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In a recent article Wess and Zumino have invented an interesting
2)

new symmetry. Generalizing from the dual model super-gauge symmetry these

authors succeeded in defining an analogous transformation group in four-

dimensional space-time. This invention is quite remarkable in at least two,

respects: l) the irreducible representations of this symmetry combine fermions

with bosons and 2) the strictures of O'Ralfeartaigh's theorem are circumvented -

we seem to have here a relativistic spin-containing symmetry which is con-

sistent with unitarity . Moreover, in a simple Lagrangian model involving

two scalars and a Majorana spinor, Wess and Zumino found that, in the one-loop

approximation, there is only one (logarithmic) divergence

The purpose of this paper is to present a rather simple method which

can be used for the construction of at least some of the representations of

this symmetry.

We shall confine our considerations to the lU-parameter subalgebra

of the Wess-Zumino system which is generated by the Poincare operators J ,

P and the Majorana spinor S .• In addition to the usual commutation rules

involving J and P only, we have

[SO,PV] - o ,

fS ,J ] = 7T (o* ) Sn .
a yv 2 iiv ot 3

*) The group of Wess and Zumino can be looked upon as a sort of quasi-

U(2,3): the set of unitary 5 x 5 matrices, g , whose

elements g , a,S - 1,2,3,^, and g are ordinary complex numbers

while g and g,. are anticommutihg c-numbers. The subgroup

SU(2,2) x U(l) of the ordinary sort is identified with the product of

the 15-parameter conformal group of space-time and a 1-parameter group

of Yc transformations. The anticommuting parts are identified with

super-gauge transformations. Looked at in this way an immediate

generalization to U(2,U) (or U(2,5))is suggested. The ordinary

subgroup SU(2,2) x U(2) (or SU(2,2) x U(3)) might then be said to

include a strictly internal SU(2) (or SU(3)) symmetry. Contrasted

with this marriage of internal symmetries with space-time symmetries,

one may also consider a rather trivial generalization of Wess and

Zumino•s.work where each one of their fields is considered as (for

example) the adjoint representation of an internal symmetry U(n) .
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*)

vhere C denotes the charge conjugation matrix . The last of these rules

can be expressed in the alternative version

where £ and £ are two arbitrary Majorana spinors which anticommute with

one another and with S . {Notice that eS = Se is a hermitian operator
— - *)

and that e,Y e? = -£pY e, is an imaginary 4-vector .)

Our basic approach is to work out the group action on the space of

left cosets with respect to the subgroup of homogeneous Lorentz transformations.

This "space" is essentially eight-dimensional,being parametrized by the U-vector

x and the (anticommuting c-number) Majorana spinor 0 . A simple way to

obtain the group action on this homogeneous space is to define the unitary

operators

L(x,6) = exp[ix^] exp[i9aSa] (3)

and consider what happens to them when, any one of the operators representing,

respectively, a translation, a homogeneous Lorentz transformation or a super-

gauge transformation is applied on the left. One finds,

exp[iC P ] L(x,6) = L(x+C,6)

jeXp[l W ] L<x'6> - L(Ax,a(A)8) expjj

exp[ies] L(x,6) - ifx„ - r e v e .
{ V 2 V

*) Our notational conventions are as follows. The Dirac matrices satisfy

(1/2) (YU>YV} = H = diag (+ ) and adjoint spinors are defined by

* = / Yo • The matrices Y Q , YQYy , YQ oyv , YQ i Y ^ , YQY5 are

hermitian. The charge conjugate of ty is defined by ^° = C if where

C = -C and C Yu
 c = -Yu' « By a Majorana spinor we mean

ty = ty . It is useful to remember that the matrices Y C and

o^C = (i/2)[Y ,YV]C are symmetric while C, Y5C and iYyYcC are

antisymmetric. In particular, it follows that ty ̂ n »

a r e a n ti c o m m u t i ne Majorana spinors
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where a(A) = exp(i/U) 0) o" denotes the usual spinor representation of the

*)

homogeneous Lorentz group . (Kotice that, because of the Majorana

constraints on £ and 9 , the displacement in x caused by a super-gauge

transformation is real.) Eqs.(U) serve to define the action of the group on

the space of the parameters x and 6 and indicate how any field defined

over this space should transform. Thus, for example, the scalar super-field

$(x,6) should satisfy

• exp[ieS] *(x,9) exp[-ieS] = $fx - | e Yy6, 6+e1 . (5)

**)
By appending a Lorentz index one could define a vector super-field $ (x,6),

a spinor super-field ¥ (x,9) , etc.

