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ABSTRACT

The realization of supergauge transformstions on fields defined over
an B-dimensional space whose pointe are labelled by xu and the anti-
commuting Majorana spinor Bu s 18 described., The covariant derivative
is defined and applied to the problem of decomposing superfields into
irreducible (chlral) parts and to the prdhlem of constructing supersymmetric"
Lagranglans. Further, it is shown how to build internal symmetries (both
global and locsl) into these Lagrangisns. An exampie is discussed iﬁ ﬁhich
the internal {global) symmetry is spontaneously violated glving rise to a
supermultiplet of Goldstone particles {including fermions). When a local
symmetry is broken the Higgs mechanism (for bosons and fermions) is shown
to be operative. A possible solution to the problem of defining s con-

served fermion number is indicated,




L. INTRCDUCTION

The concept of a fundamental symmetry bpetween fermions and bosons has
begun recently to recelve a good deal of attention. This symmetry was form-
ulated first in the context of dual model theory l). In this 2-dimensional
setting it takes the form of a local symmetry and plays a vital role in the

2),3)

elimination of ghosts. More recently, Wess and Zumino tock the decisive

step of formulating a global Fermi-Bose symmetry in Y-dimensional spacetime.

An approach to the problem of implementing the global Fermi-Bose super-

symmetry, which is somewhat different from that of Wess and Zuminc, was proposed

h)!s)

defined on an B;dimensional space which is the product of ordinary spece-

by ourgelves. This involved the consideration of a superfield ¢{x,6)

time with =8 h-dimensional space whose points are labelled by the anti-

6)

in more detail the properties of such superfields =and their producte and to

commhting Majorana spinor Ba . The purpose of this article is to discuss
show how it is possible to set up supersymmetric Lagrangians which are
compatible with local internasl symmetries. The plen of the article is as

follows,

in Sec.Il a pseudogeometrical point of view is introduced and the
acticn of the supersymmgt:y'group on the space of xu and e0° is.defined.
This leads in a natural way to the transformation rules for. scalar, spinor,
etc,, superfields, The structure of such representations is discussed
briefly. The important concept of covariant differentiation is introduced.
in Sec.ITTend its use in decomposing superfields into irreducible pleces is
indicated, Detailed properties of the covariant Jderivative including a
number of identities are set out in Appx.A. In 8ec.TV the Lagrangian for =a
self-coupled scalar superfield first exhibited by Wess and Zumino 3) ig given
as an'illustration. Sce.V is devoted to the problem of incorporating internal
symmetries in & supersymmetric scheme., Those of the global kind are easily
fitted in and so are mentioned only in passing. The main problem is to set
up local {and particularly non-gbelian} internal symmetries which are com-
patible with supersymmetry.  This is non-trivial. In particular,it is found
that zero-mass "gauge" spinors must accompany the usual vector gauge fields T).
Goldstone and Higgs mechanisms are discussed in Sec.VI and Geldstone fermions

are shown to arise when internal symmetry is spontaneously broken.

One of the disturbing features of the supersymmetry scheme is the
prevalence of Majorana spinors. On the face of it, in combining fermions and

bosons into a gingle multiplet it would seem to be inevitable that quantum
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numbers such as electric charge or beryon number must be shared between the
fermions and the bosons in the multiplet, while neutral bosona would g0 to=
gether with neutral (i.e. Majorane) fermions., Fortunately, this aifficulty
i8 not inevitable. A counter-examplie is given at the end of Sec,V,where it
is shown that if the system of gauge fields is allowed to interact with a
massless scalar multiplet (belonging to the adjoint representation of an
internal symmetry, e.g. SUFn)) then & new symmetry appéars, The Majorana
spinors from the gauge system can be combined with the spinors from the matter
Supermultiplets' into complex Dirac spinors, with the Lagranglan exhibiting a

- fermicn-number conservation.

With the incorporation of local internal symmetries into the f{rame-
work of supersymmetric Lagrangians and with fermion-number conservation
implementable, the supersymmetric Legrangisn concept is now sufficient;y
developed to be considered for use in s realiétiq unified theory of weak,

electromagnetic and strong interactions.

IT. SUPERFIELDS ~ AND THEIR TRANSFORMATIONS

Superfields are defined - over the B8-dimensional space whose points
are represented by the pair (xu’ea)’ Vhere' xu denoges the usual {real)
' 8

spacetime co-ordinate and 8y ia a Majorena spinor ', The varisbles 8

differ radically from co-ordinates of the usual sort in that they snticommute,

This has the important consequence that sny logel function £f(p) must be a
polynomial. Thig can be seen from the fact that the monomials

must be antisymmetric and therefore venishing for n > L . The local function
£(8) is fully specified by sixteen elements: the coefficients in its expansion
in povers of & . Half of these elements are numbers of the ordinary sort
while the rest are anticommuting quantities. One can think of the function
£(8) as a kind of l6é-vector. Nevertheless, it is very useful to view such
objects as functions defined over a lbespace,snd this aspect will be emphasised

in the following. Y




The action of the Poincar€ group on the space of x and 8 is given

by

Xu e A]JU X\) + b],J 4

5 .
Ga > e (A) 96 ' (2.1)
where a(fl) denotes the Dirac spinor representation of the homogeneous Lorentz
transformation A . In particular, space reflections are associeted with the

mapping

8, i(Yoe)a . (2.2}

The factor 1 is necessary here for compatibility with the Majorana constrasint

on 8 .

The action of s supergauge transformation on the space of x and 0

. is defined by

i
x + =€y O
I STEM- I TR

ea > Ga + Ea y
{2.3)

where the.parameter Ea must of course be an anticommuting Mejorana spinor.
The group property of the mappings (2.1) ana (2.3) is easily verified. How-
'ever, it should perhaps be emphasised that our constructions are purely formal.
For example, the spacetime transiation (i/2) E?UB is not a set of four
ordinary real numbers such as xu is usually taken to %e. These numbers

are nilpotgnt, {EYUB)5 =0 . For consistency we should regard the co-
ordinates xu' also as belonging to some non-trivial elgebra. Perhaps it

9)

may be possible to estebliish a rigorous geometry on the space of x and 8.

The scalar superfleld is naturally defined as one which transforms

according to :
1

d1(x',0') = ¢(x,8) .. {2.4)

Generelization to spinor and tensor superfields is equally natural. For

example , the spinor would transform according to
¥ (x',8') = aP(A) v (x,8) .
o ’ o B'?

As remarked above, any local function of 0 must be s polynomial.

To illustrate we give the expansion of the scalar superfield,
TP




@(x,ﬁ_)= Alx)
+ BP(x)
+ 17 Bo ¥(x) + F 6758 Gl{x) + E way 0 Av(x)
+ E 88 By(x) ' ‘

+ '35 (89) D(x) (2.5)

where the coefficients A4, F, G, A\) -and D are ordinary Bose fields,and ¢ and
¥ are Fermi fields. The behaviour of these components under the action of

the Poincaré group is clear: A, F snd D are scalars, & is & pseudoscalar,
A}J _is an axial vector; ¥ and ¥ are Dirac spinors. (frhe intrinsic parities
are reversed in the case of a pseudoscalar superfield.) These components are
all complex in general. However, it i1s posslble to impose & reality conditiom

on the superfield,
$(x,0)% = &(x,8)

where the complex conjugation is understood to reverse the order of anticommuting

factors. The real scalar supérfield has Bose cdniponents vhich are real and

Fermi components which are Majorana spinors.

