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ABSTRACT

The realization of aupergauge transformations on fields defined over

an 8-dimensional space whose points are labelled by x and the anti-

cownruting Majorana spinor 6a , ia described. The covariant derivative

1B defined and applied to the problem of decomposing superfielda into

irreducible (chir&l) parts and to the problem of constructing "supersymmetric"

Lagrangians. Further, it ia shown how to build internal symmetries (both

global and local) into these Lagrangians. An example is discussed in which

the internal (global) symmetry is spontaneously violated giving rise to a

supemultiplet of Goldstone particles (including fermions). When a local

symmetry is broken the Higgs mechanism (for bosons and fermions) is shown

to be operative. A possible solution to the problem of defining a con-

served fermion number is indicated.
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I. INTRODUCTION

The concept of a fundamental symmetry between fermions and bosons has

begun recently to receive a good deal of attention. This symmetry was form-

ulated first in the context of dual model theory . In this 2-dimensional

setting it takes the form of a local symmetry and plays a vital role in the
2) 3)

elimination of ghosts, More recently, Wess and Zumino took the decisive

step of formulating a glottal Fermi-Bose symmetry in ^-dimensional spacetime.

An approach to the problem of implementing the global Fermi-Bose super-

symmetry, which is somewhat different from that of Wess and Zumino,was proposed

by ourselves. This involved the consideration of a superfield ${xj6)

defined on an 8-dimensional space which is the product of ordinary space-

time with a ^-dimensional space whose points are labelled by the anti-

commuting Majorana spinor 8 . The purpose of this article is to discuss

in more detail the properties of such superfielda and their products and to

show how it is possible to set up supersymmetric Lagrangians which are

compatible vith local internal symmetries. The plan of the article is as

follows, •

In Sec.II a pseudo geometrical point of view is introduced and the

action of the supersymmetry group on the space of x and 6 is defined.

This leads in a natural way to the transformation rules for. scalar, spinor,

etc., euperfields. The structure of such representations is discussed

briefly. The important concept of covariant differentiation is introduced-

in Sec .in and its use in decomposing superfields into irreducible pieces is

indicated. Detailed properties of the covariant derivative including a

number of identities are set out in Appx.A. In Sec.TV the Lagrangian for a

self-coupled scalar superfield first exhibited by Wess and Zumino is given

as an illustration. Scc.V is devoted to the problem of incorporating internal

symmetries in a supersymmetric scheme. Those of the global kind are easily-

fitted in and so are mentioned only in passing. The main problem is to set

up local (and particularly non-abelian) internal symmetries which are com-

patible with supersymmetry. This is non-trivial. In particular, it is found

7)
that zero-mass "gauge" spinors must accompany the usual vector gauge fields

Goldstone and Higgs mechanisms are discussed in Sec.VI and Goldstone fermions

are shown to arise when internal symmetry is spontaneously broken.

One of the disturbing features of the supersymmetry scheme is the

prevalence of Majorana spinors. On the face o'f it, in combining fermions and

bosons into a single imiltiple-fc it would seem to "be inevitable that quantum
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numbers such as electric charge or baryon number must be shared between the

fermions and the bosons in the multiplet, while neutral bosona would go to-

gether with neutral (i.e. Majorana) fermions. Fortunately, this difficulty-

is not inevitable. A counter-example is given at the end of Sec,V,where it

is shown that if the system of gauge fields is allowed to interact with a

massless scalar multiplet (belonging to the adjoint representation of an

internal symmetry, e.g. SU(n)) then a nev symmetry appears. The Majorana

spinors from the gauge system can be combined with the spinors from the matter

supermultiplets into complex Dirac spinors, with the Lagrangian exhibiting a

fermion-number conservation.

With the incorporation of local internal symmetries into the frame-

work of supereymmetric Lagrangians and with fermion-number conservation

implementable, the supersymmetric Lagrangian concept is now sufficiently

developed to be considered for use in a realistic unified theory of weak,

electromagnetic and strong interactions.

II, SUPERFIELDS AND THEIR TRANSFORMATIONS

Superfields a r e defined over the 8-dimensional space whose points

are represented by the pair (x.0 )» where x denotes the usual (real)

spacetime co-ordinate and 8a* is a Majorana spinor . The variables 8a

differ radically from co-ordinates of the usual sort in that they anticonmute,

This has the important consequence that any local function f(6) must be a

polynomial. This can be seen from the fact that the monomials

e e * • • e
\ a2

must be antisymmetric and therefore vanishing for n > k . The local function

f(9) is fully specified by sixteen elements: the coefficients in its expansion

in powers of 8 . Half of these elements are numbers of the ordinary sort

while the rest are anticommuting quantities. One can think of the function

.f(6) as a kind of l6-vector. Nevertheless, it is very useful to view such

objects as functions defined over a U-space,and this aspect will be emphasised

in the following. ,_
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The action of the Poincare' group on the space of x and 8 is given

V

where a(A) denotes the Dirac spinor representation of the homogeneous Lorentz

transformation A . In particular, space reflections are associated with the

mapping

The factor i is necessary here for compatibility with the Majorana constraint

on 9 .

The action of a supergauge transformation on the space of x and 9

is defined "by

% * "M + 2 lV '

e -> e + e ,
a a {2t3)

where the parameter £ must of course be an anticommuting Majorana spinor.

The group property of the mappings (2.1) and (2.3) is easily verified. How-

ever, it should perhaps be emphasised that our constructions are purely formal.

