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I. INTRODUCTION

Wigner's spin-isotopic-spin symmetry SU(U) was extended to SU(6) in

196!+ by Gursey, Radicati and Sakita. Ever since,we have had a problem:

a) Is there something deep in this unification of intrinsic spin

vith internal symmetry?

b) Do there exist Lagrangians with "both kinetic energy

and ' interaction terms invariant under SL(6,C) or U(6,6)? (SL(6,C) is the

relativistic generalization of SU(6) and U(6,6) the relativistic

generalization of U(6) x U(6).)

c) Equivalently, do there exist conserved currents which close on the

algebra of SL(6,C)? If there do, what is their physical significance?

A parallel problem was posed by the theory of spin 2 strongly

interacting mesons. In 1970 Isham, Strathdee and Salam and, independently,
+ 0

Wess and Zumino suggested that the strongly interacting massive spin 2 f

meson may be described by an equation similar to Einstein's with the field

fV replacing the graviton field g . (One would of course also change

the coupling parameter in Einstein's equation from the newtonian constant

G-. to the nuclear force constant G_ (G ~10 G,T) and also supplement

Einstein's equation with a mass term.) The problem with this suggestion

was: how does one incorporate SU(3) (necessary to describe the known nonet

of 2 + particles) with the closely-knit space-time structure of Einstein's

equation?

Clearly,both these problems are related to each other in that both

require for their resolution a unification of internal symmetries with some

sort of space-time structure.

I wish to report to-day some work that Isham, Strathdee and I have

recently done in this direction. I shall essentially supply a critique of

two notes we have written on the subject (Lettere al Nuovo Cimento £, 969

(1972) and ICTP, Trieste, preprint IC/72/155).

Briefly, what we have discovered is that Weyl had already shown in

1929 that the Einstein-Cartan gravitational Lagrangian of 1922 possesses gauge

invariance under the non-compact symmetry SL(2,C). When we rewrite the Einstein-

Cartan-Weyl theory in a DLrac y basis, we find that this permits of an instant

generalization of SL(2,C) to SL(6,C) or SL(6,C) X SL(6,C) and, in particular,

of Cartan's equation for spin-torsion, which generalizes to include what one may
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call internal-spin-torsion. One obtains thus an elegant unification of

intrinsic spin with internal symmetries.

I am hoping very much that our approach may, at the least, make the

beautiful geometrical ideas of Einstein, Weyl and Cartan accessible to particle

physicists, though our motivation is to use these ideas for strong _interaction

physics. The literature on general relativity places so much emphasis on

the GL(H,R) group of general co-ordinate transformations,that the other in-

variancesof the theory,like SL(2,C) gauge invariance, so much more relevant

to particle physicists' experience, tend to be ignored. We hope

the balance gets somewhat redressed by our demonstration of the value of

these other invariances of the Einstein-Cartan theory.

During the second part of my talk I shall be concerned with the problem

of the particle spectrum given by the SL(6,C) X SL(6,C) gauge-invariant

Lagrangian type. In particular we must ensure (like Einstein and Weyl had to)

that, considered as a classical Lagrangian, ours permits of the excitation of

only the positive frequencies. Here, we shall use, again and again the ideas of

spontaneous symmetry breaking and non-zero expectation values of tensor fields

amazingly enough, essentially first introduced by

Einstein (though not using this language) and now so much in prominence

in particle physics.

II. GAUGING THE NON-COMPACT GROUP SL(2,C). EINSTEIN-CARTAN-WEYL THEORY

2.1 The twin ideas of gauge-invariant Lagrangians and spontaneous symmetry

breaking have played an important role recently in particle physics. As I

have said before, both ideas go "back fifty years to the work of Weyl and

Einstein. Let us first take gauge Lagrangians.