. The behaviour of the component fields under the action of an infinite-

simal supergsuge transformation is easily deduced from (2.3) and (2.4),

500x,0) = EG[;QL“ ¢ 2000, a—*—] - (2.6)

by substituting the expansion (2.5). . One finds

A = "
sy = -;— [F + Y6+ iYL-leﬂu - i,?fA] €
6F = T Ex- 1 Eh
6 = ZE EYgX - %EYsiﬁv |
SA\,_ = —':,;— EiY\JYEX + é—EY LY Y52 ¥ |
& = 5[ - igF - 1#75 iyvysiﬂ%]e
o = -1y . | | (2
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In certain circumstances {which will be discussed in Sec.III} this representation

turns out to be reducible.

A better insight into the structure of representations of the super-
gymmetry cal be gzined from an examination of the infinitesimal slgebra. To
-obtain this algebra one reprecsents the action of* an infinitesimal tranzformation

on ¢(x,0) by a commitator,

T 60(x,8) = [#(x,0) , E5] , (2.8)

where the components of the generator Sa themselves comprise a Majorana

gpinor,

(Es)Jr = €8 . (2.9)

By considering the action of two infinitesimal transformations applied in
- succession and making use of the Jacobi identity one arrives at the consistency

condition,

[Elu . 5281 = elYuEE Pu y (2.10)

where P is the generator of space-translations. In fact it is clear from
the rules (2.3) that the commutator of two supergauge transformations is a
transiation. At this point it is neceasary to assume that the infinitesimal
parameters € anticommute with the generators 5 . From (2.10) one then

extracts the anticommutation relation

8 Spl = ~(ycC P : 2.11
{‘u > 5g (Yu )aB " ( )
(where C is the charge conjugation matrix). Since the matrices YUC are’
symmetric 8) onc sees that the left~hend side of (2.11) must be an enticommutator

. and hence the necessity of assuming that € anticommutes with S .

The rest of the infinitesimal slgebra is deduced in the same way. In
addition to the usual rules for the commutstors among generators of Poincaré

transformations one finds

1
(=

(8, »B,]

[SC! 3 Ju\,] =

-

(ouv S)a ’ {2.12)

indicating that Sa transforms like a Dirac spinor.

-




The rules {2.11) and (2.12) are fundamental. The construction of
irreducible representations of this "algebra' and the development of rules for
decomposing their pfoducts is the central prnhlem of supersymmetry theory. We
have chosen to regard this system as the infinitesimal algebra of a continuous
group of point transformations in a space some of whose co-crdinates are anti-
_commuting.c-numbers. | However, in the absence of & rigorous geometry in the
space of x and © +thig point of view is no more than a suggeptive gulde

for one's intuition. : .

The construction of representations begins with the . observation that
supergeuge transformations must leave invarimnt the manifold of stetee with
fixed U-momentum since S commutes with P . On such a menifold the

H _
anticommutator (2.11) becomes a fixed set of numbers and we see that the ,

0perﬁtors Sa generate a Clifford algebra. Since this algebra has Jjust
sixteen independent members, its one and only f1n1te—d1m9n51onal irreduecible
representation is in terms of b % 4 matrices 1_). (There must exist infinite-
dimensional representations-as well;but we shall not consider them here.) The
manifold of states with fixed l-momentum is therefore reduced by the action of
supergauge trensformations into Y-dimensional invariant subspaces; How-
ever, these subspaces are not in general left invarinnt by the Wigner rotations.
These transformnﬁions reduce-the manifold into (2? + 1)-dimensional invariant
subspaces. The subspaces whlch are invariant with respect to both supergauge

and Wigner transformations are h(eg + l)—dlmenslonal

The construction of unitary irreducible representations of the algebra
{2,11) and (2.12) by Wigner's method has been treated elsewhere 5). These
representations are characterized by a mass, a'spin (g) and an intrinsic
parity (n). Included in one of these representations are four irreducible
representations of the Poincaré group. The (spin)parity content is (f - %Jn,
f‘h , j—’m R (? + _)ﬂ where 1 tekes one of the values # i (for integgr}a )
or * 1 (for half-integer f ) . 'The rest mass is common. (The light-like
representations are_h-dlmensional with helicity content * A and 2 (A + %J

with fixed i .)

We sketch very briefly a method for constructing irreducible multiplets

of fields (non-unitary representations). In & basis where 75 is diegonal
the'generators 8, become =z peir of chiral sinors SA' and SA (A = 1,2)
which satisfy the algebra

{s s.}=0 , {8 ,8:1} =0
B | B (2.13)

{sA




We shall treat §, (or S:) as "raising operétors" and 51 (or 38.) as

_ A it
"lowering operators". Let the lowest component U({x) belong to some finite-
dimensional representation D(jl,jg) of the proper Lorentz group. Successive

applications of SA generate two new sets of components in the multiplet,

SA UFX) = Mﬁ(x)
8y5p Ulx) = epp Vix) (2,14)
(where ¢ denotes the permutation symbol in two dimensions) and no more

. AB
‘'since the product of three un-dotted operators must vanish by (2.13). The

complete table is then easily obtained,

sﬂ U(x).= MA(x) ' 8y Ul{x) =0
SA MB(x) = ;AB Vix) .SA MB(K} = —iBAB U(x)
s, V(x) =0 5; V(x) = _ia;" M (x) .

(2.15)

A similar table {the parity transform of (2,15)) is obtained by treating =
ag the raising operator, Space refliections are incorporated by combining the
two multiplets. l%)

Representations of the type (2.15) which have dimensionality
h(2jl + 1) (2j2 + 1) are in general reducible. Thus, if J; »J, ome cen
reduce the lowest component U(x) to a tensor in D(jl_JQ’O) by contraction
with 2j2 powers of the operator 3/3x . On this compopent one then con-
structs a representation of 4(?(J1—32) + 1) dimensions. This contraction is
nothing more than the supersymmetry analogue of, say, separating the longi-
tudinal part auVu from a vector Vu . In setting up a local action principle,

it is usually necessary to employ fields which are reducible in this sense.

To conclude this section it may be worth pointiﬁg cut that the Majorana
constraint is very potent in limiting the size of multiplets. If one were
to treat -Sa and Ea ags independent generators, Tor example, and replace

{2,11) by the set

. 01 __B _
{sa , sB} =0 {§" ,8"} =0 ,




then the fundamental representation would have sixteen rather than four
dimensions. It would include vector as well as scala} and spinor components.
The seme thing happens when the generators are generalized s0 as to cerry en
internal gquentum number such as iaosPin." This type of generalization was

discussed in Ref.5.