For example, the spacetime translation (i/2) ey 6 is not a set of four

ordinary real numbers such as x is usually taken to be. These numbers

are nilpotent, {ey 6) = 0 . For consistency we should regard the co-

ordinates x ' also as belonging to some non-trivial algebra. Perhaps it
V g)

may be possible to establish a rigorous geometry on the space of x and p ,

The scalar superfield is naturally defined as one which transforms

according to

$'(xf ,9') = *U,9) . (2.It)

Generalization to spinor and tensor superfields is equally natural. For

example , the spinor would transform according to

v'U'.e1) - a
a ot

As remarked above, any local function of 6 must be a polynomial.

To illustrate we give the expansion of the scalar superfield,



A(x)

ee F U ) + £ 8v5e G(X)

where the coefficients A, F, G, A. * and D are ordinary Bose fields, and l|) and

X are Fermi fields. . The behaviour of these components under the action of

the Poincare* group is clear: A, F and D are scalars, G is a pseudoscalar4

A is an axial vector; ifi and x ^^^ Dirae epinors. (The intrinsic parities

are reversed in the case of a pseudoscalar superfield.) These components are

all complex in general. However, it is possible to impose a reality condition

on the superfield,

y ^ the complex conjugation is understood to reverse the order of antic.ommuting

factors. The real scalar superfield has Bose components which are real and

Fermi components which are Majorana spinors.

The behaviour of the component fields under the action of an infinite-

simal supergauge transformation is easily deduced from (2.3) and (2.k),

by subs t i tu t ing the expansion .(2.5). One finds

6F = |ex- |e)(*

6D = -iejfx • -(2.7)



In certain circumstances {which will "be discussed in Sec.Ill) this representation

turns out to "be reducible.

A better insight into the structure of representations of the super-

syinmetry can be gained from an examination of the infinitesimal algebra. To

obtain this algebra one represents the action of- an infinitesimal transformation

on $(x,8) by a commutator,

j- 6$(x,6) = [#(x,6) , is] , (2.8)

where the components of the generator S themselves comprise a Majorana

spinor,

(eS) = es . (2.9)

By considering the action of two infinitesimal transformations applied in

succession and making use of the Jacobi identity one arrives at the consistency

condition,

where P is the generator of space-translations. In fact it is clear from

the rules (2.3) that the commutator of two supergauge transformations is a

translation, At this point it is .necessary to assume that the infinitesimal

parameters £ anticommute with the generators S . From (2.10) one then

extracts the anticommutation relation

% > V - - V W PM ' C2-1:L)

(where C ia the charge conjugation matrix). Since the matrices Y C are'
8) u

symmetric one sees that the left-hand aide of (2.1l) must be an anticommutator
and hence the necessity of assuming that e anticommutes with S .

The rest of the infinitesimal algebra is deduced in the same way. In

addition to the usual rules for the commutators among generators of Poincare

transformations one finds

(2.12)

indicating that S transforms

•V
• V
like

= 0

2 \iv a

a Dirac spinor.
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The rules (2.11) and (2.12) are fundamental. The construction of

irreducible representations of this "algebra" and the development of rules for

decomposing their products is the central problem of supersymmetry theory. We

have chosen to regard this system &3 the infinitesimal algebra of a continuous

group of point transformations in a space some of whose co-ordinates are anti-

coramuting c-numbers. However, in the absence of a rigorous geometry in the

space of x and G ' this point of view is no more than a suggestive guide

for one's intuition. (

The construction of representations begins with the observation that

supergauge transformations must leave invariant the manifold of states with

fixed ^-momentum since S commutes with P., - On such a manifold the

anticommutator (2.11) becomes a fixed set of numbers and we see that the

operators S generate a Clifford algebra. Since this algebra has just

sixteen independent members, its one and only finite-dimensional irreducible

representation is in terms of k * U matrices , . (There must exist infinite-

dimensional representations as veil,but we shall not consider them here.) The

manifold of states with fixed U-momentura is therefore reduced by the action of

supergauge transformations into ^-dimensional invariant subspaces. How-

ever, these subspaces are not in general left invariant by the Wigner rotations.

These transformations reduce the manifold into (2J + l)-dimensional invariant

subspaces. The subspaces which are invariant with respect to both supergauge

and Wigner transformations are ^(2^ + l)-dimensional.

The construction of unitary irreducible representations of the algebra

(2,11) and (2,12) by Wigner's method has been treated elsewhere . These

representations are characterized by a mass, a'spin (4) and an intrinsic

parity (n). Included in one of these representations are four irreducible

representations of the Poincare group. The (epin)pari y content is {j: - 7?) ,

din , j~1T) , (i + ~)^ where n takes one of the values ± i (for integer i )

or ± 1 (for half-integer r ) . The rest mass is common. (The light-like

representations are ^-dimensional with helicity content ± X and ± (X + —)

with fixed X .)