DEVELOPMENT OF IDEAS IN GAUGE THEORIES

1. (1918) ; recognition by Weyl that the Maxwell
Lagrangian is a gauge Lagrangian.

i

2. (1929); recognition by Weyl, Fock, Ivanenko
that the Einstein-Cartan Lagrangian of 1922
is a gauge Lagrangian.

3. (195*0; generalization by Yang, Mills and
Shaw of Weyl's 1918 theory.

k. (19T2); present generalization of Weyl's
; theory of 1929 .

i
1

Gauge group

U(l)

non-compact
SL(2,C)

SU(2)

SL(6,C)

SL(6,C)XSL(6,C)

• Gauge

particle(s)
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2 graviton

-
1 triplet
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P ,P »P
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Let us consider the Einstein-Cartan theory of gravity in Weyl'a

formulation. As is well known,Einstein's gravity theory works with u. ten-

component symmetric tensor field g (x) . In order to describe gravitational

interaction of spin-— particles, Weyl introduced the so-called vierbein l6-

component fields L (x) , which bear to g (x) the same relation as

Dirac's y matrices "bear to the unit matrix, i.e. L
uv
gra square root of in the sense

^a's are essentially

L (x) g

where

n.ab
-1

-1

-1

In the sense of interpolating fields, both fields, g and L , are at par;

both could describe the graviton equally well.

Wow, one of the curses of relativity theory is the multiplicity of

indices which,in the cluster of formalism,suecessfully obscure the real

heart of the basic ideas. In order to minimize indices, I shall use the

Dirac y basis to write ray formulae. For SL(2,C) I shall need the four

Y "s and the six generators o* , 's , with commutation relations of the type:
a ao

[0,0] - i a

[Y , a] = i Y

In this Dirac basis the expression L (x) will stand for the U * k matrix

combination of Weyl fields Ira y . In particular, ĝ 1 - I Tr(L^L ).

2.2 Consider a spinor

formations, transforms as

(x) which,for the SL(2,C) index trans-

V =
where

= exp iff
.ab

ab
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Note that there is no x transformation implied at this stage. The only role

the x co-ordinate will play will come a"bout when we consider, in the
ab

standard gauge fashion, the parameters e to "be functions of x . If
,at> alt, , .
£ = e (x) , clearly

3 • i|> •/»• fi 8 i|>(x)

The ordinary derivative does not transform in a simple manner. To "correct"

this, introduce in the standard gauge fashion, the 2U-component gauge field

B (x) = B O * ( B =S-B ) — also called the"Weyl connection". Provided

that B transforms as

B̂  - fiB^'^iD^ if1 ,

the "Weyl covariant" derivative,

'Vu • = ( V iBu> * '

transforms "correctly" in the same manner as tfi itself; i.e.

Also,since

we may define

which will transform as:

LU + H(x) Ly(x) fl^tx) ,

i [By>L
V] ,

Vy LV + a (VyL
V) Q'1 .

Finally, from the transformation law of B , one can easily verify that

the "covariant curl"

Bv - \ By + i [V Bv ]

transforms as:

We are now ready to write SL(2,C) invariant Lagrangians. Summarizing

the transformations:
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Ly + a B • + a B • n"1

yv yv

y y y y y

(1)

ve Immediately see that

^ matter
+ m # i s SL(2,C) gauge invariant ,

B
y v

 l s invariant

The amazing fact is that the beautifully simple expression will

turn out to be identical to the vell-knovn Einstein Lagrangian for gravity,

when no matter is present. When spin-—matter is present, *1TT , + X j.̂ .
•— ^ * 2 * Weyl ^matter

gives Cartan's generalization (1922) of Einstein's theory. I shall

demonstrate this equivalence in a heuristic fashion presently. Before

doing this, however, let us consider this Lagrangian and the field

equations following from it in some more .detail.

2.3 Consider

\ BV " \ \

(3 + iB h.c,

The field equations are:

Einstein's curvature equation

Cartan's torsional equation .

Here T and S are the matter stress-tensor density and the matter

intrinsic-spin densities, respectively. (T = iV ijflp , S = iijĴ LV .)

