified when other quantum loops are taken into

account. And such loops must be considered if the gauge invariancesof the

theory are to be preserved. My own feeling is that such loops notwithstanding,
2 2

the civilizing influence of damping "curvature" factors like exp(-* /x ) will

persist and that gravity quenches its own infinities and its own space-time

singularities. Just to be provocative, let me remind Professors Wheeler and

Penrose of a wager we had in 1971 at a lunch in a Strand restaurant

hosted in absentia by Professor Bondi. The bet from their side was that Duff

could not possibly recover the Schwarzschild solution and its singularities by

summing a perturbation series of Feynman diagrams. They were bound to lose their

bet. May I now offer a wager that a further closed loop summation carried out

in the appropriate co-ordinate system (gauge)in the manner I have indicated will'

quench the SchwarzsehiId-like space-time singularity itself?
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Let me now turn to a technical matter; I wish to define the so-called
o P P

Euclidean ansatz, which specifies the manner in which x —• 0 in exp(-X /x ),

and show that gravity theory is "ambiguity"-free. The Euclidean ansatz, which

one uses for all non-polynomial theories, is the following. Given a Green's

fi\nction G(x^,...tx ), we can consider its Fourier transform for the so-called

Symanzik region in momentum space for which allmomenta are space-like. Symanzik

shows that such regions exist and that Green's functions are essentially

discontinuity-free ("real") in this region of momentum space. We consider

Fourier transforms of Green's functions,

G(p) = f G(x)

defined in the Symanzik region (p = 0,p_) where x,p, etc., stand for (x^..

(p..,...,p ) . In the integral on the right, one may unambiguously continue

xQ -»ix, , x -*• -xj~ - y? =-JR| y so that in particular when CrU) = P U ) ,

G(p) has the form:

G(p) - i

The passage to x^ from xQ and ^ 2 to -R2 Is the Euclidean'arisatz.

carried through (without ambiguities) in the Symanzik-region. T-he-Taasic

hypothesis of Symanzik's field theory is that once one knows the Fourier

transforms of Green's functions in the Euclidean-Symanzik region, one may-

pass to a l l other regions of space-and time-like momenta by analytic.
*)continuations carried out in the momentum space p.

Now following a suggestion first made by Efirnov, for computations with non-

polynomial theories, one adopts Symanzik's Euclidean ansatz. (As you are

aware,the Euclidean ansatz has recently been embraced by the Harvard-Princeton

schools of fundamental field theorists, so that I do not have to apologize for i t . )

However, even with the Euclidean ansatz, there are further problems for

non-polynomial theories. Consider

<. /xS) * exp ~r

*) In all fairness to Symanzik, he has only claimed that for conventional

renormalizable theories, such analytic continuation in momentum space yields

results identical with those obtained without following this procedure.
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o P 2 o k 2
Clearly the Euclidean limit x.^ = -x^''-x. = -R •*- 0 exists only for K . < 0 .

* 2

For a hermitian Lagrangian, K, however, is real and K > 0. Thus we must

make a new - a second - ansatz; compute Fourier transforms of Green's

functions, involving factors like exp(K2/R2) for negative K , and then

continue in the K plane to positive value of K . This continuation,

even, if it can be' justifiedj introduces ambiguities. Ac ve saw

"before when we were computing electron self-mass, as a rule

the Fourier transforms of Green's functions •in these theories

involve expressions like log K p . Which branch of the logarithm

represents physics? The likeliest conjecture would he - it is the principal

branch. But why? This is the standard "ambiguity" problem of non-polynomial

theories, which persists even after_^the Euclidean ansatz. is..accepted. •

Our claim is, that there is one non-polynomial theory vhich is free of

this problem - and this is quantum gravity. This remarkable distinction is a

consequence of the gauge invariance of gravity theory. Let us go "back to the
2 ? 2

propagator exp(< /R ). In order to compute its Fourier transform, K must

be negative. This is indeed the case for theories with ghosts. Can we

tolerate ghosts in quantum gravity?