We sketch very briefly a method for constructing irreducible raultiplets

of fields (non-unitary representations). In a basis where y^ is diagonal

the generators Sa become a pair of chiral sinors SA and S^ (A = 1,2)

which satisfy the algebra

= 0
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We shall treat S (or S-) as "raising operators" and S* (or S ) asA A A A

"lowering operators". Let the lowest component U(x) belong to some finite-

dimensional representation D(j ,j ) of the proper Lorentz group. Successive

applications of S generate two new sets of components in the multiplet»

SA U(x) = MA(x)

(where £ denotes the permutation symbol in two dimensions) and no more

since the product of three un-dotted operators must vanish by (2,13). The

complete table is then easily obtained,

SA U{x) -. MA(x) SA U(x) = 0

S A M B C X ) = E A B V U ) ' BA ^ ( X ) - -13 A B U(X)

S V(x) = 0 S; V(x) = -13,B M_U)
A A A -B (2il5,

A similar table (the parity transform of (2.15)) is obtained by treating S*

as the raising operator. Space reflections are incorporated by combining the

two multiplets.

Representations of the type (2.15) which have dimensionality

^{2^ + l) (2j2 + l) are in general reducible. Thus, if j %. j one can

reduce the lowest component Il(x) to a tensor in D(j*-j?,O) by contraction

with 2j powers of the operator d/dx , On this component one then con-

structs a representation of 4^2(j^-Jo) + l) dimensions. This contraction is

nothing more than the supersyinmetry analogue of, say» separating the longi-

tudinal part 9 V from a vector V . In setting up a local action principle,

it is usually necessary to employ fields which are reducible in this sense.

To conclude this section it may be worth pointing out that the Majorana

constraint is very potent in limiting the size of multiplets. If one were

to treat S and
a

(2,11) by the set

to treat S and S as independent generators, for example, and replace

{Sa
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then the fundamental representation would have sixteen rather than four

dimensions. It -would include vector as well as scalar and spinor components.

The same thing happens when the generators are generalized so as to carry an

internal quantum number such as isospin. This type of generalization was

discussed in Fef.5,

III. THE COVARIAKT DERIVATIVE

Although it is not easy to define an integral over 6 space,there is

certainly no problem with differentiation. The ordinary derivative is defined

by

f(9 + 60) = ^

where the infinitesimal 69 stands to the left of 9f/35 (since these

quantities may anticommute it is important to fix their order).

An important role is played in the following by the differential operator,

which we shall call the covariant derivative. This operator is covariant in

the sense that it transforms as a Dirac spinor under Lorentz transformations

and as an invariant with respect to the supergauge transformations (2.6).

The covariant derivative has the usual properties of a differential

operator with two significant exceptions. Firstly, when applied to the

product of two superfields its effects are distributed according to the rule

V W * (D« V *2 * VDa V '

where the + {-) sign applies when $- is bosonic (fermionic), i.e. when 6$

commutes (anticommutes) with * • Secondly, the covariant derivatives neither

commute nor anticommute. Their anticommutator is given by

{Da • V " - V W ^ ' (3*2>

The operator D is "basically a Majorana spinor. For this reason it

is useful to define another form
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5* = C t f 1 ^ (3.3)

which is nothing more than, a relabelling of components. The basic anti-

commutator can then be given in three equivalent forms;

(D , DH> = (C p) > ' (3 1

(it is often more convenient to work in momentum space.) The operators D

clearly generate a Clifford algebra which is isomorphic to the superalgebra

(2.11). ,

In view of the algebraic structure (3.b),only sixteen independent

operators can be made from products of the D . The most useful set is

1, Dfy , DD , IhvD , Dly YcD » D E D » (DD)

A product containing five or more factors must inevitably reduce. For

example,

(DD)2 D = -2 DD

Two other important identities are:

DY D = 2p and Da D = 0 , (3*5)

A number of useful identities and multiplication rules is given in Appx.A.

It vas mentioned "before that the scalar superfield (2.5) is, in a sense,

reducible. A reduction can be effected by imposing the condition

* E Dra * = ° * (3.6)
a

These linear differential equations are manifestly covariant (excluding space

reflections). The general solution of (3.6) involves eight independent (real)

components in contrast to the sixteen of a general scalar superfield. This

solution can be expressed in the form:
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, (3.7)

where A_ and F are complex boson fields and i|> is a right-handed Dirac

Bpinor4 ±yJ> = -if) . Likewise, the differential equations

| ( l - iy )D * = 0

serve to define a left-handed superfield,

1 i '* iY5

( 3 . 7 ' )

It ia possible (although not necessary) to identify $ with the conrplex

conjugate of $ , i.e.

A_ « A+* , ^_ - i(t+
c, , F_ - F+* . (3-8)

(Thus »|»+ and $ are identified as the left- and right-handed components,

respectively, of a Majorana spinor.)

The components of the chiral superfields behave under an infinitesimal

supergauge transformation according to

6A± -

± iy

~

# ' (3.9)

These representations are irreducible.

A gsneral scalar superfield contains another (non-chiral) piece $-

which is singled out by means of non-linear differential conditions

1 ± iY

D —2- D ^ m 0 . (3.10)
4

The resolution

* = *+ + *_ + *1 (3.11)

- 1 1 -



is effected "by the projection operators

D

1 - iY 1 + iy "'<•

$ ' (3.12)
y

In terms of the components (2.5), the resolution (3.11) takes the explicit form:

A - A + A + A

F = F + F

G =

A '= i3 A - i3 A
V U + • y -

•where An is transverse, 3 A. = 0 . This'decomposition is useful in con-,. .

structing local field theories if the resulting components are local fields.

Such is the case only when the original components X &&&• D in (2.5) are

themselves first and second derivatives, respectively, of local fields. If

this is so we may say that the superfield is "locally reducible". Other-

wise it is not.

Because of their "being defined "by a linear differential condition, (3.6)

or (3.61), the chiral superfields are closed under multiplication. That ia ,

we have

«1+ $2+ = * + and 4^- $2- = * - . (3.