(3)

00

Operating on the second equation by V and using the first equation

we obtain

vS " i EL ' Tetrode identity (5)
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Carton's equation (h) written out in detail reads:

= S]'matter (6)

Essentially this equation tells us that By can be solved in terms of

SU L » L a n d m a t t e r spin density. When this solution for B. is sub-
# V

stituted into Einstein's equation, we obtain a second-order equation for LV-

Equivalently, one may substitute for B into the Lagrangian (2) and recover
v

a second-order Lagrangian for L vhich is identical to the Einstein

Lagrangian for g = j Tr. L I plus a contact term proportional to the

square of the spin density ((S^)2).

If we define the currents JV :

ve see that

= 0
(8)

It is easy to show that this conserved set of currents JV are indeed the

appropriate Noerther currents for (2) and close on the algebra of SL(2,C)

(see ICTP, Trieste, preprint IC/72/155, Sec.V).
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2.1+ As I just said, the equivalence of the theory described above vith

Einstein's gravitational theory can be shown algebraically by solving (6) for

By and eliminating this variable from (2). However, an elegant geometrical

proof can be given and I shall sketch it for the case when no matter is

present. First note an algebraic identity due to Moller:

£ = Tr[- i[LU,LV] Byv] = Tr {(y,
V)(vvL

V) - (VyL
y)(VvL

V)} + a surface term

(9)

So far we have ignored space-time transformations of ^ (x) /

Let us assume with Einstein that these transform as standard contra- and

covariant quantities:

B(x) —>B'U) = **_ Ev(x) (10)

LU(x) *Lty(x) = ^ L L
v
{x) . {11)

3x

The remarkable thing about the expression _ Tr i[L^,L ] B is that it transforms

like a scalar for the general co-ordinate transformations, in Einstein's sense,

the reason for this being that B has the character of a "curl". We may now

use

gUV = 1 Tr Ly LV (12)

to raise the lover indices. To link vith Cartan, we may define the "Cartan

covariant derivative" (denoted with a double stroke jj ) which must

take account both of the general co-ordinate transformations and the

Weyl SL(2,C) transformations. Quite generally the linearity of this

"connection" requires that:

Here ( \ is a Christoffel-like (asymmetric) connection, for which

we shall demand that the Cartan-derivative of IT (or equivalently of g )

vanishes. Thus \ ] i s defined by the relation:
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Using (13), clearly, the Moller form of Weyl's Lagrangian,

(Vy L
V)(Vv i?) - (Vy L

U)(Vv L
V) ,

reduces to a form familiar from Einstein (when no matter is present):

PP
Einstein s

(For completeness, one should remark that one must divide oC . . (or 5C-, ,)

by the factor / - det g^v' = / - det (J Tr LU LV) in order that
lj follows
d x transforms as a scalar. Since in what ̂  v e ^° n0"k wish to worry about

general co-ordinate transformations but only about the Poincar^ set of space-

time transformations, so far as strong interaction physics is concerned, this

refinement can for the present be ignored.)

Note,in passingTthat the Cartan equation

reads, in terms of the generalized "Christoffel" connection:

It is easy to see that the equation relates the antisymmetric part of (UD

y»p indices, i.e. the torsion tensor, to the spin density.

later
2.5 As will be seen/,when we generalize SL(2,C) to SL(6,C),it is the Cartan

equation and the spin-density S which get generalized to include not only spin

but also internal spin. But before we exhibit this generalization, consider:

vhat is the effect of the spin-torsion terms of Cartan in gravitational theory?
GN

Kibble has shown that,to the first order in the newtonian constant/, the gravitational

potential between the two spin-2 particles acquires an extra repulsive contact

term proportional to GJT(^ Yr Y... 41) » which,in the non-relativistic limit,

reduces to a repulsive contact potential proportional to the square of the spin-

density. The important point about this repulsive contact potential is that it
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is gravitational in origin and comes about on account of the tbrsibnal

characteristics of space-time structure.

