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I. INTRODUCTION

Wigner's spin-isotopic-spin symmetry SU{L) was extended to SU(6) in
1964 by Giirsey, Radicati and Sakita. Ever since,we have had & problem:

a) Is there something deep in this unification of intrinsiec spin
with internal symmetry?

b) Do there exist Lagrangians with  both kinetic energy

and  interaction terms invariant under SL{6,C) or U(6,6)? (SL(6,C) is the
relativistic generalization of SU{(6) and U(6,6) the relativistic
generalization of U(6) x U(6).)

¢} FEquivalently, do there exist conserved currents which close on the

algebra of SL{6,C)? If there do, what is their physical significance?

' +
A parallel problem was posed by the theory of spin 2 strongly
interacting mesons. In 1970 Isham, Strathdee and Salam and, independently,
-+
Wess and Zumino suggested that the strongly interacting massive spin 2 fo

meson may be described by en equation similar to Einstein's with the field

fUV replacing the graviton field guv 8 (One would of course slso change
the coupling parameter in Einstein's equation from the nNewtonian constant
Gy to the nuclear force constant Gp (GF=31038 GN) and also supplement

Einstein's equation with a mass term.) The problem with this suggestion
was: how does one incorporate SU(3) (necessary to describe the known nonet

of 27 particles) with the closely-knit space-time structure of Einstein's

equation?

Cleariy, both these problems are related to each other in that both
require for their resolution a unification of internal symmetries with scme

sort of space-time structure.

I wish to report to-day some work that Isham, Sirathdee and 1 have
recently done in this direction. I shall essentially supply a critique of
two notes we have written on the subject (Lettere al Nuovo Cimento 5, 969

(1972) end ICTP, Trieste, preprint IC/T2/155).

Briefly, what we have discovered i1s that Weyl had already shown in
1929 that the Finstein-Cartan gravitational Lagrangiasn of 1922 possesses gauge
invariance under the non-compact symmetry SL(E,C). When we rewrite the DRinstein-
Cartan~Weyl theory in a Dirac vy basis, we find that this permits of an instant

generalization of SL(2.C) to SL{f.C) or SL{6,C) x SL(6,C) and, in particular,

of Cartan's equation for spin-torsion, which generalizes to include what one may

el



call internal-spin-torsion. One obtains thus an elegant unification of

intrinsic spin with internal symmetries.

I am hoping very much that our approach ney, at the least, mske the

beautiful geometricel ideas of Hinstein, Weyl and Cartan accessible to particle

physicists, though our motivation is to use these ideas for strong interaction

physics. The literature on general relativity places so much emphasis on

the GL(4,R) group of general co-ordinate transformations, that the other in-
variancesof the theory,like SL(2,C) gauge invariance, so much more relevant
to particle physicists' experience, +end to be ignored, We hope

the balance gets somewhat redressed fy our demonstration of the value of

these other invariances of the Einstein-Cartan theory.

During the second part of my talk I shall be concerned with the problem
of the particle spectrum given by the SL(6,C) x SL{6,C) gauge-invariant
Lagrangian type. In particular we must ensure (like Einstein and Weyl had to)
that, considered as a classical Lagrangian, ours permits of the exeitation of
only the positive frequencies. Here, we shall use, again and again the ideas of

spontaneous symmetry breaking and non-zero expectation values of tensor fields

[<:fuv> = A nuv] ~  amazingly enough, essentially first introduced by

Einstein (though not using this language) and now so much in prominence

in particle physics.

II. GAUGING THE NON-COMPACT GROUP SL{2,C). EINSTEIN-CARTAN-~-WEYL THEORY

2.1 The twin ideas of gauge-invariant Lagrangians and spontanecus symmetry
breaking have played an important role recently in particle physiecs. As I
have said before, both ideas go back fifty years to the work of Weyl and

Finstein. Let us first teke gauge Lagrangians.

