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ABSTRACT

The ultraviolet bhehaviour of Green's functions in field theories with

a8 locsel gauge symmetry is, to some extent, gauge dependent. This is due to the

intervention of ghost-like gauge degrees of freedom. We argue that it may be

possible,in the case of non~polynomisl gsuge theories, to find a class of

gauges in whiéh all ultravioclet divergences and their attendant embiguities

are suppressed.
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I. INTRODUCTION

It is well known that the Green's functions of e field theory whose
Lagrangian displays invariance with réspect to a group of local transformastions
are not uniquely defined. Rather, they are gauge-dependent quantities which
can be computed only relative to some choice of gauge. Moreover, as has
become. clear in recent years, the singularity structure and asymptotic
behavicur of the Green's functions is dependent on the gauge. Two examples

of this are:

a) In guantum electrodynamics, the electron wave function renormei-
ization constant, 22 y 8 gauge-dependent parameter which measures the
asymptotic behaviour of the renormalized propagator, is finite in a special

gauge defined by Baker and Johnson l). In other gauges it diverges,

b) In Yang~Mills theories of massive vector particles, where the mass

is induced by the Higgs-Kibble mechanism, there exists & class of gauges

(of which 't Hooft’sQ)is an exemple)in which the Green's functions behave &s
if the theory were renormelizable. In other gauges -~ such as the unitary
gauge 3) - this is not so.

This mellowing of the asymptotie behaviour of Green's fuuctions in

certain gauges can be attributed to the contributions of negative metric
particles (ghosts)} in the intermediate states. It is & general feature

of theories with & local symmetry that the spectrun of states which contribute
to the Green's functions is itself gauge dependent. Although it is always
possible to select a gauge in which such ghosts do not arise in the inter-
mediate states (e.g. the unitary gauge in massive Yang-Mills theory or the
radiation gauge in electrodynamics) one excludes thereby the possible benefits

of their damping effect on the asymptotic behaviour of Green's functions.

It must be recognized that the computation of Green's functions is
only a means to an end. Thus, from the Green's functions one proceeds to

extract gauge-independent information: the spectrum of physicsl states,

their S-matrix elements, etec. The ghosts discussed above, which are gauge-
dependent phenomena, must decouple from the physical states. The use of
ghosts in the intermediate stages of computation, however, can be advantageous

in that it allows one to work with less singular quantities.

The purpose of this note is to suggest that a quantized theory of
gravity - necessarily a non-polynomial gauge theory - may be free of
ambiguity and entirely finite. Ordinary non-polynomial theories, like

chiral theories, in which there is no local symmetry, are to some extent
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ambiguous on account of the exponentially increasing absorptive parts that

are Tound at each order in the major coupling constant. Mthough it is
possible to define the corresponding real parts by means of & minimal ansatz h),
this procedure has the character of an ad hoc prescription and faills, moreover,
to remove all ambiguities( Even with this prescription, it is not possible to
compute all physically relevani parameters. Cur point is that in gravity
theory it may be possible to find a class of gauges in which - owing to the
ghost contributions - the absorptive parts are exponentially decreasing. In
such gauges the real parts computed using standard superpropagator techniques
would Tbe completely free of ambiguities. This note is intended to provide
an indication of the possible existence of such gauges and the way to choose

them.

iI. AMBIGUITIES IN NON-POLYNOMIAL THEORIES

In the following we shall work with localizable field theories, By
this we mean that the Lagrangian is to be expressible as an entire function of
the fields which parametrize it. (For example, 4. = (l/2)(3u¢)2 - glexplkdl-1-¢).)
Green's functions are to be obtained by analytic continuation from the Symanzik

region (roughly, the region where all external momenta are spacelike. The

advantage of this is that the theory can be set up in euclidean space-time,

To see the origin of the ambiguities in non-polynomial field theories,

congider the typical two-point function,

L2
<'I' : exp(mqb{x)) Dot exp(mp(o)) :> = exp["f‘;é‘%} ’ (1)

where ¢(x) propagates as a free massless scalar field, The right-hand side,

2 , .
because of the strong singularity at x = 0 , is not generally & well-defined

distribution. However, if Re K2 < 0 , we do have a well-defined distribution




in esuclidean space-tima, xa < 0. In partiocular,it has a unique euclidean

Fourier transform. Thus, if Re <o , the right~hend aide of (1) cen be

defined as a distridbution in Minkowskian spece~time by analytie continustion of
the euclidean Fourler tranaform from the Bymanzik reglom, p2 < 0, to other
reglona of the complex p2 plane., One can show, in partieular, that if K2
is real end negative,the momentum space tranaform of (1) hes an exponentially

decreasing imaginary part on the positive p2 axls.