Following from this, recently Trautman has argued that the singularities

of gravitational collapse and cosmology may be prevented "by the direct influence

of spin on the geometry of space-time, in virtue of Cartan1s equation above.

Trautman considers a universe filled with spinning dust, with spins all aligned

along one direction - due presumably to the influence of some cosmic magnetic

field. The Einstein and Cartan equations are compatible with a Robertson-

Walker line element,

(ds)2 = (dt)2 - (R(t))2 ((dx)2 + (dy)2 + (dz)2) .

For small R, the spin density on the right-hand side of Cartan's equation plays

the role of a "repulsive potential", which counteracts the universal "attractive"

gravitational force. A universe consisting of 10 neutrons would attain R .

of the order of 1 cm and collapse no further.

I am mentioning this because later, when we have generalized the Einstein-

Cartan-Weyl Lagrangian to an SL(6,C) invariant form, we may find some

speculative reasons why spin alignments and isotopic-spin alignments should

occur together in regions of extreme spin-isotopic-spin density.

III. GENERALIZATION OF EINSTEIN-CARTM-WEYL THEORY TO SL(6,C) GAUGE INVARIANCE

the i i i
The generators of X SL(6,C) group are given by 0 ^ X t Y \ , X ,

while Y X. , i y Yc X give the appropriate SL(6,C) generalization of the

"ideal" ya .

Generalize L and B to contain (U x 72) components each (rather than

k x It components ); thus

and now adopt the'"same expression (2) as the Lagrangian for strong interactions

exhibiting SL(6,C) gauge invariance. (Here X1 are the nine 3 x 3 Gell-Mann

U(3) matrices.) It is a triumph of the Dirac basis for the SL(2,C) case that

the formalism carries over directly from SL(2,C) to SL(6,C).
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to
Later we shall see that we neediadd some more terms to the Lagrangian (2)1

particularly in order that the particles described by the Lagrangian possess mass.

However, at this stage; remark that the Einstein's curvature equation (3), Cartan's

torsional equation (h), the tetrode identity (5) and the definition of conserved

currents (6) (which now close on the algebra of SL{6,C)) carry over directly

without change from the SL(2,C) case, except that we 'are now dealing with

72-beins rather than vierbeins. Also remark that if the internal symmetry group

were not a unitary group, "but some other variety of Lie group, the generalization

of SL(2,C) to include internal symmetries may have presented difficulties.

IV. THE PARTICLE SPECTRUM

As I said earlier, so far as strong interaction physics is concerned,we

shall not worry, for the present, with general co-ordinate transformations. The

symmetry group we shall specialize to, has the structure of a semi-direct product

P © SL(6,C) ,

where P denotes the Poincare group. (The distinction of upper and lower

indices is now trivial (L = Ty ^ ).)

Before considering the complicated SL(6,C) case, let us examine the
the

meaning of SL(2,C) gauge invariance for/Einstein-Weyl-Cartan theory and

introduce with Einstein the ideas of spontaneous symmetry breaking.

k.l The Einstein-Weyl Lagrangian (and also the spin-i Lagrangian in the

limit m = 0)possesses no terms bilinear in field variables. If we assume with

Einstein that

Lya(x) = nua + vc ̂ a( x) , (16)

where < is the (strong gravity) coupling constant and cj>ya(x) is the

(quantized) field variable with zero expectation value, then

<L y> = Y
U . (IT)

The symmetry-breaking implied by <(L ^ = T) provides a bridge, through an

identification of Greek (y) and Latin (a) indices, between the Poincare trans-

formations and the index transformations SL(2,C) . If we now set

-10-



in the Einstein-Weyl-Dirac Lagrangian, we do recover a set of 'bilinear terms and

with them a particle spectrum. In fact, symbolically, the structure of our

Lagrangian now looks like:

Weyl = L 2 3 B + L2Z2 + $ L 9 *

0 \ i 0 0 0

<f> 3 B + B / + <b 9 B + d> B

Approximating oL by i t s b i l i n e a r s , we recover the f ie ld equations,

B = 3<j> , SB = 0 =» 32c|> = 0 ;

telling us that we are dealing with a massless field fy (the graviton).