As we well know, gravity theory is absolutely redolent with ghosts,

Though the tensor g^V represents a helicity-2 physical object, it also

describes a spin-1 as we3.1 as a spin-zero ghosts. It is the gauge invariance

of the theory which keeps these ghosts from appearing in physical states -

they are there,so far as Green's functions are concerned. Can we arrange

to work in a gauge which emphasises the spin-zero ghosts and where the

effective constant K is always negative? The Green'8 functions

computed in this gauge would be ambiguity free. naturally when we consider

the S-matrix elements on mass she.11, the results must be gauge-invariant,

provided an appropriate gauge-invariance-preserving set of diagrams has

been summed. It should,in the end,make no difference which gauge we worked in.

\

The idea of employing a special fjauge to reduce the ambiguities or

singularities of a gauge theory is not new. In quantum electrodynamics this

idea has been used to obtain finiteness for wave function renormalization

constants. In spontaneously broken Yang-Mills theories, the work of 't Hooft .

and others has shown that there exists the so-called "renormalization" gauge .

where the theory contains ghosts and which help to cut down the infinities of

most Green's functions rendering the theory renormalizable. In the so-called

"unitary gauge" where there are no ghosts, the Green's functions absolutely

bristle with infinities which disappear only when one goes on to the mass shell.

It is a well-known and well-tried procedure to take advantage of special

gauges when working with gauge covariant field theories.
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How do we show t h a t for quantum grav i ty such des i r ab l e gauges do ex i s t ?

Consider the "conformal" gauges of weight w introduced in S e c . I , (see E q . ( l ) )

where ($ -. $ ) exhibits propagation of sp in-zero ob jec t s ( in addition to spin-2 ob jec t s )

through the gauge-dependent term -2c n , n D(x) with c = w(u- l ) + — •

The weight u) can be va r ied a t w i l l . In t h i s gauge the complete 2-point

propagator for g rav i ty i s exh ib i ted in (3) and (U). Ashmore ana Delbourgo

show t h a t for R -+ 0 , the asymptotic behaviour of (3) i s given by exp(K ( l - c ) D ) .

C lea r ly , so long as c i s > 1 , t h e r e w i l l be no ambigui t ies so far as t h e

2-point non-polynomial Green's funct ions (g (x) g ' (0)) a re

concerned s ince * * „ + < = ^ U - c ) * 0 . Can we prove tha t

the same th ing w i l l go on happening for t h r e e - and higher po in t

Green's functions? In Ref . l we have given h e u r i s t i c arguments for such a

b e l i e f , b u t of course a r igorous proof awaits an extension of Ashmore-Delbourgo's

formula (3) t o n-poin t Green's func t ions . To summarize, we have shown that^

for the 2-point G-reen's func t ions , the ambiguity problem does not ex i s t for

quantum g r a v i t y , on account of i t s gauge invar iance p rope r t i e s and,' except for

the Euclidean ansa t z , no fur ther assumptions are needed for non-t>crturbative

computations in t h i s t heo ry .

V. THE OUTLOOK •

For me the most fascinating contributions to this Conference have

been Hawking's on the dissolution of small black holes, and Unruh's paper

(not formally presented) on second quantization in the Kerr metric. I value

these contributions for the results-obtained,Taut perhaps, if I may say so,

even more for their heuristic approach which is the only approach likely to

be fruitful in the immediate future.

I do not believe a frontal differential-geometry inspired attack

on quantum gravity is likely to lead to valid physics, In particle

physics, after long experience, we have become conditioned to never

asking what the theory can do for us; instead we humbly try to see what

we can do for the theory. Let me give some examples of conjectured ideas -

some .of the most important ideas we have in the subject - which were

not derived through any logical process of deduction from quantum field

theories:
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i) Regge poles ;

ii) Dispersion theory;

iii) Duality and Veneziano form of physical amplitudes;

iv) Scaling and "Free Field" ."behaviour of "partons."

All that the theory was asked a posteriori was to confirm that these notions

did not contradict any of its basic tenets. I believe such will also be the

history of this extraordinarily rich theory of quantum gravity, to-which, as

the theory of space-time and its geometry, we all look for the eventual

resolution of mysteries encountered in particle physics.

