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In a recent article Wess and Zumino have invented an interesting

new symmetry. Generalizing from the dual model super-~gauge symmetry 2) these
authors succeeded in defining an analogous transformation group in four-
dimensional space-timé. This invention is quite remarkabie in at least twoa
respects: 1) the irreducible representations of this symmetry combine fermions
with bosons and 2) the strictures of O'Reifeartaigh's theorem are circumvented -
we seem to have here a relativistic spin-containing symmetry which is con=-
sistent with unitarity *{‘ Moreover, in a simple Lagrangian model involving
two scalars and a Majorana spinor, Wess and Zumino found that, in the one-loop

approximation, there is only one {logarithmic) divergence 3).

The purpose of this paper is to present a rather simple methoed which '
can be used for the construction of at least some of the representations of

this symmetry.

We shall confine our considerations to the ll-parameter subalgebra

of the Wess-Zumino system which is generated by the Poincaré operators J )

v
P and the Majorana spinor Sa ¢« In addition to the usual commutation rules

3 i € have
involving Juv and Pu only, w

[SU-,PU] = o H
. L B
ISQ’JU\J] = 2 (GU\))Q‘- SB L]
P = c) ., P
{sa,sB} (Yu Yog Pu (1)
*®) The group of Wess and Zumino can be locked upon as a sort of quasi-

U(2,3): the set of unitary 5 x 5 matrices, g , whose
elements ga8 , 0,8 = 1,2,3,h, and gSS
while gas and g5a are anticommuting c-numbers. The subgroup

sU(2,2) x U(1) of the ordinary sort is identified with the product of

are ordinary complex numbers

the 15-parameter conformal group of space-time and a l-parameter group
of YS transformations. The anticommuting parts are identified with

super-gauge transformations. Looked at in this way an immediate

generalization to U(2,4) (or U(2,5)) is suggested. The ordinary
subgroup SU{2,2) x U(2) (or sU(2,2) x U(3)) might then be said to
includé a strictly internal-SU(E) (or su{3)) symmetry. Contrasted
with this marriage of internal symmeﬁries with space~time syﬁmetries,
one may also consider a rather trivial generalization of Wess and
Zumino's work where each one of their fields is considered as (for

example) the adjoint representation of an internal symmetry U(n) .
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. *
where C denotes the charge conjugation matrix ). The last of these rules
can be expressed in the alternative version
- - - _= o

P
2 H e2 u’

where El and 82 are two arbitrary MaJorana spinors which anticommute with
one another and with S . (Notice that €8 = 5S¢ is a hermitian operator

and that. ElYuEB = -Eéyuel is an imaginary haveptor'ﬂ )

Our basic approach is to work out the group action on the space of
left cosets with respect to the subgroup of homogeneous Lorentz transformations.
This "space" is essentially eight~dimensional,being parametrized by the L-vector
xu and the (anticommuting ce-numher ) Majoransa spinor ea . A simple way to
obtain the group action on this homogeneous space is to define the unitary

operators
' =0
- ix P .
L{x,8) exp[lxu u] exp[if Sa] (3)

and consider what happens to them when. any one of the operators representing,
respectively, & translation, a homogeneous Lorentz transformation or & super-

gauge transformation is applied on the left. One finds,

L(x+C, 6)

exp{iCuPp] L(x,8)

exp[«i-w J J L(x,0)

7 9Ty L(Ax,a{A)6) exp[—l—w J\;l

2 Tuvu
exp[i€S] L(x,8) l[xu -

PO Jhee

]

€y 0,6+¢ .
v,9.0%)

%) Our notational conventions are as follows. The Dirac matrices satisfy

(1/2) {YU'YV} =n = diag (+---) and adjoint spinors are defined by

Hv
e . .

w - ‘p YO . 'I‘}le ma'trlces YO H] YOYU ] YO qu ? Yo lYuYs L] YOYS are
hermitian. The charge conjugate of ¢ is defined by wc =C $T where

CT = -C and C_:L Yu C = —Yﬁr . By a Majorana spinor we mean

Y- =19 . It is useful to remember that the matrices YuC and

quc = (ile)[yu’Tﬁ]C are symmetric while C, YSC and iYuY5C are

antisymmetriec. 1In particular, it follows that @iwz %'$2¢1 ,

Y1Ys¥,

#

$2YS¢1 if wl and ¢2 are anticommuting Majorana spinors.