Before proceeding, let us add to £cw , further SL(2,C) gauge-invariant

terms which give the particles mass, through the familiar intrinsic symmetry-

breaking mechanism. Write

We shall see later that this term indeed gives rise to a mass M for 2

particles, provided 3X + 862 - ^ = 0 and $± = - (3^/2^) ,

&2 = ~ 3, = (M /3< ) consistent with the spontaneous symmetry-breaking

ansatz \L^/= y , in a manner very familiar nowadays from/Higgs-Kibble theory.

(Freund and Maheshwari have remarked that in a . .GL(U,R) theory,which is invariant

for general co-ordinate transformations, Tr Ly L is a constant and we would

not have been able to obtain mass from a symmetry-breaking formalism.)

U.2 Consider now the meaning of SL(2,C) gauge invariance. Infinitesimally,

Clearly, the gauge transformation affects only the antisymmetric parts of

infinitesimally.

- 11 -



In fact, SL(2,C) gauge invariance of the Lagrangian is simply the statement
Ua

that the antisymmetric components of L do not represent dynamical degrees

of freedom and we can specialize to a gauge where these can be set equal to zero.

The "bilinear part of the Weyl Lagrangian now reads:

K2
 (Bu Bv

yet vcu
\ Bv }

'vv

This is the well-known Pauli-Fierz Lagrangian where the only particle

excitations correspond to those of a mass M and spin 2 particles,

provided

M2

B,
2K

4
8 j <2

V. PARTICLE SPECTRA. FOR SL(6,C) AND SL(6,C) X SL(6,C) GAUGE LAGRANGIANS

5.1 Consider now the Weyl Lagrangian,

L = Tr ( g i v e n b y

generalized to SL(6,C), and once again consider the "bilinears obtained by setting

As one can see from (ik) and (15), in addition to nonets of conjugate

fields L U a ^ and B a b ^ , the SL(6,C) theory needs the introduction of

the following extra fields: L
M a : M i W , B,v,; , B,'^' . If one examines the

V V ua(k) ab(k)
bilinear part of (20), one finds that the conjugate set L , B

correctly gives the propagation of a massive 2 nonet. The extra fields

Lua5(k) (k)^ g(k) a n d s^tkj ^ however, make their appearance only in one

place among the kinetic energy bilinears in a term which reads:

500
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fields
Theseldo appear in trilinear and quadrilinear parts of the Lagrangian, but the

bilinear/give no clue as to their propagation character. This implies that

either we should devise methods by which we can infer the particle spectrum

corresponding to these fields from the trilinear and quadrilinear parts of the

Lagrangian, or ve should supplement the Weyl Lagrangian (20) by additional

SL(2,C) invariant terms. These should be such as to give new sets of bilinears

which should guarantee the (positive metric) propagation properties for the

extra fields.

In the following I shall illustrate both approaches.

5.2 Before going on to consider the problem posed above, let me return for a

moment to Weyl's SL(2,C) gauge-invariant Lagrangian and try to bring out the

significance of its gauge invariance in a slightly different manner. The remarks

I shall make will be relevant to the problem of propagation of the extra fields

LPa , B^ and By .