Now in a typical fleld theocry one expects the parameter K to be real
on account of the hermitian character of the Lagranglen, 1l.e, Ka >0 . In
this case one cannot interpret the right-hand side of (1) so easily, The
euclidean Fourier trensform diverges. The simplest way to define this
distribution is by means of analytic continuation in K2 . Thus, & momentum
space smplitude which is real in the &manzik reglon is obtained by continuing
from the half plane, Re «® < 0 , to positive real values of K2 end meking a
suitable average of the results - which depend upon the path followed in the
continuation, It is in the phrase "suitable average’" that all the ambiguities
are sheltering, 1In effect we are simply glving a presoription for the sub=
traction constants, of which an infinite number are needed since, for k¥ > 0 .
the absorptive part i1s exponentially increasing., 4An infinite number of sub-
traction constants go to make up an entire function,end this 1s the measure of

the smbiguity in the distribution (1) for real «k .

The statements Just‘made do not do full justice to the problem of
defining (1), however. It can be shown ithat there is a unique preferred
definition (i.e. choice of subtraction constants) which yields an amplitude
whose asymptotie growth is "minimal". 4) In particular, the real part of this
amplitude tends to zero as p2 + + 00, It has been shown by Lehmenn and
Pohlmeyer that such a minimelity requirement serves to remove ambiguity - st
least to the third order in the major coupling - from the Green's functions of

localizasble theories.

So much for non-polynomial theories of the ordinary kind. What we wish

to suggest now is that,in theories with a local symmetry, the gauge freedom

can be so exploited thal one encounters only distributions of the type (1}

with K2 <Q , In other words, the negative metric particles which appear

in some gauges may serve to simulate the imaginary value of K, which makes
the distributions unambiguous. The best known example of a lLagrangian of
physical interest with this type of gauge freedom is Einstein's. In order to

guarantee localizability, the contravariant density 1s parametrized in the form
T .

& = VY e = (el
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where the field 2% hae the weight w ,

- sy}
WVix) » VR = |aet 2E| S2EL WXL 508
ax 3 x> axB

Other such Lagrasngians are the generally covariant versions of the recently

-
proposed 8L(6,C) invariasnt Lagrangiens which describe the nonets of 2

particles 5).

11X, GREEN'S FUNCTIONS IN EINSTEIN'S THEORY

Consider Einstein's gravitational Lagrangian expressed in terms of g

l l ’ /\A ~
= 5 (-det 3) [ g A9l o a0, 0 cDn
2&2 Co 8 i By € 2 B €y C 2 6:< 69\ &y %

~UHK -~ AUK KAV A AR
X [g 0 + A (Ln(-det gl>,p g J x [g ot A(&n(-det gi),o 2 V] . (2)

The well-known Goldberg form of the Lagrangien is obtained by sebting w=1
in (2). Here

w = 1
2{2w - 1)

In order to fix the gauge, additional terms are needed:

2
1 Al Alv .
;:E [[(—det 2] g ]ﬁé] + C[%P s (3

where 5fFP denotes the Faddeesv-Popov contribution. This term involves a
"fictitious particle” field described by anticommuting fields & and §

with the Lagrangian

Fal AA ~
L 1plE,08) = (-aet B) 37V [c“,v A TR E“] :

with

3,3
rghn'p = [nuv T3 ;2\)] v

The bare graviton propagator is determined by the bilinear terms in (2) and (3),
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1
<T e ¢1-N> 2 [nh:u M ¥ e M = 2 Ny nuv] plx) (1)
where D{(x) denotes the zero~mass scalar propegator and the gauge parameter

¢ = wlwl) + %- . The case of w = 1 corresponds to the de-Donder gauge.