DEVELOPMENT OF IDEAS IN GAUGE THECRIES

Gauge group Ga?ge ,
1. (1918); recognition by Weyl that the Maxwell parEIC1e(S)
i Lagrangian is a gauge Lagrangian. u(l) 1 photon
| i
| - - ‘
2. (1929); recognition by Weyl, Fock, Ivanenko non-compact | 2 graviton %
that the Einstein-Cartan Lagrangian of 1022 sL(2,c)
is & gauge Lagrangian.
!
) - T
3. {1954); generalization by Yang, Mills and su(2) 1 trlplet ;
Shaw of Weyl's 1918 theory. p p
| 3 i
J
! 4, (1972); present generalization of Weyl's SL(6,C) nonet of 27
; theory of 1929 . particles
g FoF LA, K
i
SL{6,C)xSL(6,C) nonets of ot &]
LAQ partlcle‘J
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Let ys consider the Einstein-Cartan theory of gravity in Weyl's
formulation. As 1s well known,Einstein's graviiy theory works with o Len-
component symmetric tensor field gpv(x) . In order to describe gravitational

. . ' 1 .
interaction of sp1n—§~particles, Weyl introduced the so-called vierbein 16-

component fields - L'*(x), which bear to g V(x) the same relation as

Dirsc's Y matrices bear to the unit matrix, i.e. s are essentially

a8 square root of gpv,in the sense

Ha Vb - ﬁv
Mgy T (x) L7(x) = g

where

nab

Lh¢ and LU&

In the sense of interpoclating fields, both fields, g , are at par;

both could describe the graviton equally well.

Now,one of the curses of relativity theory is the multiplicity of
indices which,in the cluster of formalism,successfully obscure the real
heart of the basic ideas. In order to minimize indices, I shall use the
Direc Y basis to write my formulae. For SL(Z2,C) I shall need the four

Ya's and the six generators Gab's » With commutation relaticns of the type:

lo,0] = ig¢
[y ol = iy .
In this Dirac basis the expression 1M(x) will stand for the L x L matrix

combination of Weyl fields L'®y . In particular, g = i or(z"r”).

2,2 Consider & spinor Y{x) which,for the SL{2,C) index trans-

formations, transforms as

yix) - ¢' = 0 p(x),

where

0
It
3
[
o—
FDQ
o
O
o
e



Note that there is no x transformation implied at this stage. The only role

the x co-ordinate will play will come about when we consider, in the

standard gauge fashion, the parameters eab to be functions of x . Ir
ab Gab(

e = x) , clearly

3ﬂ Y A Q Bﬁ Yix) .

The ordinary derivative does not transform in a simple manner. To "correct”
this, introduce in the standard gauge fashion, the 2h-component gauge field

Bu(x) = Bib O (Bﬁb = -Bza)-—-also called the"Weyl connection". Provided

that Bu transforms as

-1 -1
B, » 2B a7 ~i03 &,

the "Weyl covariant" derivative,

’vu ‘p = (Bu + iBu) 'L]J y

transforms "correctly" in the same manner as Y itself; i.e.
) + 0(x) V .
U y (x) u v

Also,since

! o> alx) tMx) 97 x) s

we may define

Vv A, . v
Vu L” = au L™+ 1 [BU,L 1,
which will transform as:
v o> awi)y ot .
) u

Finaliy, from the transformation law of BU , one can easily verify that

the "covariant curi”

Buv TRV v H

transforms &as:

We are now ready to write SL{2,C) invariant Lagrangians. Summarizing

the transformations:

-l




o+ QY , V30 @=ah

u RTI ] ; o

Y+ gLhQ , By * 9B, 0 ? (1)
vuw+nvu-¢ - V;u'tp=(8']_l'+iB'u')\b J ,

wve immediately see that

5{matter i (Luvu) ¥ + myy is SL(2,C) gauge invariant ,

-i Tr [Lu,Lv] B is BSL(2,C) gauge invariant .

‘£ Weyi HV

The amazing fact is that the beautifully simple expression 58Wéyl

turn out to be identical to the well~known Einstein Lagrangian for gravity,

will

. .ol .
when no matter is present. When Spin-3 matter is present.aiWeyl +§imatter

gives Cartan's generalization (1922) of Einstein's theory. I shall

demonstrate this equivalence in a heuristic fashion presently. Before
doing this, however, let us consider this Lagrangian and the field

equations following from it in some more detail.