Given a l6-component field quantity I. (with a non-zero expectation

value \L / - Y )» o n e has a mathematical theorem - the so-called "polar

decomposition theorem" - which states that one can write L uniquely in the

form:

L = S I S f (21)

where I is symmetric in the sense 8, = 3, and S has the form;

S = exp i P ; P - T8* a

To prove this result, set up an iteration system,

P =

The relation (21) is equivalent to the set of equations

*1 = Ll " i [ P 1 ' ^ ]

*2 = L2 " i tPl>Lll " i t P 2 ^ ]

postulated u -n
Clearly, theĵ symmetry of i^ implies that S.^ and Px are respectively given
by the symmetrical and antisymmetrical parts of L, and so on. Clearly, also

in terms of the "polar decomposition11 above, we can understand the transformation

- 13 -



LU - ft Ly if1 (23)

as equivalent to the trEinsfonaation

s -> a s , (24)

with £ as a scalar quantity so far as the SL(2,C) transformations are

concerned.

Given S as a functional of L , define now. a lower-case quantity b

through the relation

\ - Ŝ u3"1 " ̂ V " 1 ' (25)

Combined with the transformation law for B , viz.,

(26)

the relation (25) guarantees that b is also a scalar. The invariance of

is now simply the statement that X identically equals

£ = Tr i [iU,iV] b y v , (28)

and that there is no S-dependence of the Lagrangian.

5«3 Let me now return to the problem posed earlier: the problem of propagation

of the fields L ^ a 5 ( k ) , B ^ k ) and B ^ k ^ .

So far as the variables L are concerned, it appears that a simple

"classical completion" of the Lagrangian is provided by an extension of the gauge

group from SL(6,C) to SL(6,C) X SL(6,C) . The details are worked out in

Sec.IV of ICTP, Trieste, preprint IC/72/155. Here I wish to illustrate one

important new idea which we had to introduce to cut down the multiplicity of
Ua"5 f k)fields and to guarantee a positive metric for the particles described by L H

This is the idea of (SL(6,C) x SL(6,C)) covariant constraints.



Consider gauge transformations of the type

Q = exp(ip) exp(7); (29)

where g and y contain J2 parameters each .corresponding to SL(6,C) x SL(6,C).

The theory would possess two gauge fields now:

(B + ic) * H(B + ic) if1 - i a 3

(30)

(B - ic)y + (a)"1 (B - ic)y a - i iT
1 9̂  n

So far,everything is straightforward. But now comes the subtle new feature of

the theory. In general we should work with two distinct L-type fields, with

the transformation characters,

(32)

In order, however, to reduce the independent degrees of freedom, we can tie

these two fields together, defining one as a non-linear functional of the other,

consistent with the transformation laws (31) and (32). To see this, assume

we are given LIT . One can show that a "polar decomposition" exists which

permits us to write

x(k) + Aua5(k) . Y xooj 3 f 3)

where S has the form

S = exp i P exp Q. t

Like for the SL(2,C) case, it is easy to see that (31) and (.33) are

consistent with the transformations

S -> Q S , (35)

and with the symmetric quantities SL and 5L transforming as scalars.

- 15 -



Construct now the field quantity

y X ( k ) - JlUa5(k) i Y Y, X(k)l S-1 . (36)
a a 5 J

Clearly this field is a non-linear functional of LT . The important point is
ua5(k)

that (on account of the crucial minus sign in front of I in (36)) it

provides a representation of L V ^ vith the correct transformation law (32).

We are now in a position to write a simple SL(6,C) x SL(6,C)

generalization of Weyl's Lagrangian. Consider

£ - Tr i Li L2 (Byv + i Cyv} + h'C' + <^ass * (37)

The gauge invariance of the Lagrangian implies that the only (physical) fields

which occur in this expression are the fields I t s}
1 and the fields

b and c defined by the relation

Bu + i Cu = S (t + ic)y ^ " i S 9y S"X ' ( 3 8 )

It is easy to verify that the bilinears obtained from (37) by the spontaneous

symmetry-breaking ansatz describe the propagation of two nonets (both with

positive definite metrics): a 2 nonet, described by the fields H and

b|f ( k ) , and a 2" nonet .described by £ y a 5 ( k ) and c ^ ( k ) . There are no
5 5bilinear terms for the fields b , c , b and c .