This remarkable property is very important in the construction of Lagrangians

The mixed product $ + $„- ', on the other hand, is a general superfield:

one which is not locally reducible. Details are given in Appx.B.
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The spinor superfield . .^ = Da$+ is left-handed with respect to the

spinor index a , but is of the non-rchiral ($1) type .̂n the complexion of its

component fields. Conversely, the spinor ¥ = D $ is a mixture of left-

and right-handed chiral superfields (see Appx.B).

IV, A SIMPLE LAGRAMGIAH

To illustrate the application of the superfield . notation in a simple
3)dynamical system we consider here the Lagrangian given'by Wess and Zumino for

a scalar multiplet. This Lagrangian, *j£($+ » * ) » must itself transform as

a scalar superfield. In order that the equations of motion should "be super-

covariant,the action integral must be an invariant,

- 9 f J>
- E T=JF dx *- + surface term

= 0 .

The action will be invariant (up to a variationally insignificant surface term)

if it is independent of 6 , This means that every 9-dependent term in

/.($. >. * ) must have the form of a spacetime divergence. Such a form can

always be achieved "by applying the covariant operator D a sufficient number

of times; twice on a chiral or locally-reducible superfield» four times on

a general superfield.

Consider the Lagrangian

= | (wf <*+O - | D D JV($+) + v(#j

* 12}

vhere * - $ and V iB a smooth function (typically a polynomial ).

The spacetime integral of this expression is certainly invariant. The

variationally important part is obtained by setting 6 = 0 . With the help of

the formulae in Appx.B one finds for this part,

-13-



3 A+ 9 A_ + F+F_

V'UJ F^ + V'(A ) F

(U.2)

where V'(A) = dV/dA , etc. The equations of motion are

P±

1 + iYq 1 - i

The Lagrangian (̂ .2) and equations of motion (̂ .3) could easily "be expressed

in terms of real scalar fields A,F and pseudoscalars B,G defined by

A. * — (A i iB) , P x — (F ± iG)
1 • V ? ± v ^

but there is no great advantage to he gained by this.

According td (h.3) the vacuum expectation values must, in the tree

approximation* satisfy the equations

. o = V"(<A ±>) V ( < A T > ) , (h.k)

i.e., one or other of the factors V , V" must vanish in the vacuum. Consider

the possibilities. If < V > = 0 then <[V"̂ > is identified as the (common)

mass of the multiplet. On the other hand, if \VW]> = 0 then the fermion

is massless. This is a Goldstone (fermion) solution. However, it is an

unstable one since the boson Sield equations take the form

32A = - <V^> <(v"') (A? - K\y)
 + interaction terms

indicating that one boson component must be a tachyon « This situation may

be altered when quantum corrections are included ,

-lH-



V. LOCAL. SYMMETRY

It ia natural to ask whether super symmetry 'is compatible vith internal

symmetries of the usual sort» both global and local. One finds that indeed

it is: global internal symmetries can be incorporated quite easily, local
T)

symmetries are more difficult .

Consider first the global case* Suppose, for example, that the

superfields $ + and 0 transform as doublets of SU(2),

*+{x,0) + « *+(x,9)' •

*_(x,e) - a *_(x»e) , , (5ilJ

where SI i s an SU{2) ma t r ix ( independent of x and 6 ) . The Lagrangian

= | <DD)2 [ $ +
f 0+*+ *+ * J - | D D

is both supersymmetric (up to a surface term) and SU(2)-invariant. Unfortunately,

the Bimplest SU(2)-invariant interaction for this system,

- g DD

is not renonualizable. To have a renormalizable (i.e. trilinear) interaction

it is necessary to bring in singlet and/or triplet superfields. Thus, if

$ transforms according to

$1 •*• Q $'+ ft"1 (5-3)

then a renormalizable and SU(2)-invariant interaction is given by

g DD

As a second example, suppose * is a 3 x 3 matrix of superfields which

belongs to the (real) .(3,3) representation of SU(2) * Sll(2) »

*+ + Rx * + R 2
T , ' (5.5)

where R and R2 are orthogonal matrices. Suppose,moreover, that $_ = * +

so that

-15-



Then a renormalizable and invariant Lagrangian is given "by

DD

+ g DD det *. + det $

(5.T)

This Lagrangian will be considered further in Sec.VI.

The problem of setting up a local symmetry which is compatible with the

supersymmetry is more interesting. First of all, if the matrix £1 which

appears in (5.1) is to depend on x ;then it must also depend on 0 , In

fact it must be a set of chiral-type superfields,

3±(X>e) -> a±[xt9) $±<x,6) , (5.8)

since the transformed field must, if it is to have the same number of in-

dependent components as the original, be chiral. The consistency:Of (5.8)

relies on the closure property (3*1^) of chiral superfields under

multiplication.

Representing the doublet $ (x,0) and the matrix Q by the expansions

+ev+(x) + Je(i + iY?) e w+(x)

the explicit form of the transformation rule (5.8) is

A+(x) -V U+{x) A+(x)

yjjx) -* U+(x) ̂ +(x) + V+(x) A+(x)

F+(x) -• U+(x) F+(x) - V+{x) ̂ +(x) + W+(x) A+(x)

The matrices U , V and ¥, are complex.and V carries a Dirac spinor

Ik) +

index \

-16-



It is possible to regard fi as completely independent of ft or

one can impose the constraints

det.fi± - 1 , fl+ - (nj" 1
 ; (5.9)

•which we shall adopt in the following. This means that the supersymmetric

mass term

+ _j (5.10)

is an invariant of the local symmetry.