2.3 Consider

d = or («i i,V {au B, - 8, B, +1i [Bu,Bv]]

+ iy M (au + iBuW""mW + h.c. (2)
The field equations are:
i [Lu’Buv] = Tv Einstein's curvature equation (3)
TR v , . i
VU (L",L"] = s Cartan's torsional equation . (4)

Eere Tv and Sv are the matter stress-tensor densiiy and the matter
Y

. - TV
intrinsic-spin densities, respectively. (TU = 1vv W o, S = AL L)

Operating on the second eqguation by Vv and using the first equation

we obtain

<1
w
1]

i [LV,Tv] Tetrode identity ) (5)




Cartan's equation (4) written out in detail reads:

. uovy] . v . u
* [BH’[L & ]] - Smatter - BU [Lu’Lv] ) (6)

Essentially this equation tells us that Bﬁ can be solved in  terms of
R v . .

BU L , L and matter spin density. VWhen this solution for Bu is sub-

stituted into Einstein's equation, we obtain a second-order equation for Lu.

Equivalently, one may substitute for Bu into the Lagrangian (2) and recover

a second~order Lagrangian for LY which 1s identical to the Einstein

Lagrangisan for guv = %-Tr. Lu Lv plus a contact term proportional toc the

square of the spin density (tsv)e).

If we define the currents Jv :
v o_ WV _ VRV
9= Spatter 1 [Bu’[L - ]} g
we see that
vo_ T TV (&)
8, = a\,au [L¥,L")] = 0 .

It is easy to show that this conserved set of currents Jv are indeed the
appropriate Noerther currents for (2) and close on the algebra of SL(2,C)
(see ICTP, Trieste, preprint IC/72/155, Sec.V).




2.k As I Just said, the equivalence of the theory described sbove with
Finstein's gravitational theory can be shown algebraically by solving (6) for
By and eliminating this varisble from (2). However,an elegant geometrical
proof can be given and I shall sketch it for the case when no matter is

present. First note an slgebraic identity due to Moller:

GL = TPpi- i[Lu,Lv] Bqu Z Tr {(V“Lv)(VvLu) - (VﬂLu)(Vvai} + a surface term.
{9)

So far we have ignored space-time transformations of L (x) and Bu(x) .
Lgt us assume with Einstein that these transform as standard contra- and

covariant quantities:

' _ va
Bu(x) —-—)Bu(x) = _ax'“ Bv(x) (10}
H U _ Bx'u v
LM {x) —L "(x) = 5 L (x) . {11)
ax

The remarkable thing about the expression . Tr i[Lu,Lv] Buv is that it transforms

like & secalar for the general co-ordinate transformations,in Einstein's sense,

the reason for this being that Buv has the character of a "eurl". We may now

use

gV o=ty (12)
to raise the lower indices. To link with Cartan, we may define the 'Cartan
covariant derivative" (denoted with a  double stroke i ) which must
take account both of the general co-ordinate transformations and the

Weyl 8SL(2,C) transformations. Quite generally the linearity of this

"esonnection" requires that:

Y v o, Y v p
L, = 9 L +ilB , L] + ) L .
it u i1 (up
Here (:é} is a Christoffel-like {(asymmetric) connection, for which

we shall demand +that the Cartan-derivative of M (or equivelently of guv )

vanishes. Thus (:p) is defined by the relation:

- V- g VLIV P
0 = Iy = VL +\UJ]; . (13)




Using (13), clearly, the Méller form of Weyl's Lagrangian,
v iy u v
(VUL Wy, ') - (VUL )(V\)L)’

reduces to & form familiar from Finstein (when no matter is present):

i’Einstein il (Eo) (1\1)0') - (ED) “o‘)

(or & )

(For completeness, one should remark that one must divide JﬁEinstein
by the factor ¥ - det gtV = v (3 Tr I¥ LV) 1in order that

follows
\[5£ dhx transforms as a scalar. Bince in what | we do not wish to worry about

Weyl

general co-ordinate transformations but only about the Poincaré set of space-
time transformations, so far as strong interaction physics is concerned, this

refinement can for the present be ignored.)

Note, in passing,that the Cartan equation (4),

U oVq oV
v, [L°,L7] = s",

reads, in terms of the generalized "Christoffel" connection:

= () - (o] - e

Tt is easy to see that the equation relates the antisymmetric part of (5;) in

U,p indices, i.e. the torsion tensor, to the spin density.

later
2.5 As will be seeg@when we generalize SL(2,C) to SL(6,C),it is the Cartan
Yy

equation and the spin-density Sv which get generalized to include not only spin

but also internal spin. But before we exhibit this generalization, consider:

what is the effect of the spin-torsion terms of Cartan in gravitagional theory?
Kibble has shown that,to the first order in the newitonian constanE£ the gravitational
potential between the two spin-3 particles acquires an extra repulsive contact

term proportional to GN(E- YS Yu w)a s which,in the non-relativistic limit,

reduces to a repulsive contact potential proportional to the square of the spin~

density. The important point sabout this repulsive contact potential is that it



is gravitational in origin and comes about on account of the torsicnal

characteristics of space-time structure.