Just to conclude by giving two examples of ideas which I find exciting

at present. One is the notion of multisheeted space-time and geodetic

completion - an idea which has been considered in the past by Brill, Wheeler,

Israel, Boyer and Lindquist, The idea of Joining on of past and future

patches was rightly rejected in the context of geodetic completion as

too contemptuous of causality requirements- Must it also be

rejected in the context of quantum fields with their multiple-

valuedness properties,as Dr. Sarfatt has pointed out? And in any case, is

the whole notion of multisheeted space-time likely to be replaced by something

else if the true singularity at r = 0 (say the Kerr metric) disappears as a

consequence of quantum corrections which - as I conjectured earlier - replace

liice terms by singularity-free terms of the type — exp(-tc/r) .

Hie second exciting idea concerns.the recent discovery by Wess and

Zumino of an exact supersymmetry between bosons and fermions of equal mass.

Wess and Zumino show that two spin-zero particles of opposite parities form a

supersynunetry-multiplet together with a Majorana fermion. The Klein-Gordon

Lsgrangian for the zero-spin particles can be transformed into the Dirac

Lagracgian by what are basically space-time transformations involving anti-

commuting parameters. A second • example of a supermultiplet combines a

spin-1 boson (e.g. the photon) with a Majorana fermion (e.g. the neutrino),

Strathdee and Salara have shown that these space-time transformations provide

an extension of the Foincare1 algebra in the following manner. Define super-

fields (of which the Fermi and Bose fields mentioned above are components)

over the 8-dimensional space whose points are represented by the pair (x ,6 )

where x denotes the usual space-time co-ordinate and the angle 0 is 'a constant

Majorana spinor. The variables 6 differ radically from co-ordinates of

the usual sort in that they anticommute;
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This has the important consequence that any local function f(S) must be a

polynomial. (All monomials 6 6 •••9 vanish identically for n > k

We now postulate that the following space-time transformation

(reminiscent of the twistor formalism of Penrose) and which leaves | dx - -r- icy

invariant)

Sa "*" @a + £ > € a = a constant Majorana spinor.

For this transformation, a general superfield $(x,6) would transform in the

following manner:

i<Es

*'(x'.e1) = e ${x,e) €

Here the transformation generators S satisfy

(C is the charge conjugating matrix in Dirac y-^lgebra and P are the

generators of space-time transformations.) A scalar superfield is naturally

a field which transforms according to fc'tx'.B') =

One can now show that this scalar superfield 0(x,S) consists of

the two irreducible representations mentioned abovê . One of these

representations corresponds to a physical particle multiplet which contains two

(opposite parity) spin-zero particles plus a Majorana spinor; the other

contains a spin-1 particle together with, another Majorana spinor.

The question which is exercising us is this; what supermultiplet,

if any, does the Einstein graviton belong to? Is it accompanied by a
3

massless spin-r- particle, coupling universally to matter with the same

coupling parameter as gravity. Is the Universe full of such particles?

How does general covariance come into this. Surely the graviton is not the

absolute "Boson". If every other Bose particle can have a Fermi partner,

the graviton cannot be the only particle not to share this symmetry principle.

We know that the sypersymmetric interaction Lagrangians so far invented contain

fewer infinities than one might naively have expected; e«g« there is no

quadratic self-mass infinity for scalar particles; for some supersymmetric
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Lagrangians studied there are no intrinsic vertex part infinities. What

influence the Fermi partners of gravity would have on infinities in gravity theory

and on singularities of space-time manifolds? And what exactly is the geometry

of this new extended manifold constructed from the anticommuting angles 6

together with x^ ? The extended manifold is perhaps the first non-trivial and

at the same time the first physically significant extension of space-time we

possess. Can this manifold support internal symmetries? Physics is truly an

unending, an everlasting, an absorbing quest, and the physics of quantum gravity

even more so.
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FIGURE CAPTIONS

Fig.l Sums of diagraxtis with billions and trillions of

gravitons exchanged build up "space-time curvature".

Fig.2 A sum of all tree diagrams reproduces the classical

Schwarzschild expression for the metric tensor.

Fig.3 .f-g transition diagram.

Fig.it Lepton-lepton gravitational potential arises from an

exchange of g-field quanta; while the lepton-hadron

and hadron-hadron gravitational potential has its

origin in the transformation of f-quanta to g-quanta.

5 The first graph shows 1-photon exchange; the others exhibit

this gr"aph in the sea of exchanged gravitons.

Graphs of Fig, 2 with millions and trillions of gravitons

exchanged between space-time points. The sums of these

graphs are expected to quench Schwarzschild (and

other metrical) singularities.
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