The main problem is to construct a gauge-invariant kinetic energy for

the doublets $ ± . The expression (5.2) is certainly not satisfactory since

Q+ ft+ ^ 1 • It is necessary to introduce some gauge fields. Following

Wess and Zumino who solved . the problem of making supersymmetry. compatible

with a local U(l) symmetry , we '• deal with the compatibility problem for

the case of the local internal symmetry SU{2) (in fact,the SU(2) could be

generalized to a local internal SU(n)).

The gauge field f iB a general (not chiral) pseudoscalar hermitian

matrix superfield which transforms under the local symmetry according to the

rule

With the help of this field,the kinetic term can be expressed in the invariant

and supersymmetric form:

Although this is not in general a polynomial, there does exist a special gauge

in which ip = 0 for n ̂  3 , vhere (5-12) defines a renormalizable interaction.

We shall come back to this in the following.

Having introduced a gauge coupling into the system of matter fields $

it is necessary now to set up a gauge-invariant kinetic term for ty . By

exploiting the chiral properties of Si. ,

(d
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one can prove that the vector superfield V-̂  defined "by

transforms under the local symmetry like a Yang-̂ Mills gauge field,

The hermitian conjugate transforms according to

v + •* n v.,t ft'1* — n

Notice that the combinations

f 1 D j V>I and ̂j
transform homogeneously, i.e. like field strengths. Further, one can show that

these field strengths are chii'al,

(and likewise for V̂ J }. This means that the expression

is an invariant of the local symmetry and is supersymmetric. It can serve as

a Lagrangian for the gauge field. Making use of the identity (5.15) and,

discarding a variationally insignificant surface term,one can put this Lagrangian

into the compact form

(5.16)

Gathering together the terms (5-10), (5-12) and (5.16) ve obtain the

gauge-invariant and 'supersymmetric Lagrangian

-18-



t ̂  + (f+t

4

(5.IT)

where V., is defined by (5.13).
r '

To write out the Lagrangian (5.17) explicitly in terms of component

fields would "be a complicated and unrewarding task. Fortunately, there exists

a remarkable gauge in which the Lagrangian. assumes polynomial form. The

infinitesimal form of the transformation law (5.1l) is, to lowest order in "Qf ,

-
g

This indicates that half of the components in if can be transformed avay leaving

it in the special form

where A v is transverse . In the SU(2) space the matrices Av,

Dt are hermitiaji and traceless. In the special gauge, V. is given Toy

and

1 +

After acme tedious labour one finds

C5.2O)

• \

(5.21)
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1c
i .e. the Lagrangian for a Yang-Mills field Â  ,in interaction with a triplet

of Majorana spinors A . The matter terms in the Lagrangian (5,17) reduce to

i- <DD)2 [*+
+ e 8 ¥ *+ + *+ e"g¥ * J - | (BD)

-f AJ (v- - % v-)

MA + F + + A +
+ F_ + f f A+ + F +

f A_ -

• | A +
+ X+X

(5.22)

in which A p = A^
k Tk , X = *K T k

 } D = D
 k Tk , One may, if this is deEired,

replace the chiral combinations A and F± by definite parity combinations

AA = — (A ± IB) , F = ~ (F ± iG)
* J2 ± ft

(bearing in mind that A, B, F and G are all iso-doublets).

For a triplet of matter fields

the gauge invariant kinetic term is

g e Ay A_ j ̂ A + + g E
 A

M
 A+

A A • ••• *- m + v2 A A r:—*- \1) * l A A D e

+ 2 — 2 + — 5

(5.23)

-20-,



This expression is particularly interesting because the sum of (5.23) and the
gauge Lagrangian (5.21) possesses a new symmetry, viz.

sind ,

-* Ak slna + /

with all "boson components treated as sealars,. In other words, if ve introduce

the complex Dirac field

X* - -J (Ak.+ i^) (5.25)

the fermionic part of the Lagrangian takes the form

r i Y

(5.26)

which is manifestly invariant with respect to the phase transformations

X k * a"ia X
k , x k *, e101 X k • (5.27)

The new symmetry could be associated with a conserved quantity (such as "baryon

or lepton number) which is carried only by the ferraions. • To maintain this

symmetry the matter multiplet must have no mass. , »

Before we close this section, remark that in the oneTloop approximation,

contributions to the Callan-Symanzik function /$(g) for the gauge-super-

multiplet equals - -"•- - (3CO(G)), while the contribution from the matter--
16-ff2 2 J

supermultiplet equals + • "' -A- C^(G) where Cn(G) is the value of the
I6ir2 2 2 ,

quadratic.Casimir operator for the adjoint representation of the internal

symmetry group. If we introduce three matter supermultiplets. (as ve do in

thenext section), ̂ J(g) - 0 in the one-loop approximation, so that the charge

renormalization of g is finite•
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VI. GOLDSTOHE AND HIGGG THMOMEHA

It is of prime importance tc demonstrate the feasibility of spontaneous

symmetry breaking mechanisms in supersymmetric systems. It has already been

pointed out that the spontaneous breakdown of supersymmetry cannot occur (at

least in the tree approximation) in the case of a self-interacting scalar

multiplet. Our aim now is to show that internal symmetries, on the other hand,

can be spontaneously violated even when they are embedded in a super symmetric

scheme. This means that it will "be possible to set up renormaliza'ble super-

symmetrie Lagrangian models in which the' gauge particles (vector and spinor) are

massive,

A suitable system on which to tect for spontaneous breaking is the

SU(2) x SU{2) invariant Lagrangaan (5.7). To begin with we shall treat this

as a global symmetry and obtain a sbable Ooldstone solution which carries a

residual SU(2) symmetry. (This is only one of a number ofpossible solutions).