Following from this, récently Trautman has argued that the singularities
of gravitational collapse and cosmology may be prevented by the direct influence
of spin on the geometry of space-time, in virtue of Cartan's equaticn above.
Trautman considers a universe filled with spinning dust, with spins all aligned
along one direction - due presumably to the influence of some cosmic magnetic
field. The Elnstein and Cartan eguations are compatible with a Robertson-

Walker line element,
(as)? = (at)® - (R(+))? ((&x)? + (ay)? + (a2)®) .

For small R, the spin density on the right-hand side of Cartan's equation plays
the role of a "repulsive potential”, which counteracts the universal "attractive"
gravitational force. A universe consisting of 1080.neutrons would attain Rmin
of the order of 1 em and collapse no further.

I am mentioning this because later, when we have generslized the Einstein-
Cartan-Weyl Lagresngian to an SL(6,0) invariant form, we may find some
speculative reasons why spin elignments and isotopic-spin alignments should

occur together in reglons of extreme spin-isotopie-spin density.

IIT. GENERALIZATION OF EINSTEIN-CARTAN-WEYL THEORY TO SL(6,C) GAUGE INVARIANCE

the

The generators of{ SL(6,C) group are given by Oy, A *

i
] Y5>‘ 2 )‘ L]
vhile vy, A, i Ya Vs At give the appropriate SL(6,C) generalization of the

i

L) i
ideal Ya .

Generalize LY and Bu to contain (4 X T2) components each (rather than

4 x L components); thus

. i . i
Moo= pHed (ya ._...2 ) + [Heid (i Y, Vs —-; ) (1L)
o Ai i . i
i A A
B, = Bibi &b + B;: —+ le(*_e YS) y (15)
L

and now adopt the same expression (2) as the Lagrangian for strong interactions
exhibiting SL{6,C) gauge invariance. (Here 3> are the nine 3 x 3 Gell-Mann
U(3) matrices.) It is a triumph of the Dirac basis for the SL(2,C) case that
the formalism carries over directly from SL{2,C) to SL(6,C).

-9 -



Later we shall see that we neegiadd some more terms to the Lagrangisn (2),
particularly in order that the particles described by the Lagrangian possess mass.
However, at this stege, remark that the Einstein's curvature equation (3), Cartan's
torsional equation (4), the tetrode identity (5) and the definition of conserved
currents (6) {which now close on the algebra of SL{6,C)) carry over directly
without change from the SL(2,C) case, except that we ‘are now dealing with
T2-beins rather than vierbeins. Also remark that if the internal symmetry group
were not & unitary group, but some other variety of Lie group, the generalization

of SL(2,C) to include internal symmetries may have presented difficulties.

Iv. THE PARTICLE SPECTRUM

As T said earlier, so far as strong interaction physics is concerned,we
shall not worry, for the present, with general co-ordinate transformations. The -

symmetry group we shall specialize to,has the structure of a semi-direct product
P ® su6,0),

where P denotes the Poincaré group. (The distinction of upper and lower

indices is now trivial (Lu = nuv LU)')

Before considering the complicated SL(6,0) case, let us examine the
e
meaning of SL(E}C) gauge invariance forAEinstein—weyl-Cartan theory and

introduce with Einstein the ideas of spontaneous symmetry breaking.

b.1 The Einstein-Weyl Lagrangian (and also the spin-i Lagrangian in the
limit m = OJpossesses no terms bilinear in field varisbles, If we assume with

Einstein that

Mo (x) = "+« ¢M8(x) (16)

where K is the (strong gravity) coupling constant and ¢"%(x) is the

(quantized) field varisble with zero expectation value, then

Ha

The symmetry-breaking implied by <<Lua> = 7 provides a bridge, through an

identification of Greek () and Latin (a) indices, between the Poincar& trans—

formations and the index transformations 8SL(2,C) . If we now set

-10-




Lu - .Yu + K ¢]J'

in the Einstein-Weyl-Dirac Lagrangian,we do recover a set of bilinear terms and
with them a particle spectrum. In fact, symbolically, the structure of our
Lagrangian now loocks like:

2.2

o) —_
i%yl = LB +I1°8° + YLy

Approximating Ec. by its bilinears, we recover the field equations,

B = 9 , 3B = 0 => 3°% = 0

telling us that we are dealing with a massless field ¢ (the graviton).