TII. THE COVARIANT DERIVATIVE

Although it is not easy to define an integrel over 9_space,there is
certainly nec problem with differentiation. The ordinary derivative is defined

by

£(6 + 50) = £(8) + 58% 3L
Y

where the infinitesimal 68 stands to the left of 3f/3% (since these

quantities mey anticommute it is important to fix their order).

An important reole is played in the following by the differential operator,

, ] _
D, = “—"--(YG) = (3.1)

o a0 Bxp
which we shall call the covariant derivative. This operator is covariant in

the sense that it transforms as a Dirac spinor under Lorentz tranaformations

end as an invariant with respect to the supergauge transformations (2.6).

The covariant derivative has the usual properties of a differential
operator with two significant exceptions. Firstly, when gpplied to the

product of two superfields its effects are-distributed'according to the rule

' +
Dy{#,8) = (D, #) ¢, + o(D, 9,),
where the + (=) sign eppllies vhen @, is bosonic (fermionic), i.e. vhen &8
commutes {anticommutes) with ¢1 + EBecondly, the covariant derivaetives neither

commute nor anticommute. Their anticommutator is given by

- _ 3
{Da ] DB} = -(Y]-IC)G-B 1 axu » ) (302)

The operator ﬁ- is basically a Maj)orana spinor. TFor this reason it

is useful to define another form

-9- : '




7 = () p (3.3)

8

L]

vhich ig nothing more than a relsbelling of components. The basic anti-

commutator can then be given in three equivalent forms:

by s Pt = -(gC)

o, .5 = (B2

RGN O LA B ERY
{1t is often more convenient to work in momentum space.) The Opérators D,

clearly generate a Clifford elgebra which is isomorphic to the superalgebrs
(2.11). _ \ '

In view of the algebraic structure (3.l4),only sixteen independent

operators can be made from products of the Da . The most useful set is

()% .

1, D, , DD, DY5D , 5iYuY5D . ﬁDDa .

A product containing five or - more factors must inevitably reduce, For

. example,

(5p)° D, = -2 5D (#0),

Two other important identities are:
ﬁYuD = 2131rl and bo D = 0o . (3.5)

A mumber of useful identities and multiplication rules is given in Appx.A.

It was mentioned before that the scalar gupeffield (2.5) i5, in a sense,

reducible. A reduction can be effected by imposing the condition

L]

[-32;(1 + i'rs)D]a ¢=p,  %=0 , (3.6)

These linear differential equations are manifestly covariant {excluding space
reflections), ‘The general solution of (3.6) involves eight independent (resl)
components in contrast to the sixteen of a general scalar superfield. This

solution can -be expressed in the form:

-10-




T
¢ (x,0) = expﬁ: ﬁﬁ‘YSB:] [A_(x)_ + 8 (x) + "32= ] ——5—2 6 'F_(-x)] » (3.1)

whgre A_ and F_ are complex boson fields and ¥ is a right-handed Dirac

spinor, ist“ = -w__. Likewise, the differential equations

DRG ¢

[é(l - iY5)D]a ¢ =0 (3.6')

. serve to define a left-handed superfield,

1 _ 1 L+ 1Y5 |
0,060) = exp[- § Fhrs0] [, + 80,00 ¢ 2 — o (0)]

(3.7")
It is possible (although not necessary) to identify @ with the complex
 conjugate of %_,ia.

A=,A,lb=‘b+°.,F-F. (3.8)

{Thus ¥, and Y_ are identified es the left- and right-handed components,

fespectively, of a Majorana spinor.)

The components of the chiral superfields-_behave under sn infinitesimal

supergauge transformation according to

[}

bA, = By,
1t iy '
o, = —g—= (- ifa) ¢
oy = BN, (3.9)

These'representations are irreducible.

A general scalay superfield contains another (non-chiral) piece @l'
- which is singled out by means of non-linear differential conditions

_5.—22 Do =0 . (3.10)

The resolution

(3.1’1)




is effected by the projection operators

K 1 - iy

E = -5 — 2 DD —~———2 ]

+ 52 2 2

_l o+ iy 1 - iy

E = «+& 5 -2 pf——20

- 5 2 2

= ......:.]:..... AL .

E, o= 1+ e (Dp) . (3.12)

In terms of the components (2.5), the resolution {3.11} takes the explicit form:

=3
It

+
A+ A+ Al

S TR

F = F +F | .
+ -
G = iF, - iF_
A'= 49 A - 13 A +A
U w7 T By

x = -if- 1+ ife

_ 2 2 o
D = -3°A, - 9A_+3 A {3.13)

where Alu is transverse, Buﬁlu o
structing local field theories if the resulting components are local fields.
Such is the case only when the original components X and D in (2.5} are
themselves first and gecond derivatives, respectively, of local fields. If
this is so we may say that the superfield is "locally reducible”.  Other-

wise it is not.

Because of their being defined by a linear differential condition, (3.6)
or (3.6'), the chiral superfields are closed under multiplication. That is,

we have

Dby Py = Oy and L N R 2 (3.14)

This rémarkable'property is very importent in the construction of Legrangians.
The mixed product ¢4+ 9~ ', on the other hand, is a general superfield:

one which is not locally reducible. Details are given in Appx.3B.

~-12- ,

-

=0 . This decomposition is useful im con- . . | %~




The spinor superfield ,,Yd = Dd¢+ is left-~handed with respect to the
gpinor index o , but is of the non-chiral (¢l) type in the complexion of its
| component fields, Conversely, the spinor Ta = Da¢1 is a mixture of left-

and right—haxlq.ed chiral superfieldg (see Appx.B).

IV, A SIMPLE LAGRANGIAN

To illustrate the application of the superfield . notation in a simple
dynamical system we censider here Ithe' Lagrangisn given‘by Wess and Zumino 3)for
a scaler multiplet. This Lagrengian, L(® , ¢ ) , must itself transform as
a scalar superfield. In order thet the equations of motion should be super-

covariant, the action integral must be an invariant,

[axt '[-Eg"%”ue’-%] £

doxi'

E ‘g——eff dx i + surface term
= 0 _l

The action will be invariant (up to a variationally insignificant surface term)
if it is independent of © , This means that every O6-dependent term in

;{(¢+ ,_@_) must have the form of & aspacetime divergence. Such & form can

alwdys be achieved by aprlying the covariant operator Da a sufficient number

of times: +twice on a chiral or locally-reducible éuperfield, four times on

a _general superfieid.

Congider the Lagrangian

L= 5@ (ap) - D [v(q>+) + v(tb_)]

o=

Tp [i— ¢, Dpe_ + %@_T)D¢+ - v(e,) - v(:b_')} ;
| ¥ | | (4.1)

[3e ] o

vhere ¢ = ¢+* and V 1is e smooth function (typically a polynomisl 12)).
The spacetime integral of this expression is certainly invarient. The
variationally importan% part is obtained by setting @ = 0 , With the help of

the formulsase in Appx.B_oneifiqu for this part,

~13-




L= A ¥A + FF + = Tify

i+ oy -, + - 2
. 1 - 1+ iYB - 1 - iYS
+ [V‘(A+) F, +V'(A) 'F_”]. -3 (V"(A+) b=+ VA ) Y —— 'b] ;
(h.2)
where V'(A) = dv/dA , ete. The equations of motion are
. 1¥F iy
2 — 1) R - o'
%A, = V(Ap) Fp - VA ¥V —5—2
F, = -V'(Ap)
' 1+ iy 1 - iy .
o= V) st VA — 2y . (h.3)

The Lagrangian (4.2} and equations of motion (h.3)'could easily be expressed
in terms of real scalar fields A,F and pseudoscalars B,G defined by

A, = 2 (axiB) , P, = 2L (Fr 1+ i0)
2 V2

but there is no great advantage to be gained by this.