Then ve shall go on to consider the symmetry SU{2)- - x SU{2) , . - and

show that the Higgs mechanism is operative.

The scalar multiplet $ + belongs to the real representation (3,3) of

SU(2) x SU(2) and. it satisfies the reality condition$*a = ($*a)*. In terms of

component fields the Lagrangian (5-7) takes the form

(6.1)

where all the fields are 9-folds (F^ < F^ = F^a F+ , etc) and the fermion
ia' ~ ~

components 41 are Majorana spinors. The equations of motion are

M F / + gl ^ [2 A^ x P C _ f> x _2pl f} . 0

M A / + B l e a b c A±
b x A ±

c

= u • (6.2)

From these equations it follows that the vacuum expectation values, in the tree

approximation, must, satisfy the algebraic equations,
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M

• , (6.3)

(We are of course rsquiring that the vacuum "be Folncare invariant so that

<̂  3 A ± y * 0 and ^ ty y = 0.) The equations (6,3) are very much simplified

if we choose the matrix ^A } to "be diagonal. (No loss of generality is

implied since any one of the matrices involved here can "be diagonalized by means

of an SU(2) x SU{2) transformation.) The equations themselves then imply that

the other matrices ^ A_ ^, <̂ F ^ must be diagonal as well. Representing

one finds

and the equations (6.3) reduce to the form

0

and cyclic permutations thereof.

We shall not pursue the general solution of (6.6) but instead make the

restrictive assumption that X1 = X_ = Xg. In effect, we are selecting

solutions in which a global SU(2) symmetry is preserved. With this

restriction the equations (6.(j) reduce to

X (M + 2gxX) (M + Ugl\ ) - 0 , (6.7)

and there are three distinct (parity-conserving) solutions.

The solution X = 0 corresponds to the case where no symmetry is broken.

The solution X = - M/kg^ gives

• • • • • • • ' • • • • " ' S L

i a \ _ M *ia / ^ lav _ _M_ £ia
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and corresponds to the case where the super symmetry is broken as veil as

SU(2) * SU(2). This solution can be shown to "be unstable: some of the bosons

turn out to be tachyons.

The solution X w - M/2g- gives <^F+ *J> <= 0 and so preserves the

super symmetry,, Indeed, ty testing the' propagation character of weak

perturbations about this solution one finds that it is stable: ' the superfield
ia y
$ breaks into three pieces ("belonging to the representations I = 0, 1 , 2
of the unbroken SU(2)) with the respective mass values

M = M , M = 0 , M = 2M . ' (6.8)

Tlie isovector piece is a Goldstone superfield. It is perhaps, worth emphasising

that the Goldstcine multiplet includes a massless Ma.16rana fermion aXdng vith

the scalar arid r>seudogcalar bosons. Supersymmetry ia not broken though

the internal SU(2) x su(S) is. It ia the breaking of this internal

symmetry which is responsible for the occurrence of the Goldstone fermiona

(together with Goldstone bosons).

Now consider vhat happens vhen the Lagrangian symmetry is generalized

to SLf(2) x SU(2; Tn the special gauge discussed in Sec. V the
local global '

Lagrangi^n assumes the renormalizable form,

A a + gA
v +

A+
a

where the gauge condition .. 5 A - 0 is understood. Our purpose here is only to

discover the excitation spectrum implicit in (6.9) when the symmetry

SU(2) x SU(2) is broken down to SU(2). We shall therefore take advantage of

the manifest SU(2) symmetry in (6.9) to change over from the renormalizable
local •
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Landau gauge to the unitary ggoige in -tthicELtha' spectrum £3.- simplified. Tha,t

is,ve shall adopt the gauge condition

AI ia] s J ( A i a _ A a i ) m Q ;

Where A l a denotes the real (scalar) part of A+
 a» The scalar isovector part

of the Buperfield Is, in effect,"gauged avay". The pseudoscalar and spinor

parts mast of course remain.

Into (6.9) substitute

42 A+
ia = -J~ 6ia + A

(ia) ±
± 2 g

and collect the bilinear terms,

KA(la) - f V f+1
)2 + 1 (Oia,*

- 2 B(

/ (6.12)

where ty s (J)(^ + li* )» etc. This free Lagrangian can be separated into

three independent pieces if the fields are decomposed into their I » 0, 1, 2

components "by writing* for example,

/ a = * 2
( i * )

+ * 1
[ i a l

+ | 6 i a * 0 , (6.13)

where \pp
 1 = 0, Suppressing I-spin indices, the three pieces are given

by

\

(6.1k)
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2 UiJ

V

(6.16)

The Lagrangians (6.lh) and (6.16), respectively, describe the propagation of an

1 = 0 multiplet vith mass M and an 1 = 2 multiplet with mass 2M. The

Lagrangian (6.1?) describee an 1 = 1 system containing a massless pseudoscaJLar,

a vector with mass Mg/g and a pair of Majorana spinors,

1 ' YS
i (ty. + X) and -2- (di. - X)

with mass Mg/g and opposite parities .