Before proceeding, let us add to afWéyl further SL(2,C) gauge-invariant
terms which give the particles mass, through the familiar intrinsic symmetry-

.breaking mechanism. Write

4

eeg = T (31 o, o+ e, Lu)g + B (1 L")(L11 LvJ) . (18)

We shall see later that this term indeed gives rise to a mass M for 2+
particles, provided B8, + 882 - hBB = 0 and Bl = - (3M2/2K2) s

B, = =8, = (M2/3K2) consistent with the spontaneous symmetry-breaking
ansatz <:LU>f=ﬁ yu » in a manner very familiar nowadays froﬁ?ﬂiggs—Kibble theory.
(Freund and Maheshwari have remarked thet in a GL(L4,R) theory,which is invariant
for general co-ordinate transformations, Tr I}1 Lu is a constant and we would

not have been able to obtain mass from s symmetry-breaking formalimm)

L,2 Consider now the meaning of SL(2,C) gauge invariance. Infinitesimally,

U U , ab U
7 = " + i [} cab s L ] .

Clearly the gauge transformation affects only the antisymmetric parts of
e (L[“a] = % - La“)> infinitesimally.

-1l -



In fact, SL(2,C) gauge invariance of the Lagrangian is simply the statement

that the antisymmetric components of Lua“do‘not represent dynamical degrees

of freedom and we can specialize to a gauge where these can be set equal to zero.

The bilinear part of the Weyl Lagrangian now reads:

_ 2 v,
o((2) T2 B, ((Pua,v'nuv(?)\a,l)
1 VO _pe  ua ova
3 (Bu B Bu Bv)

* 883 Puv Puv * L‘(Bz - 63)@1111 Poy

This is the well-known Pauli-Fierz Lagrangian where the only particle

+
excitations correspond to those of amass M and spin 2  particles,

provided
- ' 8, = -8, = 2L (19)
z - R = - = .
1 02 2 3 8 .
V. PARTICLE SPECTRA FOR SL(6,C) AND SL(6,C) x SL(6,C) GAUGE LAGRANGIANS

5.1 Consider now the Weyl Lagrangian]

L="Tri [Lu,Lv] Buvhfi;mss (given by FEq.(18)), (20)

generalized to SL(6,C), and once again consider the bilinears obtained by setting

o= M et

As one can see from {(ih) and (15), in addition to nonets of conjugate
fields Lua(k) and Bab(k) , the 8L(6,C) theory needs the introduction of

U
k .
the following extra fields: Luas(k) , B(k) s Bi( ) . If one examines the
H Lua(k) Bab(k)
L]

bilinear part of (20}, one finds that the conjugate set y
+ 4
correctly gives the propagation of a massive 2 nonet. The extra flelds

LHaS(k) , B(k) and Bg(k) , however, make their appearance only in one

place among the kinetic energy bilinears in a term which reads:

22 (20 8)

- 12 -




fields
These*do appear in trilinear and quadrilinear parts of the Lagrengian, but the

blllnearkglve no c¢lue as 1o their propagation character. This implies that
either we should devise methods by which we can infer the particle spectrum
corresponding to these fields from the trilinear and quadrilinear parts of the
Lagrangian, or we should supplement the Weyl Lagrangian (20) by additional
sL(2,c) invariant terms, These should be such as to give new sets of bilinears

which should guarantee the (positive metric) propagation properties for the
extra fields.

In the following I shall illustrate both approaches.

5.2 Before going on to consider the problem posed above, let me return for a
moment to Weyl's SL(2,C) geuge-invariant Lagrangian and try to bring out the
significance of its gauge invariance in a slightly different manner. The remarks
T shall make will be relevant to the problem ¢f propagation of the extra fields

Luas, B and B5 .