-3-
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where a(A) = exp(i/h) wuv ouv

*)

‘homogeneous Lorentz group . (Notice that, because of the Majorana

denotes the usual spinor representation of the

constreints on € and O , the displacement in xu caused by a super-gsasuge
transformation is real.,) Eqs.(4) serve to define the action of the group on
the space of the parameters x and 9 and indicate how any field defined
over this space should transform. Thus, for example, the scalar super-field
9(x,0) should satisfy

~exp[i€s] ¢(x,0) exp[-i€S] = @&|x - %-E Yue, 6+E] . (5)
#¥)
By appending a Lorentz index one could define & vector super-field @u(x,e),

a spinor super-field Wa(x,e) , ete.

If we were dealing with an arbitrary group then we should not be very
pleased with fields defined on an eight-dimensional space-time. It was this
aspect of the ©ld attempts at combining internal symmetries in a non-trivial
way with the Poincaré group which hindered their development. The truly
remarkable and exciting feature of the Wess-Zumino group is that the super-

field ¢{x,8) in eight dimensions is exactly equivalent to & l6-component set

of ordinary fields in four dimensions. One simply has toexpand @ in powers of

of Ga and observe that the series must terminate in the fourth order. This

is due, of course, to the fact that the monomials

must be completely antisymmetric and therefore vanish for n » 4 . Therefore

we can write

o{x,8) = ¢(x) + Ea(x) ed + %_$[a6](x) eB ea

1 —laByl, .\ 1 -[aBys]
+Z2 % (x) 8, 85 8, + 57 % 05 O, 95 8, - “

The number of independent real components involved here can be halved by imposing

the reality condition

5(x,6)" = o(x,8) » (7)

%) . SBpace reflections are incorporated by requiring that 06 +transform
according to the rule & -+ iyoe « Likewise for dilatations,
X+ Ax , 0 » iie and Ys transformations, 6 + {cosa + Ys sina )6

with real o .

*%#) The super-gauge transformations induce no Lorentz transformation.

.



which reads, in terms of the component fields,

¢{x) = $(x)
I S ¢
¥og1®) = o Cgge 3F 1)
apy] %) = ~Coqe Oggr Cpyr B0 01 (0
\ sla'By's8"]

*lagys]®) = Caar Cagr Cyyr Casr ¢ g

where the barred quantities are defined in the usual way, ¢{(x) = ¢{x)* ,
) = pla* (v).% s 3BI(x) = 0o la)® (v) F (v, B L ete.

‘ 8 o'g [a'B'] 0'a! o'gr ?

The behaviour of these components under an infinitesimal super-gauge

transformation can be extracted from {5). One finds

o

8¢ = ¢ €

55 L CRLEY:

splPYl o glesy] e, + %,(EYU)Y au$B - %'(EYU)B auaY

spl BT _¢[aBY6] . - %'(EYH)G au$[BY] - %'(Evh)Y au$[661 _ %_(—YU)B 3u$[Y6]
sglodyél _ %—(Evﬁ)a 3u$[aBY] _ %_(EYM)Y B#E[Gas]

Lo B lvSal i e ya o <[BYS]
+ 3 ( Yu) 3u¢ -3 (eyﬁ) 3u¢ . (0)

(These rules imply, .in particular, that the space-time integral of the
component ¢[dBY5] should be an invariant if surface effects can be neglected.)
The representation (9) turns out to be reducible (although not fully reducible),

To see this, it is convenient to introduce a new notation for the components.

e

&

A A X 4&’ &,ﬂ;## . L ~rl:ﬁn i el Ry et g #EE  3t



Write

o{x) e A(x)
3 x) = P(x)
$[“B](x) = (¢ H*® prx) + (c'lwrs)mB G(x) + (C_liYuY5)aB [au(x)*'%-auB(XJ]