Finally, now, we are confronted with the problem of the propagationp

character of the fields V ' , % ' c a n d c > vhicil occur only

among the trilinear and quadrilinear terms in the SL(6,C) X SL(6,C) Lagrangian

proposed in (37).

In the paper IC/72/155 I have "been referring to, we have suggested the

addition of one further gauge-invariant expression to the Weyl form of the

Lagrangian which, so far as the bilinears are concerned, has the characteristic
k 2 k. 2

of adding mass-like terms (b ) , (c ) , etc. Thus our final Lagrangian

is (37) plus one new gauge-invariant term to cope with the problem of the fields
k k

b , c ,... As a consequence of this new term, the field equations express

these fields as algebraic functions of the dynamical fields & , S, , b
ab ^

and c . To-day I should like to discuss a different procedure which I

believe is more general and likely, in the long run? to be more important

for dealing with degrees of freedom which make their appearance only among

trilinear and quadrilinear terms of quantum Lagrangians. We call this

procedure "quantum completion".
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(k)
Consider as an illustration the field b . The SL(6,C) x SL(6,C)

Weyl Lagrangian (37) contains, among the trilinear terms, the expression

(Here * W » J.™ is «*>,* for fiJk l"""* 4™(k>.

In a classical sense, this Lagrangian does not tell us much about the propagation

of the b field. In a quantum sense, ho

this term will give rise to a loop diagram:

of the b field. In a quantum sense, however, a second-order iteration of

Since the propagators of the I fields are known, this diagram can "be computed,

and immediately leads to an effective Lagrangian for the \>u field . We

have actually computed the loop diagram; its leading (most divergent)

contribution is of the form:

with the correct metric for the positive frequency propagation of the "b

field (provided we assume that 6 (0) > 0 and,in some renormalization sense,
represents a finite number).

This idea of "quantum completion" is not new. It is closely linked

with the old idea of using conditions like 2 = Z(^,Vr) - 0 to give propagation
k k

character to composite fields(which in fact the fields b^ , c^ ,. .. . etc.,

really are ) since the Lagrangian^as it stands, gives no propagation equations

for these. In fact, Sacharov and Zeldovitch and Durr and Heisenberg have gone

so far as to suggest that one may recover the Maxwell field equations "by starting

with the Lagrangian

- m

with propagation terms for the ty field only. One recovers the propagation

character for the photon by considering the loop:

which,for special values of e determined by Z(e2) = 0 , would give rise to the
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as far

effective Maxwell term F F . We are not going^/as Sacharov and Zeldovitch,

since we have a simpler problem. Our Lagrangian already contains a first-order

derivative for the b field. A second-order iteration gives rise to an

effective Lagrangian guaranteeing the propagation of "b apparently for all

values of the coupling parameter.

t To summarize, one may suggest (as an alternative to adding more terms

to (37))» using the Weyl Lagrangian as it stands,to give a propagation

character to a 2 and a 2 nonet. In ensuring that "both nonets possess

positive definite metrics, we employed a non-linear realization of the VI
u ^

field in terras of L, . The spin-1 fields B , C ,... may acquire a

propagation character through the process of "quantum completion". Their

effective coupling parameters, however, will have no definite relation to

the coupling parameters of the 2 and 2** particles. If one does not like

the idea of a "quantum completion", there is always the possibility of adding

to the Weyl Lagrangian one extra "classical11 term, which guarantees that

these fields can "be eliminated from the theory as algebraic constraints. Of

course the "classical completion" and the "quantum completion" give rise to

different theories. Before closing with this part of my talk,I wish to make

two remarks. One is that Giirsey (Contemporary Physics (IAEA, Vienna I969)

p.211} has discussed an SL(6,C) invariant - but not an SL(6,C) gauge_-invariant

theory,where, in our notation, a field L is introduced through the definition

L^ = s y^ S~ with S = exp i P . The 72-fields P are the basic fields and not
degrees of freedom

just gauge A as in our formulation. There are no B fields, no Einstein-

like Lagrangian and naturally no spin-2 gauge particles. The fields P must

be zero-mass Goldstone fields in the symmetry limit. It seems to us that

the relationship between Giirsey's and our theory is roughly the same as that

between a (non-linearly realized) Goldstone theory and a Higgs-Kibble type

of gauge theory.