U M

Given a lb-component field quantity s (with & non-zero expectation -
value <Lu> = Yll ), one has a mathematical theorem - the so-called "polar
decomposition theorem" - which states that one can write i uniquely in the

form:

-1
L‘"l = B 9;” S P (21)

where £ is symmetric in the sense &% = 2® ana s has the form;

S = expi?P H P = P 0 o

To prove this result, set up an iteration system,

H_ M u || S u_ . H H H ...
" =y + Ll + L2 + sy R Yoo+ Rl + 22 + s

P P +P, + -

1 2

The relation (21) is equivalent to the set of equations

u -— ]J' - P u
oo LM My s u (22)
2;2 = L2 - 1 [PlsL1] -1 [PQ;Y ]

postulated U
Clearly, theLsymmetry of 2 implies that 21 and P, are respectively given

by the symmeirical and antisymmetrical parts of LE and so on. Clearly,also

in terms of the "polar decomposition" above, we can understand the transformation

- 13 -~




Mo gt ot (23)

as equivalent to the transformation

8 > a8, (24)

with Eu as a scalar quantity so far as the SL(2,C)} transformations are

concerned.

Given S as a functional of i , Gefine now s lower-case quantity Db

through the relation g
B, = Sb, st - 183, st (25)
Combined with the transformation law for Bﬂ s viz,,
B, » @B 0 - i3 07, (26)
the relation (29) guarantees that bu is also a scalar. The invariance of
L=rri g1V By (27)
is now simply the statement that 5{ identieally equals
4 =711 [V oy (28)
and that there is no S-dependence of the Lagrangian.
5.3 Let me now return to the problem posed earlier: the problem of propagation
of the fields LuaS(k) s Bﬁk) and Bz(k) .
So far as the variables LuaS(k) are concerned, it appears that a simple

"eclassical completion” of the Lagrangian is provided by an extension of the gauge
group from 8L(6,0) to SL(6,C) x SL(6,C) . The details are worked out in
Sec.IV of ICTP, Trieste, preprint IC/T2/155., Here I wish to illustrate ome
important new idea which we had to introduce to cut down the multiplicity of
fields and to guarantee a positive metric for the particles described by LuaS(k)

This is the idea of (SL(6,C)} x SL(6,C)) covariant constraints.

- 14 -
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Consider gauge transformations of the type

2 = exp(iB) exply), (29)

where B and Y contain T2 parameters each ,corresponding to SL(6,C) x SL(6,C).
The theory would possess two gauge fields now:

(B +1c), + B+ ic), ot -ig 3, g1
- (30)
(B - ic), @)L (B - ic) B -1 gt

Buﬂ

So far,everything is straightforward. But now comes the subtle new feature of
the theory. In general we should work with two distinct L-type fields, with

the transformation characters,

U W= (31)

Ll-i-ﬂLlQ :
==l -1

i -~ @ Lg Q . (32)

In order, however, to reduce the independent degrees of freedom, we can tie
these two fields together, defining one as a non-linear functional of the other,
consistent with the transformation laws (31) and (32). To see this, assume

we are given LE . DOne can show that a "polar decomposition" exists which

permits us to write

uo_ na(k) (k) uas{k) . (k)] = :
Ly = s[¢ YA+ R 1Y,Yg A s , (33)
where S has the form
S = expiP expQ ’ (3

ua(k) _ pau(x) gras(x) _ jaus(x)

L and

Like for the SL(2,C) case, it is easy to see that (31) and (33 are

consistent with the transformations
s » a8, (35)

and with the symmetric quantities "% and 2}155 transforming as scalars.

- 15 -



‘Constrict now the field quantity

T [el) 0 sty ) gt (36)

Clearly this field is a non-linear functional of LE . The important point is
; a5k . .
that (on account of the crucial minus sign in front of M 5(k) in (36)) it

provides & representation of L?z) with the correct transformation law (32).

We are now in a position to write a simple SL(6,C) x SL(6,C)

generalization of Weyl's Lagrangian. Consider

{ . ;oM oV .
L Trit] L, (Buv + 1 cuv) + h.c. *'Jﬁmass . (37)

The gauge invariance of the Lagrangien implies that the only (physical) fields

. : k .
which ocecur in this expression are the fields Rua( ) . Rua5(k) and the fields

bu and cu defined by the relation

. -1 -1 '
= + S -i85a3 8
Bu + 1 Cu s (b 1C)H y (38)

It is easy to verify that the bilinears obtained from (37) by the spontaneous

symmetry-breaking ansatz describe the propagation of two nonets (both with

gHa (k)

+
positive definite metrics): a 2 nonet,described by the fields and

- . a b
bﬁb(k) ;and & 2 nonet,described by M 5(x) and cﬁ (x)
bilinear terms for the fields bu . cu s bg and ca .