If we were dealing with an arbitrary group then we should not be very

pleased with fields defined on an eight-dimensional space-time. It was this

aspect of the old attempts at combining internal symmetries in a non-trivial

way with the Poincare group which hindered their development. The truly

remarkable and exciting feature of the Wess-Zumino group is that the super-

field $(x,8) in eight dimensions is exactly equivalent to a 16-component set

of ordinary fields in four dimensions. One simply has to expand 0 in powers of

of 9 and observe that the series must terminate in the fourth order. This

is due, of course, to the fact that the monomials

6 6 ,... ,6
ot ct ct
1 2 n

must be completely antisymmetric and therefore vanish for n > k . Therefore

we can write

<J>(x,e) = <{>(x) + 4> (x) 9 + -r f U ) 6Q 0
ex c. p a

The number of independent real components involved here can be halved by imposing

the reality condition

*(x,8)* = *{x,6) , (7)

#) Space reflections are incorporated by requiring that 9 transform

according to the rule 8 -*• ±y Q . Likewise for dilatations,

x •> Ax , 9 -»• X*6 and y transformations, 9 -+• (cosa + Yc si»a)9

with real a .

**) The super-gauge transformations induce no Lorentz transformation.



which reads, in terms of the component fields,

where the barred quantities are defined in the usual way, <f(x) *= <t»(x)* ,

The behaviour of these components under an infinitesimal super-gauge

transformation can be extracted from (5). One finds

e

1

i (-̂ jY 8)|?M»] . i

(These rules imply,,,in particular, that the space-time integral of the

component *}*r ft-vfi 1 s^-ou^^ ̂ e a n invariant if surface effects can be neglected.)

The representation (9) turns out to be reducible (although not fully reducible).

To see this,it is convenient to introduce a new notation for the components.
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Write

*(x) « A{x)

F(x) + C C " ^ ) a 3 G{x)

. J
If the reality conditions (8) are imposed then all boson components are real

and the fermion components ^ and X are Majorana spinors. The axial-vector

field a iB constrained to "be transverse, 3 a = 0 . The transformation

rules (9) now take the form

6A = ei|)

5B =

6F - | e

6G = t*y - > to)

6X = De

6ay " I ^

*) Some of the details in these rules are affected by conventions in the

definition of C . Our C is defined such that (l/2) e01^6 C «

Y 6 W ^6

(1/2)



and it appears that we are dealing vith one of those curious representations

that does not reduce in the usual way. The eight independent components in

the set D , X and a (3 a = 0). clearly transform, irreducibly. However,

unless they are set equal to zero, they involve themselves in the trans-
it)

formations of the other eight components, A, B, \|J, F and G,

The setting to zero fo D,\ and a can "be viewed as a covariant

constraint. In fact one can construct an axial vector which generalizes the

well-known Pauli-Lubanski operator,

whose transverse part is super-gauge invariant. Thus, the antisymmetric tensor

Kuv = P u ^ " *\

commutes with both translations and super-gauge transformations. This operator

is realized by the following differential expression:

uv

where X = -(lA) (y YC<L - "f.X-3 ) • The equations K * = 0 are solved

by D = A = a = 0 .

The combining of representations into products is, at least in some

cases,quite easy. One simply multiplies the super-fields. The detailed

combinations of components will be revealed by expanding the result in powers

of 6 . For example, if

*) We have adapted our notation here to that of Wess and Zumino, Kef.l.

Thus, our Eq..(ll) with \} a^ and D set equal to zero corresponds

to their Eq.(8) with 3 a = 0 . Similarly, our (12) corresponds to

their formulae on p.22.
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then, using the components defined by (6),

* * * + * *

eye.

(16)

In particular, with *. = $ satisfying K * = 0 , it is a simple

matter to show that

(3uA)2 + i ( V ) 2 + ̂ ^ + 2F' + 2°2~i V A V °
(17)

According to the rules (9) this object must transform by a gradient. Its

space-time integral is invariant. Wess and Zumino have proposed to use it as

a Lagrangian density. '

The approach discussed in this paper may not prove to be the most

serviceable one available but, with the present hazy understanding of this

curious and potentially important, symmetry, it seems worthwhile to examine
*)

every avenue.

*) Prom relations (l) and (2), it appears that the Wess-Zumino form-

alism may have close connections with the Twistor formalism

of Penrose (Ref.4)» though the motivations of the two

formalisms are apparently completely different*
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