6[(13'\’](]:) = EGBY(S [As(x) + % ('Yu)ds' 3uw61(x)]
SLaBY8] ) o ByS [D(x) kg2 A(x)]
(10)

If the reality conditions (8) are imposed then all boson components are real
and the fermion components Y and A are Majorana spinors. The axial-vector
field au is constrained to be transverse, Buau = 0 ., The transformation

rules (9) now take the form %)

da = By

i i i
= = = + +
Sy > BUAYME + 5 BuBYuYsﬁ Fe + GY5E aulYuY5€
= iz s
§F = S E ? P+ 5 € A
i 1l -
= = = A
G 5 €Y5¢w * 5 €Y (11)
— - a
6A = De + K'[auav 9, u] %y Ys€
i - 5 9 Bv
Sa = 5 EYUY5A -3 -E—az \)YSA
& = =€ § A
. 2 (12)
¥) Some of the details in these rules are affected by conventions in the

definition of C . Our C is defined such that (1/2) EGBYG c

= =%, 2) ye) g = v @ H)® ama v

§ ;.. ‘ -
(1/2) euéY (IYMYSC)YG = +(C liYﬂYE)aB ;

-



and it appears that we are dealing with one of those curious representations
that does not reduce in the usual way. The eight independent components in
the set D, A and LY (apau = Q}.clearly transform irreducibly. However,
unless they are set equa; to zero,thgy involve themselves in thi trans-

formations of the other eight components, A, B, ¥, F s&nd G.

The setting to zero fo D, A and a.P can be viewed as a covariant

constraint. In fact one can construct an axial vector which generalizes the

well-known Pauli-Lubanski operator,

_ 1 1l
Kh =3 euvkp P, JKp si Y, Ys s, (13)

whose transverse part is super-gauge invariant. Thus, the antisymmetric tensor

Ky = P K, - PyK (1k)

commutes with both translations and super-gauge transformations, This operator

is realized by the following differential expression:

3 3
K.® = {X_ 0 —_— =
Y Wy ‘o 38u 368
- 3 3% 1 = 5 29
+ i(x Y e) —t—— —— 6 X g ——— —— y
w Tp ax, 3, R T %, 9%, (15)

where Xuv = —(1/k) (YuY5av - vasau) . The equations Kqu = 0 gare solved

by D=A=a=0.

The combining of representations into products is, at least in some
cases,quite easy. One simply multiplies the super-fields. The detailed
combinations of components will be revealed by expanding the result in powers

of 6 . For example, if

¢3(x,8) = @l(x,e) @2(x,9)

*) We have adapted our notation here to that of Wess and Zumino, Ref.l.
Thus, our Eg.(11) with A,aﬁ and D set equal to zero corresponds
to their Eq.(8) with Buu = 0 . Similarly, our (12) corresponds to
their formulae on p.22.



then, using the components defined by (6),

5, = 59,
o= 8,0 ¢ W

B 5. ) fraled . g w] -,

eye. -

<oByS _ = -oByS 0 "BY5 aB 76 — —aBYs

(16)
In particular, with ¢1 = @2 satisfying Kﬁv =0, it is a simple
matter to show that
¢GBY6 = OBYS |_ %-A A+ iy oy o+ (3 B) +F o+ G
2 F
1 _apys {1 2 1 2 . - 2 2 1
5 € [2 (3a)" + 5 (3,B)° + Yify + 2F" + 26" - 5 Bu(AauA)] .
(17)

According to the rules (9) this object must transform by a gradient. Its

space-time integral is)invariant. Wess and Zumino have proposed to use it as
1),3)

a Lagrangian density,
| The approach discussed in this paper may not prove to be the most

servicesble one available but, with the present hazy understanding of this

curious and potentially important. symmetry, it seems worthwhile to examine

%)
every avenue.

% From relations (1) and (2), it appears that the Wess=Zumino form-
alism may have close connections with the Twistor formalism
of Penrose (Ref,4), though the motivations of +the two
formalisms are apparently completely different.
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