. There are no

5.4 Finally, now, we are confronted with the problem of the propagation

(x)  .5(kx) (k) C5(1:;)

character of the fields bU » bu y € and s Which occur only

U
among the trilinear and quadrilinear terms in the SL(6,C) X SL{6,C) Lagrangian

proposed in (37).

In the paper IC/72/155 I have been referring to, we have suggested the

addition of one further gauge-invariant expressicn to the Weyl form of the

Lagrangien which, so far as the bilinears are concerned, has the characteristic

of adding mass-like terms (bﬁ)2 R (cﬁ)2 , etc. Thus our final Lagrangian

is (37) plus one new gauge-invariant term to cope With the problem of the fields
k k

bu , cu PN

these fields as algebraic functions of the dynsmical fields

and cﬁb . To-day I should like to discuss a different procedure which T

As a consequence of this new term, the field equations express
8.
P b;"b

believe is more general and likely, in the long run, to be more important
for dealing with degrees of freedom which make their appearance only among
trilinear end quadrilinear terms of quantum Lagrangians. We call this

- procedure "quantum completion".
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Consider as an illustration the field bﬁk) .  The SL(6,C) x SL(6,C)

Weyl Lagrangisn (37) contains, among the trilinear tenms, the expression
| . | oua Vo uas 2\)&5]
{bv’u bUsV + bu x bv] [2 x & £ x .

VO

(Here Laali o} ik RUQ(J) QVG(R{)

is short for f

In a classical sense, this Lagrangian does not tell us much about the propagation
of the bu field. In a guantum sense, however, a second-order iteration of

this term will give rise to a loop diagram:

©ua
3,b, = d.b, /\ 3,0, = 3b,

N

Since the propagators of the £ fields are known, this diagram can be computed,
and immediately leads to an effective Lagrangian for the bﬁ field . Ve
have - actually computed the loop diagram; its 1eading(most divergent)

contribution is of the form:

with the correct metric for the positive frequency propagation of the bU

field (provided we assume that Gh(O) > 0 and, in some renormalization sense,

represents & finite number).
This idea of "quantum completion" is not new. It is closely linked

with the 0ld idea of using conditions like Z = Z(Kz,Ma) = 0 to give propagation
character to composite fields(which in fact the fields Hf s G oseres ete.,
really are ) since the Lagrangien,as it stands, gives no propagation equations

for these.' In fact, Sﬁcharov and Zeldoviteh and Durr and Heisenberg have gone

so far as to suggest that one may recover the Maxwell field equations by starting

with the Legrangian

L = -Ty(s+ieA-mpy ,

with propagation terms for the Y field only. One recovers the propagation

character for the photon by considering the loop:

A A

which,for special values of e determined by Z(éa)= 0 ,would give rise to the
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as far

“effective Maxwell term Fuv Fuv + We are not goinglas Bacharev and Zeldovitch,

since we have a simpler problem. Our Lagrangian already contains & first-order
derivative for the bU field. A second-order iteration gives rise to an
effective Lagrangian guaranteeing the propagation of bu apparently for all
values of the coupling parameter.

To summarize, one may suggest (as an alternative to adding more terms

to (37)), using the Weyl Lagrangian as it stands,to give a propagation
character to a 2+ and & 2  nonet. In ensuring that both nonets possess
positive definite metrics, we employed a‘non-linear realization of the Lg
field in terms of ﬂi . The spin~l fields Bu y C sy mAY acquire a

v
propagation character through the process of "quantum completion". Their

effective coupling parameters, however, will have no definite relation to

the coupling paremeters of the 2+ and 2 particles. If one does not like
the idea of a "quantum completion", there is always the possibility of adding
t0 the Weyl Legrangian one extra "classical" term, which guarantees that
these fields cen be eliminated from the theory as algebraic constraints. Of
course the "classical completion" and the "quantum completion" give rise to
different theories. Before closing with this part of my talk,I wish to m&ke'
two remarks. One is that Giirsey (Contemporary Physics (TAEA, Vienna 1969)