According to (4.3) the vacuum expectation values must, in the tree

spproximation, setisfy the equations

0 = v ) VA (b.4)

i.e,, one or other of the factors V' , V' must vanish in the vacuum. . Consider
the possibilities. .If V') =0 then {V") is identified as the (common)
mass of the multiplet. On the other hand, if <?V"> = 0 then the fermion

is massiess. This is & Goldstone {(fermion) solution. However, it is an

unstable one since the boson Field equations take the form

2 —— t 111} )

3 A:t - <v > <v > (A:F - <A4__>) + interaction terms
indicating that one boson component must be a tachyon . This situation may
be altered when quantum corrections are included 13).

1=




V. LOCAL, SYMMETRY

Tt is natural to ask whether supersymmetry 'is cdmpatible with internal
symmetries of the usual sort, both global and local. One finds that indeed
it is: gloﬁal internsl symmétries can be incorporated quite essily, local
sympetries are more difficult T). |

[3

Consider first +the global case.. Suppose, for example, that the

superfields ¢, and % transform as doublets of SU(2},

¢, (x,8) + R& (x,0)

? (x,0) + Q¢ (x,8) , (5.1)

vhere § is an SU(2) matrix (independent of x gnd 8). 'The Lagrangian

_ Ll ymos2 S t 2] Mx t t
Ly = 5 (6D {qaf 0, + 8 ¢_] -3 b0 [¢_ o, + 0, ‘1’-] (5.2)

iz both supersymmetric (up to a surface term) and SU(2)-invariant. Unfortunately,
the simplest SU(2)-invariant interaction for this system,

@{1 = g DD [(¢_+ ¢+i2 + (¢++ o_)e] ’

 is not renormalizable. To have & renormalizsble {i.e. trilinear) interaction
it 1s necessary to bring in singlet and/or triplet superfields. Thus, if

r
@i transforms sccording to

t t W]l
9, > Q9 4 - (5.3)

then a renormalizable and SU{2)-invariasnt interaction is given by
opleto o +efo o C(5.4)
g€ - 4+ + - = ! '

As a second example, suppose Q+ is a 3 X 3 matrix of superfields which

belongs to the (real) (3,3) representation of sU(2) x su(2} ,

T ’ | b (5.5}

¢, - R, ¢, R,

: #*
vhere Rl and R, are orthogonal metrices. Suppose,moreover, that ¢_ = &
so that : . |

=T . T T
97 + Ry, "R . i (5.6)

15—




Then a renormalizsable and invariant Lagra_ngia.n' is given by

L= 5@ (e’ 8,) - $Tp Tr(¢+T 9, + 0T q>_]
+ ¢ DD [det ¢¥ + det é“l .
{5.7)

This Lagrangian will be considered further in Sec.VI.

The problem'of setting up a local symmetry which is compatible with the
supersymmetry is more interesting. First of all, if the matrix £ which
appears in (5.1) is to depend on x ,then it must also depend on .9 » In
fact it must be a set of chiral-type supertields,

9, (x,8) ~» @ (x,6) ¢ (x,6) . (5.8)
since the transformed field must, if it is to have the same number of in-
dependent components as the original, be chiral. The consistency:of (5.8)
relies on the closure property (3.1Lk} of chirasl superfields under

maltiplication,

Representing the doublet ¢+(x,9) and the matrix Q_ by the expansions

9, (x,0) exp [— %; §ﬁY59] {Aq_('x) + 6‘1‘+(x) + %; 81 + iYs) b F, (x) ]

ﬂ+(x,8)

[L13 — 1 %er o
exp[ n Ba'YBG:] [U+(JC) + Bv+(x) + ]I 8(1 + 1"{5) B W+(X) ]
the expliéit form of the transformation rule (5.8) is

A (x) = u (x) A (x)

¢4(x) — U%(x) UQ(x) + V+(x) A+(X)

F (x) — U (x) P (x) -V (x) @ (x) + v (x)alx) .

The matrices U, , V+ and W _ are complex,and V+ carries a Dirac spinor

1)

index
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It is possible to regard & as completely independent of Q, or
one can impose the conetralnts

| . =1 .
det .Q* o B ’ -n+1‘ - (Q-) ) (509)

which we shall adopt in the following. This means that the supersymmetric

mass term

(e e, + o7 ) (5.10)
is an invariant of the local symmetry.

_ The main problem is to construct a gauge—invariant kinetic energy for

the doublets @i - The expression (5.2} is certainly not satisfactory since
'ﬂh* Q, $1. Itis necessary to introduce some geuge fields. Following

Wess and Zumino who solved = the problem of making supersymmetry. compatible

T), we ' deal with the compatibility problem for

with a local U{1l) symmetry
the case of the local internal symmetry SU{2} (in fact,the SU(2) could ‘be

generalized to a local internal SU(n))}.
The gauge field V¥ is a general (not chiral) pseudoscalar hermitian

matrix superfield which transforms under the local symmetry according to the
rule

¥ -0 S ot T (5a1)

With the help of this field,the kinetic term can be expressed in the invariant
and supersymmetric form: - :

%— (Fp)? {‘bj & 5, + ¢_1" e8! <1>_] (5.12)

Although this is not in general = polynomial, there does exist a special gauge
in which 1yn = 0 for n » 3,vhere (5.12) defines a renormalizable interaction.
. We shall come back to this in the following.

Having introduced & gauge coupling into the system of matter fields Qi
it is necessary now to set up a geuge-invariant kinetic term for % . By

exploiting the chiral properties of J}t ,

(@7 1yp) ,(x,8) = 0,




cne can prove that the vector superfield VH defined by

of
1 + iy

S T e B ~gY gy '

VU =-3 [C Yu ﬁ__ig—:il Du[e DB e ] {5.13)

transforms under the local symumetry like a YangsMills gauge field,

-1 .21 -1 ' :
Va oV, 07 T 0,0 90 . o (5.14)

The hermitian conjugate transforms according to

vV o viegta2ig s
H T g€ = u -

Notice that the combinations
1o~ iy ' i+ 1y
-——Er—ﬁ- i) Vp and ——-—~2-D v

2
a @

transform homogeneously, i.e. like fleld strengths. Further, one can show that
these field strengths are chiral,

1- iy 1~y
(.__.._.._5.2 D) —-——-22 D) v, = 0 (5.15}
ol @ . .
(and likewise for Vﬁf}. This means that the expressicn
af a3
1 - iy, 1+ 4y \!