The second point I wish to make is that,in our opinion, it is not one

particular Lagrangian versus another which is likely to be important in strong-

interaction physics in the long run. Arguing with Gell-Mann, one must learn

to "abstract" the basic truth from the outer wrappings of formalism. We believe

the truth in this instance lies in the deep geometrical ideas of Cartan re-

garding torsion and its connection no,t only with spin but also with internal

symmetries.
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VI. TOWARDS SU(6)

I started this lecture by wanting to solve two problems: i) to find

a possible origin for spin-internal-spin combination and thereby motivate

SU(6); ii) to find an elegant generalization of Einstein's Lagrangian,

describing spin 2 particles, so as to include SU(3) .

What we have accomplished is to generalize Cartan's geometrical notion

of torsion to include internal symmetries. We have also succeeded in finding

an elegant theory of 2 (and 2~) nonets. But have we succeeded in recovering

SU(6) ?

Two years ago, lecturing here at Miami, I remarked on Kerr's exact

solution to Einstein's equation; the remark was that in the Kerr solution for a

charged spinning particle (mass m , charge Q , spin J ), the charge Q

always occurs in the combination

Q2 • 4- •

I conjectured that once SU(2) or SU(3) is incorporated into the structure

of the Einstein equation, Q will generalize to an expression like l(l + l),

where I is the isotopic spin. I suggested that SU(2) or SU(3) containing

Einstein-like equations, when solved exactly(as for the Kerr case),may provide

the dynamical basis for the emergence of SU(H)- or SU(6)-like combinations,

m

where G_ is the strong-gravity coupling parameter which replaces the

newtonian constant GN . The situation with SU(6) would then be similar to

the situation for the hydrogen atom,where the observed SO(U) symmetry of

hydrogen energy levels is a dynamical (and unexpected) consequence of the l/r

potential. Now that we have successfully incorporated SU(3) (or indeed

SU(3) x SU(3)) into the Einstein-Cartan-Weyl-like equations, with (a non-linearly

realized) SL(6,C) * SL(6,C) as our starting point and with an algebra of

conserved currents, it seems eminently reasonable that SU(6) symmetry (with

its attendant manifestations in terms of collinear and coplanar subgroups)

should emerge dynamically from different approximations of the theory we have

constructed. So far as matter is concerned, presumably we would consider

writing the quark-antiquark Lagrangian describing the 35-plet of SU(3) in the

generalized Bergmann-Vigner form
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L = I Tr (*[LV , Vy$] - m**) ,

where * is the second-rank multi-spinor. Likewise for the third-rank multi-

spinor describing the 56-plet of the baryons. In addition we may have direct

SL(6,C)-invariant couplings of the type Tr $$$ . The 2 (and 2~) nonets

described by the fields Ly(x) will act as gluons. (AS stated earlier, these

particles constitute incomplete multiplets of the old quark-based phenomeno-

logical SU(6) . The situation for these multiplets is presumably completely

analogous to non-linearly realized chiral theories, which also display incomplete

multiplets of the larger symmetry group.) The true dynamics will be a complicated

interplay of exactly symmetric vertices, like Tr $$$ , of the spontaneous

symmetry-breaking mechanism <̂ L̂ )> = y and of the covariant constraints, like

those typified in (36). The spin 2 mesons described by the ({1 fields in

Ly = yy + K(j)y will break the SL(6\C) chain (SU{6) rest symmetry, SU(3)x SU(3)

collinear symmetry)in a specified manner.
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