p.211) has discussed an SL(6,C) invariant - but not an SL(6,C) gauge-invariant
theory,vwhere, in our notation, a field Lu is introduced through the definition
" =sy¥S! with S=expiP. The T2-fields P are the basic fields and not
Just gaug%egrifs ogsfgge%%¥ formulation. There are no Bu fields, no Einstein-
like Lagrangian and naturally no spin-2 gauge particles. The fields P nmnust
be zero-mass Goldstone fields in the symmetry limit. It seems to us that

the relationship between Gursey's and our theory is roughly the same as that
between a (non-linearly realized) Goldstone theory and a Higgs-Kibble type

of gauge theory.

The second point I wish to make is that,in our opinicn, it is not one
particular Lagrangian versus another which is likely to be important in strong-
interaction physics in the long run. Arguing with Gell-Mann, one must learn

to "abstract" the basic truth from the outer wrappings of formalism. We believe
the truth in this instance lies in the deep geometrical ideas of Cartan re-
garding torsion and its connection not only with spin but also with internal

symmetries.
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vI. TOWARDS SU(6)

I started this lecture by wanting to solve two problems: i) to find
a possible origin for spin-internal-spin combination and thereby motivate
su(6); ii) to find an elegant generalization of Einstein's Lagrangian,

+
describing spin 2  particles, so as to include SU(3) .

What we have accomplished is to generalize Cartan's geometrical notion
of torsion to include internal symmetries. We have also succeeded in finding

+ -
an elegant theory of 2 (and 27 ) nonets. But have we succeeded in recovering

su(6) 7

Two years ago, lecturing here at Miami, I remarked on Kerr's exact
solution to Einstein’s equation; the remark was that in the Kerr solution for a
charged spinning perticle (mass m , charge Q , spin J ), the charge Q

always occurs in the combinetion

2 72

Q +
2
m GN

I conjectured that once 8U(2) or SU(3) is incorporated into the structure

of the Einstein equation, Q2 will generalize to an expression like I{I + 1),
where I is the isotopic spin. I suggested that SU(2) or SU(3) containing
Einstein-like eguations, when solved exactlx(as for the Kerr case),may provide
the dynamical basis for the emergence of SU(k)- or 8U(6)-like combinations,

J(JT + 1 ,
m2 GF

I(r+1) +

where GF is the strong-gravity coupling parameter which replaces the

newtonian constant Gy . The situation with SU{6) would then be similar to
the situation for the hydrogen atom,where the observed S0(4) symmetry of
hydrogen energy levels is a dynamicel (and unexpected) consequence of the 1/r
potential. Now that we have successfully incorporated SU(3) (or indeed

su(3) x su{3)) into the Einstein-Cartan-Weyl-like equ&tion.s, with {a non~linearly
realized) 8L(6,0) x SL(6,0) as our starting point and with an algebra of
conserved currents, it seems eminently reasonable that SU(6) symmetry {with

its attendant manifestations in terms of collinear and coplanar subgroups )

should emerge dynamically from different approximations of the theory we have

constructed. So far as matter is concerned, presumably we would consider

writing the gquark-antiquark Lagrangian @escribing the 35~plet of SU(3) in the

generalized Bergmann-Wigner form

-19-




L = -3-1'1- (45[1.” R Vu<!>] - m¢¢) ,

where ¢ is the second-rank multi-spinor. Likewise for the third-rank multi-
spinor describing the 56-plet of the baryons. In addition we may have direct
SL(6,C)~invariant couplings of the type Tr 3% . The 2*  (and 27) nonets
described by the fields M(x) will act as gluons. (As stated earlier, these
particles constitute incomplete multiplets of the old quark-based phenomeno-
logical SU(6) . The situation for these multiplets is presumably completely
analogous to non-linearly realized chiral theories, which also display incomplete
multiplets of the larger syrmmetry group.) The true dynamics will be a complicated
interplay of exactly symmetric vertices,like Tr ¢¢¢ , of the spontaneous
symmetry-breaking mechanism <Lu> = Yu and of the covariant constraints, like

those typified in (36). The épin 2% mesons described by the ¢ fields in
V= yu + k! will bresk the SL(6,C) chain (SU(6) rest symmetry, SU(3)x SU(3)
collinear symmetry)in a specified manner.
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