_ k5 o -} o ] ¥ T

55 0D Ir G‘ ~5 ) (V) (DBVP) + (c 5 > (deu) (Dﬁv}‘)
is an invariant of the locallaymmetry and is supersymmetric, It can serve abs

a Lagrangian for the gauge field. Making use of the identity {5.15) and,
dipcarding & variastionally insignificant surface term,one can put this Lagrangian
_ into the compect form

L
128

(5p)° Tr(V}LVFL + vJ VJ) . (5.16)

Gathering together the terms (5.10), {(5.12) and (5.16) we obtain the

gauge~-invariant and "supersymmetric Lagrenglan

-18-




| (5.17)

" where Vp is defined by {5.13).

To write out the Lagrangian (5.17) explicitly in terms of component
fields would be a complicated and unrewarding task. Fortunately, there exists
a remarkable gsuge 7 in which the Lagrangian assumes polynomial form. 'The
infinitesimal form of the transformation law (5.11) is, to lowest order in V¥,

o 1 1 -
oY =S¥ - ¥en + 2480 - 280, . (5.18)

This indicates that half of the components in Y can be transformed avay leaving
it in the special form

1 = | 1 = A mqy2 - |
¥ o= f eiyvvse A, + ;;%;69 Evsk * 37 (Ge) Ds » (5.19)"

ihere Av is tfansverse'ls)' In the SU(2) space the matrices Ay §Y5A and |

DS are hermitian and traceless. In the speclal gauge, Vu is given by

‘ 1+1 . ' ' + iy
vE - By S s e ig ””“[Dw Y, D‘i’m+2‘i‘R'DT -——-—iwm].

(5.20)

After some tedious labour one finds _ .

1 2 v B R N O
755 (DD) Tr{v]-‘vuw@'u Vu]"F[auA

o=

{5.21}
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i.e. the Lagrangian for a Yang-Mills field AJ; .in interaction with a triplet

of Maj]orana spinors lk . The matter terms in the Lagrangian (5,17) reduce to

u o+ 27+ ot 2 Tu'e T 2 - 2 W=
+ + . ig
+ F_F F ' F_ + uwu[au 5 Au] U
+ M{A_+ R LS S LS Y Tﬁw]
1+ 1y
g T _a Ty ig t % 5
+ 2[A+ D5A+ A DsA_}+ @A+ A 5 ¥
. 1 -4 . 1+ 4 S
+ .J'_S.A-r-i _.___.‘.Y.iw_ lg.ﬂ;_—_jil‘g - lﬂ.m__.a_lzlA+ ’
2~ 2 V2 O 2 -
{5.22)}
in which Au' = A‘Uk ffk . A= A K . D5 = D5k ™ . One may, if this is desired,

replace the chiral combinstions Ai and F, by definite pafity combinations

A = .A(AiiB) , F = =3 (F £ iG)

+ J? Jz
. (bearing in mind that A, B, F and G are all iso-doublets).

For a triplet of matter fields:
_ k . k _ k
¢, = éi - (Q_ = (9, )*)

the gauge invariant kinetic term is

Yo, -e¥l . x kkm . % , m k kim , &, m
%(ﬁD)eTr[d{_eg ¢+e3]-[aua_ +ge "‘Au A_) [auA+ +geE AuA+]

kK ok, 1 -k K Wm , L o
+F_ P+ + > P iYu [BHI,U +gc A'I.i 1‘[;]

km k<% * m . X' f . m
-ge [«/2'1& V2 g e AR —2 " A

=20-,




This expression is pa.rticula.rly interesting because the sum of (5.23) and the
gauge Lagrangian (5.21) possesses a new symmetry, viz.

LIPS coBO -\,Uk sind ,
kK _ .k . k
P*  — A" sina +'f,U cosd , (5.24)

with all bogon components treated as gcalars, In other words, if we introduce
the complex Dirac field

k 1 k., ..k | '
X o= = (F+ i) - | (5.25)
= “” |

the fermionic part of the Lagrangian takes the form

__ 3
XLy [8 X+ g £ .x’n]

- o1 -iy 1+ 1y . '
+iggkﬂm[{§'A+k-iﬂ szm*"@ﬂ_k?z 25Xm

AT P S (5.27)

The new aymmetry could be associsted with & conserved quantity (such as baryon
or lepton number) which is carried only by the fermions.” - To maintein this

symmetry the matter multiplet must have no mass. | '

Before we close this section, remark that'in the one-loop approximation,
contributions to the Callan-SymanZLK function @(g) for the gauge-super-

miltiplet eduals o (30 (G)) vhile the contrlbution from the matter—
' 1611 3
supermultiplet equals + —jL?f C.(G) where Cy {G) is the value of the
16w
quadratic Casimir operator for the adjoint representation of the internal.

symmetry group. If we introduce three matter supermultlplets (aa we do in
the -next section), B(g) = in the one-loop approximation, so that the charge

renormelization of g is finite.




¥I. GOLDSTONE AWD HIGGHS PHENOMENA . . y

It is of prime'importancé to démonstrate thﬁ feagibility ol spontaneous
symmetry bréaking mechanisms in supersymmetric systems. It has already been
pointed out that the spontanéous breakdown of &upersymmetry cannot occur (at
least in the trec approximation) in the case of a self-interscting scalar
multiplet. Our aim now is to show that internal symmetries, on the other hand,
can be spontaneously violated even when they are embedded in a supersymmetric
scheme, This mesns that it will be possible to set up renormalizable super-
symmetric Lagrangian models in which the gauge particles {veetor and spinor) are

massive,

A suitable asystem on which to test for spontaneous breaking is the
su(2) x su{2) invariant Lagrangiou (5.7). To begin with we shall treat this
&8 a globel symmetry and obtein a atable Goldstone solution which carries a
residual 8U(2) symmetry. (This is only one of & number of possible solutions).
) . N
Then we shall go on to consider the symmetry SU(QHocal SU(EElohal and

show that the Higgs mechanism is operative.

The scalar multiplet ¢1a belongs to the real representation (3,3) of
su(2) x su(2) and it satisfies the reality~condition¢ia = (@ia)*. In terms of
component fields the Lagrangian (5.7) takes the form

1+iy 1-iy
abce a, b c a ~h 5 @ a , b ¢ a—=b 5 e
g € [A+ AT X F, - A+ T 5 P+ A TCA TxF T - A e x 5 P ],
) (6.1)

a a ia _is . '
where all the fields are 9-folds (F_ « ¥, = F_° Fy, ete) and the fermion
components lPla are Msa)orana spinors. The equations of motion are

a2, a a abe b » L Fiy
-BAi +MF‘-’F+g:LE QA;FXF:‘:_\D X—_'g‘—"'s—fllc)=0
a a abe b c
F,.7 + M =
T A, teg € &i X A, 0
1
: 1+ iy 1l -1y
_ e - abo b ___Z o b o ]
(0 ¥* = 2y & [0 %2 1 e ek CE IO

From these equations it follows that the vacuum expectation values, in the tree

approximation, must gatisfy the algebraic equations,

w.r .




RO O B I N IR A
M <F'¢1=a>'+-2;1 és‘bc <A=Fb> x <F_.‘.:c>= a .