This shows that the Higga mechanism is operating here in the usual

vay. The fact that a paeudoscalar Goldstone particle remains in the system

merely indicates the need for a larger local symmetry; one which involves

axial-vector gauge particles as well as vectors. ̂ 'It ia certainly possible to

construct such a scheme by the methods described in Sec. V.
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APPENDIX A
THE ALGEBRA OP COVARIAHT DEEXVATXVES

The differential operators DQ defined by

D =

(and Da defined by D* = (C~, ) £.) are easily seen to generate a Clifford
P

algebra which is isomorphic to the Bupersymmetry algebra,, viz.

The purpose of this appendix is to list some of its properties.

First of all, the algebra contains sixteen independent basia elements,

1, D^ , DD, DY5D, DiyyY5D, DDDa, (DD)
2 . (A.3)

Any product of D's can be reduced to a linear combination of these. A

complete multiplication table for these "basis elements would he too bulky to.

reproduce here; Instead we shall list only the more difficult products from

which(with the help of (A.2), any other product can be deduced without too

much effort.

To begin with, the product of two D's is given by,

B + r Ca6 ™ ' \ f V ) a 0 DY5D - \ (iY^O^

Multiplication of this formula by - C rl . and by - C a' yields the
I • "J * t ^ )

identities

DY UD = 2p and Da D = 0 . (A.5)

Products of three D's are comprised in the formulae

-DD

2±pu fY5D)ct
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(A.6)

Products of four D's can sometimes be reduced "by multiplying a single

D into one of the formulae (A.6), For example,

-C'S D)a

- DD

1 a

- DD f-fcVC) f-C V^D)

(DD)2 .

Any combination of four D's can be reduced with the help of (A.M and the

multiplication table

DD

~r™

DD

(DD)2 i -2ip.

(DD)2

{A.7)

where left (right) factors are listed in the rows (columns)
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Product* of firra or more D'» oan He f«flue«A vith the help of the

atove results together with the fundamental formula

(DD)2D>ft = -DD(2^D)a . (A. 8)

Of some Importance are the identities,

D = 0 ,

(A.9)

which "become more transparent in the notation of 2-component spinors. In a

basis where y^ is diagonal,the anticommutatore (A.2) take the form

V DB^ = ° ' fDA' Dfil = ° ' ' l\> D^ = PAB '

Since they anticommute, the product of three operators D. must vanish, e.g.

' • ' • - • • 0 - DA DB Dc = €w DA D — ^ D , etc.

This is one of the identities (A.9).

Frequently useful are the following formulae which give explicitly the

action of some operators on a general superfield $ whose components are given

in (2.5),

.T iy

2 8 fD " 8 A ± 2 i

e

+ 99 9 __S. (̂ f̂) (X - i

=i- (99)2 (-32) (FT
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* - 2

+ ^ 09 123;

5 "2V

~ 2

- 2

v
(A.11)

~ (DD)2 * « D - 32A

ee

+ £-99*6

- ^ r (e9)2

(A.12)
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V =
1,
2 V

(A.13)
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APPENDIX E

PRODUCTS

The product of two expansions- of the form C2-5) can "be rearranged

Into

A(2)j

F(2) - ~f

G{2) +

? )

+• A (1) A(2)

ee G|A{I) X(2) + ^d) F(2) - Yc^t1) G(2) + i

D(2) + 2F(l) F(2) + 2G(l) G(2)

A(2) - 2^(1) X(2) -

where vpc denotes the charge conjugate of if; , i.e.

(B.I)

The formula (B.I) comprises the multiplication table for the anticommuting

Majorana spinor 9 and the various monomials made from it.
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A particular case of CB.11 la the product of left-and right-type

c&irai

*.ti,e) * (2,ei » A.a) A on,

A- ( 2 ) -

-i^+{i) A_(2) + iY

+ J£(m2 U2A.(1) A (2)

- + It F+(l) F_(2) + 2 ^

(B.2)

The multiplication of two left-type fields yields again a left-type field

with .

A+{3) = A+(l) A+(2)

•+(3) = A+(l) if+(2) + lp+(l) A+(2)

F+(3)"* A+(l) F+(2) - ^+
C(1) %(2) + F+(l) A+(2) .

(B.3)

Repeated application of this rule gives the conrponents of the superfield

(*+<*,9))n , viz. • • • • • , • • • .
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F+ « n A ^ r 1 F+(x) - "<
n -

(B.U)

The vector multiplet ^ contained in (3.8) can be expressed in chiral

form as a spinor superfield,

± iYc

1 ±

±iyc

CB.5)

where

X =

(B.6)

Conversely,

a+

vhich may "be a non-local superfield.

(B.T)
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APPENDIX C

SUPERFIELD EQUATIONS

In the text we have been concerned mainly with the construction of

supersymmetric Lagrangians. For this task the superfield concept has provided

a compact and suggestive notational framework. One may ask whether the

concept can be usefully pursued and,, in particular, whether it would be

advantageous to set up an apparatus' of Feynman rules with superfield

propagators, superfield vertices, etc. Little has been done in this direction.

The purpose of this appendix is merely to sketch a preliminary idea of how

such a development would proceed. ...