Since the Lagrangian (2) is a scalar density of unit weight while
é““ and its inverse @uv are tensor densities of weight ®w and - ,
respectively, it follows that there must, of necessity, be & surplus of one
power of the contravariant denslity in each term of {2). In the gauge~-fixing
term (3), which has weight two, there is a surplus of two, This suggests

that expansions in powers of égnt will tend to behave like the amplitudes

T explE9(1)] exp(So(2)]hee ) (5)

K
in which the factor exp[a ¢] appears repeatedly, dut its inverse exp[--g-¢]
appears not at all. Assuming that this c¢an be verified in detail, we
substantiate the main point of this note by considering the explicit

),

calculation of the two-point amplitude due to Ashmore and Delbourgo

<T(exp Kd))aB (exp K¢(O))Y5> =

.2 [[now B8 L o8 By _ _:gg_ o nyﬁ] a__ he-1 [nwf B8 4 o8 nBY} +

? d(xan) 18
+ Szgc n nYa] a(D) , (6)
where a(D) is given by
a(D) =,E2—32 + %— 22) em2cz + [2 + 3z - 22 + %‘- z(z + %-) 37 Lo(z)
- = 2%1 1 (z) g2 (12c) )
e "l "1l 2D
z=K 3 (1)

are Struve functiong. The leading behaviour as xE + -0

and LO land Ll

_is given by
'<LT(exp K¢)a5 {exp x¢(0))Y6>>’V[naY nBa + naS nBY + nOLB nYﬁ] KD%'exp[K2(1~c)D].

(8)




It follows that the g

» (9)

e >3 (or wlw=-1)>3%

That is, the contridutione of the ghosts in the class of gauges (9) inde;d
simulate an imaginary coupling constant (the operative combination is K" (l-c)
which appears in the exponent of (8)) end are sufficient to damp out the

: 2
sbsorpbive part of the two-point emplitude as p —+ + 0.

What happens for the genersal amplitude
{ Tlexp k(1) (exp k6(2))"8 (exp k(3))°T ,u0v D ¢ (10)

To evaluate (10) exactly is & task of extreme complexity. However, an
indication of whether the amplitude is ambiguity-free may be provided by
considering s very large value for ¢ (e >>1). Since the right~hand side

£ (L) reduces to the scalar-ghost contribution - en D(x) , one may

. KA nuv
expect that for large c the amplitude (10) is likely to be dominated by

exp Ech z D(xi —.xj}:{ y
i<}

. 2
with -«'¢ in the exponent and should therefore be ambiguity-free.

the term

An important point is the ¢ independence of physical amplitudes.

Th reci bl i hi o} : ) . . R )
e precise form in which ¢ (or w) occurs in Finstein IS &iven by (2)

For matter fields, consider as zn example a scalar field X . The simplest

form for its Lagrangian density (weight +1) is

({x - (%Aw vX 9, X - w2 (—det §)/2(20-1) xe] ,

where the covariant derivative, Vpx s 1s given by

1 (1-w) )
VX = 3 X 2 8 tn{-det )X

since ¥ must have the weight (1-w)/2 . Note now that the source tensor

Tuv = 61%/6¢“v has the expansion

.9 X3, X- R n, 3% %2 + olx) .
U X9y uU 20-1 ﬂ( 1)

R EOE W T
casmewodd o R ® L L aa




By explicit calculation one can verify that the rather complicated w
dependence of Tuv is Just what is needed to ensure w independence of

tree diagrams on the mass shell, and the theory is Indeed gauge independent
to t.h,i,,s_ ‘afpproximat_i_o:}, al_'x_d wi]_.l remaln so, up to the order in X considered,
whén.graviton linés'aré.réplacéd]byzsﬁpéfpr§pqgﬁtgrs, | A

To conclude, it appears likely that for calculations in gravity-

modified electrodynamics for electron self-mass and self-charge, where
amplitude (6) was all that was needed to obtain finite results to order T)

a log (Kema) » the Zehmann-Pohlmeyer minimality ansatz is unnecessary and
there are no ambiguities, In view of the generality and power of the mechanism
discussed in this note, one may reasonably expect that the same is true for
calculations in non-polynomisl gravity 8) itself and other theories possessing
gauge degrees of freedom, provided such calculations are carriéd out in an
appropriate gauge. Thus non-polynomial gauge theories will be sharply
distinguished from theories like non-linear chiral theory with no local

symmetry.
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5}

6)
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