_ . (6.3)
(Ve are of course raquiriug that the vacuum be Polncare invarient so that

< 32 Ay > = 0 and <'¢'> = 0.) The equations (6.3) are very much simplified
if we choose the matrix <<A ia> to be diagonal. {No loss of generality is
implied since any one of the matrices involved here can be disgonalized by means

- of an 5U(2) x SU{2) transformation.} The equations themselves then imply that
the other matrices < A_ia‘), (F:a> must be diagonal as well. Representing

Cheor

(.n. 1“) atag(dy 5 Ay 5 Xy) o (6.K)

1 ?

one findg
is _' PR . C#
<A_ > = dlag(}\l . 7\2 s 7\3 3

A s A+ 2311112]

lay . - _ |
<F - diag[m + 2511 Ags Mhy + 281050

(6.5)

~ and the equations (6.3) reduce to the form

e o R )
Mekl f 2Mgl[12k3 + k l + 12 k3] + hglll[lakz + 13l3 ] = 0, (6.6}

and cyelic pernmtaxions thereof,

We shall not pursue the general solution of {6.6) but instead make the
restrictive assumption that Al = lg = l3. In effect, we are selecting
solutions in which a global SU(2) symmetry is preserved. With this

restriction the equations (6.6) reduce to
A (M esl'm (1 + g A") =0, e

and there are three dlstlnct (parity-conserving) solutions.

' The solution l corresponds to the case where no symmetry is broken.
The solutiOn A= - M/hgl gives

Lo L ' g
i i i M i
R LR G L
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and corresponds to the case where the supersymmetry is broken ag well as

sy(2) x su{2). This solution can be shown to be unstable: some of the boscns

turn out to be tachyons.

The Solutlon‘ Ae - M/egl gives - <(F > = 0 and so preserves the

13) Indeea by testing the yropagation character of weak

supersymmetry.
- perturbations about this solution one finds that itis stable: ~ the superfield
¢”  breaks into three pieces (belonging to the representstions I =0, 1 , 2

of the unbroken B5U{2)) with the respective mass values

= = = 2 . I l ' R
My=M, M =0, M, M {6.8)
The isovector piece is a Goldstone superfield. It is perhaps worth emphasising
that the Goldstone multiplet includes a massless Majorana fermion along with
the scalar and pseudogealar boson +  Supersymetry is not  broken though
the internal su(2) x su{2) is. it i  the bresking of this internal

symmetry which is responsible for the occurrence of the Goldstone fermions

(together with Goldstone busons).

Wow consider what happens when the lagrangian symmebtry is generalized
to su(2) x su(2} - Tn the special gauge discussed in Sec. V the

local global °
Lagrangisn assumes the renormalizable form,

D

rH
AV, JEAV]

2
i = 1' b -J:—_l.
d{ =-3 [auAv - avAu + gAu X Av] + 3 A iy, [Buk + gAu X 1] +

a . a a a 1=~ a a
+ [SUA_ + gAU b A“ }'{BHA* + EAH 81A+ ] §-w [Bu¢ + gAu x Y

u
a - iy, “ a 1+ iYB a
- g{ﬂ X A°--3;*2-w *A_T XA ] +ig A" X A_Dg
a a A R a B i;*a a
+ F_ F+ + M[A+ -F+ + A F“ -3 1Y ) :
1+ iy ;
ahet, & .. b e a =h 5
+ g, £ [A+ »A+ X F+ - A+ P X 5 1}
1 - iy
L) b =b c

where the gauge condition.. 9 A, = 0 is understood. Cur purpose here is only to
discover the excitation spectrum implicit in (6.9) when the symmetry
su{2) % sU{2) is broken down to 8U{2)}. We shall therefore take advantage of

the manifest SU{Q)l 1. symmetry in {6.9) to change over from the renormalizable
QCa ! ' .

-2h«




Landau gesuge to: the unitery gauge in which the spectrum s gimplified. That
is,we shall adopt the gmuge condition

L.

alial - yads _ a2ty .o | . {6.10)

where A*?* Qenotes the real (scalar) part of -A+ia‘The scalar isovector part
of the Buperfield is, in effect,”gauged away". The pseudoscalar and spinor

parts must of course remain.

Into {6.9) substitute

+ , -
* e, .
and collect the bilinear terms, '

£ = baad - ap R e BV s} gy

1 (ia) M iga , 3V 1. 1=
o = [8 A &) g £ .J.& A}JJ] + _2_ (-BuBia)e + %_w:la. ii‘lbia

21y " 4E‘gl
1 ,oiay2 1,482
+ 3 (F5)= + 5 (G )

ufoalts) pl18) 4100 a1 ylie) glaa) , gla) +10)]

. [2 Flie) pe)_ gl II,(aa)] _ -gggl'eiaa'—lj L

| (6.12) N

where Iw(1“)= (;)(wié + ¢al),'et¢. This freelLagrangian can be separated into
three iﬁdependent pleces if the fields are decomposed into their I =0, 1, 2
components by writing, for exaﬁple,

ia {ia)

_ [ia] | 1 sia
v o=, + 3 )

+ ¢1 o (6.13)

(11} _

where we 0, Sﬁppressing 'I-spin indices, tﬁe three pieces are given

by

| 2 1 21— L.
dy =5 (38,0 + 5 (3B} + 54, b, + 5 (Fy + G

1l —
- M[AOFO -~ BG, = 5 wotbo]

(6.14)
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1 THRY ! g) M 5
1 2.1, 2 2
+ 5-(auBl) + 3 (F1 + Gy )
s LT g, + 2 Mg By
E'wl wl 2 = 8 1 {6.15)
: 1 2,1 o 42, 1. 1,.2, .2
£, = z (3,0 + 5. (3,B,)° + 3 Uity + 5 (F," + 6,7)

I A
+ 2M[A2F2 - B0, -3 ¢2w2] .

Al

(6.16)

The Lagrangiasns (6.14) and (6.16), respectively, describe the propagation of an
I =0 pultiplet with mass M and an I = 2 multiplet with mass 2M. The
Lagranglan (6.15) describes an I = 1 system conteining a massless pseudoscalar,

e vector with mass Mg/gl and s pair of Majorana spinors,

L]

Ly +2) a Ii( - 1)
e w Eh

with mass Mg/gl and opposite parities.

'This shows that the Higgs mechanism is operating here in the usual
way. The fact that a pseudoscalar Goldstoné particle remains in the system
merely indicates the need for a larger local symmetry: one which involves
axial-vector gauge particles as well as vectors.lT)It is certainly poseible to
construct such a scheme by the methods described in Sec. V.
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APPENDTY A
THE ALGEBRA OF COVARIANT DERIVATIVES

+

The differential operators D& defined 5y
R %‘(ﬁe)‘ : - (a.)
' o - 38 a ,

 {and * defined by ‘ﬁa =.(C-})a8 Dﬁ) are easily seen to generate a Clifford
algebra which is isomorphic to the supersymmetry algebra, viz.

| {p,s Dl = “(¢°)aa_ . (4.2)
The purpose of this appendix is_to list some of its properties.