Corresponding to the Lagrangian (k.l) the superfield equations of

motion are

DD $ ^ o yt (ffi )

' • • • ( c . i )

DD = 2

These equations can be solved perturb at ively. The first step is to linearize

them and work out the propagator. Make the replacement

(M/2)
±"±

(C2)

where J+(x,9) denote external source distributions of the usual chiral

types

j±(x,e) - 9 * 5 } ffd ± i (c.3)

where the components are labelled such that J acts as the source of A+ »
• +

etc. The linear inhomogeneous equations of motion

DD $V - 2M$ = 2J
+ — • -

DP * - 2M$+ = 2J

are easily solved. Making use of the identity

(DD)2
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which can. be deduced from the formula (A.10), one finds

a 2 * ^

This equation defines the "bare propagator.

is given by equations like

(C.6)

In a formal sense the propagator

<T W V *
5 * (x ,6 )

but the meaning of the functional derivative here needs to be clarified. To

this end one can exploit the supposed invariance of the vacuum with respect

to translations and supersymmetry transformations to write

< T *+(x1,81

a + | a

(on choosing e

evaluate only

i- <T * (x,£

CCT)

6 , a = -x ). Wow $_(0,0) = A_(0) and one needs to

6 * (x,e)

^ ^

(C8)

where we have used (C3) and (C.6). This formula can be simplified with the

help of (A.10) which implies the relation

- | DD $_ = exp[- 9(-32A)

and,therefore,
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(C.9)

4

Propagator (C.7) now takes the form

i (VV
fc.io)

which is a polynomial in 6 and - 6 '. (The component propagators can be

obtained by comparing coefficients.) In similar fashion one obtains

— <̂ T $. (x_ .6.) * (x~.0_)> - exp|- — 6,

+** (C.ll)

With the hare propagators in hand one can contemplate the problem of

computing scattering amplitudes. For example, one could put the equations

(C.l) into integral form

(C.12)

and go on to obtain perturbative developments of the superfielde. This kind

of approach may, perhaps, lead to useful insights,

A different sort of Lagrangian which can be used to characterize at

least the free-field behaviour is given "by

£ = (DD)2 f i *(BD - 2M) $ - 2J*j .

where * is a general superfield. The equations of motion are

(C.13)

(DD - 2M) * = 2J

In fact, these equations are equivalent to (C

(3.11) for * and J . Then, since DD $ 1

the form

h). Substitute the resolution

0 , the equation (C.lk) takes

-37-



DD $ - 2M $+ = 2

- 2M * x = 2 J

and one sees that the non-chiral part, $ , does not propagate. The

equation (C.lU) canbe solved directly with the help of (A.6) to give

and from this the form of the 2-point function can "be obtained.

The same methods can be applied to other kinds of superfield. For

example, the spinor superfields, ¥ , may satisfy the equations

( i / - 2M) »± + | E D ¥, « 2 J+ , (C.17)

vhich are solved by

These equations describe the propagation of a supemrultiplet of particles of

mass M and ( sp in ) p a r l t y content 0+ , (1/2)1 , (1/2)"1 and 1+ . It

remains to be seen whether or not there exist any renormaliza'ble interactions

for this superfield.
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the matrices Ŷ 'C and a C are symmetric,vhile C , Y?C and

i Y YSC are entisymmetric. In particular it follows that ^X - X^ .

% X = " *V » %vX = " ̂ V* * ^i rv Y 5X ' ̂ i V 5 *
iht-X = XYJP if $ and "X are anticommuting Majorana spinors.

-39-



9) It may be remarked that the rank k "line element" ds = (dx - |* ?y d.9)2

ii an invariant*

10) See, for example, J.M. Jauch and F. Rohrlich, The Theory of Photons

and Electrons (Addison-Wesley, Cambridge, Mass., 1955), Appx.A.2, p.U25.

11) In certain cases it is possible to avoid this doubling and so define an

intrinsic parity. The "vector" part, $ , of the scalar super-field

illustrates this (see Eqs.(3.10)-(3.13)).

12) For renormalxzability,, V must be a polynomial of order three. This

Lagrangian, given by Wess and Zumino (Bef.3) has been analysed in

detail by Iliopoulos and Zumino for renormalizability (T. Iliopoulos and

B. Zumino, CERN preprint TH.1831* (1971*) , to be published in Nucl.Phys.B).

See also Hung-Sheng Tsao, "Supergauge symmetry, broken chiral symmetry

and renormalization", Brandeis preprint (197*0.

13) Abdus Salam and J. Strathdee, "On Goldstone fermions", Footnote 2,

ICTP, Trieste, preprint IC/T^/17, to be published in Fhys, Letters.

An heuristic argument has been given by Iliopoulos and Zumino suggesting

that Bupersymmetry cannot be "broken spontaneously (Ref.12, Appx.l),

1*0 The compact notation becomes somewhat ambiguous in this formula, In

particular, V+i|>+ = (c"
1)0*6 V+g ifj+a .

15) In order to avoid the Faddeev-Popov complications, it might be better

to choose the non-covariant "axial" gauge n^Ay - 0 rather than

16) The same proposal was ma'de independently by Ferrara and Zumino and

by ourselves (Ref.7)< Another and quite different proposal i s

contained in R. Delbourgo, Abdus Salam and J . Strathdee "Supersymmetric

V-A gauges and ferraion number", ICTP, Tr i e s t e , preprint IC/7l*A5»

submitted to Phys. Le t te rs .

17) See R. Delbourgo, Abdus Salam arid J . Strathdee (Ref , l6) .

-1*0-