First of all, the algebra contains sixteen independent besia elements,

= = —_ - = .2
1, D, » DD, Dysn, DivhvsD, Dnna,.(nn) . _ | (a.3)

Any product of D's can be reduced to a linear combination of these. A

complete multiplication table for these basis elements would be too bulky to.
reproduce here. Instead we shall list only the more difficult products from
which,with the help of (A.2),any cther product can be deduced without too

. mich effort.

To begin with, the product of two D's is given by,
DDg = =3 (JC) o + £C,TD - & (y.0) , Byod - & (4y.v.0) . B (A.1)
o«’B 2 g T K ag P TR sClag PYSD - LiVyYeC) g DIYGYSD - T

af
Multiplication of this formula by -[Cflxﬁ} . &and by —[C_loﬁv]us ylelds the
identities

1

ﬁyun =2p  and ﬁouvn =0 . (a.5)

Products of three D's are comprised in the formulae

p, D0 = Db D+ (gﬁn)a
D, DyD = ~BD (D), + (%#stja

. by =...—- . + ip’
Dy DiY,¥sD DD (ivuysn}a 2ip, (Y5D)a
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DysD D, = "‘DD_(Y5D)d

'ﬁiy'pysn' D, ® -Db .(iYu\%D) 5 = (2py %, st)-d . e
A,

Products of four D's can sometimes be reduced by multiplying a single

D into one of the formulae (A.6), For example,:

-~ 2 - ' -1
(Byzm)® = Dygp b, (-¢"y0)" =

- 7D (stja (-0"1751))&

- " -l G
- Bp (-By.0), (-¢ )

(5p)° .

Any combination of four D's can be reduced with the help of (A.4) and the
multiplication table '

[ e ______:I_.____._._,_.....__..__ .____.,_.\... L I . . . ___r . .o e __,__,_||
o S T s A M

z -
=2 | | -
| DD (DD} f -2ip Diypysp 5 elvay5D
i - : |
iy H . = . ! 2 ) | - T
DysD | 21ppD1YpY5D (Dp) E 2ip, BD
Biy, vgD % 2ip By D 21p, 5o | ”uv(ﬁnjg _
'l - ginkgkﬁvpﬁtiYSD .
| ! 2
| | _h - .
| (ﬂuup PP,

vhere left {right) factors are listed in the rows {columns).
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Products of five or move D's can Be reduesd with the help of the
abo?e results together with the fundamentel formula

(bp)°p, = -o(2p0); - )

Of some importance are the ldentities,

((1 + 1~,r5)1:»)cl 5(1.iiys)n =0,
(4.9)

_ which become more transparent in the notation of 2-component spinors. In &

besis where YSI is diegonal,the anticommutstors {A.2) take the form

{opopgb =0 {ppgb=0, . {p,pl=1p; .

Since they anticommute, the product of three operators DA must vanish, e.g.

1 +_i-f
’ ’ = = ----—————-2
. 0 DA DB DC EBC DA D 5 D , etc.

This is one of the identities (A.9).

Frequently useful are the following formulae vwhich give explicitly the

action of some operators on & general superfield ¢ whose components are given

in (2-5)9

__l.i.iv'g
IIS—-E—J-D@ = F ¥ 10
1 F iy
8 2 (x- 1p0)
1 F iy
1= 5 2 .
+i @ 5 B(D-aAi_QlauAu)

1y |
+5800 —5—2 () (x - ifw)
+ 5%- (89)% (-3°) (F 7 iG)
{A.10)
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- 2 A
ﬁiyﬁysn ¢ "

9[ 1Y, YeX - jYﬁst]

S

T 0o [QBHG]

1z :

+ F Bv,0 [—QBuF] J

. - 2
o1y Y5 [n D - Euvhp 31 Ap + (nuv - -2 BPB“)A]

+
:qp

~ (. 2 ) '
6 6 [YU?Y5X - (nuv 3" - 2 Buav) inwsw]

+ .
o

1

% (66)° [ - 23,3, ]

+

Lone & oo 2a

- 6[9% + 1?)(} ,

- %Ee [232F]
1

Biy YS [23 3 A ]

£1H

vy

+ £ 803 (17) [a P+ i?x]

1 22 W2 2
--3—2' {(08)° 5 .[D.-—BA]

- 30
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| (A.12),




D &

"

o

+ -';-“- [_i(Yﬁe)d 3ﬁﬁi+ BGF + (Yﬁe)d G+ (inYse)a Av]
1 = 11 1

t 99[5 (#)y + 5 Xa]

choel d o, o 2 ogo,)

+ %; ﬁiY\,Y5 [— -:_; 7 (L, ye¥), + %— iY\,Y5X]

+rael [-m 8) D F + (iv..8) 3. G
K™z wia “p u's”’a %y

- (Yu'\rvv5e)u au% + ean]

+ 3 (30)° (ifx),
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APFPENDIX B
PRODUCTS

The product of two expansions of the form (2.5) can ﬁé rearranged
into '

L]

o{1,8) ¢(2,6) = AQ1) A(2)
4 E[A(;) p(2) + p(1) A(Q)I

F 1 0{aw) (@) - T wi2) + ) al2)

§Y59[A(1) a{2} + 3°(1) Yﬁw(é) + G(1) A(e)]

+ .
B

e iy rgo(a01) a,02) + TP drgrgh(e) + A,0) AC2)
+%§eé&h)xm)+¢u)ym)-y¢UJGQ)+inﬁ¢UJAJm
+ x(1) a2) + F(1) p(2) - ¢(1) Y5w(2) - Av(l) ifuyﬁw(2)] _

v @)% [a0) D(2) + 27(1) F(2) + 26(1) 6(2) + 24,(1) A(2)

L Dl1) A(2) £ 280 (1) x(2) - ) ¥2)]
(B.1)
. where wc denoteg the charge conjugate of P , i.e.
(IT’C)U. = (c-l)O‘.B wB

The formula (B.1) comprises the multiplication table for the enticommuting

Majorana spinor © and the various monomials made from it.
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A particular casge of (8.1} ta the prcduct of lefﬁ-and right-type
chirul auperfiﬁldﬂ,

¢+(1,.ﬁ) Q_(a,el = A+(11'A“(;;2)'.
| +_'§[A,f(11___ b_(2) + 9,0 A_(él} E
R ,lr“ee[%(i) r_2) + 7,0 4_(2)]
e 45.'%@-Yse'{_iﬂ+(1)"F_(2)'4 i F_._.(l)l 4_(_2)]
+ %ﬁiyvyse[iava;(l) A_(é); -1 A, (1) 3 A (2) - F5(1) lel)_(i‘)]
| __f:,,.}l'__'ﬁe_'g[__.i;q,“(l) A_(2) + 1yv¢:f(1) avA_(é)_ - 1A (1) fv_(2)
| | +'.1-av{.+(.;) ‘wp_(a) + zw.{(l)_zr_(a) + 2F+(1)'¢_(2)]
 + 3%- éée)z '[_3_2A+(_1) A (2) + 25 A (1) 8 (2) - A,,(l)-. a%a_(2)

+bhr (1) F (2) +2w“(13'- 1%) ¥ (2)]
{B.2)

The multiplication of two left-type fields yielde again & 1éﬁ;-type field
with - '

A,(3) = 4, (1) A, (2)

v, (3) = A, (1) y,(2) +y (1) A (2)

F(3)= A, (1) F (2) -9°(1) y (2) + 7 (1) a(2) .
{B.3)

Repeated a.ppl:lcation of this rule gives the components of the superfield
L
(¢,(x,0))* , via.
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A+ o= A+(x)n
v, = n A 0™ (x)
o= on A G R () - BBsL) g )02 g 0y ()

{B.4)

The vector multiplet ®, conteined in (3.8) can be expressed in chiral
form &s a gpinor superfield,

1% iy R :
Yor = [__75__2 7 D] ¢ = exp[% %’8?756]
- g

. 1% iy £ 1% iy, 1 ]
i | 3 15 :
(25 o [, 0] -

,.. 1+ iy _
+ %5(1 + i«(5)a ——-—2-—2 1;!2\] )
: (B.S)

where

o
1

A

"_‘m = aup‘]_\) - av‘a‘lu ) (B.6)

Conversely,

R N o ¥ TR
o, we—=DB(y ~+y ) ,
1 2132 , ot o

(B.7)

vhich may be a non-local superfield.
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APPENDIX C

SUPERFIELD EQUATIONS

In the text we have been concerned mainly with the construction of
supersymmetric lLagrangians. For this task the superfield concept has provided
8 compact and suggestive notationsl framework. One may ask whether the
concept can be usefully pursued and, in particular, whether it would be
advantageous to set up an apparatud of Feynman rules with superfield
propagators, superfieid vertices,'etc. Little has been done in this direction.
The purpose of this appendix is merely to sketch e preliminsry idea of how

such a development would proceed,

Corresponding to the Lagrangisn (4.1) the superfield equations of

motion are ' '
be, = 2v'(e)

o (c.1)

e = 2vH(s) .

These equations cen be solved perturbatively. The first step is to linearize

them and work out the propagator. Meke the replacement

v(s,) » (/2) ¢i2 v39, _ fc;éi“'

where J_(x,8) denote  external source distributions of the usual chiral

types
1= el 1 .
_ Ji(x,e) exp[¥ E—Qﬂysé] [JFi -8 —eE————-Jw % B(1 = 1Y5)6 JAE] (C.3)

where the components are labelled such that JA acts as the source of . A; s
_ YA, , %

etc. The linear inhomogeneous equations of motion

oD &, - 2Mp_ = 27_ .

-

) ' | : ey

Tp o_- oMo, = 27, - S
are essily solved, Making use of the identity

P _ 2 T

(TD) 8, = -43%, {c.5)




which can be deduced from the formuls {A.10), one finds

1 1 o=
b = - [MJ -l--—DDJ] . (¢.6)
I e

3

This equation defines the bare propagator. In a formal sense the propegator

is given by equationa like

g 8 ¢+(xl,61)

T 0,0x40)) 0 (x,0,)) = ¥ 5575 T (x,,0,)

but the meaning of the functional derivative here needs to be clarified. To
this end one can exploit the supposed invariance of the vacuum with respect

to translations and supersymmetry transformations to write
T 8, (x;,0)) ¢ (x,,0,)) =
i- | i
= {T 9, (x, + &+ 5 EYD, 0 +e) b (x, + a+5E¥8, 92+e)>
= {7 e (x - + 28,0, 8.-8 ) & (0,0)7 (c.7)
- SN | R Y- -0

(on choosing € = —82 , &= -ke). Now @_(0,0) = A (0) and one needs to
evaluate only '

8 ¢, (x,8)
£ <o (x,0 A_(p)? - o

8§ J (x,6)}

—

J

D

naj-

=2
i.‘n-
[

aul 1

D (exp&- éﬂyse] %—5(1-1"{5)6 G(X)} )
(c.8)

where we have used (C.3) and (C.6). This formula can be simplified with the
help of (A.10) vhich implies the relation '

-=DD & = axp[— ]]i- ﬁﬁ'\rse] [F_ + §(_—-iﬁ¢_) + Il; 5(1+:w5) 9(-32A_)]

M-

and,therefore, ' .
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F Lo (x0 A (0)) = 2-1M2 exp[—%ﬁﬁvse] §(x) . (c.9)

9 .+

The propagator (C.7) now tekes the form

i
& {r 8 (x10,) ¢ (x,,0,)) =

- 1. 1,z - 3 1
= [gxp(— E Gl Yu 62 +.n- (61“‘.62) iYuYS (31-92>] i axu] 32 A M2 G(K xg) *
(c.10)

which is a polynomial in 91 and -82']' {The component propagators can be

obtained by comparing coefficients.) In similar fashion one obteins

— ) = - -1“-“ - l ) ___ . 1 ___8____ .
i <T tiﬂ.+(xl,91) ¢+(x2,02)> exp[ 5 Sl Y'ﬂ 82 N (81 32) 'i-YuY'5 (81 82)] i 3Xu X

.(— %] 82 (1+1Y;) 912 J2 Mz 8(x;=x,).

b4

(c.11)

With the bare propagators in hand one can contemplste the problem of
computing scattering amplitudes. For exsmple, one could put the eguations
(C.1) into integral form .

2 g

o1 | Lo v (o, o
¢, = - 7oz n,6(c1>+) + vint(%)] {c.12)

snd go on to obtain perturbative developments of the superfields. This xing

of approach may, perhaps, lead to uséful ingights.

. !
A different sort of Lagrangian which can be used to characterize at

least the free-field behaviour is given by

£ = (J'JD)2 [%« (BD - 2M) & - 2J¢} ’ . {C.13)
vhere ® 1is a general superfield. The eguations of motion are

(DD - 2M) ¢ = 2T . (C.14)

In fact,these equations are equivalent to (C.h). Substitute the resolution
(3.11) for & end J . Then, since DD ®, = 0 , the equation (C.14) takes

the form
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DD 8 -2M8 = 27

+
D¢, -2Mo_ = 2J_ | (c.15)
- 2M <1>1 = 2 Jl
and one sees that the non-chiral part, *131 ’ doeé not propagate. The

equation (C.1h4) can be solved directly with the help of (A.6} to give

1 1= 1 ,=.2 1
F = e = [—DD..-—-—(DD)]J-*—-J . {c.16)
32_+!~12 2 L M

snd from this the form of the 2-point function can be obtained.

The same methods can be applied to other kinds of superfield. For
example, the spinor superfie-lds, ¥ . > may satisfy the equations

ot
. 1= _
(i -am) ¥y, +3TDY, =23, , (c.17)
which are solved by
= g I i
Y, = 7w [Ji + 55 TD J$} -5 Y. (c.18)

These equations describe the propagation of s supermultiplet of particles of
+ i i +

mass M and (spin)P®% content oF , (1/2)Y , (1/2)' emna 17 . It

remains to be seen whether or not there exist any renormalizeble interactions

for this superfield.
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